JPH02293095A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPH02293095A
JPH02293095A JP1112087A JP11208789A JPH02293095A JP H02293095 A JPH02293095 A JP H02293095A JP 1112087 A JP1112087 A JP 1112087A JP 11208789 A JP11208789 A JP 11208789A JP H02293095 A JPH02293095 A JP H02293095A
Authority
JP
Japan
Prior art keywords
sludge
tank
alkali
acid
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1112087A
Other languages
Japanese (ja)
Other versions
JPH05119B2 (en
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP1112087A priority Critical patent/JPH02293095A/en
Publication of JPH02293095A publication Critical patent/JPH02293095A/en
Publication of JPH05119B2 publication Critical patent/JPH05119B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • Activated Sludge Processes (AREA)

Abstract

PURPOSE:To remarkably reduce the amt. of excess sludge generated by separating the sludge to be solubilized into two parts, hydrolyzing each part with an acid or alkali, combining both parts and supplying the mixture to a nitrifying and denitrifying tank. CONSTITUTION:The skimmed night soil 1 is introduced into the biological nitrifying and denitrifying tank 2, nitrified and denitrified. The effluent activated sludge slurry 3 is filtered by an ultrafilter 4 (UF) to collect and remove SS, and separated into clear biologically treated water 5 and a slurry 6 free of SS. A part 7 of the slurry 6 is returned to keep the activated sludge concn. in the tank 2 at a specified value. The other part 8 is separated into two parts, and one part is supplied to a sludge solubilizing tank 9 by an acid and a sludge solubilizing tank 10 by an alkali. The org. matter in the sludge is hydrolyzed in the sludge solubilizing tanks 9 and 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、し尿、下水などの各種有機性汚水の処理方法
に係り、特に、有機性汚水を活性汚泥法などにより、好
気性生物処理を行う際に発生する余剰汚泥を大幅に減少
させ、汚泥処理を合理化する新規方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for treating various organic sewage such as human waste and sewage, and in particular, to aerobic biological treatment of organic sewage by an activated sludge method or the like. This invention relates to a new method that significantly reduces the surplus sludge generated during sludge treatment and streamlines sludge treatment.

〔従来の技術〕[Conventional technology]

従来、有機性汚水の好気性生物処理(活性汚泥法、生物
学的硝化説窒素法など)の最大の問題点は水質を浄化す
る工程に存在するのではなく、むしろ汚泥処理工程にあ
る。
Conventionally, the biggest problem with aerobic biological treatment of organic wastewater (activated sludge method, biological nitrification nitrogen method, etc.) lies not in the water purification process, but rather in the sludge treatment process.

すなわち、好気性生物処理方法は、余剰活性汚泥の発生
lが非常に多い点に最大の問題点がある。余剰活性汚泥
は、現在脱水後埋立てあるいは焼却処分されているが、
多大の経費と設備を必要としていた。
That is, the biggest problem with the aerobic biological treatment method is that a large amount of surplus activated sludge is generated. Surplus activated sludge is currently disposed of in landfills or incinerated after dewatering.
It required a large amount of expense and equipment.

従来の活性汚泥法の余剰汚泥の発生量は、数多くの実験
あるいは実績により、除去BOO当り、0.6〜0. 
8 ( kg SS/ kg BOO )程度となるこ
とが良く知られている。
The amount of surplus sludge generated by the conventional activated sludge method is estimated to be 0.6 to 0.0 per removed BOO, based on numerous experiments and results.
It is well known that it is approximately 8 (kg SS/kg BOO).

その上、余剰汚泥は、質的にも難脱水性であるため、益
々汚泥処理が困難になっている。
Furthermore, surplus sludge is qualitatively difficult to dewater, making sludge treatment increasingly difficult.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記のような従来技術の問題点を解決し、余
剰汚泥の発生lを著しく減少させることが可能な新規方
法を提供することを目的とする。
An object of the present invention is to provide a new method capable of solving the problems of the prior art as described above and significantly reducing the generation of excess sludge.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、有機性汚水を
好気性生物処理したのち、固液分離し、該分離された汚
泥の一部を、前記好気性生物処理工程にリサイクルする
一方、残りの汚泥を2分割し、片方に酸を添加してp1
13以下にし、他方にアルカリを添加してpH10以上
とし、各々、攪拌滞留せしめて可溶化したのち、該酸処
理汚泥とアルカリ処理汚泥とを混合し、混合液を前記好
気性生物処理工程に供給することを特徴とする有機性汚
水の処理方法としたものである。
In order to achieve the above object, in the present invention, organic sewage is subjected to aerobic biological treatment and then subjected to solid-liquid separation, and a part of the separated sludge is recycled to the aerobic biological treatment process, while the remaining Divide the sludge into two and add acid to one side to make p1.
13 or less, add alkali to the other to make it pH 10 or more, stir and retain each to solubilize, mix the acid-treated sludge and the alkali-treated sludge, and supply the mixed liquid to the aerobic biological treatment step. This is a method for treating organic wastewater, which is characterized by:

そして、上記の酸およびアルカリによる可溶化工程は、
50℃以上の温度で行うのがよい。
The above solubilization process with acid and alkali is
It is preferable to carry out the process at a temperature of 50°C or higher.

次に、本発明を第1図を参照して詳しく説明する。Next, the present invention will be explained in detail with reference to FIG.

以下は、し尿処理を例に挙げて説明している。The following is an explanation using human waste treatment as an example.

第1図は、本発明の処理方法を示す工程図である。除渣
し尿1は、生物学的硝化脱窒槽2に流入し、硝化・説窒
素されたのち、流出する活性汚泥スラリ−3が限外ろ過
膜(UP) 4によって、完全にSSが捕捉除去され、
清澄な生物処理水5とUF分離スラリ−6となる。なお
、固液分離の手段は、図示例の限外ろ過膜等の膜分離に
かえて、公知の沈降分離、遠心分離等の分離手段でもか
まわない。
FIG. 1 is a process diagram showing the treatment method of the present invention. The filtered human waste 1 flows into a biological nitrification and denitrification tank 2 where it is nitrified and nitrogenized, and then the activated sludge slurry 3 that flows out is passed through an ultrafiltration membrane (UP) 4, where SS is completely captured and removed. ,
Clear biologically treated water 5 and UF separation slurry 6 are obtained. Note that, instead of the membrane separation such as the ultrafiltration membrane shown in the illustrated example, the solid-liquid separation means may be a known separation means such as sedimentation separation or centrifugation.

UP分離スラリ−6の一部7は、硝化脱窒槽2の活性汚
泥濃度を所定濃度に維持するために、返送される。他部
8は、2分割され酸による汚泥の可溶化槽9およびアル
カリによる汚泥の可溶化槽10に供給される。9 ’ 
, 10’は各々鉱酸および水酸化アルカリである。
A portion 7 of the UP separation slurry 6 is returned in order to maintain the activated sludge concentration in the nitrification-denitrification tank 2 at a predetermined concentration. The other portion 8 is divided into two parts and supplied to an acid sludge solubilization tank 9 and an alkali sludge solubilization tank 10. 9'
, 10' are a mineral acid and an alkali hydroxide, respectively.

しかして、酸又はアルカリによる汚泥の可溶化槽9.1
0において汚泥中の有機物の加水分解反応を進行させる
。活性汚泥は炭水化物、たん白質、脂質から構成されて
おり、活性汚泥細胞の外層には、閑体外高分子(バイオ
ボリマ)が多量に存在しているが、強酸性あるいは強ア
ルカリ性の雰囲気にさらされると、これらの活性汚泥菌
体を構成しているバイオボリマー、炭水化物、蛋白質な
どが加水分解を受け、低分子化されて分子コロイド状に
なり、可溶化される。
Therefore, sludge solubilization tank 9.1 with acid or alkali
At 0, the hydrolysis reaction of organic matter in the sludge is allowed to proceed. Activated sludge is composed of carbohydrates, proteins, and lipids, and the outer layer of activated sludge cells contains a large amount of extraneous polymers (biovolima), but when exposed to a strongly acidic or alkaline atmosphere, The biobolymers, carbohydrates, proteins, etc. that make up these activated sludge cells are hydrolyzed, reduced to a molecular colloid, and solubilized.

低分子化された可溶化有機コロイドは、微生物による資
化性が顕著に向上するので、これらを、再び活性汚泥が
存在する硝化説窒槽2に返送供給すると、可溶化された
有機物は活性汚泥(主に脱窒素菌)によって資化されて
、最終的にCO2と11,0に分解される。この結果、
余剰活性汚泥の発生量が減少する。
The ability of solubilized organic colloids reduced to low molecular weight to be assimilated by microorganisms is significantly improved, so when these are returned to the nitrification tank 2 where activated sludge is present, the solubilized organic matter is converted into activated sludge ( It is mainly assimilated by denitrifying bacteria) and finally decomposed into CO2 and 11,0. As a result,
The amount of surplus activated sludge generated is reduced.

本発明においては、可溶化対象汚泥を2分割し、各々に
ついて酸あるいはアルカリによる加水分解を行ったのち
、これらを合流混合させてから硝化脱窒槽2に供給する
ことが重要である。
In the present invention, it is important to divide the sludge to be solubilized into two parts, perform hydrolysis with acid or alkali on each part, and then mix them together before supplying them to the nitrification-denitrification tank 2.

もしも、酸処理のみ、あるいはアルカリによる可溶化処
理のみを行ってから、可溶化汚泥を硝化説窒槽2に流入
させると、硝化脱窒槽2のpl+が酸性あるいはアルカ
リ性にかたよってしまい、硝化脱窒閑にとって好適なp
H条件(中性)から偏寄してしまい、硝化脱窒反応が著
しく悪化する。
If solubilized sludge is allowed to flow into the nitrification/denitrification tank 2 after performing only acid treatment or only solubilization treatment with alkali, the pl+ in the nitrification/denitrification tank 2 will become acidic or alkaline, and the nitrification/denitrification p suitable for
The condition will be biased away from the H condition (neutral), and the nitrification-denitrification reaction will be significantly deteriorated.

しかるに、本発明では、酸可溶化汚泥とアルカリ可溶化
汚泥とを合流し、攪拌槽l1で混合中和してから、生物
処理槽2に返送するので、このようなトラブルを招かな
い。
However, in the present invention, the acid-solubilized sludge and the alkali-solubilized sludge are combined, mixed and neutralized in the stirring tank 11, and then returned to the biological treatment tank 2, so that such troubles are not caused.

しかも、酸による可溶化法単独あるいはアルカリによる
可溶化法単独では、それぞれ、可溶化処理のあとで、ア
ルカリ剤又は酸による中和を行う必要があり、このアル
カリまたは、酸は単に中和剤として使われるだけで、汚
泥の可溶化に寄与しないため、いたずらに薬品コストが
増加するという欠点がある。これに対し、本発明では、
こうした欠点がない。
Moreover, when using acid solubilization alone or alkali solubilization alone, it is necessary to perform neutralization with an alkaline agent or acid after the solubilization treatment, and this alkali or acid is used simply as a neutralizing agent. Since it does not contribute to the solubilization of sludge even if it is used, it has the disadvantage of unnecessarily increasing chemical costs. In contrast, in the present invention,
It doesn't have these drawbacks.

しかして、本発明による方法を採用すると、従来プロセ
スに比較して、余剰汚泥の発生1が減少するが、酸又は
アルカリによっても可溶化しない汚泥は、不可避的に余
剰汚泥となるので、管路l2あるいは12′より、余剰
汚泥を抜き出し、汚泥脱水工程13に供給し、脱水汚泥
l4と脱水分離液15に分離する。脱水分離液l5は生
物処理槽2に供給されて処理される。
Therefore, when the method according to the present invention is adopted, the generation of surplus sludge is reduced compared to the conventional process, but since sludge that cannot be solubilized by acid or alkali inevitably becomes surplus sludge, Excess sludge is extracted from l2 or 12' and supplied to a sludge dewatering step 13, where it is separated into dehydrated sludge l4 and dehydrated separated liquid 15. The dehydrated separated liquid 15 is supplied to the biological treatment tank 2 and treated.

なお、酸またはアルカリによる可溶化のpHの最適条件
は、実験の結果から、酸の場合はp}13以下、アルカ
リ可溶化法の場合はp tl 1 0以上であり、さら
に温度条件としては、50℃以上、混和時間は3〜48
hr (汚泥性状によって異なる)が好適であることが
認められた。
In addition, the optimum pH conditions for solubilization with acid or alkali are, from the results of experiments, p}13 or less in the case of acid, and p tl 1 0 or more in the case of alkali solubilization, and the temperature conditions are as follows: 50℃ or higher, mixing time 3-48
hr (depending on sludge properties) was found to be suitable.

温度と滞留時間の適正値は、汚泥の性状によって、大き
く変化するので一概には決定できないが、汚泥の可溶化
率50%以上を得るためには、p{13以下又はp++
to以上の条件が不可欠であることがまた温度は50℃
以上が好ましいことが認められた。
Appropriate values for temperature and residence time cannot be determined unconditionally because they vary greatly depending on the properties of sludge, but in order to obtain a sludge solubilization rate of 50% or more, p{13 or less or p++
It is also essential that the conditions are above 50°C.
It was recognized that the above is preferable.

また、可溶化処理と同時に、もしくは先立って、超音波
処理を行うと可溶化効果がやや向上することもl忍めら
れた。
It was also observed that the solubilization effect would be slightly improved if ultrasonic treatment was performed simultaneously with or prior to the solubilization treatment.

〔実施例〕〔Example〕

以下、実施例により、本発明を詳述するが、本発明はこ
れらの実施例に限定されない。
EXAMPLES Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1 表1に示す水質の除渣し尿を表2に示す処理条件で無希
釈で生物学的硝化脱窒処理を行った。
Example 1 A biological nitrification and denitrification treatment was carried out on the sediment-removed human urine having the water quality shown in Table 1 under the treatment conditions shown in Table 2 without dilution.

表−1  除渣し尿水質 留させて、汚泥を可溶化した。次の式で定義される汚泥
可溶化率は、IIcI処理の場合55%、アルカリ処理
の場合78%となった。
Table 1 The sludge was solubilized by removing the sludge and distilling the urine water. The sludge solubilization rate defined by the following formula was 55% in the IIcI treatment and 78% in the alkali treatment.

その後、活性汚泥スラリーをUF膜(限外ろ過膜)で固
液分離し、汚泥固形物濃度2.0〜2.2%のUP分離
汚泥を得た。
Thereafter, the activated sludge slurry was subjected to solid-liquid separation using a UF membrane (ultrafiltration membrane) to obtain UP-separated sludge with a sludge solids concentration of 2.0 to 2.2%.

このうちの50%を生物学的硝化脱窒槽に返送する一方
、残りの50%のUP分離汚泥を2等分し、片方にII
cIを添加し、9112.0とした。他方の汚泥にN 
a Offを添加し、pH 11とし、酸又はアルカリ
添加汚泥を70℃に加温しつつ24h『混和滞しかるの
ち、両汚泥を混合し、中和せしめた結果、中和汚泥のp
ifは5.2〜5.8となった。この中和汚泥を前記の
生物学的硝化脱窒処理槽に供給して、6ケ月間のロング
ランテストを行った。
50% of this is returned to the biological nitrification-denitrification tank, while the remaining 50% of the UP separated sludge is divided into two equal parts, one of which is
cI was added to give 9112.0. N to the other sludge
A Off was added to adjust the pH to 11, and the acid or alkali added sludge was heated to 70°C for 24 hours. After mixing and stagnation, both sludges were mixed and neutralized.
if was 5.2 to 5.8. This neutralized sludge was supplied to the biological nitrification and denitrification treatment tank described above, and a long run test for 6 months was conducted.

この結果、生物学的硝化脱窒工程の肛SS濃度を設定値
に維持するのに必要な余剰汚泥引抜き量は、し尿1 m
 3あたり、2. 5 〜3.1(kgd, sol:
ds/m3)であった。
As a result, the amount of excess sludge required to maintain the SS concentration at the set value in the biological nitrification and denitrification process is 1 m of human waste.
Per 3, 2. 5 ~ 3.1 (kgd, sol:
ds/m3).

また、UF膜透過水の水質は表−3の左欄となった。In addition, the quality of the water permeated through the UF membrane was shown in the left column of Table 3.

〔比較例1〕 実施例lにおける、酸可溶化およびアルカリ可溶化処理
工程を省略した以外は、全く同一の条件で実施例1の実
験とパラレルに実験し、これを対照実験とした。
[Comparative Example 1] An experiment was carried out in parallel to the experiment of Example 1 under exactly the same conditions except that the acid solubilization and alkali solubilization treatment steps in Example I were omitted, and this was used as a control experiment.

この結果6ケ月の余剰汚泥の発生量は4.9〜6.6 
kg−ds/ m’となり、本発明に比較し、約2倍の
余剰汚泥発生蚤となった。
As a result, the amount of surplus sludge generated over 6 months is 4.9 to 6.6
kg-ds/m', and the amount of excess sludge generated was approximately twice that of the present invention.

またUF膜透過水の水質は、表−3の左欄となった。The quality of the water permeated through the UF membrane was shown in the left column of Table 3.

表−3  0FWX透過水(生物処理水)水質Table-3 0FWX permeate water (biological treatment water) water quality

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の処理方法を示す工程図である。 l・・・有機性汚水(除渣し尿)  2・・・好気性生
物処理槽(生物学的硝化脱窒槽)  3・・・活性汚泥
スラリ− 4・・・固液分離工程(限外ろ過槽)  5
・・・清澄な処理水、6・・・分離汚泥、7・・・返送
汚泥、9・・・酸可溶化槽、10・・・アルカリ可溶化
槽、11・・・攪拌混合槽、13・・・汚泥説水工程、
 14・・・脱水汚泥 〔発明の効果〕 本発明によれば、次のような効果を奏する。 ■ 余剰活性汚泥の発生量が減少し、汚泥処理工程が運
転費、設備費ともに合理化される。 ■ 汚泥の可溶化のあとの中和用の薬品を必要としない
ので、運転経費が節減される。 特許出願人  荏原インフィルコ株式会社同    株
式会社 荏原総合研究所
FIG. 1 is a process diagram showing the treatment method of the present invention. 1...Organic sewage (removed human waste) 2...Aerobic biological treatment tank (biological nitrification and denitrification tank) 3...Activated sludge slurry 4...Solid-liquid separation process (ultrafiltration tank) ) 5
... Clear treated water, 6. Separated sludge, 7. Return sludge, 9. Acid solubilization tank, 10. Alkali solubilization tank, 11. Stirring mixing tank, 13.・・Sludge dewatering process,
14... Dehydrated sludge [Effects of the invention] According to the present invention, the following effects are achieved. ■ The amount of surplus activated sludge generated is reduced, and the operating and equipment costs of the sludge treatment process are streamlined. ■ Operating costs are reduced because no chemicals are required for neutralization after sludge solubilization. Patent applicant Ebara Infilco Corporation Ebara Research Institute, Inc.

Claims (1)

【特許請求の範囲】 1、有機性汚水を好気性生物処理したのち、固液分離し
、該分離された汚泥の一部を、前記好気性生物処理工程
にリサイクルする一方、残りの汚泥を2分割し、片方に
酸を添加してpH3以下にし、他方にアルカリを添加し
てpH10以上とし、各々攪拌滞留せしめて可溶化した
のち、該酸処理汚泥とアルカリ処理汚泥とを混合し、混
合液を前記好気性生物処理工程に供給することを特徴と
する有機性汚水の処理方法。 2、前記酸およびアルカリによる可溶化工程を、50℃
以上の温度で行うことを特徴とする請求項1記載の有機
性汚水の処理方法。
[Claims] 1. After subjecting organic sewage to aerobic biological treatment, solid-liquid separation is carried out, and a part of the separated sludge is recycled to the aerobic biological treatment process, while the remaining sludge is Divide the sludge into two parts, add acid to one side to make it pH 3 or less, add alkali to the other one to make it pH 10 or more, stir and retain each to solubilize, and then mix the acid-treated sludge and the alkali-treated sludge to make a mixed solution. A method for treating organic wastewater, characterized in that the organic wastewater is supplied to the aerobic biological treatment step. 2. The acid and alkali solubilization step is carried out at 50°C.
The method for treating organic wastewater according to claim 1, characterized in that the treatment is carried out at a temperature higher than or equal to the temperature above.
JP1112087A 1989-05-02 1989-05-02 Treatment of organic sewage Granted JPH02293095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112087A JPH02293095A (en) 1989-05-02 1989-05-02 Treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112087A JPH02293095A (en) 1989-05-02 1989-05-02 Treatment of organic sewage

Publications (2)

Publication Number Publication Date
JPH02293095A true JPH02293095A (en) 1990-12-04
JPH05119B2 JPH05119B2 (en) 1993-01-05

Family

ID=14577771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112087A Granted JPH02293095A (en) 1989-05-02 1989-05-02 Treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPH02293095A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181349A (en) * 2002-12-03 2004-07-02 Mitsubishi Heavy Ind Ltd Apparatus and method for sludge treatment
JP2006026524A (en) * 2004-07-15 2006-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for volume-reducing surplus sludge
JP2008221190A (en) * 2007-03-15 2008-09-25 Sumitomo Heavy Ind Ltd Wastewater treatment apparatus
JP2010036074A (en) * 2008-08-01 2010-02-18 Nittetsu Kankyo Engineering Kk Organic wastewater treatment method
JP2013505828A (en) * 2009-09-28 2013-02-21 ニューリシ ソチエタ ペル アチオニ Waste, especially sludge treatment method derived from wastewater purification
JP2013202469A (en) * 2012-03-28 2013-10-07 Nippon Steel & Sumikin Eco-Tech Corp Biotreatment process for organic wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911813A (en) * 1972-04-12 1974-02-01
JPS5321222A (en) * 1976-08-11 1978-02-27 Bayer Ag Bissbenzoxazolyl compound
JPS5719719A (en) * 1980-07-10 1982-02-02 Canon Inc Electric power source holding device of camera

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911813A (en) * 1972-04-12 1974-02-01
JPS5321222A (en) * 1976-08-11 1978-02-27 Bayer Ag Bissbenzoxazolyl compound
JPS5719719A (en) * 1980-07-10 1982-02-02 Canon Inc Electric power source holding device of camera

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181349A (en) * 2002-12-03 2004-07-02 Mitsubishi Heavy Ind Ltd Apparatus and method for sludge treatment
JP2006026524A (en) * 2004-07-15 2006-02-02 Hitachi Plant Eng & Constr Co Ltd Method and apparatus for volume-reducing surplus sludge
JP2008221190A (en) * 2007-03-15 2008-09-25 Sumitomo Heavy Ind Ltd Wastewater treatment apparatus
JP2010036074A (en) * 2008-08-01 2010-02-18 Nittetsu Kankyo Engineering Kk Organic wastewater treatment method
JP2013505828A (en) * 2009-09-28 2013-02-21 ニューリシ ソチエタ ペル アチオニ Waste, especially sludge treatment method derived from wastewater purification
JP2013202469A (en) * 2012-03-28 2013-10-07 Nippon Steel & Sumikin Eco-Tech Corp Biotreatment process for organic wastewater

Also Published As

Publication number Publication date
JPH05119B2 (en) 1993-01-05

Similar Documents

Publication Publication Date Title
JPS6210720B2 (en)
JPH02293095A (en) Treatment of organic sewage
JPH0698360B2 (en) Method and apparatus for treating night soil wastewater
JPH0124558B2 (en)
JP3511430B2 (en) Organic wastewater treatment method
JPH0647119B2 (en) Combined treatment method of human waste and septic tank sludge
JPS6320600B2 (en)
JPH02172598A (en) Treatment of organic sewage
JPS60206498A (en) Treatment of excretion sewage
JPH0352700A (en) Treatment of sewage of night soil system
JPH029497A (en) Treating equipment for excretion-series sewage
JPH02277597A (en) Treatment of organic sewage
JPS5998800A (en) Biological treatment of waste water containing organic substance
JPH10137779A (en) Treating device for leached water from reclamation
JPH04227899A (en) Treatment of night soil
JPS5851988A (en) Slightly-diluting double-stage active sludge process
JPH0471699A (en) Method for purifying water
JPH0321396A (en) Night soil sewage treatment method
JPS6254078B2 (en)
JPH02127000A (en) Treatment of night soil based sewage
JPS6133639B2 (en)
JPS596995A (en) Biological treatment of waste water containing organic substance
JPH0535038B2 (en)
JPH0125638B2 (en)
JPH0431760B2 (en)