JPH10137779A - Treating device for leached water from reclamation - Google Patents
Treating device for leached water from reclamationInfo
- Publication number
- JPH10137779A JPH10137779A JP8302149A JP30214996A JPH10137779A JP H10137779 A JPH10137779 A JP H10137779A JP 8302149 A JP8302149 A JP 8302149A JP 30214996 A JP30214996 A JP 30214996A JP H10137779 A JPH10137779 A JP H10137779A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- flocculating
- aeration tank
- aeration
- membrane separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は埋立浸出水の処理装
置に関し、更に詳しくは、埋立浸出水の活性汚泥処理を
高負荷で行うことを可能にする埋立浸出水の処理装置に
関する。The present invention relates to an apparatus for treating landfill leachate, and more particularly, to an apparatus for treating landfill leachate that can perform activated sludge treatment at a high load.
【0002】[0002]
【従来の技術】従来、埋立浸出水の処理に、曝気槽と膜
分離装置とから成る活性汚泥処理装置(以下、膜分離型
活性汚泥処理装置という)で処理する方式が提案されて
いる。2. Description of the Related Art Conventionally, a method of treating landfill leachate by using an activated sludge treatment apparatus including an aeration tank and a membrane separation apparatus (hereinafter, referred to as a membrane separation type activated sludge treatment apparatus) has been proposed.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記し
た膜分離型活性汚泥処理装置で埋立浸出水を処理する
と、低負荷運転が不可避になって処理能力の劣化を引き
起こすという問題が発生することが判明した。具体的に
は、装置運転を進めるにつれて、曝気槽内における全活
性汚泥濃度(MLSS)に対する活性汚泥中の揮発性成
分濃度(MLVSS)の割合(MLVSS/MLSS
比)が30%程度にまで減少し、その結果、処理水質お
よび装置の処理能力が劣化した。However, it has been found that when the landfill leachate is treated by the above-mentioned membrane separation type activated sludge treatment apparatus, low load operation becomes inevitable and causes deterioration of the treatment capacity. did. Specifically, as the operation of the apparatus progresses, the ratio of the volatile component concentration (MLVSS) in the activated sludge to the total activated sludge concentration (MLSS) in the aeration tank (MLVSS / MLSS)
Ratio) was reduced to about 30%, and as a result, the quality of treated water and the treatment capacity of the apparatus were deteriorated.
【0004】このような事態の発生を防ぐためにMLV
SS濃度を高めた状態で装置運転を行うと、MLSS濃
度が一層高くなって、膜分離性能が悪化し、長期間の実
用的な装置運転ができなくなる。この事態は、埋立浸出
水のSS濃度が、BOD成分や窒素成分の濃度に比べて
非常に高く、しかもそのSS成分のほとんどが無機態の
SS成分であるということに起因する。In order to prevent such a situation from occurring, the MLV
When the apparatus is operated with the SS concentration increased, the MLSS concentration is further increased, the membrane separation performance is deteriorated, and a long-term practical apparatus operation cannot be performed. This situation is due to the fact that the SS concentration of the landfill leachate is much higher than the concentrations of the BOD component and the nitrogen component, and most of the SS components are inorganic SS components.
【0005】したがって、この場合、処理水へのSS成
分のリークが完全に防止され、当該SS成分は曝気槽内
に経時的に蓄積し、増量していくことになる。本発明
は、埋立処理水を処理して、高度の処理水質が得られる
とともに、更に高負荷での運転が可能である埋立浸出水
の処理装置の提供を目的とする。[0005] Therefore, in this case, the leakage of the SS component to the treated water is completely prevented, and the SS component accumulates in the aeration tank over time and increases. It is an object of the present invention to provide a landfill leachate treatment apparatus that can treat landfill treated water to obtain a high quality of treated water and that can be operated at a higher load.
【0006】[0006]
【課題を解決するための手段】上記した目的を達成する
ために、本発明においては、埋立浸出水を、曝気槽と膜
分離装置とから成る活性汚泥処理装置で処理する装置で
あって、前記曝気槽の上流側に、凝集分離処理装置が配
置されていることを特徴とする埋立浸出水の処理装置が
提供される。According to the present invention, there is provided an apparatus for treating landfill leachate in an activated sludge treatment apparatus comprising an aeration tank and a membrane separation apparatus. An apparatus for treating landfill leachate, wherein an apparatus for coagulation and separation is disposed upstream of an aeration tank.
【0007】本発明の処理装置では、曝気槽の前段に配
置された凝集分離処理装置で埋立浸出水のSS成分が予
め凝集除去されるので、凝集分離処理装置を経由した後
の処理水中のSS濃度は減少しており、曝気槽の運転時
には、前記したSS成分の蓄積という問題は解消する。
すなわち、曝気槽の運転時に、曝気槽におけるMLVS
S/MLSS比の低下という問題は起こらなくなり、そ
の結果、高度な処理水質と装置の高負荷運転を実現する
ことができる。In the treatment apparatus of the present invention, since the SS component of the landfill leachate is coagulated and removed in advance by the coagulation / separation treatment apparatus disposed in the preceding stage of the aeration tank, the SS in the treated water after passing through the coagulation / separation treatment apparatus is removed. Since the concentration is decreasing, the problem of the accumulation of the SS component described above is solved during the operation of the aeration tank.
That is, the MLVS in the aeration tank during the operation of the aeration tank
The problem of a decrease in the S / MLSS ratio does not occur, and as a result, high treated water quality and high-load operation of the device can be realized.
【0008】[0008]
【発明の実施の形態】以下に、図面に基づいて本発明の
処理装置について詳細に説明する。図1は、膜分離型活
性汚泥処理装置の従来例を示す概念図である。埋立浸出
水w1は、まず、必要に応じて、攪拌手段1aが付設さ
れた中和槽Bに送られ、そこで、pH調整剤の薬液供給
手段1bから酸やアルカリが添加されて中和される。こ
のときのpH値は6〜8にすることが好ましい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a processing apparatus according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a conceptual diagram showing a conventional example of a membrane separation type activated sludge treatment apparatus. Landfill leachate w 1, first, if necessary, sent to the neutralization tank B which stirring means 1a is attached, where, acid and alkali from the chemical supply unit 1b of pH adjusting agent is neutralized is added You. The pH value at this time is preferably set to 6 to 8.
【0009】中和槽Bからの流出液は、ついで、曝気手
段1cと攪拌手段1dと薬液供給手段1eを備えた曝気
槽A1、および前記曝気槽A1の下流側に配置された膜分
離装置A2を必須の設備とする膜分離型活性汚泥処理装
置Aに送られる。なお、図1の従来例では、曝気槽A1
の下流側に、曝気手段1fを備えた仕上げ硝化槽A
3と、攪拌手段1gと薬液供給手段1hを備えた仕上げ
脱窒槽A4とが順次配置され、仕上げ脱窒槽A4の流出液
が膜分離装置A2に送られるようになっている。そし
て、膜分離装置A2で生成する分離汚泥は配管p1を介し
て曝気槽A 1に返送できるようになっている。The effluent from the neutralization tank B is then aerated.
Aeration provided with stage 1c, stirring means 1d, and chemical supply means 1e
Tank A1And the aeration tank A1Of the membrane located downstream of
Release device ATwoSeparation activated activated sludge treatment equipment that requires
Sent to the location A. In addition, in the conventional example of FIG.1
Nitrification tank A provided with aeration means 1f on the downstream side of
ThreeFinishing with stirring means 1g and chemical liquid supply means 1h
Denitrification tank AFourAre sequentially arranged, and the finishing denitrification tank AFourEffluent of
Is a membrane separation device ATwoTo be sent to Soshi
And membrane separation device ATwoThe separated sludge generated in1Through
Aeration tank A 1It can be returned to.
【0010】曝気槽A1としては、通常の浮遊式活性汚
泥槽でもよいし、また、好気処理−嫌気処理を行う間欠
曝気槽であってもよい。一方、膜分離装置A2として
は、図1で示したように、曝気槽A1の外に別に配置さ
れたものでもよいし、また、曝気槽の中に膜分離装置を
直接浸漬して設けられる浸漬型膜分離装置であってもよ
い。また、用いる膜の種類としては、精密濾過(MF)
膜、限外濾過(UF)膜などをあげることができる。[0010] The aeration tank A 1, may be a conventional floating activated sludge tank, also, aerobic treatment - may be intermittent aeration tank for performing anaerobic treatment. On the other hand, the membrane separation unit A 2, as shown in FIG. 1, may be one arranged separately outside the aeration tank A 1, also by immersing the membrane separation device in the aeration tank directly provided Immersion type membrane separation device to be used. The type of membrane used is microfiltration (MF)
Membranes, ultrafiltration (UF) membranes and the like.
【0011】なお、図1で示した仕上げ硝化槽A3で
は、溶存酸素を所望量にするような曝気が行われ、また
仕上げ脱窒槽A4では、ORP電位が所定値を示すよう
に、例えばメタノールが薬液供給手段1hから添加され
る。かくして、図1で示した処理装置の運転を継続する
と、前記したように、曝気槽A1におけるMLVSS/
MLSS比が低下して低負荷運転を余儀なくされる。In the finishing nitrification tank A 3 shown in FIG. 1, aeration is performed so that the dissolved oxygen becomes a desired amount. In the finishing denitrification tank A 4 , for example, the ORP potential shows a predetermined value. Methanol is added from the chemical solution supply means 1h. Thus, the continued operation of the processing apparatus shown in FIG. 1, as described above, MLVSS in the aeration tank A 1 /
The MLSS ratio is lowered, so that low load operation is forced.
【0012】このような問題に対処すべく、本発明にお
いては、図2で示した処理装置が提供される。図2で示
した処理装置は、図1で示した処理装置の上流側に凝集
分離処理装置Cを配置したものである。凝集分離処理装
置Cは、攪拌手段1iと薬液供給手段1jを備えた混和
槽C1、攪拌手段1kと薬液供給手段1lを備えた凝集
槽C2、および凝集沈殿槽C3を、前記混和槽C1を上流
側にして直列配置して構成されている。そして、凝集沈
殿槽C3の沈殿汚泥は配管p2で混和槽C1に返送できる
ようになっている。また、図示しないが、凝集沈殿槽C
3には、沈殿汚泥の抜き出し手段が設けられている。In order to address such a problem, the present invention provides the processing apparatus shown in FIG. The processing apparatus shown in FIG. 2 has a coagulation / separation processing apparatus C arranged upstream of the processing apparatus shown in FIG. The coagulation / separation apparatus C comprises a mixing tank C 1 provided with a stirring means 1 i and a chemical liquid supply means 1 j, a coagulation tank C 2 provided with a stirring means 1 k and a chemical liquid supply means 11, and a coagulation sedimentation tank C 3. and the C 1 on the upstream side is constituted by a series arrangement. The precipitated sludge flocculation tank C 3 is adapted to be returned to the mixing tank C 1 in the pipe p 2. Although not shown, the coagulating sedimentation tank C
3 is provided with a means for extracting the settled sludge.
【0013】原水w1中のSS成分の凝集除去手段とし
ては、SS濃度を20mg/L程度にするものであればどの
ような手段であってもよく、例えば、凝集沈殿装置や凝
集加圧浮上装置であることが好ましい。凝集沈殿や凝集
加圧浮上の手段としては、従来からの公知の方法を適用
することができ、例えば、酸性凝集法(pH5)、中性
凝集法(pH6〜7)、アルカリ性凝集法(pH10〜
11)などのいずれを採用してもよい。また、原水の性
状に対応して適宜に変更してもよい。[0013] Examples of the aggregating means for removing SS component in the raw water w 1, may be any means as long as the SS concentration of about 20 mg / L, for example, coagulating sedimentation apparatus and aggregation floatation on Preferably it is a device. As a means for coagulation sedimentation or coagulation pressure flotation, a conventionally known method can be applied. For example, an acid coagulation method (pH 5), a neutral coagulation method (pH 6 to 7), and an alkaline coagulation method (pH 10 to 10)
Any of 11) and the like may be adopted. Moreover, you may change suitably according to the property of raw water.
【0014】この凝集分離処理装置Cでは、原水w1中
のSS濃度が20mg/L程度に低減するまでSS成分を凝
集除去する。この程度の残留SS濃度であれば、後段の
曝気槽における前記したSS成分の蓄積という問題は起
こらなくなる。具体的には、原水w1を混和槽C1に導入
し、ここに、薬液供給手段1jから例えば硫酸バンド、
塩化第二鉄、ポリ鉄,PACなどの凝集剤と、水酸化ソ
ーダ、炭酸ソーダ、硫酸などのpH調整剤とを添加して
攪拌手段1iで混和する。ついで凝集槽C2に移送し、
ここに、薬液供給手段1lからノニオン系またはアニオ
ン系の高分子凝集剤を添加して攪拌手段1kで攪拌した
のち、凝集沈殿槽C3に移送して静置する。凝集沈殿槽
C3では、原水中のSS成分が沈降して沈殿汚泥とな
り、上澄みが処理水w2となる。[0014] In the coagulation and separation apparatus C, SS concentration in the raw water w 1 is the SS component aggregate removed to reduce to about 20 mg / L. With such a residual SS concentration, the problem of accumulation of the SS component in the subsequent aeration tank does not occur. Specifically, the raw water w 1 is introduced into the mixing tank C 1 , where the chemical solution supply means 1 j receives, for example, a sulfuric acid band,
An aggregating agent such as ferric chloride, polyiron and PAC, and a pH adjusting agent such as sodium hydroxide, sodium carbonate and sulfuric acid are added and mixed by the stirring means 1i. Then transferred to a flocculation tank C 2,
Here, after stirring at the stirring means 1k from chemical supply means 1l was added a nonionic or anionic polymeric flocculant, to stand by transferring the flocculation tank C 3. In the coagulating sedimentation tank C 3, SS component in the raw water becomes settled settled sludge, the supernatant is treated water w 2.
【0015】この処理過程においては、凝集沈殿槽C3
からの処理水w2のSS濃度が20mg/L以下となるよう
に、凝集剤の種類、その使用量、採用するpH値、処理
時間などが適宜に選定される。また、原水の性状などと
の関係で変化するが、通常、混和槽C1および凝集槽C2
における滞留時間を10〜30分、凝集沈殿槽C3の水
面積負荷を0.5〜1m3/m2/hrに設定することが好まし
い。In this process, the coagulating sedimentation tank C 3
As SS concentration in the treated water w 2 from it becomes less 20 mg / L, the type of flocculant, its amount, pH value employed, such as processing time is selected appropriately. In addition, although it changes depending on the properties of raw water, etc., usually, the mixing tank C 1 and the coagulation tank C 2
10-30 minutes residence time in, it is preferable to set the water area load of coagulating sedimentation tank C 3 to 0.5~1m 3 / m 2 / hr.
【0016】なお、凝集法として、カルシウムスケール
の生成防止を主目的とする炭酸ソーダ添加アルカリ性凝
集法を採用した場合には、凝集沈殿槽C3の沈殿汚泥の
所定量を配管p2を経由して混和槽C1に返送することが
好ましい。かくして、曝気槽A1で所定時間の生物化学
的処理が行われた後の活性汚泥混合液は、ついで、膜分
離装置A2に送られ、そこで汚泥と処理水w3とに固液分
離される。In the case where an alkaline coagulation method with sodium carbonate added mainly for the purpose of preventing the formation of calcium scale is adopted as the coagulation method, a predetermined amount of the settled sludge in the coagulation settling tank C 3 is supplied via the pipe p 2. it is preferable to return to the mixing tank C 1 Te. Thus, the activated sludge mixture after a predetermined time of biochemical processes in the aeration tank A 1 is performed, then, sent to a membrane separation unit A 2, where it is solid-liquid separation and the treated water w 3 sludge You.
【0017】なお、装置運転が進むにつれて、膜分離装
置A2内には分離汚泥が増量していくので、適当な時間
間隔でその分離汚泥は配管p1により曝気槽A1に返送す
る。更に、本発明の処理装置の場合、曝気槽A1で生成
した活性汚泥混合液を膜分離装置A2で膜分離するまで
の過程で、所定の凝集剤とpH調整剤を供給することに
より、さらにCOD成分を除去することができる。その
ための薬液供給手段1mは、曝気槽A1に設けてもよ
く、膜分離装置A2に設けてもよいが、図1、図2で示
したように、膜分離装置A2に設ける方が好適である。[0017] Incidentally, as the device operation progresses, the membrane separation in the apparatus A 2 since separation sludge is gradually increased, the separating sludge at appropriate time intervals is returned to the aeration tank A 1 by a pipe p 1. Further, if the processing apparatus of the present invention, in the process of the activated sludge mixture produced in the aeration tank A 1 until membrane separation in the membrane separation device A 2, by supplying a predetermined coagulant and a pH adjusting agent, Further, the COD component can be removed. Chemical supply means 1m therefor may be provided in the aeration tank A 1, may be provided in the membrane separation unit A 2, FIG. 1, as shown in FIG. 2, the person who provided the membrane separation device A 2 It is suitable.
【0018】[0018]
【実施例】比較例として図1で、実施例として図2で示
した処理装置を次のような条件で運転して埋立浸出水
(原水)の処理を行った。曝気槽A1としては、曝気手
段1cから曝気を行う好気工程と曝気を停止して攪拌手
段1dによる攪拌のみを行う嫌気工程とをあわせて約6
0分のサイクルで反復する間欠曝気槽を用いた。曝気槽
A1は有効容積400Lの間欠曝気槽であり、仕上げ硝化
槽A3の有効容積は40L、仕上げ脱窒槽A3の有効容積
は80Lである。また、膜分離装置A2の有効容積は12
0Lであり、使用膜は、親水化ポリエチレンから成り、
公称孔径が0.1μmの中空糸MF膜である。EXAMPLES The treatment apparatus shown in FIG. 1 as a comparative example and FIG. 2 as an example was operated under the following conditions to treat landfill leachate (raw water). The aeration tank A 1, about together and anaerobic step of performing only stirring with aerobic step and aeration agitation means 1d to stop performing aeration from aeration unit 1c 6
An intermittent aeration tank with a 0 minute cycle was used. Aeration tank A 1 is intermittent aeration tank having an effective volume of 400 L, the effective volume of the finished nitrification tank A 3 is 40L, the effective volume of the finished denitrification tank A 3 is 80L. The effective volume of the membrane separation device A 2 is 12
0 L, the membrane used is made of hydrophilic polyethylene,
It is a hollow fiber MF membrane having a nominal pore size of 0.1 μm.
【0019】間欠曝気槽A1には薬液供給手段1eから
硫酸または苛性ソーダを添加してpH値を7に調整し、
好気工程は、DO値が1.5〜2.5mg/Lとなるように曝気
手段1cからの曝気量を制御した。そして、好気工程と
嫌気工程の処理時間の比率を原水の負荷変動に対応させ
て50〜90%の範囲内で変動させた。例えば、原水中
の総窒素濃度(TN濃度)が30〜60mg/Lである場合
には、好気工程の時間比率を80%とし、TN濃度が6
0〜120mg/Lである場合には好気工程の時間比率を5
0〜70%とした。[0019] The intermittent aeration tank A 1 was adjusted to 7 and the pH value by adding sulfuric acid or caustic soda from the chemical supply unit 1e,
In the aerobic step, the amount of aeration from the aeration means 1c was controlled so that the DO value was 1.5 to 2.5 mg / L. And the ratio of the processing time of the aerobic process and the anaerobic process was changed within the range of 50 to 90% in accordance with the load change of the raw water. For example, when the total nitrogen concentration (TN concentration) in the raw water is 30 to 60 mg / L, the time ratio of the aerobic step is set to 80%, and the TN concentration is set to 6%.
When the amount is 0 to 120 mg / L, the time ratio of the aerobic step is 5
0 to 70%.
【0020】また、嫌気工程においては、嫌気工程開始
後最初の5分間で脱窒素に必要な総窒素負荷量の2.5〜
3倍量のメタノールを薬液供給手段1eから添加した。
上記した条件で間欠曝気槽を運転して生物化学的処理を
行った後、得られた活性汚泥混合液を仕上げ硝化槽
A3、仕上げ脱窒槽A4に順次移送し、更に続けて膜分離
装置A2に導入した。In the anaerobic step, the total nitrogen load required for denitrification in the first 5 minutes after the start of the anaerobic step is 2.5 to 2.5.
Three times the amount of methanol was added from the chemical solution supply means 1e.
After performing the biochemical treatment by operating the intermittent aeration tank under the above conditions, the obtained activated sludge mixed liquid is sequentially transferred to the finishing nitrification tank A 3 and the finishing denitrification tank A 4 , and further successively, the membrane separation device. It was introduced to a 2.
【0021】仕上げ硝化槽A3では活性汚泥混合液にお
けるDO値が2mg/L以上となるように曝気手段1fで曝
気を行い、また仕上げ脱窒槽A4では、活性汚泥混合液
のORP電位が0〜−100mVの値を示すように薬液供
給手段1hからメタノールを添加して攪拌手段1gで攪
拌した。メタノールの量は、原水の負荷変動に対応して
0〜80mg/Lの範囲内で変動させた。[0021] carried out aeration in the aeration unit 1f as DO value is 2 mg / L or more in the finish nitrification tank A 3 in the activated sludge mixture and the finished denitrification tank A 4, the ORP potential of the activated sludge mixture 0 Methanol was added from the chemical liquid supply means 1 h so as to show a value of −? 100 mV, and the mixture was stirred with 1 g of stirring means. The amount of methanol was varied within the range of 0 to 80 mg / L corresponding to the load variation of the raw water.
【0022】また、膜分離装置A2については、フラッ
クスが0.3m3/m2/dayとなるように有効圧力3〜40kPa
で8分間の濾過、2分間の休止という間欠運転を行っ
た。なお、MF膜の下部からは、濾過部空塔断面積1m2
当たり70〜130Nm3/hrの風量で曝気を行い、膜面に
活性汚泥が濃縮・付着することを予防して処理を行っ
た。The effective pressure of the membrane separation device A 2 is 3 to 40 kPa so that the flux becomes 0.3 m 3 / m 2 / day.
, An intermittent operation of filtering for 8 minutes and resting for 2 minutes was performed. In addition, from the lower part of the MF membrane, the cross-sectional area of the empty space of the filtration unit is 1 m 2.
Aeration was performed at an air flow rate of 70 to 130 Nm 3 / hr per hour to prevent the activated sludge from concentrating and adhering to the membrane surface.
【0023】そして、膜分離装置A2には薬液供給手段
1mから硫酸を添加して、そこに移送されてきた活性汚
泥混合液のpH値が6.0〜6.3になるように調整した。
また、膜分離装置A2からは汚泥を前記間欠曝気槽A1に
返送した。このときの返送流量は原水流量の2〜4倍量
に設定した。また、間欠曝気槽A1の汚泥滞留時間(S
RT)が25〜35日になるように、汚泥の引き抜き手
段を設けて(図示しない)、汚泥の引き抜きを実施し
た。[0023] Then, the membrane separation apparatus A 2 by the addition of sulfuric acid from the chemical supply unit 1 m, pH value of the activated sludge mixture which has been transferred thereto was adjusted to 6.0 to 6.3 .
Further, from the membrane separation unit A 2 and returning the sludge to the intermittent aeration tank A 1. The return flow rate at this time was set to 2 to 4 times the raw water flow rate. Further, the intermittent aeration tank A 1 of the sludge residence time (S
(RT) was 25 to 35 days, and a sludge withdrawing means was provided (not shown), and sludge was withdrawn.
【0024】なお、この膜分離装置の活性汚泥混合液に
は、薬液供給手段1mから塩化第二鉄を原水に対し10
0〜250mg/L添加して原水中のCOD成分除去試験も
行った。また、凝集分離処理装置Cでは、原水w1に対
し、酸性凝集法、中性凝集法、アルカリ性凝集法、およ
び炭酸ソーダ添加アルカリ性凝集法を適用して処理し
た。いずれの場合も、処理水w2のSS濃度は20mg/L
以下にすることが可能であった。適用した凝集法のう
ち、前3者においては、混和槽C1で塩化第二鉄を原水
に対し50〜150mg/L使用し、凝集槽C2では高分子
凝集剤を原水に対し1〜5mg/L使用した。なお、高分子
凝集剤は、凝集条件を変えるたびにその種類と使用量を
検討し、SS成分の除去が良好に進むように選定した。The activated sludge mixed solution of this membrane separation device is added with ferric chloride by 10 m from the chemical solution supply means to the raw water.
A COD component removal test in raw water was also performed by adding 0 to 250 mg / L. Furthermore, the coagulation and separation processing unit C, to the raw water w 1, acidic coagulation method, a neutral aggregation method, alkaline agglutination method, and was treated by applying the sodium carbonate added alkaline agglutination method. In either case, SS concentration in the treated water w 2 is 20mg / L
It was possible to: Among the applied aggregation method, in the former three, mixing tank C 1 ferric chloride using 50 to 150 mg / L to the raw water in, 1 to 5 mg to raw water flocculation tank C 2 in polymeric flocculant / L used. The type and amount of the polymer coagulant were examined each time the coagulation conditions were changed, and the polymer coagulant was selected so that the removal of the SS component proceeded favorably.
【0025】また、炭酸ソーダ添加アルカリ性凝集法を
適用したときには、混和槽C1で炭酸ソーダを原水に対
し1500mg/L添加した。また、このときには、凝集沈
殿槽C3から混和槽C1へ沈殿汚泥を返送して凝集分離処
理装置Cにおけるカルシウムスケールの生成予防処置を
施した。なお、返送汚泥は原水流量に対し0.5〜2倍量
とした。Further, when applying sodium carbonate added alkaline aggregation method, it was added 1500 mg / L to the raw water of sodium carbonate in admixture tank C 1. Further, at this time, subjected to generation preventive treatment of calcium scale in coagulation and separation processing apparatus C to return the settled sludge to the mixing tank C 1 from the coagulating sedimentation tank C 3. The returned sludge was 0.5 to 2 times the raw water flow rate.
【0026】ついで、処理水w2を中和槽Bに移送し、
そこで、硫酸または苛性ソーダを用いてpH値を7に調
整したのち間欠曝気槽A1に導入した。比較例として
は、図1で示したように、凝集分離処理装置を配置する
ことなく、原水w1を、直接、上記した運転条件下にあ
る膜分離型活性汚泥装置Aに導入し、間欠曝気槽A1に
おけるMLSS濃度、MLVSS濃度をそれぞれ測定
し、また好気工程当たりのBOD容積負荷とTN容積負
荷をそれぞれ求めた。Next, the treated water w 2 is transferred to the neutralization tank B,
Therefore, we introduced the intermittent aeration tank A 1 After the pH was adjusted to 7 values with sulfuric acid or caustic soda. As a comparative example, as shown in FIG. 1, without placing the coagulation and separation processing apparatus, the raw water w 1, directly introduced into the membrane separation type activated sludge device A in the operating conditions described above, intermittent aeration MLSS concentration in the bath a 1, MLVSS concentration was measured, respectively, it was also determined, respectively BOD volume load and TN volume load per aerobic step.
【0027】また、実施例2としては、図2で示したよ
うに、凝集分離処理装置Cを配置して上記条件で運転を
行い、間欠曝気槽A1におけるMLSS濃度、MLVS
S濃度をそれぞれ測定し、また好気工程当たりのBOD
容積負荷とTN容積負荷をそれぞれ求めた。以上の結果
を表1に示した。[0027] As the second embodiment, as shown in FIG. 2 performs the operation in the above conditions and placing the coagulation and separation processing apparatus C, MLSS concentration in the intermittent aeration tank A 1, MLVs
The S concentration was measured separately and the BOD per aerobic step
Volume load and TN volume load were determined respectively. Table 1 shows the above results.
【0028】[0028]
【表1】 比較例,実施例のいずれの場合も、良好な処理水質を得
ることができた。ただし、比較例の場合は、通水量を3
00L/day以下に維持することが必要であった。[Table 1] In each of the comparative examples and examples, good treated water quality could be obtained. However, in the case of the comparative example, the water flow rate was 3
It was necessary to keep it below 00L / day.
【0029】そこで、比較例において、高負荷条件にす
るために間欠曝気槽におけるMLVSS濃度を約100
00mg/Lとなるように装置運転を行ったところ、MLS
S濃度が約38000mg/Lにまで上昇し、膜分離装置で
はその活性汚泥混合液の固液分離が著しく困難となり、
実用的な装置運転は難しくなった。そのような高負荷条
件の場合には、実施例のように、凝集分離処理装置を前
置することが好ましくなる。Therefore, in the comparative example, the MLVSS concentration in the intermittent aeration tank was set to about 100
When the device was operated to be 00 mg / L, the MLS
The S concentration increases to about 38000 mg / L, and solid-liquid separation of the activated sludge mixture becomes extremely difficult with the membrane separation device.
Practical equipment operation has become difficult. In the case of such a high load condition, it is preferable to provide an aggregating / separating apparatus in front as in the embodiment.
【0030】表1から明らかなように、比較例の場合
は、間欠曝気槽におけるMLVSS/MLSS比が30
%であり、このときのMLVSS濃度は4000mg/Lと
低い値を示しているが、実施例の場合、間欠曝気槽にお
けるMLVSS/MLSS比が80%の値を示してお
り、このときのMLVSS濃度を11000mg/Lにまで
あげることができる。これは、実施例では、原水w1に
膜分離型活性汚泥処理装置Aを適用する前段で、当該原
水w1中のSS成分を凝集分離処理装置Cで凝集除去し
てその濃度を低減させたためである。As is clear from Table 1, in the case of the comparative example, the MLVSS / MLSS ratio in the intermittent aeration tank was 30.
%, And the MLVSS concentration at this time shows a low value of 4000 mg / L, but in the case of the example, the MLVSS / MLSS ratio in the intermittent aeration tank shows a value of 80%, and the MLVSS concentration at this time To 11,000 mg / L. This is because, in the embodiment, the in previous stage of applying the raw water w 1 to the membrane separation type activated sludge treatment apparatus A, was reduced so that concentration of SS components in the raw water w 1 aggregate removed by coagulation and separation processing apparatus C It is.
【0031】また、実施例の処理装置は、間欠曝気槽の
BOD容積負荷とTN容積負荷がいずれも高く、原水w
1を高負荷で処理して高水質水準の処理水w3にすること
ができ、装置の大幅な小型化が可能になる。実施例で得
られた処理水w3の性状を、原水w1、処理水w2の性状
とともに表2に示した。Further, in the treatment apparatus of the embodiment, both the BOD volume load and the TN volume load of the intermittent aeration tank are high, and the raw water w
Treated 1 at a high load can be treated water w 3 of high quality level, it is possible to significantly reduce the size of the apparatus. The properties of the treated water w 3 obtained in Example, raw water w 1, shown in Table 2 together with properties of treated water w 2.
【0032】[0032]
【表2】 [Table 2]
【0033】表2から明らかなように、凝集分離処理装
置Cで前処理することにより、原水w1のSS成分は大
幅に凝集除去され、得られた処理水w2におけるSS濃
度は20mg/L以下に低減する。そして、この処理水w2
に膜分離型活性汚泥処理が施された処理水w3は、SS
濃度が低く、BOD成分や窒素成分が充分に除去された
清浄な処理水になっている。なお、薬液供給手段1mか
ら塩化第二鉄を供給したときの処理水のCODMnは20
〜30mg/Lとなり、より好ましいことがわかる。[0033] As is apparent from Table 2, by pretreatment with coagulation and separation processing unit C, the raw water SS component of w 1 is greatly aggregate removal, SS concentration in the resulting treated water w 2 are 20 mg / L Reduce to below. And this treated water w 2
Treated water w 3 which has been subjected to membrane separation type activated sludge treatment to SS
It has low concentration and is clean treated water from which BOD components and nitrogen components have been sufficiently removed. The COD Mn of the treated water when ferric chloride was supplied from 1 m of the chemical supply means was 20.
-30 mg / L, which is more preferable.
【0034】[0034]
【発明の効果】以上の説明で明らかなように、本発明の
処理装置は、埋立浸出水を高度の処理水質にすることが
できる。本発明の処理装置は、凝集分離処理装置で埋立
浸出水中のSS成分のうちの主要な成分である無機態の
SS成分を凝集除去してから、当該埋立浸出水に対して
膜分離型活性汚泥処理装置を用いて処理するので、曝気
槽におけるMLVSS/MLSS比は高くなり、MLV
SS濃度を高めた高負荷運転を実現することができる。As is apparent from the above description, the treatment apparatus of the present invention can make landfill leachate a highly treated water quality. The treatment apparatus of the present invention uses a coagulation separation treatment apparatus to coagulate and remove inorganic SS components, which are main components among the SS components in landfill leachate, and then performs membrane separation type activated sludge on the landfill leachate. Since the treatment is performed using the treatment device, the MLVSS / MLSS ratio in the aeration tank is increased, and the MLVSS / MLSS ratio is increased.
High load operation with an increased SS concentration can be realized.
【図面の簡単な説明】[Brief description of the drawings]
【図1】膜分離型活性汚泥処理装置の従来例を示す概略
図である。FIG. 1 is a schematic view showing a conventional example of a membrane separation type activated sludge treatment apparatus.
【図2】本発明の処理装置の1実施例を示す概略図であ
る。FIG. 2 is a schematic view showing one embodiment of the processing apparatus of the present invention.
A 膜分離型活性汚泥処理装置 A1 曝気槽 A2 膜分離装置 A3 仕上げ硝化槽 A4 仕上げ脱膣槽 B 中和槽 C 凝集分離処理装置 C1 混和槽 C2 凝集槽 C3 凝集沈殿槽 1a,1d,1g,1i,1k 攪拌手段 1b,1e,1h,1j,1l,1m 薬液供給手段 1c,1f 曝気手段A Membrane separation type activated sludge treatment equipment A 1 Aeration tank A 2 Membrane separation equipment A 3 Finish nitrification tank A 4 Finish vaginal removal tank B Neutralization tank C Coagulation separation treatment apparatus C 1 Mixing tank C 2 Coagulation tank C 3 Coagulation sedimentation tank 1a, 1d, 1g, 1i, 1k Stirring means 1b, 1e, 1h, 1j, 1l, 1m Chemical liquid supply means 1c, 1f Aeration means
Claims (1)
ら成る活性汚泥処理装置で処理する装置であって、前記
曝気槽の上流側に、凝集分離処理装置が配置されている
ことを特徴とする埋立浸出水の処理装置。1. An apparatus for treating landfill leachate by an activated sludge treatment apparatus comprising an aeration tank and a membrane separation apparatus, wherein an agglomeration separation treatment apparatus is disposed upstream of the aeration tank. Landfill leachate treatment equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30214996A JP3578189B2 (en) | 1996-11-13 | 1996-11-13 | Landfill leachate treatment apparatus and treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30214996A JP3578189B2 (en) | 1996-11-13 | 1996-11-13 | Landfill leachate treatment apparatus and treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10137779A true JPH10137779A (en) | 1998-05-26 |
JP3578189B2 JP3578189B2 (en) | 2004-10-20 |
Family
ID=17905505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30214996A Expired - Fee Related JP3578189B2 (en) | 1996-11-13 | 1996-11-13 | Landfill leachate treatment apparatus and treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3578189B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020022390A (en) * | 2000-09-20 | 2002-03-27 | 이정학 | Submerged membrane coupled activated sludge process using alum |
JP2009050837A (en) * | 2007-08-02 | 2009-03-12 | Mori Plant:Kk | Sewage treatment method |
JP2009160567A (en) * | 2007-12-10 | 2009-07-23 | Kobelco Eco-Solutions Co Ltd | Biological treating method and biological treatment apparatus |
CN114573182A (en) * | 2022-02-14 | 2022-06-03 | 徐州紫聚石化设备有限公司 | Membrane separation process and device for sewage treatment |
-
1996
- 1996-11-13 JP JP30214996A patent/JP3578189B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020022390A (en) * | 2000-09-20 | 2002-03-27 | 이정학 | Submerged membrane coupled activated sludge process using alum |
JP2009050837A (en) * | 2007-08-02 | 2009-03-12 | Mori Plant:Kk | Sewage treatment method |
JP2009160567A (en) * | 2007-12-10 | 2009-07-23 | Kobelco Eco-Solutions Co Ltd | Biological treating method and biological treatment apparatus |
JP4612078B2 (en) * | 2007-12-10 | 2011-01-12 | 株式会社神鋼環境ソリューション | Biological treatment method and biological treatment apparatus |
CN114573182A (en) * | 2022-02-14 | 2022-06-03 | 徐州紫聚石化设备有限公司 | Membrane separation process and device for sewage treatment |
Also Published As
Publication number | Publication date |
---|---|
JP3578189B2 (en) | 2004-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3368938B2 (en) | Wastewater treatment method and apparatus | |
JP2002191942A (en) | Method for waste water treatment | |
JP3578189B2 (en) | Landfill leachate treatment apparatus and treatment method | |
JPH07155784A (en) | Treatment of organic waste water | |
JPH06134469A (en) | Method for treating silicon cutting waste liquid | |
JPH0667520B2 (en) | Human waste system treatment equipment | |
JP3552580B2 (en) | Method and apparatus for treating human wastewater | |
JPH0947781A (en) | Treatment of organic material related to bod, nitrogen and phosphorus in waste water | |
JPH02293095A (en) | Treatment of organic sewage | |
JPH05104090A (en) | Method for treating sewage or sludge and apparatus therefor | |
JPH0649199B2 (en) | Human waste system treatment equipment | |
JPH0649197B2 (en) | Organic wastewater treatment method | |
JPH0230320B2 (en) | ||
JPH0647118B2 (en) | Organic wastewater treatment method | |
JP2002292399A (en) | Organic wastewater disposal equipment | |
JP4156820B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JPH0310399B2 (en) | ||
JPH0919700A (en) | Sewage treating device | |
JP2000061495A (en) | Higher level treatment of night soil and device therefor | |
JP2001179284A (en) | Method for dephosphorizing excretion wastewater | |
JP2000288587A (en) | Method and apparatus for treating excretion sewage | |
JPH0649198B2 (en) | Organic wastewater treatment equipment | |
JPH11347587A (en) | Apparatus for treating sewage | |
JPH0568993A (en) | Treatment of sludge of purifying tank | |
JP2000350996A (en) | Method and apparatus for treating sewage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040423 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040623 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040706 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080723 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090723 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100723 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110723 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120723 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130723 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140723 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |