JP2008221190A - Wastewater treatment apparatus - Google Patents

Wastewater treatment apparatus Download PDF

Info

Publication number
JP2008221190A
JP2008221190A JP2007067221A JP2007067221A JP2008221190A JP 2008221190 A JP2008221190 A JP 2008221190A JP 2007067221 A JP2007067221 A JP 2007067221A JP 2007067221 A JP2007067221 A JP 2007067221A JP 2008221190 A JP2008221190 A JP 2008221190A
Authority
JP
Japan
Prior art keywords
activated sludge
sludge
tank
extracellular polymer
shaft portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007067221A
Other languages
Japanese (ja)
Other versions
JP5269331B2 (en
Inventor
Bunichi Suehiro
文一 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2007067221A priority Critical patent/JP5269331B2/en
Publication of JP2008221190A publication Critical patent/JP2008221190A/en
Application granted granted Critical
Publication of JP5269331B2 publication Critical patent/JP5269331B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To effectively prevent membrane clogging to enhance the treatment efficiency. <P>SOLUTION: An EPS (extracellular polymeric substance) filter 25 is installed in a circular line 19 which draws activated sludge from an activated sludge tank 3 and returns it thereto. The EPS filter 25 denudes aerobic microorganisms X of the EPS P in the activated sludge and then the EPS P becomes a soluble organic substance and is reduced via the activated sludge decomposition. Hence, the membrane clogging is essentially prevented. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、下水や産業廃水などの有機廃水を生物処理する廃水処理装置に関する。   The present invention relates to a wastewater treatment apparatus for biologically treating organic wastewater such as sewage and industrial wastewater.

活性汚泥を利用して有機廃水を生物処理しながら、処理水を逆浸透(RO)膜、限外ろ過(UF)膜、精密ろ過(MF)膜、中空糸(HF)膜等によって膜分離する方法が知られている。この方法に適用される装置として、例えば、曝気槽内に浸漬膜を設置した装置が特許文献1に開示されている。この装置では、懸濁物質(「SS」ともいう)の流出を防止して処理水の水質を安定させることができる。しかしながら、浸漬膜によって処理水と活性汚泥とを分離するために、膜表面に活性汚泥やその分泌物が付着して膜閉塞という問題を生じる。そこで、この装置では、逆洗浄装置を設けて膜閉塞を防止していた。
特開2002−253935号公報
While biologically treating organic wastewater using activated sludge, the treated water is membrane separated by reverse osmosis (RO) membrane, ultrafiltration (UF) membrane, microfiltration (MF) membrane, hollow fiber (HF) membrane, etc. The method is known. As an apparatus applied to this method, for example, an apparatus in which an immersion film is installed in an aeration tank is disclosed in Patent Document 1. In this apparatus, it is possible to prevent the outflow of suspended substances (also referred to as “SS”) and to stabilize the quality of the treated water. However, since the treated water and the activated sludge are separated by the submerged membrane, the activated sludge and its secretions adhere to the membrane surface, causing a problem of membrane clogging. Therefore, in this apparatus, a reverse cleaning apparatus is provided to prevent the membrane from being blocked.
JP 2002-253935 A

しかしながら、上記装置では、膜閉塞を本質的に改善することは難しく、透過水量を一定以上に保とうとすると頻繁に逆洗浄が必要になり、処理効率を向上させることは難しかった。   However, in the above apparatus, it is difficult to essentially improve the membrane blockage, and if it is attempted to keep the permeated water amount above a certain level, frequent backwashing is required, and it is difficult to improve the processing efficiency.

本発明は、以上の課題を解決することを目的としており、膜閉塞を効果的に防止し、処理効率を向上させることができる廃水処理装置を提供することを目的とする。   The object of the present invention is to provide a wastewater treatment apparatus that can effectively prevent membrane clogging and improve treatment efficiency.

膜閉塞を誘発する菌体外ポリマー(extracellular polymeric substances:EPS)を低減できれば、膜閉塞は解消される。そこに着眼した発明者は、上記目的を達成するために鋭意検討したところ、好気性微生物から剥離した菌体外ポリマーは溶解性有機物になり、溶解性有機物は活性汚泥の基質(栄養素)になって容易に低減できることを知見した。本発明は、上記の知見に基づいて為されたものである。   If the extracellular polymeric substances (EPS) that induce membrane occlusion can be reduced, membrane occlusion is eliminated. The inventor who has focused on this has made extensive studies in order to achieve the above object. As a result, the extracellular polymer peeled from the aerobic microorganism becomes a soluble organic substance, and the soluble organic substance becomes a substrate (nutrient) for activated sludge. It was found that it can be easily reduced. The present invention has been made based on the above findings.

本発明は、活性汚泥を利用して有機廃水を生物処理する廃水処理装置において、有機廃水が導入されると共に、活性汚泥を貯留する処理槽と、処理槽内に設けられると共に、処理水と活性汚泥とを分離する膜分離手段と、処理槽に接続されると共に、活性汚泥中の菌体外ポリマーを好気性微生物から剥離する菌体外ポリマー除去手段と、を備えたことを特徴とする。   The present invention provides a wastewater treatment apparatus for biologically treating organic wastewater by using activated sludge, wherein organic wastewater is introduced, a treatment tank for storing activated sludge, and a treatment tank for storing activated sludge. A membrane separation means for separating sludge and an extracellular polymer removal means for separating the extracellular polymer in the activated sludge from the aerobic microorganisms are provided.

本発明に係る廃水処理装置では、処理槽内に導入された有機廃水は、活性汚泥によって有機物が分解処理される。有機物が分解処理された処理水は、膜分離手段によって活性汚泥から分離される。活性汚泥中の好気性微生物は、分解処理の過程で菌体外ポリマーを生成し、粘性の高いフロックとなる。活性汚泥中の菌体外ポリマーは、菌体外ポリマー除去手段によって好気性微生物から剥離する。すると、菌体外ポリマーは溶解性有機物になり、活性汚泥の分解作用によって減少する。従って、本発明によれば、活性汚泥中の菌体外ポリマーを減少でき、膜閉塞を本質的に防止することができる。その結果として、膜洗浄や交換などに伴う時間ロスを低減でき、処理効率を向上できる。さらに、凝集剤などを利用して膜閉塞を防止する装置に比べて、ランニングコストを抑えることができる。   In the wastewater treatment apparatus according to the present invention, organic matter is decomposed into the organic wastewater introduced into the treatment tank by activated sludge. Treated water obtained by decomposing organic matter is separated from activated sludge by membrane separation means. The aerobic microorganisms in the activated sludge produce extracellular polymers in the course of the decomposition process and become highly viscous flocs. The extracellular polymer in the activated sludge is peeled from the aerobic microorganism by the extracellular polymer removing means. Then, the extracellular polymer becomes a soluble organic substance and decreases due to the decomposition action of the activated sludge. Therefore, according to the present invention, the extracellular polymer in the activated sludge can be reduced, and membrane clogging can be essentially prevented. As a result, it is possible to reduce time loss associated with membrane cleaning and replacement, and improve processing efficiency. Furthermore, the running cost can be reduced as compared with a device that uses a flocculant or the like to prevent membrane clogging.

さらに、菌体外ポリマー除去手段は、処理槽内の活性汚泥の一部を引き抜いて処理槽内に返送する循環ライン上に設けられていると好適である。活性汚泥の一部を循環させながら処理することができるため、処理槽内で有機物の分解処理を行いながら菌体外ポリマーを減少でき、菌体外ポリマー除去後の好気性微生物を有機物の分解処理に効果的に利用できる。   Furthermore, it is preferable that the extracellular polymer removal means is provided on a circulation line that extracts a part of the activated sludge in the treatment tank and returns it to the treatment tank. Because it is possible to treat the activated sludge while circulating a part of it, the extracellular polymer can be reduced while the organic matter is decomposed in the treatment tank, and the aerobic microorganisms after removing the extracellular polymer are decomposed into the organic matter. Can be used effectively.

さらに、菌体外ポリマー除去手段は、活性汚泥が供給される汚泥滞留槽と、汚泥滞留槽内に配置された軸部と、軸部に固定された多孔板と、軸部を軸線方向に沿って往復動させる駆動部と、を有すると好適である。軸部の往復動によって多孔板は往復動し、活性汚泥は、多孔板の孔を通過する際に破砕作用を受ける。その結果として、活性汚泥中の菌体外ポリマーは、好気性微生物から効果的に剥離される。   Furthermore, the extracellular polymer removal means includes a sludge retention tank to which activated sludge is supplied, a shaft portion disposed in the sludge retention tank, a porous plate fixed to the shaft portion, and the shaft portion along the axial direction. And a drive unit that reciprocates. The perforated plate reciprocates by the reciprocating motion of the shaft portion, and the activated sludge undergoes a crushing action when passing through the holes of the perforated plate. As a result, the extracellular polymer in the activated sludge is effectively peeled off from the aerobic microorganisms.

さらに、菌体外ポリマー除去手段は、活性汚泥が供給される汚泥滞留槽と、汚泥滞留槽内に配置された軸部と、軸部に固定された複数の多孔板と、軸部を軸線方向に沿って往復動させる駆動部と、を有すると好適である。軸部の往復動によって多孔板は往復動し、活性汚泥は、多孔板の孔を通過する際に破砕作用を受ける。特に、複数の多孔板を往復動させるので、多孔板同士の相互作用によって活性汚泥の破砕は促進される。その結果として、活性汚泥中の菌体外ポリマーは、好気性微生物から効果的に剥離される。   Further, the extracellular polymer removal means includes a sludge retention tank to which activated sludge is supplied, a shaft portion disposed in the sludge retention tank, a plurality of perforated plates fixed to the shaft portion, and the shaft portion in the axial direction. And a drive section that reciprocates along the line. The perforated plate reciprocates by the reciprocating motion of the shaft portion, and the activated sludge undergoes a crushing action when passing through the holes of the perforated plate. In particular, since the plurality of perforated plates are reciprocated, the activated sludge is crushed by the interaction between the perforated plates. As a result, the extracellular polymer in the activated sludge is effectively peeled off from the aerobic microorganisms.

さらに、多孔板に形成された複数の孔のうち、少なくとも一つの孔は、互いに隣り合う他の多孔板に形成された孔と非同軸状に配置されていると好適である。このような構成においては、活性汚泥は、二つの多孔板の各孔間を流動する際に蛇行するため、渦流や乱流が生じて攪拌が助長され、菌体外ポリマーの剥離作用が向上する。   Furthermore, it is preferable that at least one of the plurality of holes formed in the porous plate is arranged non-coaxially with the holes formed in other porous plates adjacent to each other. In such a configuration, the activated sludge meanders when flowing between the holes of the two perforated plates, so that vortex flow and turbulent flow are generated and stirring is promoted, and the exfoliating action of the extracellular polymer is improved. .

さらに、菌体外ポリマー除去手段は、汚泥滞留槽内を加熱する加熱手段を更に有すると好適である。菌体外ポリマーの剥離は、活汚汚泥を加熱することによって格段に助長される。そのため、軸部の往復動を低速にでき、駆動部での運転効率を向上できる。   Further, it is preferable that the extracellular polymer removal means further has a heating means for heating the inside of the sludge retention tank. The exfoliation of the extracellular polymer is greatly facilitated by heating the activated sludge. Therefore, the reciprocating motion of the shaft portion can be reduced, and the operation efficiency in the drive portion can be improved.

さらに、菌体外ポリマー除去手段は、汚泥滞留槽内に滞留する活性汚泥にガスを供給する散気手段を更に有すると好適である。ガスの供給によって、汚泥滞留槽内は攪拌され、菌体外ポリマーは好気性細菌から剥離し易くなり、菌体外ポリマーの除去効率が向上する。   Further, it is preferable that the extracellular polymer removal means further has an aeration means for supplying gas to the activated sludge staying in the sludge retention tank. By supplying the gas, the inside of the sludge retention tank is agitated, and the extracellular polymer is easily separated from the aerobic bacteria, and the removal efficiency of the extracellular polymer is improved.

本発明に係る廃水処理装置によれば、膜閉塞を効果的に防止し、処理効率を向上させることができる。   The wastewater treatment apparatus according to the present invention can effectively prevent membrane clogging and improve treatment efficiency.

以下、図面を参照しつつ、本発明に係る廃水処理装置の好適な実施形態について説明する。   Hereinafter, preferred embodiments of a wastewater treatment apparatus according to the present invention will be described with reference to the drawings.

図1は、本発明に係る廃水処理装置1を示すブロック図である。廃水処理装置1は、活性汚泥を利用して有機物を分解する生物処理に用いられる。廃水処理装置1は、活性汚泥を保持する活性汚泥槽(処理槽)3を備える。活性汚泥槽3には、有機廃水Wを導入するための原水ライン5と、空気または酸素ガスからなる曝気ガスを導入するための曝気ライン7とが接続されている。曝気ライン7上には、曝気ポンプ7aが設けられている。   FIG. 1 is a block diagram showing a wastewater treatment apparatus 1 according to the present invention. The waste water treatment apparatus 1 is used for biological treatment that decomposes organic matter using activated sludge. The wastewater treatment apparatus 1 includes an activated sludge tank (treatment tank) 3 that holds activated sludge. The activated sludge tank 3 is connected with a raw water line 5 for introducing the organic waste water W and an aeration line 7 for introducing an aeration gas made of air or oxygen gas. An aeration pump 7 a is provided on the aeration line 7.

活性汚泥槽3内には、分離膜を備えた浸漬膜ユニット(膜分離手段)9が配置されており、浸漬膜ユニット9の下方には、曝気ライン7に接続された曝気装置11が配置されている。曝気装置11は、曝気ガスを活性汚泥槽3内に供給する。すると、活性汚泥中の好気性微生物X(図3参照)は、有機廃水W中の有機物を分解処理する。好気性微生物Xは、分解処理の過程で菌体外ポリマーPを生成し、菌体外ポリマーPを介して他の好気性微生物Xと結び付いてフロックを形成する。浸漬膜ユニット9は、フロック状の活性汚泥から処理水Wsを選択的にろ過する。曝気装置11から放出された曝気ガスは、浸漬膜ユニット9の分離膜に当接し、膜表面の付着物を洗浄する作用も奏する。なお、分離膜としては、逆浸透(RO)膜、限外ろ過(UF)膜、精密ろ過(MF)膜、中空糸(HF)膜などを適宜に用いることができる。   In the activated sludge tank 3, an immersion membrane unit (membrane separation means) 9 having a separation membrane is disposed, and an aeration device 11 connected to the aeration line 7 is disposed below the immersion membrane unit 9. ing. The aeration apparatus 11 supplies aeration gas into the activated sludge tank 3. Then, the aerobic microorganism X (see FIG. 3) in the activated sludge decomposes the organic matter in the organic wastewater W. The aerobic microorganism X generates an extracellular polymer P in the course of the decomposition treatment, and is combined with other aerobic microorganisms X via the extracellular polymer P to form a flock. The submerged membrane unit 9 selectively filters the treated water Ws from the floc-like activated sludge. The aerated gas released from the aeration apparatus 11 comes into contact with the separation membrane of the submerged membrane unit 9 and also has an effect of cleaning the deposits on the membrane surface. As the separation membrane, a reverse osmosis (RO) membrane, an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a hollow fiber (HF) membrane, or the like can be used as appropriate.

浸漬膜ユニット9には、処理水貯槽13に接続された処理水移送管15が接続されている。浸漬膜ユニット9によってろ過された処理水Wsは、処理水移送管15を介して処理水貯槽13に移送される。処理水貯槽13には、放水管17が接続されており、処理水貯槽13内に一時的に蓄えられた処理水Wsは、放水管17を介して放流される。   A treated water transfer pipe 15 connected to the treated water storage tank 13 is connected to the immersion membrane unit 9. The treated water Ws filtered by the immersion membrane unit 9 is transferred to the treated water storage tank 13 through the treated water transfer pipe 15. A water discharge pipe 17 is connected to the treated water storage tank 13, and the treated water Ws temporarily stored in the treated water storage tank 13 is discharged through the water discharge pipe 17.

活性汚泥槽3には、活性汚泥の一部を引き抜いて活性汚泥槽3に返送する循環ライン19が設けられている。循環ライン19は、活性汚泥槽3の底部に接続された汚泥水引き抜き管21と、活性汚泥槽3の上部に接続された汚泥水戻り管23とを有する。汚泥水引き抜き管21と汚泥水戻り管23との間には、EPS除去装置(菌体外ポリマー除去手段)25が設けられている。   The activated sludge tank 3 is provided with a circulation line 19 for extracting a part of the activated sludge and returning it to the activated sludge tank 3. The circulation line 19 has a sludge water extraction pipe 21 connected to the bottom of the activated sludge tank 3 and a sludge water return pipe 23 connected to the upper part of the activated sludge tank 3. Between the sludge water extraction pipe 21 and the sludge water return pipe 23, an EPS removing device (extracellular polymer removal means) 25 is provided.

EPS除去装置25は、活性汚泥を含む汚泥水を貯留する略円筒状の汚泥滞留槽27を有する。汚泥滞留槽27の下部には、汚泥水引き抜き管21が接続され、汚泥滞留槽27の上部には、汚泥水戻り管23が接続されている。汚泥滞留槽27内には、汚泥滞留槽27の長手方向に沿って軸部29が配置されている。軸部29の上部には、駆動モータ(駆動部)31が接続されており、軸部29は、駆動モータ31の駆動によって軸線L方向に沿って上下に往復動する。   The EPS removing device 25 has a substantially cylindrical sludge retention tank 27 that stores sludge water containing activated sludge. A sludge water extraction pipe 21 is connected to the lower part of the sludge retention tank 27, and a sludge water return pipe 23 is connected to the upper part of the sludge retention tank 27. A shaft portion 29 is arranged in the sludge retention tank 27 along the longitudinal direction of the sludge retention tank 27. A drive motor (drive unit) 31 is connected to the upper portion of the shaft portion 29, and the shaft portion 29 reciprocates up and down along the axis L direction by driving of the drive motor 31.

図2に示すように、軸部29には、ディスク状の複数の多孔板33が固定されている。なお、図2では、複数の多孔板33のうち、最上段の多孔板33、二段目の多孔板33,三段目の多孔板33を示している。複数の多孔板33は、すべて均等間隔に配置されており、且つ、軸線Lに直交するように配置されている。汚泥水引き抜き管21から汚泥滞留槽27に供給された活性汚泥は、往復動する多孔板33によって攪拌される。すると、菌体外ポリマーPは、活性汚泥中の好気性微生物X(図3参照)から剥離する。剥離した菌体外ポリマーPは溶解性有機物になり、好気性微生物によって分解処理される。その結果として、菌体外ポリマーPは減少する。なお、複数の多孔板33の配置は、軸線Lに直交するような配置に限定されず、軸線Lに対して傾斜し、且つ、互いに平行になるように配置されていてもよい。 As shown in FIG. 2, a plurality of disk-shaped perforated plates 33 are fixed to the shaft portion 29. In FIG. 2, among the plurality of perforated plates 33, the perforated plate 33 1 of the uppermost, the second stage perforated plate 33 2, it shows a perforated plate 33 3 of the third stage. The plurality of perforated plates 33 are all arranged at equal intervals and arranged so as to be orthogonal to the axis L. The activated sludge supplied from the sludge water extraction pipe 21 to the sludge retention tank 27 is stirred by the perforated plate 33 that reciprocates. Then, the extracellular polymer P peels from the aerobic microorganism X (see FIG. 3) in the activated sludge. The exfoliated extracellular polymer P becomes a soluble organic substance and is decomposed by aerobic microorganisms. As a result, the extracellular polymer P decreases. The arrangement of the plurality of perforated plates 33 is not limited to the arrangement orthogonal to the axis L, and may be arranged so as to be inclined with respect to the axis L and parallel to each other.

さらに、複数の多孔板33には、それぞれ複数の孔Hが形成されている。一つの多孔板33に形成された複数の孔Hは、隣接する他の多孔板33に形成された複数の孔Hに対して非同軸状になっている。例えば、二段目の多孔板33に形成された孔Hのうち、ある一つの孔Haは、互いに隣り合う最上段の多孔板33及び三段目の多孔板33に形成された孔H1,H3とは非同軸状になっている。このように、多孔板33に形成された複数の孔Hのうち、少なくとも一つの孔Hを、隣り合う多孔板33の孔Hとは非同軸状に配置することにより、活性汚泥は、互いに隣り合う二つの多孔板33に形成された各孔H間を流動する際に蛇行し、渦流や乱流が生じて攪拌が助長され、菌体外ポリマーPの剥離作用が向上する。 Furthermore, a plurality of holes H are formed in each of the plurality of perforated plates 33. The plurality of holes H formed in one porous plate 33 is non-coaxial with respect to the plurality of holes H formed in the other adjacent porous plate 33. For example, of the hole H 2 formed in the perforated plate 33 2 of the second stage, there is one hole Ha is formed on the uppermost perforated plate 33 1 and the third stage of the porous plate 33 3 adjacent to each other The holes H1 and H3 are non-coaxial. As described above, the activated sludge is adjacent to each other by disposing at least one hole H out of the plurality of holes H formed in the porous plate 33 so as to be non-coaxial with the hole H of the adjacent porous plate 33. When the fluid flows between the holes H formed in the two perforated plates 33, meandering occurs, whirling or turbulent flow is generated, stirring is promoted, and the exfoliating action of the extracellular polymer P is improved.

また、汚泥滞留槽27の下部には、散気ポンプ(散気手段)35が接続されており、この散気ポンプ35の駆動によってガスが汚泥滞留槽27内に供給される。ガスの供給によって、汚泥滞留槽27内は攪拌され、菌体外ポリマーPは好気性細菌Xから剥離し易くなる。さらに、供給されるガスが酸素含有ガスの場合には、好気性微生物Xによる溶解性有機物の分解処理が促進され、菌体外ポリマーPの除去効率が向上する。さらに、圧力スイング吸着方式(PSA)等を利用した装置によって酸素濃度を高めたガスを供給すると、溶解性有機物の分解処理の点で、さらに効果的である。   In addition, an aeration pump (aeration means) 35 is connected to the lower portion of the sludge retention tank 27, and gas is supplied into the sludge retention tank 27 by driving of the aeration pump 35. By supplying the gas, the inside of the sludge retention tank 27 is agitated, and the extracellular polymer P is easily separated from the aerobic bacteria X. Furthermore, when the supplied gas is an oxygen-containing gas, the decomposition treatment of the soluble organic matter by the aerobic microorganism X is promoted, and the removal efficiency of the extracellular polymer P is improved. Furthermore, supplying a gas with an increased oxygen concentration by an apparatus using a pressure swing adsorption system (PSA) or the like is more effective in terms of decomposition of soluble organic matter.

また、汚泥滞留槽27には、蒸気発生装置(加熱手段)37が接続されており、蒸気発生装置37からのスチームにより汚泥滞留槽27内が加熱される。菌体外ポリマーPの剥離は、活汚汚泥を加熱することによって格段に助長される。そのため、汚泥滞留槽27内を加熱することにより、軸部29の往復動を低速にでき、駆動モータ31の負荷を軽減して運転効率を向上できる。なお、蒸気発生装置37の代わりに、汚泥滞留槽27を取り囲むジャケット式ヒータを取り付けて汚泥滞留槽27内を加熱してもよい。   In addition, a steam generator (heating means) 37 is connected to the sludge retention tank 27, and the inside of the sludge retention tank 27 is heated by steam from the steam generator 37. The exfoliation of the extracellular polymer P is greatly facilitated by heating the activated sludge. Therefore, by heating the sludge retention tank 27, the reciprocating motion of the shaft portion 29 can be reduced, the load on the drive motor 31 can be reduced, and the operation efficiency can be improved. Instead of the steam generator 37, a jacket heater surrounding the sludge retention tank 27 may be attached to heat the sludge retention tank 27.

次に、廃水処理装置1を用いた活性汚泥処理について説明する。まず、原水ライン5によって有機廃水Wを活性汚泥槽3に導入し、活性汚泥を含む汚泥水に有機廃水Wを混合する。すると、有機廃水W中の有機物は好気性微生物Xによって分解処理される。好気性微生物Xは、分解処理の過程で菌体外ポリマーPを生成し、好気性微生物X同士が菌体外ポリマーPを介してフロック状に結び付く。   Next, the activated sludge treatment using the wastewater treatment apparatus 1 will be described. First, the organic waste water W is introduced into the activated sludge tank 3 through the raw water line 5, and the organic waste water W is mixed with the sludge water containing activated sludge. Then, the organic matter in the organic wastewater W is decomposed by the aerobic microorganism X. The aerobic microorganism X generates extracellular polymer P in the course of the decomposition treatment, and the aerobic microorganisms X are linked together in a floc form via the extracellular polymer P.

処理水Wsは浸漬膜ユニット9によって活性汚泥から選択的にろ過され、処理水移送管15、処理水貯槽13及び放水管17を介して放流される。一方、活性汚泥は活性汚泥槽3内に高濃度に維持され、高効率での廃水処理が可能になる。しかしながら、活性汚泥中の菌体外ポリマーPは、非常に粘性が高く、膜表面に付着して膜閉塞の原因となる。そこで、活性汚泥の一部を循環ライン19で引き抜き、EPS除去装置25で菌体外ポリマーPを除去した後に再び活性汚泥槽3に返送することで、浸漬膜ユニット9の膜閉塞を防止する。   The treated water Ws is selectively filtered from the activated sludge by the immersion membrane unit 9 and discharged through the treated water transfer pipe 15, the treated water storage tank 13 and the water discharge pipe 17. On the other hand, the activated sludge is maintained at a high concentration in the activated sludge tank 3, and wastewater treatment with high efficiency becomes possible. However, the extracellular polymer P in the activated sludge is very viscous and adheres to the membrane surface, causing the membrane to be blocked. Therefore, a part of the activated sludge is drawn out by the circulation line 19, the extracellular polymer P is removed by the EPS removing device 25, and then returned to the activated sludge tank 3 to prevent the submerged membrane unit 9 from being blocked.

廃水処理装置1によれば、活性汚泥中の好気性微生物Xから菌体外ポリマーPを剥離できる。剥離した菌体外ポリマーPは、溶解性有機物となり、好気性微生物Xによって分解処理される。従って、菌体外ポリマーPを容易に減少でき、浸漬膜ユニット9の膜閉塞を本質的に防止できる。その結果として、膜洗浄や交換などに伴う時間ロスを低減でき、処理効率を向上できる。さらに、高価な凝集剤などを利用して膜閉塞を防止する装置に比べて、ランニングコストを抑えることができる。   According to the wastewater treatment apparatus 1, the extracellular polymer P can be peeled from the aerobic microorganism X in the activated sludge. The exfoliated extracellular polymer P becomes a soluble organic substance and is decomposed by the aerobic microorganism X. Therefore, the extracellular polymer P can be easily reduced, and the membrane blockage of the submerged membrane unit 9 can be essentially prevented. As a result, it is possible to reduce time loss associated with membrane cleaning and replacement, and improve processing efficiency. Furthermore, the running cost can be reduced as compared with an apparatus that uses an expensive flocculant or the like to prevent membrane clogging.

さらに、活性汚泥の一部を引き抜く循環ライン19上にEPS除去装置25を設けているため、活性汚泥槽3での有機物の分解処理を行いながら菌体外ポリマーPを減少させることができる。さらに、菌体外ポリマーPを剥離した好気性微生物Xを活性汚泥槽3に返送することで、菌体外ポリマーP除去後の好気性微生物Xを有機物の分解処理に効果的に利用できる。   Furthermore, since the EPS removing device 25 is provided on the circulation line 19 for extracting a part of the activated sludge, the extracellular polymer P can be reduced while the organic matter is decomposed in the activated sludge tank 3. Furthermore, by returning the aerobic microorganisms X from which the extracellular polymer P has been peeled off to the activated sludge tank 3, the aerobic microorganisms X after the removal of the extracellular polymer P can be effectively used for the organic substance decomposition treatment.

さらに、廃水処理装置1によって菌体外ポリマーPを除去すると、結果的に余剰汚泥の削減にもつながり、余剰汚泥の処理コストを低減できる。そして、余剰汚泥を削減できれば、従来、余剰汚泥の削減のために必要であった汚泥(余剰汚泥)処理設備が小さくまたは不要になり、設備コスト負担が軽減される。   Furthermore, if the extracellular polymer P is removed by the wastewater treatment apparatus 1, it results in the reduction of excess sludge, and the treatment cost of excess sludge can be reduced. And if surplus sludge can be reduced, the sludge (excess sludge) processing equipment conventionally required for the reduction of surplus sludge will become small or unnecessary, and an equipment cost burden will be reduced.

次に、本発明に係る廃水処理装置の実施例及び比較例を参照して具体的に説明する。   Next, the wastewater treatment apparatus according to the present invention will be specifically described with reference to examples and comparative examples.

実施例に係る廃水処理装置では、有機廃水として食品廃水を用いた。活性汚泥槽は、5(m)の有効容積の槽を用いた。活性汚泥槽には、有効膜面積が0.4(m)の浸漬型平膜40枚の膜ユニットを設けた。さらに、活性汚泥槽内には、膜ユニットの下方に曝気装置を配置した。 In the wastewater treatment apparatus according to the example, food wastewater was used as organic wastewater. As the activated sludge tank, a tank having an effective volume of 5 (m 3 ) was used. The activated sludge tank was provided with a membrane unit of 40 submerged flat membranes having an effective membrane area of 0.4 (m 2 ). Further, an aeration apparatus was disposed below the membrane unit in the activated sludge tank.

本実施例では、膜ユニットを曝気装置によって洗浄すると共に、溶存酸素(「DO」ともいう)濃度が2(mg/l)程度に維持されるように攪拌した。さらに、活性汚泥槽からEPS除去装置に送り込む汚泥水は、有機廃水の導入量の20%程度にした。EPS除去装置では、多孔板を毎分20回で往復動させ、さらに、スチーム加温によって汚泥滞留槽内を50°Cに維持した。このとき、膜処理水の透過流束は、1.0(m/m/日)になるように運転した。また、当初のMLSS濃度は10(kg−MLSS/m)とした。このときの差圧が10(kPa)となる経過日数、及びMLSS濃度を測定した。その結果、10(kPa)となる経過日数は20日であった。さらに、そのときのMLSS濃度は11(kg−MLSS/m)未満であり、余剰汚泥を引き抜くことなく運転できた。 In this example, the membrane unit was washed with an aeration apparatus and stirred so that the dissolved oxygen (also referred to as “DO”) concentration was maintained at about 2 (mg / l). Furthermore, the sludge water sent from the activated sludge tank to the EPS removing device was set to about 20% of the introduction amount of the organic waste water. In the EPS removal apparatus, the perforated plate was reciprocated at 20 times per minute, and the inside of the sludge retention tank was maintained at 50 ° C. by steam heating. At this time, it operated so that the permeation | transmission flux of membrane treated water might be set to 1.0 (m < 3 > / m < 2 > / day). The initial MLSS concentration was 10 (kg-MLSS / m 3 ). The elapsed days when the differential pressure at this time was 10 (kPa) and the MLSS concentration were measured. As a result, the elapsed days of 10 (kPa) was 20 days. Furthermore, the MLSS density | concentration at that time was less than 11 (kg-MLSS / m < 3 >), and it was able to drive | operate, without extracting excess sludge.

比較例に係る廃水処理装置では、EPS除去装置を使用しなかった。その他の構成は、実施例に係る廃水処理装置と同様である。この装置では、実施例に係る廃水処理装置と同様に、有機廃水として食品廃水を用いた。さらに、この装置では、EPS除去装置での運転を除いて実施例に係る廃水処理装置と同様の運転を行った。その結果、10(kPa)となる経過日数は3日であり、膜閉塞が生じるまでの期間が実施例に比べて非常に短くなることを確認できた。さらに、短期間でMLSS濃度が11(kg−MLSS/m)以上になり、余剰汚泥の引き抜きが必要となる可能性があることを確認できた。 In the wastewater treatment apparatus according to the comparative example, no EPS removing apparatus was used. Other configurations are the same as those of the wastewater treatment apparatus according to the embodiment. In this apparatus, food waste water was used as the organic waste water as in the waste water treatment apparatus according to the example. Furthermore, in this apparatus, the operation | movement similar to the waste water treatment apparatus which concerns on an Example was performed except the driving | operation with an EPS removal apparatus. As a result, the elapsed days of 10 (kPa) was 3 days, and it was confirmed that the period until the membrane occlusion was significantly shortened compared to the example. Furthermore, it was confirmed that the MLSS concentration became 11 (kg-MLSS / m 3 ) or more in a short period of time, and it may be necessary to extract excess sludge.

本発明は上記実施形態に限定されない。例えば、菌体外ポリマー除去手段の軸部に固定された多孔板は複数ではなく、一枚のみであってもよい。また、多孔板に攪拌用の羽根を設け、軸部を上下動させながら回転させるようにしてもよい。また、多孔板の代わりに軸部に沿って設けられたスクリュー羽根を利用してもよく、さらに、そのスクリュー羽根に複数の孔を形成してもよい。   The present invention is not limited to the above embodiment. For example, the number of perforated plates fixed to the shaft portion of the extracellular polymer removal means is not plural, and only one may be used. Further, a stirring blade may be provided on the perforated plate, and the shaft portion may be rotated while moving up and down. Moreover, you may utilize the screw blade | wing provided along the axial part instead of the perforated plate, and you may form a some hole in the screw blade | wing further.

本発明の実施形態に係る廃水処理装置のブロック図である。It is a block diagram of the wastewater treatment apparatus which concerns on embodiment of this invention. 本実施形態に係る菌体外ポリマー除去手段の斜視図である。It is a perspective view of the microbial cell polymer removal means which concerns on this embodiment. 菌体外ポリマーによってフロックを形成する好気性微生物を拡張して示す図であり、(a)は菌体外ポリマー剥離前の図、(b)は菌体外ポリマー剥離後の図である。It is a figure which expands and shows the aerobic microorganisms which form a floc with an extracellular polymer, (a) is a figure before extracellular polymer peeling, (b) is a figure after extracellular polymer peeling.

符号の説明Explanation of symbols

1…廃水処理装置、3…活性汚泥槽(処理槽)、9…浸漬膜ユニット(膜分離手段)、19…循環ライン、25…PES除去装置(菌体外ポリマー除去手段)、27…汚泥滞留槽、29…軸部、31…駆動モータ(駆動部)、33,33,33,33…多孔板、35…散気ポンプ(散気手段)、37…蒸気発生装置(加熱手段)、L…軸線、H,Ha,Hb,Hc,Hd…孔、P…菌体外ポリマー、X…好気性微生物。 DESCRIPTION OF SYMBOLS 1 ... Waste water processing apparatus, 3 ... Activated sludge tank (treatment tank), 9 ... Submerged membrane unit (membrane separation means), 19 ... Circulation line, 25 ... PES removal apparatus (extracellular polymer removal means), 27 ... Sludge retention Tank, 29 ... shaft part, 31 ... drive motor (drive part), 33, 33 1 , 33 2 , 33 3 ... perforated plate, 35 ... diffuser pump (aeration means), 37 ... steam generator (heating means) , L ... axis, H, Ha, Hb, Hc, Hd ... pore, P ... extracellular polymer, X ... aerobic microorganism.

Claims (7)

活性汚泥を利用して有機廃水を生物処理する廃水処理装置において、
前記有機廃水が導入されると共に、前記活性汚泥を貯留する処理槽と、
前記処理槽内に設けられると共に、処理水と前記活性汚泥とを分離する膜分離手段と、
前記処理槽に接続されると共に、前記活性汚泥中の菌体外ポリマーを好気性微生物から剥離する菌体外ポリマー除去手段と、を備えたことを特徴とする廃水処理装置。
In wastewater treatment equipment that biologically treats organic wastewater using activated sludge,
While the organic wastewater is introduced, a treatment tank for storing the activated sludge,
Membrane separation means for separating the treated water and the activated sludge while being provided in the treatment tank;
A wastewater treatment apparatus comprising: an extracellular polymer removal means that is connected to the treatment tank and separates the extracellular polymer in the activated sludge from an aerobic microorganism.
前記菌体外ポリマー除去手段は、前記処理槽内の前記活性汚泥の少なくとも一部を引き抜いて前記処理槽内に返送する循環ライン上に設けられていることを特徴とする請求項1記載の廃水処理装置。   The waste water according to claim 1, wherein the extracellular polymer removal means is provided on a circulation line for extracting at least a part of the activated sludge in the treatment tank and returning it to the treatment tank. Processing equipment. 前記菌体外ポリマー除去手段は、前記活性汚泥が供給される汚泥滞留槽と、前記汚泥滞留槽内に配置された軸部と、前記軸部に固定された多孔板と、前記軸部を軸線方向に沿って往復動させる駆動部と、を有することを特徴とする請求項1または2記載の廃水処理装置。   The extracellular polymer removal means includes a sludge retention tank to which the activated sludge is supplied, a shaft portion disposed in the sludge retention tank, a porous plate fixed to the shaft portion, and the shaft portion as an axis. The wastewater treatment apparatus according to claim 1, further comprising: a drive unit that reciprocates along a direction. 前記菌体外ポリマー除去手段は、前記活性汚泥が供給される汚泥滞留槽と、前記汚泥滞留槽内に配置された軸部と、前記軸部に固定された複数の多孔板と、前記軸部を軸線方向に沿って往復動させる駆動部と、を有することを特徴とする請求項1または2記載の廃水処理装置。   The extracellular polymer removal means includes a sludge retention tank to which the activated sludge is supplied, a shaft portion disposed in the sludge retention tank, a plurality of perforated plates fixed to the shaft portion, and the shaft portion. The waste water treatment apparatus according to claim 1, further comprising: a drive unit that reciprocates the shaft along the axial direction. 前記多孔板に形成された複数の孔のうち、少なくとも一つの孔は、互いに隣り合う他の多孔板に形成された孔と非同軸状に配置されていることを特徴とする請求項4記載の廃水処理装置。   The at least one hole among the plurality of holes formed in the perforated plate is arranged non-coaxially with holes formed in other perforated plates adjacent to each other. Waste water treatment equipment. 前記菌体外ポリマー除去手段は、前記汚泥滞留槽内を加熱する加熱手段を更に有することを特徴とする請求項3〜5のいずれか一項記載の廃水処理装置。   The waste water treatment apparatus according to any one of claims 3 to 5, wherein the extracellular polymer removal means further includes a heating means for heating the sludge retention tank. 前記菌体外ポリマー除去手段は、前記汚泥滞留槽内に滞留する前記活性汚泥にガスを供給する散気手段を更に有することを特徴とする請求項3〜6のいずれか一項記載の廃水処理装置。   The waste water treatment according to any one of claims 3 to 6, wherein the extracellular polymer removal means further includes an aeration means for supplying a gas to the activated sludge staying in the sludge retention tank. apparatus.
JP2007067221A 2007-03-15 2007-03-15 Waste water treatment equipment Expired - Fee Related JP5269331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067221A JP5269331B2 (en) 2007-03-15 2007-03-15 Waste water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067221A JP5269331B2 (en) 2007-03-15 2007-03-15 Waste water treatment equipment

Publications (2)

Publication Number Publication Date
JP2008221190A true JP2008221190A (en) 2008-09-25
JP5269331B2 JP5269331B2 (en) 2013-08-21

Family

ID=39840392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067221A Expired - Fee Related JP5269331B2 (en) 2007-03-15 2007-03-15 Waste water treatment equipment

Country Status (1)

Country Link
JP (1) JP5269331B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978076B1 (en) * 2017-12-29 2019-05-13 세종대학교산학협력단 Bio activated carbon management system in water treatment process
CN112624650A (en) * 2021-01-07 2021-04-09 张悦 Microbial organic high-calcium mud material for manufacturing adsorptive plates and preparation method thereof
CN115012123A (en) * 2022-06-20 2022-09-06 北京建筑大学 Preparation method of electrostatic spinning nanofiber membrane for extracellular polymer concentration and recovery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293095A (en) * 1989-05-02 1990-12-04 Ebara Infilco Co Ltd Treatment of organic sewage
JPH0483596A (en) * 1990-07-26 1992-03-17 Ebara Infilco Co Ltd Treatment of organic sewage
JP2003062591A (en) * 2001-08-27 2003-03-04 Ebara Corp Method for purifying organic waste water
JP2003260489A (en) * 2002-03-12 2003-09-16 Matsushita Electric Ind Co Ltd Organic wastewater treatment method
JP2003340485A (en) * 2002-05-23 2003-12-02 Toray Ind Inc Method for treating organic waste water and apparatus therefor
JP2004141859A (en) * 2002-08-30 2004-05-20 Sumitomo Heavy Ind Ltd Waste water treating apparatus and waste water treating method
JP2004314020A (en) * 2003-04-21 2004-11-11 Hitachi Plant Eng & Constr Co Ltd Membrane treatment system for separating virus
JP2004321942A (en) * 2003-04-24 2004-11-18 Sumitomo Heavy Ind Ltd Sludge solubilizing apparatus, volumetric reducting system for sludge using the same and sludge solubilizing method
JP2006334534A (en) * 2005-06-03 2006-12-14 Sumitomo Heavy Ind Ltd Method and apparatus for producing granular sludge and method for treating waste water

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02293095A (en) * 1989-05-02 1990-12-04 Ebara Infilco Co Ltd Treatment of organic sewage
JPH0483596A (en) * 1990-07-26 1992-03-17 Ebara Infilco Co Ltd Treatment of organic sewage
JP2003062591A (en) * 2001-08-27 2003-03-04 Ebara Corp Method for purifying organic waste water
JP2003260489A (en) * 2002-03-12 2003-09-16 Matsushita Electric Ind Co Ltd Organic wastewater treatment method
JP2003340485A (en) * 2002-05-23 2003-12-02 Toray Ind Inc Method for treating organic waste water and apparatus therefor
JP2004141859A (en) * 2002-08-30 2004-05-20 Sumitomo Heavy Ind Ltd Waste water treating apparatus and waste water treating method
JP2004314020A (en) * 2003-04-21 2004-11-11 Hitachi Plant Eng & Constr Co Ltd Membrane treatment system for separating virus
JP2004321942A (en) * 2003-04-24 2004-11-18 Sumitomo Heavy Ind Ltd Sludge solubilizing apparatus, volumetric reducting system for sludge using the same and sludge solubilizing method
JP2006334534A (en) * 2005-06-03 2006-12-14 Sumitomo Heavy Ind Ltd Method and apparatus for producing granular sludge and method for treating waste water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101978076B1 (en) * 2017-12-29 2019-05-13 세종대학교산학협력단 Bio activated carbon management system in water treatment process
CN112624650A (en) * 2021-01-07 2021-04-09 张悦 Microbial organic high-calcium mud material for manufacturing adsorptive plates and preparation method thereof
CN112624650B (en) * 2021-01-07 2022-08-05 张悦 Microbial organic high-calcium mud material for manufacturing adsorptive plates and preparation method thereof
CN115012123A (en) * 2022-06-20 2022-09-06 北京建筑大学 Preparation method of electrostatic spinning nanofiber membrane for extracellular polymer concentration and recovery
CN115012123B (en) * 2022-06-20 2023-07-25 北京建筑大学 Preparation method of electrostatic spinning nanofiber membrane for concentrating and recycling extracellular polymer

Also Published As

Publication number Publication date
JP5269331B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5497962B1 (en) Waste water treatment equipment
Bilad et al. Low-pressure submerged membrane filtration for potential reuse of detergent and water from laundry wastewater
JP2014180628A (en) Water treatment method and system
JP2014061487A (en) Water treatment method and water treatment system
WO2015156242A1 (en) Water treatment method and water treatment apparatus each using membrane
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP2011088053A (en) Equipment and method for desalination treatment
JP4649529B1 (en) Membrane treatment equipment
JP4492268B2 (en) Biological treatment equipment
JP2014057931A (en) Water production method
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP5269331B2 (en) Waste water treatment equipment
JP2007061697A (en) Separation film cleaning method and organic wastewater treatment system
JP2008279335A (en) Apparatus and method for water reclamation
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP2006205155A (en) Anaerobic tank and waste water treatment system including the same
KR100538126B1 (en) Ds-mt system
JP5999087B2 (en) Water treatment apparatus and water treatment method
JP2004322084A (en) Biological filtration system
JP2003053378A (en) Method and device for treating water by using separation membrane
KR102208641B1 (en) Treatment system of waste water using oxidation preprocess
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
JP2006035138A (en) Activated sludge processing equipment
JP6118668B2 (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees