JPH06320190A - Method and device for treating sewage water - Google Patents
Method and device for treating sewage waterInfo
- Publication number
- JPH06320190A JPH06320190A JP5132521A JP13252193A JPH06320190A JP H06320190 A JPH06320190 A JP H06320190A JP 5132521 A JP5132521 A JP 5132521A JP 13252193 A JP13252193 A JP 13252193A JP H06320190 A JPH06320190 A JP H06320190A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- sludge
- solid
- water
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000010865 sewage Substances 0.000 title claims abstract description 18
- 239000010802 sludge Substances 0.000 claims abstract description 166
- 239000007788 liquid Substances 0.000 claims abstract description 57
- 239000000706 filtrate Substances 0.000 claims abstract description 41
- 238000005345 coagulation Methods 0.000 claims abstract description 24
- 230000015271 coagulation Effects 0.000 claims abstract description 24
- 239000012528 membrane Substances 0.000 claims abstract description 19
- 239000002002 slurry Substances 0.000 claims abstract description 15
- 238000000926 separation method Methods 0.000 claims description 47
- 238000003860 storage Methods 0.000 claims description 44
- 210000002700 urine Anatomy 0.000 claims description 34
- 239000002351 wastewater Substances 0.000 claims description 26
- 230000004931 aggregating effect Effects 0.000 claims description 15
- 230000018044 dehydration Effects 0.000 claims description 14
- 238000006297 dehydration reaction Methods 0.000 claims description 14
- 230000002776 aggregation Effects 0.000 claims description 8
- 238000004220 aggregation Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 5
- 230000001112 coagulating effect Effects 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 3
- 238000009826 distribution Methods 0.000 claims 2
- 238000005054 agglomeration Methods 0.000 claims 1
- 239000010800 human waste Substances 0.000 abstract description 36
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 23
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 23
- 239000011574 phosphorus Substances 0.000 abstract description 23
- 239000000701 coagulant Substances 0.000 abstract description 21
- 230000008569 process Effects 0.000 abstract description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 abstract description 12
- 229910021529 ammonia Inorganic materials 0.000 abstract description 6
- 239000007787 solid Substances 0.000 abstract description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 abstract description 4
- 239000010840 domestic wastewater Substances 0.000 abstract description 4
- 229910017604 nitric acid Inorganic materials 0.000 abstract description 4
- 238000000265 homogenisation Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 238000005273 aeration Methods 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 17
- 239000000178 monomer Substances 0.000 description 13
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 6
- -1 and in particular Substances 0.000 description 6
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000000356 contaminant Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 125000000129 anionic group Chemical group 0.000 description 4
- 229920006318 anionic polymer Polymers 0.000 description 4
- 125000002091 cationic group Chemical group 0.000 description 4
- 229920006317 cationic polymer Polymers 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000010797 grey water Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229920000620 organic polymer Polymers 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000004065 wastewater treatment Methods 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 230000003750 conditioning effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000003926 acrylamides Chemical class 0.000 description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001877 deodorizing effect Effects 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- VMSBGXAJJLPWKV-UHFFFAOYSA-N 2-ethenylbenzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1C=C VMSBGXAJJLPWKV-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- ATMLPEJAVWINOF-UHFFFAOYSA-N acrylic acid acrylic acid Chemical compound OC(=O)C=C.OC(=O)C=C ATMLPEJAVWINOF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- YVEJDOBFMBXLPV-UHFFFAOYSA-N benzyl-dimethyl-prop-2-enylazanium Chemical compound C=CC[N+](C)(C)CC1=CC=CC=C1 YVEJDOBFMBXLPV-UHFFFAOYSA-N 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- MTNDZQHUAFNZQY-UHFFFAOYSA-N imidazoline Chemical compound C1CN=CN1 MTNDZQHUAFNZQY-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 235000010413 sodium alginate Nutrition 0.000 description 1
- 229940005550 sodium alginate Drugs 0.000 description 1
- 239000000661 sodium alginate Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Landscapes
- Treatment Of Sludge (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、汚水の処理方法に係
り、特に、し尿、浄化槽汚泥、生活雑排水汚泥(生活廃
水排水ピットの汚泥、ビルピット汚泥等の濃厚なSSを
含有するもの)などの性状の異なるし尿系汚水を同一施
設内で汚泥処理、脱窒、脱リン処理する方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating sewage, and in particular, human waste, septic tank sludge, household wastewater sludge (those containing rich SS such as domestic wastewater drainage pit sludge and building pit sludge). The present invention relates to a method for treating sludge, denitrification, and dephosphorization of human wastewater having different properties in the same facility.
【0002】[0002]
【従来の技術】従来から、し尿、浄化槽汚泥を同一処理
装置で同時に生物学的に脱窒、脱リン処理を行っている
例がある。しかしながら、浄化槽汚泥、生活雑排水汚泥
はSS濃度が大幅に変動するため、処理施設への浄化槽
汚泥搬入量がし尿に比べて多くなると、生物処理装置に
対する負荷変動が大きくなり、従来技術では安定した脱
窒処理、脱リン処理ができなくなる。2. Description of the Related Art Conventionally, there has been an example in which human waste and septic tank sludge are simultaneously biologically denitrified and dephosphorized by the same treatment device. However, since the SS concentration of septic tank sludge and household wastewater sludge varies greatly, when the amount of septic tank sludge carried into the treatment facility is larger than that of human waste, the load fluctuation on the biological treatment device becomes large, and the conventional technique is stable. Denitrification treatment and dephosphorization treatment cannot be performed.
【0003】また、浄化槽汚泥のような比較的濃厚な汚
水の生物処理水は、残留したリン、COD成分の除去の
ため、無機凝集剤による凝集処理が行われているが、浄
化槽汚泥はアンモニアによるアルカリ度が高いため、凝
集至適pHに低下させるための(酸性)無機凝集剤の添
加量が多く、それに伴って難脱水性の凝集汚泥の発生量
も多くなる等の問題があった。Biologically treated water of relatively thick sewage such as septic tank sludge is coagulated with an inorganic coagulant to remove residual phosphorus and COD components. Since the alkalinity is high, there is a problem that the amount of (acidic) inorganic coagulant added to reduce the pH to the optimum pH for coagulation is large, and the amount of coagulable sludge that is difficult to dehydrate increases accordingly.
【0004】[0004]
【発明が解決しようとする課題】最近、便所の水洗化の
普及に伴いし尿収集量が減少している一方、下水道の普
及が遅れているため浄化槽汚泥が増加しつつある。その
結果、し尿処理施設に搬入されるし尿系汚水は、浄化槽
汚泥の比率が増加して前記安定処理に対する問題がクロ
ーズアップされるようになった。また、し尿処理施設に
搬入される生活雑排水汚泥の処理においても浄化槽汚泥
同様の問題が生じている。本発明は、これらの問題点を
解決し、し尿、浄化槽汚泥、生活雑排水汚泥を同一施設
内て効率的に安定処理できる汚水の処理方法及び装置を
提供することを課題とする。Recently, while the amount of urine collected has decreased due to the spread of flushing toilets, septic tank sludge is increasing due to the delay in the spread of sewerage. As a result, in the human waste sewage carried into the human waste treatment facility, the ratio of septic tank sludge has increased, and the problem for the stable treatment has been highlighted. In addition, the same problem as septic tank sludge occurs in the treatment of household wastewater sludge that is carried into human waste treatment facilities. It is an object of the present invention to solve these problems and to provide a wastewater treatment method and device capable of efficiently and stably treating night soil, septic tank sludge, and domestic wastewater sludge in the same facility.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
に、本発明では、下記工程(a)〜(g)を含むことを
特徴とする2種類以上の汚水の処理方法としたものであ
る。 (a)浄化槽汚泥、生活雑排水汚泥等の濃厚なSSを含
有する汚水を均質化する調整工程、(b)前記調整工程
からの流出液に凝集剤を添加して凝集処理する凝集処理
工程、(c)前記凝集処理工程から流出する凝集スラリ
ーを脱水し、得られる脱水ろ液を貯留する脱水貯留工
程、(d)生し尿と前記脱水貯留工程の貯留水とを、前
記貯留水量>生し尿量となる条件で、かつそれらが所定
の比例配分となる量で、生物学的に脱窒素、脱りん処理
する生物学的処理工程、(e)前記生物学的処理工程か
らの活性汚泥スラリーを活性汚泥と処理水とに固液分離
する固液分離工程、(f)前記固液分離工程での余剰活
性汚泥を前記(a)の調整工程及び/又は前記(b)の
凝集処理工程に移送する移送工程、(g)前記固液分離
工程の処理水を、さらに処理する高度処理工程。In order to solve the above-mentioned problems, the present invention provides a method for treating two or more kinds of sewage characterized by including the following steps (a) to (g). . (A) an adjusting step of homogenizing sewage containing rich SS such as septic tank sludge and household wastewater sludge, (b) an aggregating step of adding an aggregating agent to the effluent from the adjusting step, and performing an aggregating treatment, (C) a dehydration storage step of dehydrating the agglomerated slurry flowing out from the aggregating treatment step and storing an obtained dehydrated filtrate, (d) raw urine and stored water of the dehydration storage step, wherein the stored water amount> raw urine A biological treatment step of biologically performing denitrification and dephosphorization treatment under the condition of quantity and a predetermined proportion thereof, (e) the activated sludge slurry from the biological treatment step. A solid-liquid separation step of performing solid-liquid separation into activated sludge and treated water, (f) transferring excess activated sludge in the solid-liquid separation step to the adjustment step of (a) and / or the aggregation treatment step of (b) (G) the treated water of the solid-liquid separation step, Advanced treatment step of treating the.
【0006】また、前記処理方法において、(b)の凝
集処理工程から流出する凝集スラリーを脱水する前に濃
縮汚泥と分離水とに分離する濃縮分離工程を設け、この
濃縮汚泥を脱水した脱水ろ液と前記分離水とを貯留し
て、脱水貯留工程とすることもできる。更に前記固液分
離工程として膜分離手段を用い、前記生物学的処理工程
の液中に浸漬したもの、又は、生物学的処理工程の後段
に設けたものとすることができる。また、前記(a)の
調整工程は、調整槽の機能と均質化の機能を有し、均質
化の手段として水流、空気、機械的等の攪拌を用いるこ
とができ、空気を用いた場合には、この調整工程で曝
気、硝化脱窒を行ってもよい。また曝気、硝化脱窒は調
整工程の後段で行ってもよいが、ここでの曝気、硝化脱
窒は必ずしも必要ではない。Further, in the above-mentioned treatment method, a concentration / separation step for separating the condensed slurry flowing out from the aggregation treatment step (b) into concentrated sludge and separated water before dehydration is provided, and the concentrated sludge is dehydrated and dehydrated. The liquid and the separated water may be stored to form a dehydration storage step. Further, as the solid-liquid separation step, a membrane separating means may be used, which is immersed in the liquid of the biological treatment step, or may be provided at a later stage of the biological treatment step. In addition, the adjusting step (a) has a function of the adjusting tank and a function of homogenizing, and water flow, air, mechanical stirring, or the like can be used as a means for homogenizing, and when air is used, May be subjected to aeration and nitrification denitrification in this adjustment step. Aeration and nitrification denitrification may be performed in the latter stage of the adjusting step, but aeration and nitrification denitrification here are not always necessary.
【0007】上記他の課題を解決するために、本発明で
は、下記(a)〜(h)を有することを特徴とする2種
類以上の汚水の処理装置としたものである。 (a)浄化槽汚泥、生活雑排水汚泥等の濃厚なSSを含
有する汚水を均質化する調整槽、(b)前記調整槽から
の流出液を凝集処理する凝集処理槽、(c)前記凝集処
理槽からの凝集スラリーを脱水する脱水装置。(d)脱
水装置からの脱水ろ液を貯留する貯留槽、(e)生し尿
と前記貯留槽の貯留水とを、前記貯留水量>生し尿量と
なる条件で、かつそれらが所定の比例配分となる量で、
生物学的に脱窒素、脱りん処理する生物学的処理装置、
(f)前記生物学的処理装置からの活性汚泥スラリーを
活性汚泥と処理水とに固液分離する固液分離装置、
(g)前記固液分離装置からの処理水を、さらに処理す
る高度処理装置、(h)前記(a)〜(g)を順次接続
する水路と、前記固液分離装置からの余剰活性汚泥を前
記(a)の調整槽及び/又は前記(b)の凝集処理槽に
移送する移送手段。In order to solve the above-mentioned other problems, the present invention provides two or more types of wastewater treatment devices characterized by having the following (a) to (h). (A) Adjustment tank for homogenizing sewage containing rich SS such as septic tank sludge, household wastewater sludge, (b) coagulation processing tank for coagulating the effluent from the adjustment tank, (c) the coagulation processing A dewatering device that dewaters the aggregated slurry from the tank. (D) a storage tank for storing the dehydrated filtrate from the dehydrator, (e) the raw urine and the stored water in the storage tank under the condition that the stored water amount> the raw urine amount, and they are distributed in a predetermined proportion Is the amount
Biological treatment equipment for biological denitrification and dephosphorization treatment,
(F) a solid-liquid separator that separates the activated sludge slurry from the biological treatment device into activated sludge and treated water,
(G) an advanced treatment device for further treating the treated water from the solid-liquid separation device, (h) a water channel sequentially connecting (a) to (g), and excess activated sludge from the solid-liquid separation device. Transfer means for transferring to the adjustment tank of (a) and / or the aggregation tank of (b).
【0008】また、前記処理装置において、(b)の凝
集処理槽の後に、濃縮分離装置を設け、凝集処理槽から
の凝集スラリーを濃縮汚泥と分離水に分離し、この濃縮
汚泥を脱水する脱水装置と、該脱水ろ液と前記分離水を
貯留する貯留槽とすることもできる。更に、前記固液分
離装置として膜分離装置を用い、該膜を前記生物学的処
理工程の液中に浸漬したもの、又は、生物学的処理工程
の後段に設けたものとすることができる。Further, in the above treatment apparatus, a concentrating / separating device is provided after the coagulation treatment tank of (b), the coagulated slurry from the coagulation treatment tank is separated into concentrated sludge and separated water, and the condensed sludge is dehydrated. An apparatus and a storage tank for storing the dehydrated filtrate and the separated water may be used. Further, a membrane separation device may be used as the solid-liquid separation device, and the membrane may be immersed in the liquid of the biological treatment step, or may be provided after the biological treatment step.
【0009】[0009]
【作用】浄化槽汚泥はSS濃度が大幅に変動することに
よって、そのBOD、T−N,T−Pも大幅に変動する
が、浄化槽汚泥の溶解成分(ろ液中のBOD、T−N、
T−P等)はSS濃度が変動しても大きな変化はない。
従って、予め浄化槽汚泥に凝集剤を添加し、脱水機等を
用いてSSを分離しておけば比較的安定した処理を行う
ことができる。しかしながら、曝気型と腐敗型浄化槽、
あるいは小型浄化槽と大型浄化槽では浄化槽汚泥の質が
異なるので、搬入浄化槽汚泥の性状に適合する凝集剤を
適宜選択して注入する必要があり、その作業の煩雑なこ
とが実用上の大きな問題であった。[Function] Although the BOD, TN, and T-P of the septic tank sludge largely change due to a large change in the SS concentration, the dissolved components of the septic tank sludge (BOD, T-N in the filtrate,
(TP, etc.) does not change significantly even if the SS concentration changes.
Therefore, if a coagulant is added to the septic tank sludge in advance and SS is separated using a dehydrator or the like, a relatively stable treatment can be performed. However, aeration type and septic type septic tanks,
Alternatively, since the quality of the septic tank sludge is different between the small septic tank and the large septic tank, it is necessary to appropriately select and inject a coagulant that matches the properties of the incoming septic tank sludge, which is a major practical problem. It was
【0010】本発明では、浄化槽汚泥を滞留日数3日程
度以上の槽に受け入れて貯留攪拌を行うから、浄化槽汚
泥の均質化を行うことができるので、適合する凝集剤を
選択する頻度が大幅に減少し、脱水によるSS除去も容
易になる。生物脱りんは活性汚泥処理工程において、汚
水、返送汚泥の流入する原水流入端に嫌気槽を配備し、
嫌気的条件下で活性汚泥からりんを放出せしめるととも
に、BOD成分を吸収せしめることによって活性汚泥に
りん蓄積能力を付加し、液中から生物学的にりんを除去
するものである。生物脱りんの対象排水はBOD/P比
(kg/kg)=25〜30以上の性状が望ましく、活
性汚泥が吸収するBOD成分を予備曝気によって除去し
た廃水では、活性汚泥にりん蓄積能力を付加することが
できない。In the present invention, the septic tank sludge is received in the tank having a retention time of about 3 days or more and is stored and stirred, so that the septic tank sludge can be homogenized. It also reduces and facilitates SS removal by dehydration. Biological dephosphorization has an anaerobic tank at the inflow end of raw water into which sewage and return sludge flow in the activated sludge treatment process.
It releases phosphorus from the activated sludge under anaerobic conditions and also absorbs the BOD component to add phosphorus accumulation ability to the activated sludge to biologically remove phosphorus from the liquid. BOD / P ratio (kg / kg) = 25-30 or more is desirable for the target wastewater for biological dephosphorization, and in wastewater from which BOD components absorbed by activated sludge have been removed by preliminary aeration, phosphorus accumulation capacity is added to activated sludge. Can not do it.
【0011】従って、BOD/P比が低下した廃水(曝
気浄化槽汚泥BOD/P=10)30m3 を、し尿(B
OD/P=32)10m3 に混合して、混合液のBOD
/P比=約16に低下せしめると、し尿単独処理ではな
し得た生物脱りん処理も、混合処理では行うことができ
なくなる。そこで、本発明を実施する際には凝集処理に
より、りんを除去してBOD/P比を上昇した後、浄化
槽汚泥とし尿を混合することとしている。Therefore, 30 m 3 of wastewater (aeration septic tank sludge BOD / P = 10) having a reduced BOD / P ratio is converted into human waste (B
OD / P = 32) BOD of the mixed solution by mixing with 10 m 3
When the / P ratio is reduced to about 16, the biological dephosphorization treatment, which could be achieved by the human waste alone treatment, cannot be performed by the mixed treatment. Therefore, when the present invention is carried out, phosphorus is removed by a coagulation treatment to increase the BOD / P ratio, and then septic tank sludge is mixed with urine.
【0012】また、生物学的脱窒は、アンモニアを硝化
したのちに、原水のBOD成分あるいはメタノールなど
の他の有機物を添加して脱窒するものである。生物学的
脱窒でも、前記の予備曝気によってBODが低減した場
合には、その分メタノールの添加量を多くして脱窒を完
了すると良い。なおアンモニアは、生活排水のアルカリ
度の主成分であり、鉄系、アルミニウム系の酸性無機凝
集剤による凝集処理において、凝集処理を至適pH(p
H4.5〜6.0)域に調整する際の妨害物質となる。
このため、本発明では、活性汚泥処理工程で発生した余
剰汚泥を混合することとしている。The biological denitrification is to denitrify ammonia by nitrifying it and then adding BOD components of raw water or other organic substances such as methanol. Even in the case of biological denitrification, if the BOD is reduced by the preliminary aeration, the denitrification may be completed by increasing the amount of methanol added accordingly. Ammonia, which is the main component of the alkalinity of domestic wastewater, has an optimum pH (p) in the coagulation treatment with an iron-based or aluminum-based acidic inorganic coagulant.
It becomes an interfering substance when adjusting to the H4.5-6.0) range.
Therefore, in the present invention, the excess sludge generated in the activated sludge treatment step is mixed.
【0013】[0013]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されない。 実施例1 図1は、本発明の一実施態様を工程図で示したものであ
る。図1において、浄化槽汚泥1は受水槽2を経由して
スクリーン等の夾雑物除去装置3で浄化槽汚泥1中の粗
大固形物が除去され、篩渣4として排出されたのちに、
調整槽5で均質化され、凝集槽6、7において鉄系凝集
剤(塩化第2鉄、ポリ鉄等)、アルミニウム系(硫酸バ
ンド、パック等)の無機凝集剤8、ポリマー(有機性高
分子凝集剤)9で調質されたのちに、ベルトプレス脱水
機、多重円盤式脱水機などの脱水機10で脱水ケーキ1
1と脱水ろ液12に分離される。脱水ろ液12は脱水ろ
液貯留槽(貯留工程)13に貯留される。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 FIG. 1 is a process chart showing an embodiment of the present invention. In FIG. 1, the septic tank sludge 1 is passed through a water receiving tank 2 to remove coarse solids in the septic tank sludge 1 by a contaminant removing device 3 such as a screen, and after being discharged as a sieve residue 4,
Homogenized in the adjusting tank 5, and in the aggregating tanks 6 and 7, an iron-based aggregating agent (ferric chloride, polyiron, etc.), an aluminum-based (sulfuric acid band, pack, etc.) inorganic aggregating agent 8, polymer (organic polymer) Coagulant) 9 and then dehydrated cake 1 with a dehydrator 10 such as a belt press dehydrator or a multiple disc dehydrator.
1 and dehydrated filtrate 12 are separated. The dehydrated filtrate 12 is stored in a dehydrated filtrate storage tank (storage process) 13.
【0014】ポリマーはカチオンポリマー、アニオンポ
リマー、カチオンポリマーとアニオンポリマーとの併
用、両性ポリマー等を凝集試験によって適宜選択すれば
良い。その一例をあげると、まずカチオンポリマーとし
てはN,N′−ジメチルアミノアルキルアクリレートあ
るいはメタクリレートの酸塩、ビニルベンジルトリメチ
ルアンモニウムの酸塩、アクリルアミドのカチオン変性
物の酸塩、ビニルピリジンおよびその置換誘導体、アク
リルアミンおよびその置換誘導体のようなカチオン性単
量体の単一重合体および共重合体などがある。また上記
のようなカチオン性単量体とアクリルアミド、アクリロ
ニトリル、アクリル酸アルキルエステルのようなノニオ
ン性単量体との共重合物、さらにポリビニルイミダゾリ
ンの酸塩、キトサンの酸塩、澱粉のカチオン化物なども
使用できる。As the polymer, a cation polymer, an anion polymer, a combination of a cation polymer and an anion polymer, an amphoteric polymer and the like may be appropriately selected by an aggregation test. As an example, first, as the cationic polymer, an acid salt of N, N'-dimethylaminoalkyl acrylate or methacrylate, an acid salt of vinylbenzyltrimethylammonium, an acid salt of a cation-modified acrylamide, vinylpyridine and a substituted derivative thereof, These include homopolymers and copolymers of cationic monomers such as acrylic amine and its substituted derivatives. Further, copolymers of the above-mentioned cationic monomers with acrylamide, acrylonitrile, nonionic monomers such as acrylic acid alkyl esters, polyvinyl imidazoline acid salts, chitosan acid salts, starch cationized products, etc. Can also be used.
【0015】またアニオンポリマーとしてはアクリル
酸、メタクリル酸およびそれらのアルカリ金属塩、アク
リルアミドのスルホメチル化物およびそのアルカリ金属
塩、ビニルベンゼンスルフォン酸、スチレンスルフォン
酸およびそのアルカリ金属塩、ビニルスルフォン酸およ
びそのアルカリ金属塩、無水マレイン酸などのアニオン
性単量体の単一重合体および共重合体などを使用する。
また上記のようなアニオン性単量体とアクリルアミド、
アクリロニトリル、アクリル酸アルキルエステルのよう
なノニオン性単量体との共重合物、さらにアルギン酸ソ
ーダ、キチンのアニオン変性物なども使用できる。なお
場合によってはこれらの両有機高分子凝集剤と共にPA
C、硫酸バンド、塩化第2鉄、硫酸第1鉄、あるいは石
灰のような無機系の凝集剤を使用しても差し支えない。As the anionic polymer, acrylic acid, methacrylic acid and alkali metal salts thereof, sulfomethylated acrylamide and alkali metal salts thereof, vinylbenzene sulfonic acid, styrene sulfonic acid and alkali metal salts thereof, vinyl sulfonic acid and alkali thereof. A homopolymer or copolymer of an anionic monomer such as a metal salt or maleic anhydride is used.
In addition, the anionic monomer and acrylamide as described above,
Copolymers with nonionic monomers such as acrylonitrile and alkyl acrylate, sodium alginate, and anion-modified chitin can also be used. Depending on the case, PA may be used together with these organic polymer coagulants.
Inorganic flocculants such as C, sulfuric acid band, ferric chloride, ferrous sulfate, or lime may be used.
【0016】また両性ポリマーとしては、特に制限はな
く、通常1分子中に、カチオン性単量体、アニオン性単
量体及び場合によりノニオン性単量体を含有する共重合
体から成るものが用いられる。カチオン性単量体、アニ
オン性単量体及びノニオン性単量体の例としては、前述
のカチオンポリマー、アニオンポリマーの説明において
例示した各単量体が使用できる。The amphoteric polymer is not particularly limited, and one composed of a copolymer containing a cationic monomer, an anionic monomer and optionally a nonionic monomer in one molecule is usually used. To be As examples of the cationic monomer, the anionic monomer and the nonionic monomer, each of the monomers exemplified in the above description of the cationic polymer and the anionic polymer can be used.
【0017】浄化槽汚泥1には油物が多いので、処理を
円滑に行うために受水槽2に油水分離機能例えば浮上分
離装置を付帯しておくと良い。また、調整槽5における
均質化には公知の攪拌方法、例えば空気攪拌、機械攪
拌、水流攪拌等を利用することができる。脱水ろ液貯留
槽13には脱水ろ液12以外に施設内で発生する、脱臭
排水、床洗浄排水、脱水機洗浄排水等の雑排水35も流
入する。Since the septic tank sludge 1 contains a large amount of oil, it is advisable to attach an oil / water separation function, for example, a flotation / separation device, to the water receiving tank 2 in order to perform the treatment smoothly. Further, for the homogenization in the adjusting tank 5, a known stirring method, for example, air stirring, mechanical stirring, water stream stirring or the like can be used. In addition to the dehydrated filtrate 12, the dewatered filtrate storage tank 13 also receives miscellaneous wastewater 35 generated in the facility, such as deodorizing drainage, floor cleaning drainage, and dehydrator cleaning drainage.
【0018】雑排水35の量は、処理施設の規模、脱臭
装置、ポンプ、脱水機の種類によって一概には述べられ
ないが、処理施設の規模が小さくなるほど処理浄化槽汚
泥、生し尿に対する割合が多くなる。これは施設の大小
に関わらず必要な用水量がある程度決まっているからで
ある。また、例えばベルトプレス型脱水機ではろ布の洗
浄に多量の水を使用するが、洗浄排水を貯留して循環再
使用する場合と、雑排水として雑排水槽を経由して直接
生物処理工程に流入させる場合がある。そのような場合
には浄化槽汚泥脱水ろ液と雑排水の量が生し尿の量より
もはるかに多くなる。このような付帯設備で使用する用
水量、及び搬入される生し尿、浄化槽汚泥の割合によっ
て生し尿と貯留水量の流入量は、生し尿量;貯留水量=
1:1.2〜1:20好ましくは1:2〜1:20のよう
な比例配分となる。The amount of gray water 35 cannot be generally stated depending on the scale of the treatment facility, the type of deodorizing device, the pump, and the dehydrator, but the smaller the scale of the treatment facility, the greater the ratio to the treatment septic tank sludge and live urine. Become. This is because the required amount of water is fixed to some extent regardless of the size of the facility. In addition, for example, a large amount of water is used to wash the filter cloth in a belt press type dewatering machine. It may be inflowed. In such a case, the amount of septic tank sludge dewatering filtrate and gray water is much larger than the amount of raw urine. The inflow of raw urine and stored water depends on the amount of water used in such ancillary equipment and the ratio of live urine and septic tank sludge to be carried in.
The ratio is 1: 1.2 to 1:20, preferably 1: 2 to 1:20.
【0019】受水槽2、調整槽5の浄化槽汚泥1の滞留
日数は浄化槽汚泥最大搬入量に対してそれぞれ1〜2
日、3〜5日が望ましい。し尿14は、受水槽15を経
由してスクリーン等の夾雑物除去装置16でし尿14中
の粗大固形物が除去され、篩渣17として排出されたの
ちにし尿貯留槽18で貯留される。貯留水12′、除渣
し尿19は返送汚泥20とともに嫌気的条件下にある嫌
気槽21に流入する。該嫌気槽21において活性汚泥か
らリンが放出するため液中のリン濃度が上昇するが、貯
留水12′、除渣し尿19のBOD物質は活性汚泥に吸
収されるため、嫌気槽21内のBOD濃度は低下する。The number of days that the septic tank sludge 1 of the water receiving tank 2 and the adjusting tank 5 stays is 1 to 2 with respect to the maximum amount of the septic tank sludge carried in, respectively.
Days, 3-5 days are desirable. The human waste 14 is stored in a human urine storage tank 18 after the coarse solids in the human waste 14 are removed by a contaminant removing device 16 such as a screen via the water receiving tank 15 and discharged as a sieve residue 17. The stored water 12 ′ and the depleted urine 19 flow into the anaerobic tank 21 under anaerobic conditions together with the returned sludge 20. Since phosphorus is released from the activated sludge in the anaerobic tank 21, the phosphorus concentration in the liquid rises, but the BOD substances in the stored water 12 'and the residual waste urine 19 are absorbed by the activated sludge, so the BOD in the anaerobic tank 21 is absorbed. The concentration decreases.
【0020】嫌気槽21の活性汚泥混合液は次に循環硝
化液22とともに嫌気的条件下にある第一脱窒槽23に
流入し、循環硝化液22中の硝酸は窒素ガスに還元分解
(脱窒)される。嫌気槽21で活性汚泥に吸収されたB
OD物質が脱窒の還元剤と考えられている。第一脱窒槽
23では、脱窒作用で生じたエネルギーによって液中の
リンの一部が活性汚泥に吸収される。第一脱窒槽23の
活性汚泥混合液は次に好気的条件下にある硝化槽24に
導入され、液中のアンモニアは硝酸に酸化され、第一脱
窒槽23で残留したリンが活性汚泥に吸収されたのちに
大部分は第一脱窒槽23に循環され、残部は嫌気的条件
下にある第二脱窒槽25に流入し、硝酸が脱窒されたの
ちに、好気的条件下にある再曝気槽26に導入される。
第二脱窒槽25には脱窒用の還元剤としてメタノールな
どの有機物を添加すると良い。The activated sludge mixed solution in the anaerobic tank 21 then flows into the first denitrification tank 23 under anaerobic conditions together with the circulating nitrification solution 22, and the nitric acid in the circulating nitrification solution 22 is reduced and decomposed into nitrogen gas (denitrification). ) Will be done. B absorbed by activated sludge in anaerobic tank 21
OD substances are considered as reducing agents for denitrification. In the first denitrification tank 23, a part of phosphorus in the liquid is absorbed by the activated sludge by the energy generated by the denitrification action. The activated sludge mixed solution in the first denitrification tank 23 is then introduced into the nitrification tank 24 under aerobic conditions, the ammonia in the solution is oxidized to nitric acid, and the phosphorus remaining in the first denitrification tank 23 becomes activated sludge. After being absorbed, most of it is circulated to the first denitrification tank 23, and the rest flows into the second denitrification tank 25 under anaerobic conditions, and after nitric acid is denitrified, it is under aerobic conditions. It is introduced into the re-aeration tank 26.
An organic substance such as methanol may be added to the second denitrification tank 25 as a reducing agent for denitrification.
【0021】再曝気槽26の活性汚泥混合液は槽内に浸
漬した膜分離装置27で固液分離され、分離液28は高
度処理工程29に導入される。膜は再曝気槽26以外の
槽に設置することも可能である。例えば硝化槽24に膜
を設置した場合には、硝化槽24で濃縮された活性汚泥
混合液が第一脱窒槽に循環され、また第二脱窒槽にも流
入するので、返送汚泥20の量を少なくとも活性汚泥処
理工程全体のMLSS濃度を上昇することができる。但
し、膜分離水28にNOx−Nが残留するので、分離水
28の処理が必要となる。この様に分離水28の水質、
処理を適宜選択すれば、膜27は活性汚泥処理工程32
のいずれの槽にも設置することができる。The activated sludge mixed liquid in the re-aeration tank 26 is subjected to solid-liquid separation by the membrane separation device 27 immersed in the tank, and the separated liquid 28 is introduced into the advanced treatment step 29. The membrane can be installed in a tank other than the re-aeration tank 26. For example, when a membrane is installed in the nitrification tank 24, the activated sludge mixed solution concentrated in the nitrification tank 24 is circulated to the first denitrification tank and also flows into the second denitrification tank, so that the amount of the returned sludge 20 is reduced. At least the MLSS concentration of the entire activated sludge treatment process can be increased. However, since the NOx-N remains in the membrane separated water 28, it is necessary to treat the separated water 28. In this way, the quality of the separated water 28,
If the treatment is appropriately selected, the membrane 27 is the activated sludge treatment step 32.
It can be installed in any of the tanks.
【0022】活性汚泥混合液の固液分離は膜分離の他、
沈殿槽、遠心分離機などの公知の固液分離装置が利用で
きる。再曝気槽26で濃縮された活性汚泥の一部は嫌気
槽21に返送され、残部は余剰汚泥31として調整槽5
に移送される。高度処理工程29の流出水は処理水30
として放流される。高度処理工程29は活性炭処理、オ
ゾン処理、凝集処理、限外ろ過膜等の高度処理方法を単
独あるいは組み合わせて利用すれば良い。Solid-liquid separation of the activated sludge mixed liquid includes membrane separation,
Known solid-liquid separation devices such as a precipitation tank and a centrifuge can be used. A part of the activated sludge concentrated in the re-aeration tank 26 is returned to the anaerobic tank 21, and the rest is the excess sludge 31 in the adjusting tank 5.
Be transferred to. The effluent of the advanced treatment process 29 is treated water 30.
Released as. The advanced treatment step 29 may use advanced treatment methods such as activated carbon treatment, ozone treatment, coagulation treatment, and ultrafiltration membrane alone or in combination.
【0023】浄化槽汚泥1のBOD源が調整槽5で減少
した場合には、調整槽5の浄化槽汚泥のBOD/Pが低
下し、前記したように生物脱リンを行うことができな
い。また、ポリマー9の添加によって凝集分離した場合
にも浄化槽汚泥のBOD源となる微細なSS分が凝集除
去されるが、リンは除去されないためにBOD/Pが低
下する。この様な浄化槽汚泥の脱水ろ液12が活性汚泥
処理工程32に流入すると、例え単独では充分脱リン可
能な除渣し尿19も、流入水全体(除渣し尿19+貯留
水12′)のBOD/Pが低下して生物脱リンができな
くなる。When the BOD source of the septic tank sludge 1 is reduced in the adjusting tank 5, the BOD / P of the septic tank sludge in the adjusting tank 5 is lowered, and the biological dephosphorization cannot be performed as described above. Also, when the polymer 9 is added to cause coagulation separation, fine SS components that are the BOD source of the septic tank sludge are coagulated and removed, but phosphorus is not removed, so that BOD / P is lowered. When such a dewatered filtrate 12 of septic tank sludge flows into the activated sludge treatment step 32, for example, the removed waste urine 19 which can be sufficiently dephosphorized by itself, the BOD / of the entire inflow water (excluded waste urine 19 + reserved water 12 ') P is lowered and biological dephosphorization cannot be performed.
【0024】凝集槽6の無機凝集剤8の添加は、脱水の
ための汚泥の調質の他に、リンを凝集分離することによ
って脱水ろ液12中のリン濃度を低減し、流入水全体
(除渣し尿19+貯留水12′)のBOD/Pを高く保
つことができるので、生物学的脱リンが可能となる。無
機凝集剤8の添加量は汚泥調質の必要量からも決定され
なければならないが、この量を添加すれば脱水ろ液12
中のリン濃度を1前後以下することができる。The addition of the inorganic coagulant 8 in the coagulation tank 6 reduces the phosphorus concentration in the dehydrated filtrate 12 by coagulating and separating phosphorus in addition to conditioning the sludge for dehydration, and Since the BOD / P of the depleted urine 19 + retained water 12 ') can be kept high, biological dephosphorization becomes possible. The amount of the inorganic flocculant 8 to be added must be determined from the amount of sludge conditioning required, but if this amount is added, the dehydrated filtrate 12
The phosphorus concentration in the inside can be reduced to about 1 or less.
【0025】し尿系汚水の生物学的脱リン法は塩素イオ
ンを指標とする無機塩類濃度が上昇すると脱リン機能が
損なわれる(特公平3−8840号公報)が、長期間の
馴致によってある程度無機塩類濃度に対して耐性を生じ
るという知見も得られてきている。発明者等は、従来の
浄化槽汚泥、し尿の処理方式(特公昭62−44999
号公報)の活性汚泥処理の原水流入端に生物学的脱リン
機能を付加するために嫌気槽を配備し、生物学的脱窒・
脱リン試験を行った。その結果、脱窒素は良好に行われ
たが、脱リンが不安定であった。In the biological dephosphorization method for human wastewater, the dephosphorization function is impaired when the concentration of inorganic salts with chloride as an index increases (Japanese Patent Publication No. 3-8840). It has also been found that resistance to salt concentration causes resistance. The inventors of the present invention have proposed a conventional treatment method for septic tank sludge and human waste (Japanese Patent Publication No. 62-44999).
), An anaerobic tank was installed to add a biological dephosphorization function to the raw water inflow end of the activated sludge treatment.
A dephosphorization test was performed. As a result, denitrification was performed well, but dephosphorization was unstable.
【0026】この結果について実験的に検討したとこ
ろ、従来方式(特公昭62−44999号公報)では塩
類濃度の高いし尿(塩素イオンとして約3000mg/
リットル)を一定量安定して注入していたのに対し、塩
類濃度の低い(塩素イオンとして約200mg/リット
ル)浄化槽汚泥の脱水分離水を昼間のみ注入していたた
めに、嫌気槽で塩類濃度の日間変動が著しく大きくなっ
たことが原因であることがわかった。生物脱リン処理に
おいて、バランスが崩れて一度処理が悪化するとその回
復に長期間を要する。なお、塩素イオン濃度は、物性が
安定しており、し尿、浄化槽汚泥の汚濁成分の濃度と相
関関係があるので、それらの性状の濃淡の指標として利
用される。Experimental examination of this result revealed that in the conventional method (Japanese Patent Publication No. 62-44999), human waste having a high salt concentration (about 3000 mg / chlorine ion).
(1 liter) was stably injected, whereas the dewatered separated water of septic tank sludge with a low salt concentration (about 200 mg / l as chlorine ion) was injected only during the day, so the anaerobic tank It was found that the cause was the large daily fluctuation. In biological dephosphorization treatment, once the balance is lost and the treatment is deteriorated, it takes a long time to recover. Since the chlorine ion concentration has stable physical properties and correlates with the concentration of pollutant components in human waste and septic tank sludge, it is used as an index of the density of those properties.
【0027】本発明では、脱水ろ液貯留槽13の流入水
(脱水ろ液12、雑排水35)滞留日数を少なくとも2
日以上に、し尿貯留槽18の容積をし尿14の日最大搬
入量の2倍以上の容量とし、貯留水12′、除渣し尿1
9を嫌気槽21にそれぞれ一定量を連続注入することに
よって、嫌気槽21の塩類濃度の日間変動、週間変動を
抑制することができ、安定した脱リンを行うことができ
る。In the present invention, the number of days of inflow of the dehydrated filtrate storage tank 13 (dehydrated filtrate 12, miscellaneous wastewater 35) is at least 2
More than a day, the volume of the human waste storage tank 18 is set to be twice the maximum daily amount of human urine 14 to be carried in, and the stored water 12 ′ and the residual waste urine 1
By continuously injecting a fixed amount of 9 into the anaerobic tank 21, it is possible to suppress daily fluctuation and weekly fluctuation of the salt concentration in the anaerobic tank 21, and to perform stable dephosphorization.
【0028】図3に、脱水ろ液12と雑排水35が脱水
ろ液貯留槽13を経由せず、直接し尿貯留槽18に移送
した場合のし尿貯留槽18において、脱水ろ液12と雑
排水35の合計(塩素イオン濃度111mg/リット
ル)流入量が、プラスマイナス約30%、し尿流入量が
プラスマイナス30%(塩素イオン濃度3000mg/
リットル)それぞれ変動したときの、し尿貯留槽18の
塩素イオン濃度の変動を示した。土、日曜日はし尿1
4、浄化槽汚泥1の搬入及び脱水等の作業が停止するの
でし尿貯留槽18の流入量を零とした。In FIG. 3, when the dehydrated filtrate 12 and the miscellaneous waste water 35 are directly transferred to the human waste storage tank 18 without passing through the dehydrated filtrate storage tank 13, the dehydrated filtrate 12 and the miscellaneous waste water are sent to the human waste storage tank 18. The total inflow of 35 (chlorine ion concentration 111 mg / liter) is approximately ± 30%, and the inflow of human urine is plus or minus 30% (chlorine ion concentration 3000 mg / liter).
The change in the chlorine ion concentration in the human waste storage tank 18 is shown for each of the changes. Saturday and Sunday night soil 1
4. Since the work such as carrying in and dewatering of the septic tank sludge 1 is stopped, the inflow amount of the human waste storage tank 18 is set to zero.
【0029】図3は、1日にし尿貯留槽18に溜まった
量が翌日までに総て処理され、その日で貯留槽が空にな
ったと仮定したものである。実際には、し尿貯留槽18
には常時し尿19が残留するように運転されるので、図
3とは異なった変動パターンになるが、傾向としては変
わらない。このように流入する液の塩素イオン濃度が数
100mg/リットルから約2倍に上昇(変動)するよ
うな条件では生物脱リンを行うことはできない。FIG. 3 is based on the assumption that the amount accumulated in the human urine storage tank 18 per day was completely processed by the next day, and the storage tank was emptied on that day. In fact, the human waste storage tank 18
In this case, since the operation is such that the urine 19 always remains, the fluctuation pattern is different from that of FIG. 3, but the tendency is not changed. Biological dephosphorization cannot be carried out under such a condition that the chloride ion concentration of the inflowing liquid increases (changes) from several 100 mg / liter to about twice.
【0030】本発明では、し尿14、貯留水12′の水
量的な負荷変動をそれぞれの貯留槽13,18で調整で
きるので、し尿14と貯留水12′を長期間それぞれ単
独に嫌気槽21に定量的に注入することができる。した
がって、嫌気槽21に流入するし尿14、貯留水12′
の混合したものの塩素イオン濃度は、図3のパターンの
ような濃度変動が生ずることがない。In the present invention, the fluctuations in the amount of the human waste 14 and the stored water 12 'can be adjusted in the respective storage tanks 13 and 18, so that the human waste 14 and the stored water 12' are separately stored in the anaerobic tank 21 for a long period of time. It can be injected quantitatively. Therefore, the human waste 14 and the stored water 12 'flowing into the anaerobic tank 21
The chlorine ion concentration of the mixture of No. 1 does not change as shown in the pattern of FIG.
【0031】従来のし尿処理方式では、し尿を貯留槽1
8から一定量連続投入するが、一方、貯留水12′は終
末(土、日)には処理装置にほとんど流入しない。これ
は、従来のし尿処理方式では脱水ろ液貯留槽13の容量
が1日分しかなく、しかも貯留水12′移送ポンプを脱
水ろ液貯留槽13のレベル計でON−OFF運転してい
るが、前記したように週末の土、日は脱水作業等を停止
するため、脱水ろ液12が発生せず、また雑排水35の
発生量も極端に減少するからである。この結果、嫌気槽
21の塩素イオン濃度は図4に示したような変動を生じ
る。In the conventional human waste treatment system, human waste storage tank 1
Although a fixed amount is continuously added from 8, the stored water 12 'hardly flows into the treatment device at the end (Saturday, Sunday). This is because in the conventional human waste treatment method, the capacity of the dehydrated filtrate storage tank 13 is only one day, and the stored water 12 'transfer pump is operated ON-OFF by the level meter of the dehydrated filtrate storage tank 13. As described above, the dehydration work is stopped on weekends and days, so that the dehydrated filtrate 12 is not generated, and the amount of miscellaneous drainage 35 is extremely reduced. As a result, the chlorine ion concentration in the anaerobic tank 21 fluctuates as shown in FIG.
【0032】図4は模式的に示したものであり、実際に
はSINカーブのような変動パターンとなるが、生物脱
リンに対する影響は図4と同様で生ずるため、このよう
な条件では生物脱リンを行うことはできない。これよ
り、脱水ろ液貯留槽13は週末においても貯留水12′
を移送できるように、脱水ろ液貯留槽13の流入水(脱
水ろ液12、雑排水35)滞留日数を少なくとも2日以
上にしなければならないことに想到した。FIG. 4 is a schematic diagram, and actually has a variation pattern like a SIN curve, but since the effect on biological dephosphorization occurs in the same manner as in FIG. 4, biological dephosphorization is performed under such conditions. You can't do phosphorus. As a result, the dehydrated filtrate storage tank 13 retains the stored water 12 'even on weekends.
It was thought that the inflow water (dehydrated filtrate 12, miscellaneous wastewater 35) in the dehydrated filtrate storage tank 13 must be retained for at least 2 days or more so that the water can be transferred.
【0033】なお、図4は、貯留水12(脱水ろ液発生
量210m3 /週、雑排水発生量148m3 /週)の塩
素イオン濃度を111mg/リットル、し尿(10Kリ
ットル/日)の塩素イオン濃度を3000mg/リット
ル、返送汚泥(63m3 /日)の塩素イオン濃度を56
3mg/リットルとしたときのものである。余剰汚泥3
1には硝化機能があるので、この余剰汚泥31を調整槽
5に導入することによって、浄化槽汚泥中のアンモニア
の硝化(アルカリ度の低減)が促進されるため、凝集工
程7においてpHを効果的な汚泥調質を行うことのでき
る4.5〜5.5に容易に制御することができる。ま
た、調整槽5において、風量を調整して連続的にDOを
0.0〜1.0mg/リットルにコントロールするか、
あるいは間欠曝気を行うことによってさらに脱窒を行う
こともできる。In FIG. 4, the chlorine ion concentration of the stored water 12 (dehydrated filtrate generation amount 210 m 3 / week, sewage generation amount 148 m 3 / week) is 111 mg / liter, and human waste (10 K liters / day) is chlorine. Ion concentration is 3000 mg / liter, chlorine ion concentration of returned sludge (63 m 3 / day) is 56
This is when 3 mg / liter is used. Surplus sludge 3
Since 1 has a nitrification function, introduction of this excess sludge 31 into the adjusting tank 5 promotes nitrification (reduction of alkalinity) of ammonia in the septic tank sludge, so that the pH is effectively adjusted in the coagulation step 7. It can be easily controlled to 4.5 to 5.5 which can perform various sludge conditioning. Further, in the adjusting tank 5, the air volume is adjusted to continuously control the DO to 0.0 to 1.0 mg / liter,
Alternatively, denitrification can be further performed by performing intermittent aeration.
【0034】生物脱リンは不慮のトラブルによって一時
的に生物脱リン機能が不安定になり、透過水28にリン
が残留する可能性がある。これを防止するために、活性
汚泥処理工程32のどの槽でもかまわないが、好ましく
は再曝気槽26の固液分離工程27の直前に脱リン用凝
集剤(鉄系、アルミニウム系無機化合物)注入設備(図
示せず)を配備しておけば良い。In the biological dephosphorization, the biological dephosphorization function is temporarily unstable due to an unexpected trouble, and phosphorus may remain in the permeate 28. In order to prevent this, any tank of the activated sludge treatment step 32 may be used, but preferably, a dephosphorization coagulant (iron-based or aluminum-based inorganic compound) is injected immediately before the solid-liquid separation step 27 of the re-aeration tank 26. Equipment (not shown) may be provided.
【0035】実施例2 次に、本発明の他の実施態様について図2に基づいて説
明する。図2は本発明のもう一つの実施例を示す工程図
である。図2において、浄化槽汚泥1は受水槽2を経由
してスクリーン等の夾雑物除去装置3で浄化槽汚泥1中
の粗大固形物が除去され、篩渣4として排出されたのち
に、調整槽5で均質化され、凝集槽6,7において鉄系
凝集剤(塩化第2鉄、ポリ鉄等)、アルミニウム系(硫
酸バンド、パック等)の無機凝集剤8あるいはポリマー
(有機性高分子凝集剤)9で調質されたのちに、濃縮工
程33で濃縮され、濃縮汚泥35と分離水34に分離さ
れ、濃縮汚泥35はベルトプレス脱水機、多重円盤脱水
機などの脱水機10で脱水ケーキ11と脱水ろ液12に
分離される。脱水ろ液12は濃縮工程33の分離水34
とともに脱水ろ液貯留槽(貯留工程)13に貯留され
る。Embodiment 2 Next, another embodiment of the present invention will be described with reference to FIG. FIG. 2 is a process drawing showing another embodiment of the present invention. In FIG. 2, the septic tank sludge 1 is passed through the water receiving tank 2 to remove coarse solids in the septic tank sludge 1 by a contaminant removing device 3 such as a screen, and is discharged as sieve residue 4 and then in the adjusting tank 5. Homogenized, iron-based coagulant (ferric chloride, polyiron, etc.), aluminum-based (sulfuric acid band, pack, etc.) inorganic coagulant 8 or polymer (organic polymer coagulant) 9 in coagulation tanks 6 and 7 After being conditioned in step 3, it is concentrated in the concentration step 33 and separated into concentrated sludge 35 and separated water 34. The concentrated sludge 35 is dehydrated with the dehydrated cake 11 by a dehydrator 10 such as a belt press dehydrator or a multiple disc dehydrator. The filtrate 12 is separated. The dehydrated filtrate 12 is the separated water 34 in the concentration step 33.
It is stored together with the dehydrated filtrate storage tank (storage step) 13.
【0036】濃縮工程33には、沈殿式濃縮槽、スクリ
ーン、造粒濃縮などの公知の濃縮装置を利用することが
できる。汚泥35にはさらに無機凝集剤8あるいはポリ
マー(有機性高分子凝集剤)9を添加して脱水しても良
い。凝集槽7において凝集汚泥が造粒濃縮分離するよう
な装置構造、攪拌機能が付加されたものであれば、濃縮
工程33を別途設ける必要はない。このような装置を配
備した場合には、分離水34を凝集槽7から直接脱水ろ
液貯留槽13に導入することができる。なお、ポリマー
は実施例1に記載したようにカチオンポリマー、アニオ
ンポリマー、カチオンポリマーとアニオンポリマーとの
併用、両性ポリマー等を凝集試験によって適宜選択すれ
ば良い。In the concentration step 33, a known concentration device such as a precipitation type concentration tank, a screen, and a granulation concentration can be used. The sludge 35 may be dehydrated by further adding an inorganic coagulant 8 or a polymer (organic polymer coagulant) 9. It is not necessary to separately provide the concentrating step 33 as long as it has a device structure and a stirring function added so that the coagulated sludge can be granulated and concentrated and separated in the coagulation tank 7. When such a device is provided, the separated water 34 can be introduced directly from the flocculation tank 7 into the dehydrated filtrate storage tank 13. As described in Example 1, a polymer may be appropriately selected from a cationic polymer, an anionic polymer, a combination of a cationic polymer and an anionic polymer, an amphoteric polymer, etc. by an aggregation test.
【0037】生物脱リンによってリン含有率の高い余剰
汚泥31を含む浄化槽汚泥は、嫌気的な濃縮槽におくと
リンを放出し、分離水34、貯留水12′を悪化する
が、本発明のように予め前記無機凝集剤を添加すれば濃
縮槽におけるリンの放出量を防止することができる。し
かしながら、嫌気性の進行を防止するうえで濃縮時間は
短いことが望ましい。濃縮工程に濃縮槽を用いる場合に
は、濃縮汚泥が嫌気的になり脱窒現象によって汚泥が浮
上して、濃縮に支障をきたすことがあるが、前記したご
とく調整槽5で脱窒可能な運転を行うことによってNO
x- が除去され、濃縮槽における汚泥の浮上を防止する
ことができる。The septic tank sludge containing the excess sludge 31 having a high phosphorus content due to biological dephosphorization releases phosphorus when placed in an anaerobic thickening tank and deteriorates the separated water 34 and the stored water 12 '. Thus, the amount of phosphorus released in the concentration tank can be prevented by adding the inorganic coagulant in advance. However, it is desirable that the concentration time is short in order to prevent anaerobic progression. When the concentration tank is used in the concentration step, the concentration sludge becomes anaerobic and the denitrification phenomenon causes the sludge to float, which may hinder the concentration. NO by doing
Since x − is removed, it is possible to prevent the sludge from floating in the concentration tank.
【0038】実施例3 次に実施例1で説明した図1の工程図に従って汚水を処
理した実施例について述べる。実施条件を下記に示す。 廃水処理量 浄化槽汚泥・生活雑排水汚泥 *−1 (以下混合汚泥と略記する):15kl/日 し尿 : 10kl/日 雑排水 : 2m3 /日 脱水ろ液: 18m3 /日 注)*−1 生活雑排水汚泥混入率10〜20%Example 3 Next, an example in which sewage was treated according to the process diagram of FIG. 1 described in Example 1 will be described. The implementation conditions are shown below. (Hereinafter abbreviated as mixed sludge) waste water treatment amount of septic tank sludge and living wastewater sludge * -1: 15kl / day human waste: 10kl / day gray water: 2m 3 / day dehydration filtrate: 18m 3 / day Note) * - 1 Domestic miscellaneous wastewater sludge contamination rate 10-20%
【0039】槽容積、混合汚泥受水槽 : 15m3 調整槽 : 60m3 し尿受水槽 : 10m3 し尿貯留槽 : 20m3 脱水ろ液貯留槽 : 60m3 生物処理装置嫌気槽 : 8m3 第1脱窒槽 : 64m3 硝化槽 : 60m3 第2脱窒槽 : 20m3 再曝機槽 : 20m3 活性炭吸着塔 : 6m3 脱水機、ベルトプレス ろ布幅 : 1.0m (濃縮機構付き、洗浄排水循環再使用)Tank volume, mixed sludge water receiving tank: 15 m 3 adjusting tank: 60 m 3 night soil water receiving tank: 10 m 3 night soil storage tank: 20 m 3 dehydrated filtrate storage tank: 60 m 3 biological treatment device anaerobic tank: 8 m 3 first denitrification tank : 64m 3 Nitrification tank: 60m 3 2nd denitrification tank: 20m 3 Re-exposure tank: 20m 3 Activated carbon adsorption tower: 6m 3 dehydrator, belt press Filter cloth width: 1.0m (with concentration mechanism, reuse of cleaning drainage circulation) )
【0040】固液分離工程 膜分離装置 曝気槽内に膜分離装置を浸漬し、膜透過水側をポンプで
吸引する浸漬型平膜装置を使用した。 膜面積 : 64m2 有効ろ過圧 : −2〜−4mAq 透過流束 : 0.5〜0.6m/日 液温 : 25〜35℃Solid-Liquid Separation Step Membrane Separation Device An immersion type flat membrane device was used in which the membrane separation device was immersed in an aeration tank and the membrane permeated water side was sucked by a pump. Membrane area: 64 m 2 Effective filtration pressure: −2 to −4 mAq Permeation flux: 0.5 to 0.6 m / day Liquid temperature: 25 to 35 ° C.
【0041】凝集剤添加量 塩化第二鉄 1000mg
/リットル あるいは硫酸バンド2000mg/リットル (as硫酸アルミニウム18水塩) 両性ポリマー(荏原インフイルコ株式会社製、エバグロ
ースB−034:アクリルアミド、アクリルエステル
系) :1.5%対乾燥固形物 返送汚泥量 : 90m3 /日 循環硝化液量 : 900m3 /日 曝気槽MLSS : 12000mg/リットル 実施例3の結果を表1に示す。尚、表1には示していな
いが、再曝気槽に塩化第2鉄を100mg/リットル添
加した期間は活性炭処理水のT−Pは0.5mg/リッ
トル以下となった。Amount of coagulant added Ferric chloride 1000 mg
/ Liter or sulfuric acid band 2000 mg / liter (as aluminum sulfate 18-hydrate) Amphoteric polymer (Ebara Infilco Co., Ltd., Ebagrose B-034: acrylamide, acrylic ester type): 1.5% vs. dry solids Return sludge amount: 90 m 3 / day Circulating nitrification liquid amount: 900 m 3 / day Aeration tank MLSS: 12000 mg / liter The results of Example 3 are shown in Table 1. Although not shown in Table 1, the T-P of the activated carbon-treated water was 0.5 mg / liter or less during the period when 100 mg / liter of ferric chloride was added to the re-aeration tank.
【0042】[0042]
【表1】 単位:pH以外はmg/リットル 注1)し尿、混合汚泥の値はスクリーンでろ過したもの
である。 注2)し尿は平均値、混合汚泥、活性炭処理水は変動幅
を示した。[Table 1] Unit: mg / liter except for pH Note 1) The values of human urine and mixed sludge are those filtered through a screen. Note 2) The mean value for night soil and the fluctuation range for mixed sludge and activated carbon treated water.
【0043】実施例4 次に実施例2で説明した図2の工程図に基づいて行った
本発明の一実施例について述べる。 廃水処理量 浄化槽汚泥・生活雑排水汚泥 *−1 (以下混合汚泥と略記する):30kl/日 し尿 : 10kl/日 雑排水 : 164m3 /日 脱水ろ液: 36m3 /日 注)*−1 生活雑排水汚泥混入率10〜20%Embodiment 4 Next, one embodiment of the present invention will be described based on the process diagram of FIG. 2 explained in Embodiment 2. (Hereinafter abbreviated as mixed sludge) waste water treatment amount of septic tank sludge and living wastewater sludge * -1: 30kl / day human waste: 10kl / day gray water: 164m 3 / day dehydration filtrate: 36m 3 / day Note) * - 1 Domestic miscellaneous wastewater sludge contamination rate 10-20%
【0044】槽容積、混合汚泥受水槽 : 30m3 調整槽 : 110m3 濃縮槽33 : 直径4.0m (円筒型) 有効水深 3.5m し尿受水槽 : 10m3 し尿貯留槽 : 20m3 脱水ろ液貯留槽 : 600m3 Tank volume, mixed sludge water receiving tank: 30 m 3 adjusting tank: 110 m 3 concentrating tank 33: diameter 4.0 m (cylindrical type) effective water depth 3.5 m urine receiving tank: 10 m 3 night urine storage tank: 20 m 3 dehydrated filtrate Storage tank: 600m 3
【0045】生物処理装置、嫌気槽 : 20m3 第1脱窒槽 : 80m3 硝化槽 : 70m3 第2脱窒槽 : 40m3 再曝機槽 : 20m3 活性炭吸着塔 : 6m3 脱水機、ベルトプレス ろ布幅 : 2.0m (濃縮機構なし、洗浄排水循環再使用せず)Biological treatment device, anaerobic tank: 20 m 3 first denitrification tank: 80 m 3 nitrification tank: 70 m 3 second denitrification tank: 40 m 3 re-exposure tank: 20 m 3 activated carbon adsorption tower: 6 m 3 dehydrator, belt press filter Width of cloth: 2.0m (without concentration mechanism, without reuse of cleaning drainage circulation)
【0046】固液分離工程 沈殿槽 : 6m 凝集剤添加量 塩化第二鉄: 1000mg/リット
ル あるいは硫酸バンド : 2000mg/リット
ル (as硫酸アルミニウム18水塩) 両性ポリマー(栗田工業株式会社製、クリベスト:アク
リル酸−アクリル酸エステル−アクリルアミド系) :1.5%対乾燥固形物 返送汚泥量 : 210m3 /日 循環硝化液量 : 1500m3 /日 曝気槽MLSS : 6100mg/リットル 実施例4の結果を表2に示す。Solid-Liquid Separation Step Sedimentation tank: 6 m Flocculant addition amount Ferric chloride: 1000 mg / liter or sulfuric acid band: 2000 mg / liter (as aluminum sulfate 18-hydrate) Amphoteric polymer (Kurita Industry Co., Ltd., CLIVEST: Acrylic acid-acrylic acid ester-acrylamide system): 1.5% vs. dry solids Return sludge amount: 210 m 3 / day Circulating nitrification liquid amount: 1500 m 3 / day Aeration tank MLSS: 6100 mg / liter Table 4 shows the results of Example 4. 2 shows.
【0047】[0047]
【表2】 単位:pH以外はmg/リットル 注1)混合汚泥の値はスクリーンでろ過したものであ
る。 注2)混合汚泥、活性炭処理水は変動幅を示したもので
ある。[Table 2] Unit: mg / liter except for pH Note 1) The values of mixed sludge are those filtered through a screen. Note 2) Mixed sludge and activated carbon treated water show fluctuation range.
【0048】[0048]
【発明の効果】本発明の処理方法によって次の効果を奏
することができる。 (1)浄化槽汚泥の性状は、調整槽の攪拌混合で均質化
し、更に無機凝集剤の添加によって安定化されるので、
凝集槽7のポリマーの注入(測定)作業が容易になり、
また浄化槽汚泥を脱水したのちにし尿と共に活性汚泥処
理を行うので、浄化槽汚泥の性状変動にかかわらず安定
した脱窒、脱リン処理を行うことができる。 (2)し尿、脱水ろ液をそれぞれ単独で連続して活性汚
泥処理工程に注入できるので、嫌気槽における塩類濃度
の変動がなくなり、安定した生物脱リン処理を行うこと
ができる。The following effects can be obtained by the processing method of the present invention. (1) Since the properties of the septic tank sludge are homogenized by stirring and mixing in the adjusting tank, and further stabilized by the addition of an inorganic coagulant,
The polymer injection (measurement) work in the coagulation tank 7 becomes easy,
In addition, since the activated sludge treatment is performed together with urine after the septic tank sludge is dehydrated, stable denitrification and dephosphorization treatment can be performed regardless of changes in the characteristics of the septic tank sludge. (2) Since the human waste and the dehydrated filtrate can be continuously injected individually into the activated sludge treatment step, fluctuations in salt concentration in the anaerobic tank are eliminated, and stable biological dephosphorization treatment can be performed.
【0049】(3)浄化槽汚泥に直接無機凝集剤を添加
して凝集をおこなうので、汚泥処理工程でリンを除去で
きる。そのため、活性汚泥処理工程流入水のBOD/P
比が大きくなるので、生物脱リンを安定して行うことが
できる。その結果、生物処理水を無機凝集剤による凝集
処理を行わずに、直接活性炭吸着処理等の脱リン機能を
有しない高度処理方法を採用するだけで窒素、リン、C
OD、色度成分を含有しない高度に浄化された処理水を
得ることができる。また、浄化槽汚泥に無機凝集剤が添
加されているため、脱水の前処理として沈降濃縮に際
し、汚泥が嫌気化しても液中へのリンの放出を防止する
ことができる。(3) Since the inorganic coagulant is added directly to the septic tank sludge to perform coagulation, phosphorus can be removed in the sludge treatment step. Therefore, BOD / P of the influent of the activated sludge treatment process
Since the ratio becomes large, biological dephosphorization can be performed stably. As a result, nitrogen, phosphorus, C
It is possible to obtain highly purified treated water that does not contain OD and chromaticity components. Further, since the inorganic coagulant is added to the septic tank sludge, it is possible to prevent the release of phosphorus into the liquid even when the sludge is anaerobicized during sedimentation and concentration as a pretreatment for dehydration.
【0050】(4)生物処理水の凝集処理を行わなくて
済むので、難脱水性の凝集汚泥が発生しない。従って、
脱水機への汚泥負荷が軽減(脱水機の縮小、薬品注入量
の減少)し、しかも脱水ケーキの含水率を低下すること
ができる。 (5)硝化、脱窒がある余剰汚泥を調整槽に導入するこ
とによって、調整槽において浄化槽汚泥のアンモニアの
硝化(アルカリ度の低減)、脱窒を行うことができるた
め、凝集工程6におけるpH調整を容易に行うことがで
きる。(4) Since it is not necessary to perform coagulation treatment of biologically treated water, hardly dehydrated coagulation sludge is generated. Therefore,
The sludge load on the dehydrator can be reduced (the dehydrator can be reduced in size, and the amount of chemicals injected can be reduced), and the water content of the dehydrated cake can be reduced. (5) Since the nitrification (reduction of alkalinity) and denitrification of ammonia in the septic tank sludge can be performed and denitrification can be performed in the adjusting tank by introducing the excess sludge having nitrification and denitrification into the adjusting tank, the pH in the coagulation step 6 Adjustment can be easily performed.
【図1】本発明の一実施態様を示す工程図。FIG. 1 is a process drawing showing an embodiment of the present invention.
【図2】本発明の他の実施態様を示す工程図。FIG. 2 is a process drawing showing another embodiment of the present invention.
【図3】し尿貯留槽流入量と貯留液のCl- 濃度を示す
グラフ。FIG. 3 is a graph showing the inflow amount of human waste storage tank and the Cl − concentration of stored liquid.
【図4】従来の嫌気槽流入液量と混合液Cl- 濃度を示
すグラフ。FIG. 4 is a graph showing a conventional anaerobic tank inflow amount and mixed solution Cl − concentration.
1:浄化槽汚泥、2:受水槽、3:夾雑物除去装置、
4:篩渣、5:調整槽、6,7:凝集槽、8:無機凝集
剤、9:ポリマー、10:脱水機、11:脱水ケーキ、
12:脱水ろ液、13:貯留槽、14:し尿、15:受
水槽、16:夾雑物除去装置、17:篩渣、18:し尿
貯留槽、19:除渣し尿、20:返送汚泥、21:嫌気
槽、22:循環硝化液、23:第一脱窒槽、24:硝化
槽、25:第二脱窒槽、26:再曝機槽、27:固液分
離工程、28:分離液、29:高度処理工程、30:処
理水、31:余剰汚泥、32:活性汚泥処理工程、3
3:濃縮工程、34:分離水、35:濃縮汚泥1: Septic tank sludge, 2: Water receiving tank, 3: Contaminant removal device,
4: sieve residue, 5: adjusting tank, 6, 7: coagulating tank, 8: inorganic coagulant, 9: polymer, 10: dehydrator, 11: dehydrated cake,
12: Dehydrated filtrate, 13: Storage tank, 14: Human waste, 15: Water receiving tank, 16: Contaminant removing device, 17: Sieve residue, 18: Human waste storage tank, 19: Decontamination urine, 20: Return sludge, 21 : Anaerobic tank, 22: Circulating nitrification liquid, 23: First denitrification tank, 24: Nitrification tank, 25: Second denitrification tank, 26: Re-exposure tank, 27: Solid-liquid separation step, 28: Separation liquid, 29: Advanced treatment process, 30: treated water, 31: excess sludge, 32: activated sludge treatment process, 3
3: Concentration process, 34: Separation water, 35: Concentrated sludge
───────────────────────────────────────────────────── フロントページの続き (72)発明者 一木 嘉之 東京都練馬区光が丘7−3−1−710 (72)発明者 松井 謙介 神奈川県川崎市麻生区高石6−22−1− 104 (72)発明者 佐々木 俊次 神奈川県相模原市上鶴間693−10 (72)発明者 和泉 清司 大阪府高槻市別所本町17−5−533 (72)発明者 寺川 憲一 千葉県松戸市新松戸3−3−2 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshiyuki Ichiki 7-3-1-710, Hikarigaoka, Nerima-ku, Tokyo (72) Kensuke Matsui 6-22-1-104, Takaishi, Aso-ku, Kawasaki-shi, Kanagawa 72) Inventor Shunji Sasaki 693-10 Kamizuruma, Sagamihara City, Kanagawa Prefecture (72) Inventor Kiyoji Izumi 17-5-533 Besshohonmachi, Takatsuki City, Osaka Prefecture (72) Kenichi Terakawa 3-3-2 Shinmatsudo, Matsudo City, Chiba Prefecture
Claims (6)
徴とする2種類以上の汚水の処理方法。 (a)浄化槽汚泥、生活雑排水汚泥等の濃厚なSSを含
有する汚水を均質化する調整工程、(b)前記調整工程
からの流出液に凝集剤を添加して凝集処理する凝集処理
工程、(c)前記凝集処理工程から流出する凝集スラリ
ーを脱水し、得られる脱水ろ液を貯留する脱水貯留工
程、(d)生し尿と前記脱水貯留工程の貯留水とを、前
記貯留水量>生し尿量となる条件で、かつそれらが所定
の比例配分となる量で、生物学的に脱窒素、脱りん処理
する生物学的処理工程、(e)前記生物学的処理工程か
らの活性汚泥スラリーを活性汚泥と処理水とに固液分離
する固液分離工程、(f)前記固液分離工程での余剰活
性汚泥を前記(a)の調整工程及び/又は前記(b)の
凝集処理工程に移送する移送工程、(g)前記固液分離
工程の処理水を、さらに処理する高度処理工程。1. A method for treating two or more kinds of wastewater, which comprises the following steps (a) to (g): (A) an adjusting step of homogenizing sewage containing rich SS such as septic tank sludge and household wastewater sludge, (b) an aggregating step of adding an aggregating agent to the effluent from the adjusting step, and performing an aggregating treatment, (C) a dehydration storage step of dehydrating the agglomerated slurry flowing out from the aggregating treatment step and storing an obtained dehydrated filtrate, (d) raw urine and stored water of the dehydration storage step, wherein the stored water amount> raw urine A biological treatment step of biologically performing denitrification and dephosphorization treatment under the condition of quantity and a predetermined proportion thereof, (e) the activated sludge slurry from the biological treatment step. A solid-liquid separation step of performing solid-liquid separation into activated sludge and treated water, (f) transferring excess activated sludge in the solid-liquid separation step to the adjustment step of (a) and / or the aggregation treatment step of (b) (G) the treated water of the solid-liquid separation step, Advanced treatment step of treating the.
徴とする2種類以上の汚水の処理方法。 (a)浄化槽汚泥、生活雑排水汚泥等の濃厚なSSを含
有する汚水を均質化する調整工程、(b)前記調整工程
からの流出液に凝集剤を添加して凝集処理する凝集処理
工程、(c)前記凝集処理工程から流出する凝集スラリ
ーを濃縮汚泥と分離水とに分離する濃縮分離工程、
(d)前記濃縮分離工程の濃縮汚泥を脱水し、得られる
脱水ろ液と前記分離水とを貯留する脱水貯留工程、
(e)生し尿と前記脱水貯留工程の貯留水とを、前記貯
留水量>生し尿量となる条件で、かつそれらが所定の比
例配分となる量で、生物学的に脱窒素、脱りん処理する
生物学的処理工程、(f)前記生物学的処理工程からの
活性汚泥スラリーを活性汚泥と処理水とに固液分離する
固液分離工程、(g)前記固液分離工程での余剰活性汚
泥を前記(a)の調整工程及び/又は前記(b)の凝集
処理工程に移送する移送工程、(h)前記固液分離工程
の処理水を、さらに処理する高度処理工程。2. A method for treating two or more kinds of wastewater, which comprises the following steps (a) to (h): (A) an adjusting step of homogenizing sewage containing rich SS such as septic tank sludge and household wastewater sludge, (b) an aggregating step of adding an aggregating agent to the effluent from the adjusting step, and performing an aggregating treatment, (C) a concentration / separation step of separating the agglomerated slurry flowing out from the agglomeration treatment step into concentrated sludge and separated water,
(D) a dehydration storage step of dehydrating the concentrated sludge of the concentration separation step and storing the obtained dehydrated filtrate and the separated water;
(E) biologically denitrifying and dephosphorizing the raw urine and the water stored in the dehydration storage step under the condition that the amount of stored water> the amount of raw urine, and in such an amount that they have a predetermined proportional distribution. A biological treatment step of: (f) a solid-liquid separation step of performing solid-liquid separation of the activated sludge slurry from the biological treatment step into activated sludge and treated water; (g) excess activity in the solid-liquid separation step A transfer step of transferring sludge to the adjusting step of (a) and / or the coagulation processing step of (b), and (h) an advanced treatment step of further treating the treated water of the solid-liquid separation step.
工程の液中に膜を浸漬したもの、又は生物学的処理工程
の後段に膜分離装置を設けたものである請求項1又は2
記載の汚水の処理方法。3. The solid-liquid separation step is one in which a membrane is immersed in the liquid of the biological treatment step, or one in which a membrane separation device is provided after the biological treatment step. Two
The method for treating sewage described.
とする2種類以上の汚水の処理装置。 (a)浄化槽汚泥、生活雑排水汚泥等の濃厚なSSを含
有する汚水を均質化する調整槽、(b)前記調整槽から
の流出液を凝集処理する凝集処理槽、(c)前記凝集処
理槽からの凝集スラリーを脱水する脱水装置。(d)脱
水装置からの脱水ろ液を貯留する貯留槽、(e)生し尿
と前記貯留槽の貯留水とを、前記貯留水量>生し尿量と
なる条件で、かつそれらが所定の比例配分となる量で、
生物学的に脱窒素、脱りん処理する生物学的処理装置、
(f)前記生物学的処理装置からの活性汚泥スラリーを
活性汚泥と処理水とに固液分離する固液分離装置、
(g)前記固液分離装置からの処理水を、さらに処理す
る高度処理装置、(h)前記(a)〜(g)を順次接続
する水路と、前記固液分離装置からの余剰活性汚泥を前
記(a)の調整槽及び/又は前記(b)の凝集処理槽に
移送する移送手段。4. An apparatus for treating sewage of two or more types, which has the following (a) to (h): (A) Adjustment tank for homogenizing sewage containing rich SS such as septic tank sludge, household wastewater sludge, (b) coagulation processing tank for coagulating the effluent from the adjustment tank, (c) the coagulation processing A dewatering device that dewaters the aggregated slurry from the tank. (D) a storage tank for storing the dehydrated filtrate from the dehydrator, (e) the raw urine and the stored water in the storage tank under the condition that the stored water amount> the raw urine amount, and they are distributed in a predetermined proportion Is the amount
Biological treatment equipment for biological denitrification and dephosphorization treatment,
(F) a solid-liquid separator that separates the activated sludge slurry from the biological treatment device into activated sludge and treated water,
(G) an advanced treatment device for further treating the treated water from the solid-liquid separation device, (h) a water channel sequentially connecting (a) to (g), and excess activated sludge from the solid-liquid separation device. Transfer means for transferring to the adjustment tank of (a) and / or the aggregation tank of (b).
とする2種類以上の汚水の処理装置。 (a)浄化槽汚泥、生活雑排水汚泥等の濃厚なSSを含
有する汚水を均質化する調整槽、(b)前記調整槽から
の流出液を凝集処理する凝集処理槽、(c)前記凝集処
理槽からの凝集スラリーを濃縮汚泥と分離水とに分離す
る濃縮分離装置、(d)前記濃縮分離装置からの濃縮汚
泥を脱水する脱水装置。(e)脱水装置からの脱水ろ液
と前記分離水とを貯留する貯留槽、(f)生し尿と前記
貯留槽の貯留水とを、前記貯留水量>生し尿量となる条
件で、かつそれらが所定の比例配分となる量で、生物学
的に脱窒素、脱りん処理する生物学的処理装置、(g)
前記生物学的処理装置からの活性汚泥スラリーを活性汚
泥と処理水とに固液分離する固液分離装置、(h)前記
固液分離装置からの処理水を、さらに処理する高度処理
装置、(i)前記(a)〜(h)を順次接続する水路
と、前記固液分離装置からの余剰活性汚泥を前記(a)
の調整槽及び/又は前記(b)の凝集処理槽に移送する
移送手段。5. A treatment apparatus for two or more kinds of wastewater, which has the following (a) to (i): (A) Adjustment tank for homogenizing sewage containing rich SS such as septic tank sludge, household wastewater sludge, (b) coagulation processing tank for coagulating the effluent from the adjustment tank, (c) the coagulation processing A concentration / separation device that separates the aggregated slurry from the tank into concentrated sludge and separated water, and (d) a dehydrator that dehydrates the concentrated sludge from the concentration / separation device. (E) a storage tank that stores the dehydrated filtrate from the dehydrator and the separated water, and (f) raw urine and the stored water of the storage tank under the condition that the stored water amount> the raw urine amount, and A biological treatment device for biologically denitrifying and dephosphorizing, in an amount that makes a predetermined proportional distribution, (g)
A solid-liquid separation device for solid-liquid separating the activated sludge slurry from the biological treatment device into activated sludge and treated water, (h) an advanced treatment device for further treating the treated water from the solid-liquid separation device, ( i) The water channels connecting the above (a) to (h) in sequence, and the surplus activated sludge from the solid-liquid separation device are added to the (a)
A transfer means for transferring to the adjusting tank and / or the aggregating tank of (b) above.
り、前記生物学的処理装置の液中に浸漬するか、生物学
的処理装置の後段に設けたものである請求項4又は5記
載の汚水の処理装置。6. The solid-liquid separation device is a membrane separation device, which is immersed in the liquid of the biological treatment device or provided at a subsequent stage of the biological treatment device. The sewage treatment apparatus described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13252193A JP3368938B2 (en) | 1993-05-11 | 1993-05-11 | Wastewater treatment method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13252193A JP3368938B2 (en) | 1993-05-11 | 1993-05-11 | Wastewater treatment method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06320190A true JPH06320190A (en) | 1994-11-22 |
JP3368938B2 JP3368938B2 (en) | 2003-01-20 |
Family
ID=15083261
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13252193A Expired - Lifetime JP3368938B2 (en) | 1993-05-11 | 1993-05-11 | Wastewater treatment method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3368938B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997033839A1 (en) * | 1996-03-14 | 1997-09-18 | Wehrle-Werk Ag | Process and device for sewage treatment |
WO2000061503A1 (en) * | 1999-04-13 | 2000-10-19 | N.S. Consultants Ltd. | Soil water activated sludge treating system and method therefor |
JP2002239598A (en) * | 2001-02-15 | 2002-08-27 | Mitsubishi Heavy Ind Ltd | Sludge dehydration apparatus |
KR20030016634A (en) * | 2001-08-21 | 2003-03-03 | 유니엔스(주) | A method for eliminating organic matters, nitrogen, and phosphorus containingin a high concentratedwastewater |
JP2005021733A (en) * | 2003-06-30 | 2005-01-27 | Takuma Co Ltd | Method and system for treating human waste or the like |
JP2006239626A (en) * | 2005-03-04 | 2006-09-14 | Mitsubishi Heavy Ind Ltd | Treatment method of waste and treatment apparatus |
JP2006314908A (en) * | 2005-05-12 | 2006-11-24 | Mitsubishi Heavy Ind Ltd | Organic waste water treatment method and system |
JP2006346622A (en) * | 2005-06-17 | 2006-12-28 | Jfe Engineering Kk | Apparatus for treating excrement waste water |
JP2007229637A (en) * | 2006-03-01 | 2007-09-13 | Mitsubishi Heavy Ind Ltd | System and method for treating livestock excreta |
CN109662009A (en) * | 2018-12-21 | 2019-04-23 | 中建三局绿色产业投资有限公司 | A kind of set technique of sludge treatment disposition |
-
1993
- 1993-05-11 JP JP13252193A patent/JP3368938B2/en not_active Expired - Lifetime
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997033839A1 (en) * | 1996-03-14 | 1997-09-18 | Wehrle-Werk Ag | Process and device for sewage treatment |
WO2000061503A1 (en) * | 1999-04-13 | 2000-10-19 | N.S. Consultants Ltd. | Soil water activated sludge treating system and method therefor |
JP2002239598A (en) * | 2001-02-15 | 2002-08-27 | Mitsubishi Heavy Ind Ltd | Sludge dehydration apparatus |
KR20030016634A (en) * | 2001-08-21 | 2003-03-03 | 유니엔스(주) | A method for eliminating organic matters, nitrogen, and phosphorus containingin a high concentratedwastewater |
JP2005021733A (en) * | 2003-06-30 | 2005-01-27 | Takuma Co Ltd | Method and system for treating human waste or the like |
JP2006239626A (en) * | 2005-03-04 | 2006-09-14 | Mitsubishi Heavy Ind Ltd | Treatment method of waste and treatment apparatus |
JP4667910B2 (en) * | 2005-03-04 | 2011-04-13 | 三菱重工環境・化学エンジニアリング株式会社 | Waste treatment method and equipment |
JP2006314908A (en) * | 2005-05-12 | 2006-11-24 | Mitsubishi Heavy Ind Ltd | Organic waste water treatment method and system |
JP2006346622A (en) * | 2005-06-17 | 2006-12-28 | Jfe Engineering Kk | Apparatus for treating excrement waste water |
JP4506574B2 (en) * | 2005-06-17 | 2010-07-21 | Jfeエンジニアリング株式会社 | Human wastewater treatment equipment |
JP2007229637A (en) * | 2006-03-01 | 2007-09-13 | Mitsubishi Heavy Ind Ltd | System and method for treating livestock excreta |
CN109662009A (en) * | 2018-12-21 | 2019-04-23 | 中建三局绿色产业投资有限公司 | A kind of set technique of sludge treatment disposition |
Also Published As
Publication number | Publication date |
---|---|
JP3368938B2 (en) | 2003-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3368938B2 (en) | Wastewater treatment method and apparatus | |
JPH06226291A (en) | Treatment of night soil sewage | |
JP2006255605A (en) | Method and apparatus for treating human waste water | |
JP2019107593A (en) | Deodorization treatment system and organic matter treatment method | |
JP2796909B2 (en) | Wastewater treatment method | |
JP2936938B2 (en) | Treatment method of human waste and septic tank sludge | |
JPH0667520B2 (en) | Human waste system treatment equipment | |
JP3168608B2 (en) | Sludge treatment equipment | |
JPS6320600B2 (en) | ||
JP2939156B2 (en) | Sewage treatment equipment | |
JP4007639B2 (en) | Sewage return water treatment method and equipment | |
JPS6261700A (en) | Apparatus for treating sewage of excretion system | |
JPH0230320B2 (en) | ||
JPH0649197B2 (en) | Organic wastewater treatment method | |
JP3229806B2 (en) | Human wastewater treatment equipment | |
JP3327979B2 (en) | Septic tank sludge treatment method and equipment | |
JP3835610B2 (en) | Wastewater treatment method and apparatus | |
JP2001096297A (en) | Sewage treatment process and equipment for treating effluent sewerage | |
JPH02139099A (en) | Treatment of organic sewage | |
JPH10137779A (en) | Treating device for leached water from reclamation | |
JPS6354998A (en) | Treatment of organic sewage containing phosphorus | |
JPS5851995A (en) | Treatment of night soil | |
JPH0433519B2 (en) | ||
JPH1028995A (en) | Treatment of waste water | |
JP2002307093A (en) | Treatment method and apparatus for discharging high concentration organic wastewater to sewerage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071115 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081115 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091115 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101115 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111115 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121115 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131115 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |