JP2014057931A - Water production method - Google Patents

Water production method Download PDF

Info

Publication number
JP2014057931A
JP2014057931A JP2012205384A JP2012205384A JP2014057931A JP 2014057931 A JP2014057931 A JP 2014057931A JP 2012205384 A JP2012205384 A JP 2012205384A JP 2012205384 A JP2012205384 A JP 2012205384A JP 2014057931 A JP2014057931 A JP 2014057931A
Authority
JP
Japan
Prior art keywords
membrane
water
reverse osmosis
alkaline agent
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012205384A
Other languages
Japanese (ja)
Inventor
Keiichi Ikeda
啓一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012205384A priority Critical patent/JP2014057931A/en
Publication of JP2014057931A publication Critical patent/JP2014057931A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a water production method in which raw water including an oil content is membrane-filtrated by a nano membrane filter or a reverse osmosis membrane to obtain membrane permeable water and membrane concentrated water and in which cost of equipment and an installation space of equipment can be reduced, and membrane clog derived from an oil content can be remarkably prevented.SOLUTION: There is provided a water production method in which raw water including an oil content is added with an alkali agent so that a pH may become at least 9, then is membrane-filtrated by an anion electric charge type nano membrane filter or a reverse osmosis membrane to obtain membrane permeable water and membrane concentrated water.

Description

本発明は、油分を含有した原水をナノろ過膜または逆浸透膜で膜分離して、膜透過水と膜濃縮水を得る造水方法に関するものである。   The present invention relates to a fresh water production method for obtaining membrane permeated water and membrane concentrated water by subjecting raw water containing oil to membrane separation with a nanofiltration membrane or a reverse osmosis membrane.

膜分離法は、省エネルギー・省スペース、およびろ過水質向上等の特長を有するため、様々な分野での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜は、河川水や地下水や産業廃水から工業用水や水道水を製造する浄水プロセスへの適用や、海水淡水化逆浸透膜処理工程における前処理への適用が挙げられる。ナノろ過膜や逆浸透膜は、精密ろ過膜や限外ろ過膜で除去しきれないカビ臭、色度、硬度成分等を除去する高度浄水プロセスへの適用や、海水淡水化、かん水淡水化、純水製造等への適用が挙げられる(特許文献1)。   Membrane separation methods have features such as energy saving, space saving, and improved filtered water quality, and therefore are widely used in various fields. For example, microfiltration membranes and ultrafiltration membranes can be applied to water purification processes that produce industrial water and tap water from river water, groundwater, industrial wastewater, and pretreatment in seawater desalination reverse osmosis membrane treatment processes. Can be mentioned. Nanofiltration membranes and reverse osmosis membranes can be applied to advanced water purification processes that remove mold odor, chromaticity, hardness components, etc. that cannot be removed with microfiltration membranes or ultrafiltration membranes, seawater desalination, brine water desalination, Application to pure water production etc. is mentioned (patent document 1).

しかし、食品工場や厨房等から排出される廃水を膜分離する場合、多量の動植物油を含有していることが多いため、膜の目詰まりを引き起こしやすく、頻繁に膜の薬品洗浄を実施したり、低い膜透過流束で運転したりする必要があった。そこで、膜分離の前処理方法として、廃水中の油分を加圧浮上法で浮上分離したり、活性炭で吸着除去したりする方法が挙げられる(特許文献2、3)。しかし、加圧浮上装置は高い設備費や設置スペースを要し、装置の清掃といったメンテナンスに関わる労力を要する問題があった。また、活性炭は廃水中の油分濃度が高い場合、活性炭を頻繁に交換する必要があり、交換費用が高くなる問題があった。さらに、前記前処理方法でも油分は完全に除去しきれずに、油分の一部が膜供給水中に残留することから、やはり膜を目詰まりさせていた。   However, when separating waste water discharged from food factories and kitchens, etc., it often contains a large amount of animal and vegetable oils, which tends to cause clogging of the membrane. It was necessary to operate with a low membrane permeation flux. Therefore, as a pretreatment method for membrane separation, there is a method in which oil components in wastewater are floated and separated by a pressurized flotation method or adsorbed and removed by activated carbon (Patent Documents 2 and 3). However, the pressure levitation device requires high equipment costs and installation space, and there is a problem that requires labor related to maintenance such as cleaning of the device. Further, when the activated carbon has a high oil concentration in the wastewater, it is necessary to frequently replace the activated carbon, resulting in a problem of high replacement costs. Furthermore, the oil was not completely removed by the pretreatment method, and a part of the oil remained in the membrane feed water, so that the membrane was still clogged.

特開平5−212252号公報Japanese Patent Laid-Open No. 5-212252 特開平8−309393号公報JP-A-8-309393 特開平8−323350号公報JP-A-8-323350

本発明は、油分を含有した原水をナノろ過膜または逆浸透膜で膜分離して、膜透過水と膜濃縮水を得る造水方法において、設備費、設備の設置スペースを削減することが可能であり、油分由来の膜の目詰まりを著しく防止することが可能な造水方法を提供することにある。   The present invention can reduce facility costs and installation space in a fresh water production method in which raw water containing oil is separated by a nanofiltration membrane or reverse osmosis membrane to obtain membrane permeated water and membrane concentrated water. It is an object of the present invention to provide a fresh water generation method capable of remarkably preventing clogging of a film derived from oil.

上記課題を解決するため、本発明の造水方法は、次の特徴を有するものである。   In order to solve the above problems, the fresh water generation method of the present invention has the following characteristics.

(1)油分を含有する原水に対しpHが9以上になるまでアルカリ剤を添加した後に、アニオン荷電型のナノろ過膜または逆浸透膜で膜分離して、膜透過水と膜濃縮水を得る造水方法。   (1) After adding an alkali agent to the raw water containing oil until the pH becomes 9 or more, membrane separation is performed with an anion charge type nanofiltration membrane or reverse osmosis membrane to obtain membrane permeated water and membrane concentrated water. Fresh water generation method.

(2)アルカリ剤が水酸化ナトリウムまたは水酸化カリウムを含む、(1)に記載の造水方法。   (2) The fresh water generation method according to (1), wherein the alkaline agent contains sodium hydroxide or potassium hydroxide.

(3)pHが9以上になるまでアルカリ剤を添加した後の原水の濁度が0.1度以上の場合に、アルカリ剤を添加した後に精密ろ過膜または限外ろ過膜で膜ろ過して前処理膜ろ過水を得て、続いて前処理膜ろ過水をアニオン荷電型のナノろ過膜または逆浸透膜で膜分離する(1)または(2)に記載の造水方法。   (3) When the turbidity of the raw water after adding the alkaline agent until the pH becomes 9 or higher is 0.1 degree or higher, filter the membrane with a microfiltration membrane or ultrafiltration membrane after adding the alkaline agent The fresh water generation method according to (1) or (2), wherein pretreated membrane filtrate is obtained, and then the pretreated membrane filtrate is subjected to membrane separation with an anionically charged nanofiltration membrane or a reverse osmosis membrane.

(4)pHが9以上になるまでアルカリ剤を添加した後、pHが9未満になるまで酸を添加してからアニオン荷電型のナノろ過膜または逆浸透膜で膜分離する(1)または(2)に記載の造水方法。   (4) After adding an alkaline agent until the pH is 9 or more, add an acid until the pH is less than 9, and then perform membrane separation with an anionically charged nanofiltration membrane or reverse osmosis membrane (1) or ( The fresh water generation method as described in 2).

(5)pHが9以上になるまでアルカリ剤を添加した後の原水の濁度が0.1度以上の場合に、アルカリ剤を添加した後に精密ろ過膜または限外ろ過膜で膜ろ過し、続いて前処理膜ろ過水のpHが9未満になるまで酸を添加してからアニオン荷電型のナノろ過膜または逆浸透膜で膜分離する(4)に記載の造水方法。   (5) When the turbidity of the raw water after adding the alkaline agent until the pH becomes 9 or higher is 0.1 degree or higher, after adding the alkaline agent, membrane filtration with a microfiltration membrane or ultrafiltration membrane, Subsequently, the water-producing method according to (4), wherein the acid is added until the pH of the pretreated membrane filtrate is less than 9, and then membrane separation is performed with an anionically charged nanofiltration membrane or a reverse osmosis membrane.

(6)pHが9未満になるまで酸を添加した後の原水の濁度が0.1度以上の場合に、酸を添加した後に精密ろ過膜または限外ろ過膜で膜ろ過して前処理膜ろ過水を得て、続いて前処理膜ろ過水をアニオン荷電型のナノろ過膜または逆浸透膜で膜分離する(4)に記載の造水方法。   (6) When the turbidity of the raw water after adding acid until the pH is less than 9 is 0.1 degree or more, pre-treatment by adding membrane with membrane filtration with ultrafiltration membrane or ultrafiltration membrane The fresh water generation method according to (4), wherein membrane filtration water is obtained, and then the pretreated membrane filtration water is subjected to membrane separation with an anion charged nanofiltration membrane or a reverse osmosis membrane.

(7)膜濃縮水を生物処理する、(1)〜(6)のいずれかに記載の造水方法。   (7) The fresh water generation method according to any one of (1) to (6), wherein the membrane concentrated water is biologically treated.

(8)膜濃縮水のpHを6以上8以下に調整した後に生物処理する、(7)に記載の造水方法。   (8) The fresh water generation method according to (7), wherein the biological treatment is performed after adjusting the pH of the membrane concentrated water to 6 or more and 8 or less.

本発明の造水方法によれば、油分を含有する原水をアニオン荷電型のナノろ過膜または逆浸透膜で膜分離して、膜透過水と膜濃縮水を得る造水方法において、油分がアルカリ剤と反応して、アニオン界面活性剤である脂肪酸塩が生成される。ここで、脂肪酸塩はアニオン荷電の膜表面に反発するので、従来発生していた油分由来の膜の目詰まりを引き起こしにくく、膜の薬品洗浄を実施することなく、高い膜透過流束で長期間にわたる安定運転が可能となる。また、アルカリ剤を注入する設備のみを追加すればよく、設備費、設備の設置スペースを削減することが可能となる。   According to the fresh water generation method of the present invention, in a fresh water generation method in which raw water containing oil is separated by an anion charged nanofiltration membrane or reverse osmosis membrane to obtain membrane permeated water and membrane concentrated water, the oil is alkaline. The fatty acid salt which is an anionic surfactant is produced | generated by reacting with an agent. Here, since the fatty acid salt repels on the surface of the anion-charged membrane, it is unlikely to cause clogging of the oil-derived membrane that has been generated conventionally, and it does not perform chemical cleaning of the membrane for a long time with a high membrane permeation flux. Stable operation is possible. Moreover, it is only necessary to add a facility for injecting the alkaline agent, and the facility cost and the installation space for the facility can be reduced.

本発明の造水方法が適用される水処理装置の一例を示す装置概略フロー図である。It is an apparatus general | schematic flowchart which shows an example of the water treatment apparatus to which the fresh water generation method of this invention is applied.

以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施態様に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In addition, this invention is not limited to the following embodiments.

本発明の造水方法において使用される水処理装置は、例えば、図1に示すように、アルカリ剤を貯留するアルカリ剤貯留槽1と、原水にアルカリ剤を供給するアルカリ剤供給ポンプ2と、原水とアルカリ剤を混合撹拌する攪拌機3と、アルカリ調整槽4と、アルカリに調整した原水(以下アルカリ水と呼称する)を供給するアルカリ水供給ポンプ5と、アルカリ水供給時に開となるアルカリ水供給弁6と、アルカリ水を膜ろ過する精密ろ過膜/限外ろ過膜モジュール7と、逆圧洗浄や空気洗浄する場合などに開となるエア抜き弁8と、膜ろ過時に開となるろ過水弁9と、精密ろ過膜/限外ろ過膜モジュール7によって得られた膜ろ過水を貯留するろ過水貯留槽10と、膜ろ過水を精密ろ過膜/限外ろ過膜モジュール7に供給して逆圧洗浄する時に稼働する逆洗ポンプ11と、逆圧洗浄する時に開となる逆洗弁12と、精密ろ過膜/限外ろ過膜モジュール7の空気洗浄の空気供給源であるエアブロワー13と、空気を精密ろ過膜/限外ろ過膜モジュール7の下部に供給し空気洗浄する場合に開となる空洗弁14と、精密ろ過膜/限外ろ過膜モジュール7の膜一次側の水を排出する場合に開となる排水弁15と、精密ろ過膜/限外ろ過膜ろ過水を供給するブースターポンプ16と、アニオン荷電型のナノろ過膜/逆浸透膜モジュール17と、ナノろ過膜/逆浸透膜濃縮水を生物処理するための活性汚泥槽18と、活性汚泥をろ過する精密ろ過膜/限外ろ過膜モジュール19と、活性汚泥槽18内に気泡を供給し、好気性を維持するための散気管20と、活性汚泥を吸引ろ過するための動力源である吸引ろ過ポンプ21とが設けられている。   The water treatment apparatus used in the fresh water generation method of the present invention includes, for example, as shown in FIG. 1, an alkaline agent storage tank 1 for storing an alkaline agent, an alkaline agent supply pump 2 for supplying an alkaline agent to raw water, Stirrer 3 that mixes and stirs raw water and an alkaline agent, alkali adjustment tank 4, alkaline water supply pump 5 that supplies raw water adjusted to alkali (hereinafter referred to as alkaline water), and alkaline water that is opened when alkaline water is supplied. Supply valve 6, microfiltration membrane / ultrafiltration membrane module 7 for membrane filtration of alkaline water, air vent valve 8 opened for back pressure washing or air washing, and filtered water opened for membrane filtration Supplying the filtrate 9 to the microfiltration membrane / ultrafiltration membrane module 7 and the filtration water storage tank 10 for storing the membrane filtration water obtained by the valve 9 and the microfiltration membrane / ultrafiltration membrane module 7 Pressure wash The backwash pump 11 that is operated at the same time, the backwash valve 12 that is opened when the backwashing is performed, the air blower 13 that is the air supply source of the air for the microfiltration membrane / ultrafiltration membrane module 7, and the air An air-washing valve 14 that opens when supplying air to the lower part of the filtration membrane / ultrafiltration membrane module 7 and air-washing, and an opening when discharging water on the membrane primary side of the microfiltration membrane / ultrafiltration membrane module 7 A drain valve 15, a booster pump 16 for supplying microfiltration membrane / ultrafiltration membrane filtration water, an anion charge type nanofiltration membrane / reverse osmosis membrane module 17, and nanofiltration membrane / reverse osmosis membrane concentrated water An activated sludge tank 18 for biological treatment, a microfiltration membrane / ultrafiltration membrane module 19 for filtering activated sludge, an air diffuser pipe 20 for supplying air bubbles into the activated sludge tank 18 and maintaining aerobicity , The activity for suction filtration of activated sludge Source and a suction filtering pump 21 is provided which.

上述の水処理装置においては、ろ過工程の際、アルカリ剤貯留槽1に貯留しているアルカリ剤をアルカリ剤供給ポンプ2でアルカリ調整槽4に供給する。原水に含有されている油分はアルカリ剤と反応する。油分が油脂の場合、グリセリンと脂肪酸塩に加水分解される。油分が脂肪酸の場合、脂肪酸塩となる。pHを9以上することで、反応が著しく進行するため、本発明の造水方法において好適に使用できる。   In the above-described water treatment apparatus, the alkaline agent stored in the alkaline agent storage tank 1 is supplied to the alkaline adjustment tank 4 by the alkaline agent supply pump 2 during the filtration step. The oil contained in the raw water reacts with the alkaline agent. When the oil is fat, it is hydrolyzed into glycerin and fatty acid salt. When the oil is a fatty acid, it becomes a fatty acid salt. By making the pH 9 or more, the reaction proceeds remarkably, so that it can be suitably used in the fresh water generation method of the present invention.

本発明において油分とは、(a)ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等の飽和脂肪酸、(b)オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸、(c)油脂(飽和脂肪酸あるいは不飽和脂肪酸のトリグリセリド)の少なくともいずれかを含むものと定義する。   In the present invention, oil refers to (a) saturated fatty acids such as lauric acid, myristic acid, palmitic acid, stearic acid, (b) unsaturated fatty acids such as oleic acid, linoleic acid, linolenic acid, and (c) fats and oils (saturated fatty acids). Alternatively, it is defined as containing at least one of unsaturated fatty acid triglycerides).

本発明における原水の油分濃度を測定する方法として、日本工業規格JIS K 0102:2008の24項に記載されている「n−ヘキサン抽出物質」を用いる。この試験は、主として揮散しにくい油分の定量を目的としており、水中に含まれる油分をヘキサンで抽出し残留した物質量をmg/Lで表したものである。この試験では、抽出法、抽出容器による抽出法又は捕集濃縮・抽出法があるが、いずれを用いても構わない。   As a method for measuring the oil concentration of raw water in the present invention, “n-hexane extract material” described in paragraph 24 of Japanese Industrial Standard JIS K 0102: 2008 is used. The purpose of this test is mainly to determine the amount of oil that is difficult to volatilize, and the amount of substance remaining after extracting the oil contained in water with hexane is expressed in mg / L. In this test, there are an extraction method, an extraction method using an extraction container, or a collection concentration / extraction method, any of which may be used.

本発明では、さらにヘキサン抽出・残留物を四塩化炭素に溶解させ、フロリジルカラムを用いて吸着した極性のヘキサン抽出・残留物を油分と定義する。一方、フロリジルカラムから流出した非極性のヘキサン抽出・残留物は鉱油類となる。   In the present invention, the hexane extract / residue is further dissolved in carbon tetrachloride, and the polar hexane extract / residue adsorbed using a Florisil column is defined as oil. On the other hand, non-polar hexane extraction / residue flowing out from the Florisil column becomes mineral oil.

なお、本発明においては、上記測定により得られた原水中の油分の濃度が0.5mg/L以上であった場合に、原水に油分が含有されていると判断する。   In the present invention, when the concentration of the oil in the raw water obtained by the above measurement is 0.5 mg / L or more, it is determined that the raw water contains the oil.

攪拌機3によってアルカリ剤と混合撹拌された原水は、アルカリ水供給ポンプ5を稼動し、アルカリ水供給弁6を開にすることで、精密ろ過膜/限外ろ過膜モジュール7の膜一次側に供給される。さらにろ過水弁9を開にすることで精密ろ過膜/限外ろ過膜モジュール7の加圧ろ過が行われる。膜ろ過水は膜二次側からろ過水弁9を経てろ過水貯留槽10へと移送される。全量ろ過の場合、エア抜き弁8、逆洗弁12、空洗弁14、排水弁15はいずれも閉である。ろ過時間は原水水質や膜透過流束等に応じて適宜設定するのが好ましいが、定流量ろ過の場合は、所定の膜ろ過差圧やろ過水量[m]、定圧ろ過の場合は、所定のろ過流量[m/hr]やろ過水量[m]に到達するまでろ過時間を継続させてもよい。なお、ろ過流量とは単位時間あたりのろ過水量のことである。 The raw water mixed and stirred with the alkaline agent by the stirrer 3 is supplied to the membrane primary side of the microfiltration membrane / ultrafiltration membrane module 7 by operating the alkaline water supply pump 5 and opening the alkaline water supply valve 6. Is done. Further, the filtration of the microfiltration membrane / ultrafiltration membrane module 7 is performed by opening the filtration water valve 9. The membrane filtrate is transferred from the membrane secondary side to the filtrate storage tank 10 through the filtrate valve 9. In the case of total filtration, the air vent valve 8, the backwash valve 12, the air wash valve 14, and the drain valve 15 are all closed. The filtration time is preferably set as appropriate according to the raw water quality, membrane permeation flux, etc., but in the case of constant flow filtration, the predetermined membrane filtration differential pressure or filtered water volume [m 3 ], in the case of constant pressure filtration, it is predetermined. The filtration time may be continued until the filtration flow rate [m 3 / hr] and the filtered water amount [m 3 ] are reached. The filtration flow rate is the amount of filtered water per unit time.

pHが9以上になるまでアルカリ剤を添加、混合攪拌した後の原水の濁度が0.1度以上で直接アニオン荷電型のナノろ過膜/逆浸透膜モジュール17で膜分離した場合、懸濁物質がアニオン荷電型のナノろ過膜/逆浸透膜モジュール17の膜透過性能を低下させることから、上記の通り、精密ろ過膜/限外ろ過膜モジュール7でろ過した後にアニオン荷電型のナノろ過膜/逆浸透膜モジュール17で膜分離したほうが好ましい。   Suspended when the turbidity of the raw water after adding and mixing and stirring until the pH reaches 9 or higher is 0.1 degree or higher and the membrane is separated directly by the anion charged nanofiltration membrane / reverse osmosis membrane module 17 Since the substance lowers the membrane permeation performance of the anion charge type nanofiltration membrane / reverse osmosis membrane module 17, as described above, after filtering with the microfiltration membrane / ultrafiltration membrane module 7, the anion charge type nanofiltration membrane / Membrane separation with reverse osmosis membrane module 17 is preferred.

一方、pHが9以上になるまでアルカリ剤を添加、混合攪拌した後の原水の濁度が0.1度未満の場合、精密ろ過膜/限外ろ過膜モジュール7でろ過せずに、直接アニオン荷電型のナノろ過膜/逆浸透膜モジュール17で膜分離して構わない。また、pHが9以上でナノろ過膜/逆浸透膜モジュール17の分離膜がアルカリ加水分解して劣化する場合には、図示していないが、pHが9以上になるまでアルカリ剤を添加、混合攪拌した後に、pHが9未満になるまで酸を添加、混合攪拌して、アニオン荷電型のナノろ過膜/逆浸透膜モジュール17で膜分離することも可能である。また、pHが9未満になるまで酸を添加、混合攪拌した後の原水の濁度が0.1度以上で直接アニオン荷電型のナノろ過膜/逆浸透膜モジュール17で膜分離した場合、懸濁物質がアニオン荷電型のナノろ過膜/逆浸透膜モジュール17の膜透過性能を低下させることから、上記の通り、精密ろ過膜/限外ろ過膜モジュール7でろ過した後にアニオン荷電型のナノろ過膜/逆浸透膜モジュール17で膜分離したほうが好ましい。   On the other hand, when the turbidity of the raw water after adding and mixing and stirring the alkaline agent until the pH becomes 9 or more is less than 0.1 degree, the anion is directly filtered without filtering through the microfiltration membrane / ultrafiltration membrane module 7. Membrane separation may be performed by the charged nanofiltration membrane / reverse osmosis membrane module 17. If the separation membrane of the nanofiltration membrane / reverse osmosis membrane module 17 deteriorates due to alkaline hydrolysis when the pH is 9 or higher, an alkaline agent is added and mixed until the pH reaches 9 or higher. After stirring, an acid may be added until the pH becomes less than 9, mixed and stirred, and membrane separation may be performed by the anionically charged nanofiltration membrane / reverse osmosis membrane module 17. Moreover, when the turbidity of the raw water after adding acid, mixing and stirring until the pH becomes less than 9 is 0.1 degree or more and membrane separation is performed directly with the anion charged nanofiltration membrane / reverse osmosis membrane module 17, Since the suspended substances deteriorate the membrane permeation performance of the anion charge type nanofiltration membrane / reverse osmosis membrane module 17, as described above, after filtering with the microfiltration membrane / ultrafiltration membrane module 7, the anion charge type nanofiltration It is preferable to perform membrane separation with the membrane / reverse osmosis membrane module 17.

濁度は、日本工業規格JIS K 0101:1998の9項に記載されている通り、「濁度とは水の濁りの程度を表すもので、視覚濁度、透過光濁度、散乱光濁度及び積分球濁度に区分し、表示する。カオリン標準液と比較して測定する場合には、“度(カオリン)”を単位とし、ホルマジン標準液と比較して測定する場合には、“度(ホルマジン)”を単位として表し、それぞれの物質の1mg/Lを含む溶液の濁度を1度とする。」と定められている。一般にカオリンよりもホルマジンの方が粒子が均一であり、かつ分散性に富み、光散乱性において再現性が優れているので、濁りの標準物質として好ましい。濁度の単位である「NTU」(Nephelometric Turbidity Unit)はホルマジン標準液に基づくものであり、日本水道協会「上水試験方法」の散乱光測定法の項にも参考として記載されている。本発明における原水の濁度は散乱光濁度とし、単位は“度(ホルマジン)”と定義する。   Turbidity is as described in paragraph 9 of Japanese Industrial Standards JIS K 0101: 1998. “Turbidity represents the degree of turbidity in water. Visual turbidity, transmitted light turbidity, scattered light turbidity. When measuring in comparison with kaolin standard solution, “degree (kaolin)” is used as a unit, and in comparing with formazin standard solution, “degree” (Formazin) "is expressed as a unit, and the turbidity of a solution containing 1 mg / L of each substance is defined as 1 degree. In general, formazine is more preferable than kaolin because it has more uniform particles, better dispersibility, and better reproducibility in light scattering properties. “NTU” (Nephelometric Turbidity Unit), which is a unit of turbidity, is based on a formazine standard solution, and is also described in the scattered light measurement method section of the “Water Supply Test Method” of the Japan Water Works Association. The turbidity of the raw water in the present invention is the scattered light turbidity, and the unit is defined as “degree (formazin)”.

アルカリ剤を添加、混合攪拌した後に生成された脂肪酸塩はアニオン界面活性剤であるため、油分エマルションを形成することなく、脂肪酸塩の大部分が精密ろ過膜/限外ろ過膜モジュール7の分離膜を通過する。脂肪酸塩を含んだ精密ろ過膜/限外ろ過膜ろ過水は一旦ろ過水貯留槽10に貯留された後、ブースターポンプ16によって昇圧され、アニオン荷電型のナノろ過膜/逆浸透膜モジュール17に供給される。脂肪酸塩を含んだ精密ろ過膜/限外ろ過膜ろ過水は、脂肪酸塩や脂肪酸塩以外の有機物や塩分などの溶質が除去された膜透過水と、脂肪酸塩や脂肪酸塩以外の有機物や塩分などの溶質が濃縮された膜濃縮水に分離される。上述した通り、脂肪酸塩はアニオン界面活性剤であるため、アニオン荷電型のナノろ過膜/逆浸透膜モジュール17の分離膜に反発し、濃縮されやすい。逆にナノろ過膜/逆浸透膜モジュール17の分離膜がカチオン荷電型やノニオン荷電の場合は、脂肪酸塩が吸着しやすく、透過性能が著しく低下することから、本発明においては、ナノろ過膜/逆浸透膜モジュール17の分離膜はアニオン荷電型のものが使用される。   Since the fatty acid salt produced after adding the alkali agent and mixing and stirring is an anionic surfactant, the fatty acid salt is mostly formed from the separation membrane of the microfiltration membrane / ultrafiltration membrane module 7 without forming an oil emulsion. Pass through. The microfiltration membrane / ultrafiltration membrane filtrate containing the fatty acid salt is temporarily stored in the filtrate storage tank 10 and then pressurized by the booster pump 16 and supplied to the anion charged nanofiltration membrane / reverse osmosis membrane module 17. Is done. Microfiltration membrane / ultrafiltration membrane filtrate containing fatty acid salt includes membrane permeated water from which organic substances other than fatty acid salts and fatty acid salts and solutes such as salt are removed, and organic substances and salts other than fatty acid salts and fatty acid salts, etc. Is separated into concentrated membrane water. As described above, since the fatty acid salt is an anionic surfactant, it is repelled by the separation membrane of the anionically charged nanofiltration membrane / reverse osmosis membrane module 17 and easily concentrated. On the contrary, when the separation membrane of the nanofiltration membrane / reverse osmosis membrane module 17 is a cation charge type or nonion charge, the fatty acid salt is easily adsorbed and the permeation performance is remarkably lowered. The separation membrane of the reverse osmosis membrane module 17 is an anion charge type.

ナノろ過膜/逆浸透膜モジュール17の膜透過水は、水質に応じて、飲料水、工業用水、農業用水、景観水等に使用できるが、膜濃縮水は少なくとも、脂肪酸塩や脂肪酸塩以外の有機物が含有しており、排水基準を超過する場合には、生物処理を実施することが好ましい。その一例として、活性汚泥槽18内に精密ろ過膜/限外ろ過膜モジュール19を浸漬させて、生物処理と膜分離処理を同時に実施する膜分離活性汚泥法が挙げられる。   The membrane permeated water of the nanofiltration membrane / reverse osmosis membrane module 17 can be used for drinking water, industrial water, agricultural water, landscape water, etc. depending on the water quality, but the membrane concentrated water is at least other than fatty acid salts and fatty acid salts. When organic matter is contained and the wastewater standard is exceeded, it is preferable to perform biological treatment. As an example, there is a membrane separation activated sludge method in which a microfiltration membrane / ultrafiltration membrane module 19 is immersed in the activated sludge tank 18 and biological treatment and membrane separation treatment are simultaneously performed.

膜分離活性汚泥法は、活性汚泥槽18内の生物量(一般にMLSS(=Mixed Liquor Suspended Solids、混合液懸濁物質)で表す。)を高く保ちつつ、通常の活性汚泥法よりも設置面積を小さくすることができる利点があり、さらに、汚泥と処理水の分離は重力沈降によらず膜ろ過により行うため、処理水にSSが流出することがなく、清澄な処理水を得ることができる等の利点がある。   The membrane-separated activated sludge method keeps the biomass in the activated sludge tank 18 (generally expressed as MLSS (= Mixed Liquor Suspended Solids)), while maintaining a higher installation area than the normal activated sludge method. There is an advantage that it can be reduced, and further, separation of sludge and treated water is performed by membrane filtration regardless of gravity sedimentation, so that SS does not flow out into treated water, and clear treated water can be obtained. There are advantages.

膜分離活性汚泥法は、通常、精密ろ過膜/限外ろ過膜モジュール19の下方に散気管20を設置して気泡を発生(曝気)させ、この気泡の上昇流で膜面洗浄する。一方この曝気は、被処理液を生物処理する活性汚泥に酸素供給するためにも必要である。即ち、膜分離活性汚泥法において、曝気は膜面洗浄とともに生物処理の酸素供給の両方の役割を担っている。   In the membrane separation activated sludge method, normally, a diffuser tube 20 is installed below the microfiltration membrane / ultrafiltration membrane module 19 to generate bubbles (aeration), and the membrane surface is cleaned with the rising flow of the bubbles. On the other hand, this aeration is also necessary for supplying oxygen to the activated sludge for biological treatment of the liquid to be treated. That is, in the membrane separation activated sludge method, aeration plays both roles of cleaning the membrane surface and supplying oxygen for biological treatment.

散気管20としては、膜面洗浄するための気泡を発生させることができれば、特に限定されるものではないが、塩ビやステンレス配管に空気吐出孔を開けた散気管が通常使用される。その他、多孔性のゴム、セラミック、メンブレンを用いた散気管なども使用することができる。散気管20から発生される気泡は微細気泡でもよいし粗大気泡でもよい。その気泡の大きさは分離膜の種類や散気量等の条件によって最適化すればよい。   The air diffuser 20 is not particularly limited as long as bubbles for cleaning the membrane surface can be generated, but an air diffuser having an air discharge hole in a vinyl chloride or stainless steel pipe is usually used. In addition, a porous rubber, ceramic, a diffuser tube using a membrane, and the like can be used. The bubbles generated from the air diffuser 20 may be fine bubbles or coarse bubbles. The size of the bubbles may be optimized according to conditions such as the type of separation membrane and the amount of air diffused.

ろ過の動力として、吸引ろ過ポンプ21を使う代わりに、水位差利用のサイフォンとしてもよい。またサイフォンでは所定の水量を確保できない場合には、吸引ろ過ポンプ21を併用してもよい。   Instead of using the suction filtration pump 21 as the power of filtration, a siphon using a water level difference may be used. In addition, when the predetermined amount of water cannot be secured by the siphon, the suction filtration pump 21 may be used in combination.

図示した膜分離活性汚泥法以外の生物処理としては、微生物の付着する表面積を著しく増大させるための充填材あるいは円盤等を水槽内に設置し、生物膜を形成させて水との接触頻度を高めたものがある。水中に固定したプラスチックの小筒の集合体によるハニコーム方式、回転する目版による回転円盤方式、粒状のろ材による生物接触ろ過方式等が用いる。生物接触ろ過方式のろ材としては、砂、アンスラサイト、粒状活性炭等を使用しても構わない。   As biological treatment other than the membrane separation activated sludge method shown in the figure, a filler or a disk is installed in the water tank to significantly increase the surface area to which microorganisms adhere, and a biological film is formed to increase the frequency of contact with water. There is something. The Hanikome method using an assembly of plastic small tubes fixed in water, the rotating disk method using a rotating plate, the biological contact filtration method using a granular filter medium, and the like are used. Sand, anthracite, granular activated carbon, or the like may be used as a biological contact filtration type filter medium.

なお、膜濃縮水を生物処理する場合には、微生物の増殖速度が大きく、有機物を分解しやすくするために、膜濃縮水のpHを6以上8以下に調整するほうが好ましい。   When biologically treating the membrane concentrated water, it is preferable to adjust the pH of the membrane concentrated water to 6 or more and 8 or less in order to increase the growth rate of microorganisms and easily decompose organic substances.

アルカリ剤貯留槽1に貯留するアルカリ剤としては、アルカリ金属またはアルカリ土類金属の水酸化物(塩)やアルカリ金属の炭酸塩やリン酸塩のいずれでもよいが、強アルカリである水酸化ナトリウムまたは水酸化カリウムを含むことが好ましい。   The alkaline agent stored in the alkaline agent storage tank 1 may be any one of alkali metal or alkaline earth metal hydroxides (salts), alkali metal carbonates and phosphates, and is a strong alkali sodium hydroxide. Or it is preferable that potassium hydroxide is included.

精密ろ過膜/限外ろ過膜モジュール7としては、外圧式でも内圧式であっても差し支えはない。また膜ろ過方式としては全量ろ過型モジュールでもクロスフローろ過型モジュールであっても差し支えはないが、エネルギー消費量が少ないという点から全量ろ過型モジュールが好ましい。さらに加圧型モジュールであっても浸漬型モジュールであっても差し支えはないが、高流束が可能であるという点から加圧型モジュールが好ましい。   The microfiltration membrane / ultrafiltration membrane module 7 may be an external pressure type or an internal pressure type. The membrane filtration method may be a total filtration module or a cross flow filtration module, but a complete filtration module is preferred from the viewpoint of low energy consumption. Further, it may be a pressurization type module or an immersion type module, but the pressurization type module is preferable from the viewpoint that a high flux is possible.

精密ろ過膜/限外ろ過膜モジュール7で使用される分離膜としては、多孔質であれば特に限定しないが、所望の処理水の水質や水量によって、精密ろ過膜を用いたり、限外ろ過膜を用いたり、あるいは両者を併用したりする。例えば、濁質成分、細菌等を除去したい場合は精密ろ過膜でも限外ろ過膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、限外ろ過膜を用いるのが好ましい。   The separation membrane used in the microfiltration membrane / ultrafiltration membrane module 7 is not particularly limited as long as it is porous, but depending on the desired quality and amount of treated water, a microfiltration membrane or an ultrafiltration membrane may be used. Or use both together. For example, if you want to remove turbid components, bacteria, etc., you can use either a microfiltration membrane or an ultrafiltration membrane, but if you want to remove viruses or high molecular organic substances, use an ultrafiltration membrane. Is preferred.

分離膜の形状としては、中空糸膜、平膜、管状膜等があるが、いずれでも構わない。   Examples of the shape of the separation membrane include a hollow fiber membrane, a flat membrane, and a tubular membrane, and any of them may be used.

分離膜の材質としては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、およびクロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホン等からなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。   The material of the separation membrane is polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetra Including at least one selected from the group consisting of a fluoroethylene-perfluoroalkyl vinyl ether copolymer, and a chlorotrifluoroethylene-ethylene copolymer, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, and polyethersulfone. Polyvinylidene fluoride (PVDF) is more preferable from the viewpoint of film strength and chemical resistance, and from the viewpoint of high hydrophilicity and strong stain resistance. Rironitoriru is more preferable.

ろ過運転の制御方法としては、定流量ろ過であっても定圧ろ過であってもよいが、一定の処理水量が得られ、また、全体の制御が容易であるという点から定流量ろ過が好ましい。   The control method for the filtration operation may be constant flow filtration or constant pressure filtration, but constant flow filtration is preferred from the viewpoint that a constant amount of treated water can be obtained and the overall control is easy.

アニオン荷電型のナノろ過膜/逆浸透膜モジュール17の分離膜表面がアニオン荷電を有することを確認する手段としてはゼータ電位の測定が挙げられる。ゼータ電位とは分離膜表面の正味の固定電荷の尺度であり、本発明の分離膜表面のゼータ電位は、電気移動度から、下記数式1に示すヘルムホルツ・スモルコフスキー(Helmholtz-Smoluchowski)の式によって求めることができる。   As a means for confirming that the separation membrane surface of the anion charge type nanofiltration membrane / reverse osmosis membrane module 17 has anion charge, measurement of zeta potential can be mentioned. The zeta potential is a measure of the net fixed charge on the surface of the separation membrane, and the zeta potential on the surface of the separation membrane of the present invention is calculated from the electric mobility according to the formula of Helmholtz-Smoluchowski shown in the following formula 1. Can be sought.

ゼータ電位ζ=4πηU/ε
(式中、Uは電気移動度、εは溶液の誘電率、ηは溶液の粘度である。)
ゼータ電位の測定原理について説明する。材料に接した(水)溶液には、材料表面の電荷の影響で、表面の近傍に流動できない静止層が存在する。ゼータ電位は、材料の静止層と流動層の境界面(すべり面)での溶液に対する電位である。
Zeta potential ζ = 4πηU / ε
(In the formula, U is the electric mobility, ε is the dielectric constant of the solution, and η is the viscosity of the solution.)
The principle of zeta potential measurement will be described. In the (water) solution in contact with the material, there exists a stationary layer that cannot flow in the vicinity of the surface due to the influence of the charge on the surface of the material. The zeta potential is the potential for the solution at the interface (slip surface) between the stationary and fluidized layers of the material.

ここで、石英ガラスセル中の水溶液を考えると、石英表面は通常マイナスに荷電されているため、セル表面付近にプラス荷電のイオンや粒子が集まる。一方、セル中心部にはマイナス荷電のイオンや粒子が多くなり、セル内でイオン分布が生じている。この状態で電
場をかけると、セル内ではイオン分布を反映し、セル内の位置で異なる泳動速度でイオンが動く(電気浸透流という)。泳動速度はセル表面の電荷を反映したものであるので、この泳動速度分布を求めることにより、セル表面の電荷(表面電位)を評価することができる。
Here, considering the aqueous solution in the quartz glass cell, since the quartz surface is normally negatively charged, positively charged ions and particles gather near the cell surface. On the other hand, negatively charged ions and particles increase in the center of the cell, and ion distribution occurs in the cell. When an electric field is applied in this state, the ion distribution is reflected in the cell, and ions move at different migration speeds at positions in the cell (referred to as electroosmotic flow). Since the migration speed reflects the charge on the cell surface, the charge (surface potential) on the cell surface can be evaluated by obtaining this migration speed distribution.

本発明におけるアニオン荷電型のナノろ過膜/逆浸透膜モジュール17で使用される分離膜表面のゼータ電位は、pH7において0mV未満であると定義するが、−10mV以下であることが好ましく、さらに好ましくは−20mV以下である。   The zeta potential on the surface of the separation membrane used in the anionically charged nanofiltration membrane / reverse osmosis membrane module 17 in the present invention is defined to be less than 0 mV at pH 7, but is preferably -10 mV or less, more preferably Is −20 mV or less.

アニオン荷電型のナノろ過膜/逆浸透膜モジュール17に使用される分離膜の脱塩率としては、93%以上(評価条件 NaCl濃度:500mg/L、操作圧力:0.1MPa)の逆浸透膜や、5%以上93%未満(評価条件 NaCl濃度:500mg/L、操作圧力:0.1MPa)のナノろ過膜を選択して用いることができる。分離膜の形状としては中空糸、平膜があるがいずれでも構わない。   The desalination rate of the separation membrane used for the anionically charged nanofiltration membrane / reverse osmosis membrane module 17 is 93% or more (evaluation conditions NaCl concentration: 500 mg / L, operating pressure: 0.1 MPa). Alternatively, a nanofiltration membrane of 5% or more and less than 93% (evaluation conditions NaCl concentration: 500 mg / L, operating pressure: 0.1 MPa) can be selected and used. As the shape of the separation membrane, there are a hollow fiber and a flat membrane.

分離膜の材質としては酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材を使用することができる。またその膜構造としては、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜を使用することができる。   As the material of the separation membrane, a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer can be used. The membrane structure has a dense layer on at least one surface of the membrane, an asymmetric membrane having fine pores with gradually increasing pore diameters from the dense layer to the inside of the membrane or the other surface, on the dense layer of the asymmetric membrane. A composite membrane having a very thin separation functional layer formed of another material can be used.

本発明では、これら膜素材、膜構造や膜形態によらず実施することができ、いずれの膜を用いても効果があるが、例えば酢酸セルロース系やポリアミド系の非対称膜およびポリアミド系、ポリ尿素系の分離機能層を有する複合膜などを挙げることができ、造水量、耐久性、塩排除率の観点から、酢酸セルロース系の非対称膜、ポリアミド系の複合膜を用いることが好ましい。架橋ポリアミドからなる分離機能層は、アミン末端やカルボキシル基末端を有するが、アミン末端は低pH領域でイオン的に解離して膜にカチオン荷電性を与え、カルボキシル基末端は高pH領域でイオン的に解離して膜にアニオン荷電性を与える。そのため、pHによって分離機能層のゼータ電位が変化し、高pH領域でアニオン荷電性が高くなるように、カルボキシル基末端が多いほうが好ましい。   In the present invention, it can be carried out regardless of these membrane materials, membrane structures and membrane forms, and any membrane can be used. For example, cellulose acetate-based or polyamide-based asymmetric membranes and polyamide-based, polyurea Examples include a composite membrane having a separation function layer, and a cellulose acetate-based asymmetric membrane and a polyamide-based composite membrane are preferably used from the viewpoint of water production, durability, and salt rejection. The separation functional layer made of cross-linked polyamide has amine ends and carboxyl group ends, but the amine ends are ionically dissociated in the low pH region to give the membrane cationic chargeability, and the carboxyl group ends are ionized in the high pH region. Dissociates into an anion to impart anion chargeability. Therefore, it is preferable that the number of carboxyl group ends is increased so that the zeta potential of the separation functional layer varies depending on the pH and the anion chargeability is increased in a high pH region.

このような上記性能を有するナノろ過膜/逆浸透膜は、実際に使用するためにスパイラル、チューブラー、プレート・アンド・フレーム等のエレメントに組み込まれ、また中空糸は束ねた上でエレメントに組み込まれて使用されるが、本発明はこれらのナノろ過膜/逆浸透膜エレメントの形態に左右されるものではない。   The nanofiltration membrane / reverse osmosis membrane having the above-mentioned performance is incorporated into elements such as spirals, tubulars, and plate-and-frames for practical use, and hollow fibers are bundled and incorporated into the elements. However, the present invention is not dependent on the form of these nanofiltration membrane / reverse osmosis membrane elements.

また、本発明において、アニオン荷電型のナノろ過膜/逆浸透膜モジュール17は、前記ナノろ過膜/逆浸透膜エレメントを1〜数本圧力容器の中に収めたモジュールはもちろんであるが、このモジュールを複数本並列に配置したものをも含むものである。組合せ、本数、配列は目的に応じて任意に行うことができる。   In the present invention, the anionically charged nanofiltration membrane / reverse osmosis membrane module 17 is of course a module in which the nanofiltration membrane / reverse osmosis membrane element is contained in one to several pressure vessels. This includes modules in which multiple modules are arranged in parallel. Combination, number, and arrangement can be arbitrarily performed according to the purpose.

精密ろ過膜/限外ろ過膜モジュール19としては、外圧式でも内圧式であっても差し支えはない。また膜ろ過方式としては全量ろ過型モジュールでもクロスフローろ過型モジュールであっても差し支えはないが、エネルギー消費量が少ないという点から全量ろ過型モジュールが好ましい。さらに加圧型モジュールであっても浸漬型モジュールであっても差し支えはないが、活性汚泥をろ過することから、浸漬型モジュールが好ましい。加圧型モジュールの場合は、活性汚泥槽外に設置する。   The microfiltration membrane / ultrafiltration membrane module 19 may be an external pressure type or an internal pressure type. The membrane filtration method may be a total filtration module or a cross flow filtration module, but a complete filtration module is preferred from the viewpoint of low energy consumption. Further, it may be a pressurization type module or an immersion type module, but an immersion type module is preferred because it filters activated sludge. In the case of a pressurized module, install outside the activated sludge tank.

精密ろ過膜/限外ろ過膜モジュール19で使用される分離膜としては、多孔質であれば特に限定しないが、所望の処理水の水質や水量によって、精密ろ過膜を用いたり、限外ろ過膜を用いたり、あるいは両者を併用したりする。例えば、濁質成分、細菌等を除去したい場合は精密ろ過膜でも限外ろ過膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、限外ろ過膜を用いるのが好ましい。   The separation membrane used in the microfiltration membrane / ultrafiltration membrane module 19 is not particularly limited as long as it is porous. However, depending on the quality and amount of the desired treated water, a microfiltration membrane or an ultrafiltration membrane may be used. Or use both together. For example, if you want to remove turbid components, bacteria, etc., you can use either a microfiltration membrane or an ultrafiltration membrane, but if you want to remove viruses or high molecular organic substances, use an ultrafiltration membrane. Is preferred.

分離膜の形状としては、中空糸膜、平膜、管状膜等があるが、いずれでも構わない。   Examples of the shape of the separation membrane include a hollow fiber membrane, a flat membrane, and a tubular membrane, and any of them may be used.

分離膜の材質としては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、およびクロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホン等からなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。   The material of the separation membrane is polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetra Including at least one selected from the group consisting of a fluoroethylene-perfluoroalkyl vinyl ether copolymer, and a chlorotrifluoroethylene-ethylene copolymer, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, and polyethersulfone. Polyvinylidene fluoride (PVDF) is more preferable from the viewpoint of film strength and chemical resistance, and from the viewpoint of high hydrophilicity and strong stain resistance. Rironitoriru is more preferable.

ろ過運転の制御方法としては、定流量ろ過であっても定圧ろ過であってもよいが、一定の処理水量が得られ、また、全体の制御が容易であるという点から定流量ろ過が好ましい。   The control method for the filtration operation may be constant flow filtration or constant pressure filtration, but constant flow filtration is preferred from the viewpoint that a constant amount of treated water can be obtained and the overall control is easy.

以上のような本発明の造水方法によれば、油分がアルカリ剤と反応して、アニオン界面活性剤である脂肪酸塩が生成される。そのため、脂肪酸塩はアニオン荷電型のナノろ過膜/逆浸透膜モジュール17の分離膜表面に反発するので、従来発生していた油分由来の分離膜の目詰まりを引き起こしにくく、分離膜の薬品洗浄を実施することなく、高い膜透過流束で長期間にわたる安定運転が可能である。しかし、脂肪酸塩としてアルカリ剤と反応しきれなかったわずかな油分や油分以外の有機物やカルシウム、マグネシウム等のスケールが分離膜の表面に徐々に析出するので、運転圧力がナノろ過膜/逆浸透膜モジュール17の耐圧限界近くまで到達した場合、高濃度の薬品洗浄を実施する必要がある。ここで、洗浄に用いる薬品としては、水酸化ナトリウム、アニオン界面活性剤を含むアルカリ溶液や塩酸、硫酸、クエン酸等を含む酸性溶液が挙げられるが、分離膜が劣化しない程度の濃度および保持時間を適宜設定した上で選択する。これらの薬品洗浄は、それぞれの薬品を用いて単独に洗浄する方法でも、複数の薬品を交互に用いて洗浄する方法でもよい。   According to the fresh water generation method of the present invention as described above, the oil component reacts with the alkaline agent to produce a fatty acid salt that is an anionic surfactant. Therefore, the fatty acid salt repels on the surface of the separation membrane of the anionically charged nanofiltration membrane / reverse osmosis membrane module 17, so that it is difficult to cause clogging of the separation membrane derived from oil, which has been conventionally generated, and chemical cleaning of the separation membrane can be performed. Without implementation, stable operation over a long period of time is possible with a high membrane permeation flux. However, since a small amount of oil that did not react with the alkaline agent as a fatty acid salt, or organic matter other than oil, and scales of calcium, magnesium, etc., gradually precipitate on the surface of the separation membrane, the operating pressure is nanofiltration membrane / reverse osmosis membrane When reaching the pressure limit of the module 17, it is necessary to carry out high concentration chemical cleaning. Here, chemicals used for washing include sodium hydroxide, an alkaline solution containing an anionic surfactant, and an acidic solution containing hydrochloric acid, sulfuric acid, citric acid, etc., but the concentration and holding time are such that the separation membrane does not deteriorate. Is selected as appropriate. These chemical cleaning methods may be a method of cleaning each chemical individually or a method of cleaning using a plurality of chemicals alternately.

また、精密ろ過膜/限外ろ過膜モジュール7は、膜ろ過を継続すると、ろ過水量に伴って、膜表面や膜細孔内に懸濁物質や脂肪酸塩としてアルカリ剤と反応しきれなかったわずかな油分や油分以外の有機物等の汚染物質の付着量が増大していき、ろ過流量の低下あるいは膜ろ過差圧の上昇が問題となってくる。   In addition, when the microfiltration membrane / ultrafiltration membrane module 7 continued the membrane filtration, the membrane surface and the membrane pores could not react with the alkaline agent as a suspended substance or fatty acid salt with the amount of filtered water. As a result, the amount of adhering contaminants such as oil and organic substances other than oil increases, and a decrease in filtration flow rate or an increase in membrane filtration differential pressure becomes a problem.

そこで、アルカリ水供給ポンプ5を停止し、アルカリ水供給弁6、ろ過水弁9を閉にして、一旦膜ろ過を停止した後、エアブロワー13を稼働して、エア抜き弁8、空洗弁14を開にして、精密ろ過膜/限外ろ過膜モジュール7の膜一次側(原水側)に気泡を導入し、膜を揺動させ、膜同士を触れ合わせることにより膜表面の付着物質を掻き落とす空気洗浄を実施したり、逆洗ポンプ11を稼働して、逆洗弁12を開にして、膜二次側(ろ過水側)から膜一次側へ膜のろ過方法とは逆方向に膜ろ過水を圧力で押し込み、膜表面や膜細孔内に付着していた汚染物質を排除する逆圧洗浄を実施したりすればよい。   Therefore, the alkaline water supply pump 5 is stopped, the alkaline water supply valve 6 and the filtrate water valve 9 are closed, and the membrane filtration is once stopped. Then, the air blower 13 is operated, and the air bleeding valve 8 and the air washing valve are operated. 14 is opened, bubbles are introduced into the membrane primary side (raw water side) of the microfiltration membrane / ultrafiltration membrane module 7, the membranes are shaken, and the membranes are brought into contact with each other to scrape adhering substances on the membrane surface. Perform the air washing to drop or operate the backwash pump 11 and open the backwash valve 12 to move the membrane from the membrane secondary side (filtrated water side) to the membrane primary side in the direction opposite to the membrane filtration method. What is necessary is just to carry out the back pressure washing | cleaning which pushes in filtered water with a pressure and excludes the contaminant which adhered to the membrane surface and the membrane pore.

図示していないが、逆圧洗浄の洗浄効果を高めるため、例えば逆圧洗浄に使用される膜ろ過水に次亜塩素酸ナトリウム、塩酸、水酸化ナトリウム等の薬品を添加したり、オゾンを溶解させたりしたほうが好ましい。また、排水弁15を開にして、精密ろ過膜/限外ろ過膜モジュール7内の膜一次側の水を排出し、膜1次側が気体となった状態で逆圧洗浄を実施する方法も、膜1次側に水圧がかかる膜1次側周囲が液体の状態よりも汚染物質が膜表面から剥離されやすく、そのまま系外に排出されやすいので好ましい。   Although not shown, in order to enhance the cleaning effect of back pressure cleaning, for example, chemicals such as sodium hypochlorite, hydrochloric acid, sodium hydroxide, etc. are added to membrane filtration water used for back pressure cleaning, or ozone is dissolved. It is more preferable to let them. Also, the drain valve 15 is opened, the water on the membrane primary side in the microfiltration membrane / ultrafiltration membrane module 7 is discharged, and the back pressure cleaning is performed in a state where the membrane primary side is in a gas state. It is preferable because contaminants are more easily peeled off from the surface of the membrane than the liquid state around the membrane primary side where water pressure is applied to the membrane primary side and is easily discharged out of the system.

空気洗浄のエア流量および時間は、洗浄効率や膜擦過、膜破断の防止を勘案して、適宜決めればよい。逆圧洗浄の逆洗流量および時間は、洗浄効率や水回収率等を勘案して、適宜決めればよい。   The air flow rate and time for air cleaning may be appropriately determined in consideration of cleaning efficiency, film rubbing, and prevention of film breakage. The backwash flow rate and time for backwashing may be appropriately determined in consideration of the washing efficiency, water recovery rate, and the like.

空気洗浄と逆圧洗浄の手順としては、空気洗浄と逆圧洗浄と同時に行うと洗浄効率は良いが、空気洗浄に先立ち逆圧洗浄のみを実施しても良い。あるいは空気洗浄を行った後に逆圧洗浄のみを実施しても良い。さらに、原水を導入しながら、空気洗浄や逆圧洗浄を実施しても良い。気体の導入(同時に逆圧洗浄)に先立ち原水のみ導入を行っても良い。あるいは気体の導入(同時に逆圧洗浄)を行った後原水のみ導入を行っても良い。あるいは、これらを交互に組み合わせても良い。   As a procedure of air cleaning and back pressure cleaning, cleaning efficiency is good if performed simultaneously with air cleaning and back pressure cleaning, but only back pressure cleaning may be performed prior to air cleaning. Alternatively, only back pressure cleaning may be performed after air cleaning. Furthermore, air cleaning or back pressure cleaning may be performed while introducing raw water. Prior to introduction of gas (at the same time back pressure cleaning), only raw water may be introduced. Alternatively, only the raw water may be introduced after the introduction of gas (simultaneously backwashing). Alternatively, these may be combined alternately.

上記の空気洗浄と逆圧洗浄を実施することで、長期間にわたる低い膜ろ過差圧での安定運転を可能にする。ただし、脂肪酸塩としてアルカリ剤と反応しきれなかったわずかな油分や油分以外の有機物や鉄、マンガン、アルミニウム等の無機物が分離膜の表面に徐々に蓄積していく。そのため、膜ろ過差圧が精密ろ過膜/限外ろ過膜モジュール7の耐圧限界近くまで到達した場合には、高濃度の薬品洗浄を実施することが好ましい。   By performing the air cleaning and the counter pressure cleaning described above, stable operation with a low membrane filtration differential pressure over a long period of time is possible. However, as a fatty acid salt, a slight amount of oil that cannot react with the alkali agent, organic substances other than oil, and inorganic substances such as iron, manganese, and aluminum gradually accumulate on the surface of the separation membrane. Therefore, when the membrane filtration differential pressure reaches near the pressure limit of the microfiltration membrane / ultrafiltration membrane module 7, it is preferable to carry out chemical cleaning at a high concentration.

該洗浄に用いる薬品としては、分離膜が劣化しない程度の濃度および保持時間を適宜設定した上で選択することができるが、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等を少なくとも1つ含有した方が、有機物に対して洗浄効果が高くなるので好ましい。また、塩酸、硫酸、硝酸、クエン酸、シュウ酸等を少なくとも1つ含有した方が、鉄、マンガン、アルミニウム等に対して洗浄効果が高くなるので好ましい。   The chemical used for the cleaning can be selected after appropriately setting the concentration and holding time to such an extent that the separation membrane does not deteriorate. At least one of sodium hypochlorite, chlorine dioxide, hydrogen peroxide, ozone and the like can be selected. Is preferable because the cleaning effect on the organic matter is increased. In addition, it is preferable to contain at least one of hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid and the like because the cleaning effect on iron, manganese, aluminum and the like is enhanced.

<分離膜のゼータ電位の測定方法>
大きさ20mm×30mmの分離膜を用い、電気泳動させるための標準粒子は表面をヒドロキシプロピルセルロースでコーティングしたポリスチレン粒子(粒径520nm)を10mmol/lのNaCl水溶液に分散させたものを用いた。測定装置は大塚電子製電気泳動光散乱光度計ELS−800を用い、光源はHe−Neレーザーを使用した。
<Method for measuring zeta potential of separation membrane>
A separation membrane having a size of 20 mm × 30 mm was used, and standard particles for electrophoresis were those obtained by dispersing polystyrene particles (particle size: 520 nm) coated with hydroxypropylcellulose in a 10 mmol / l NaCl aqueous solution. The measuring device was an electrophoretic light scattering photometer ELS-800 manufactured by Otsuka Electronics, and the light source was a He-Ne laser.

(実施例1)
図1に示すように、原水である濁度4度、油分濃度35mg/l、pH6.5の工場排水のpHが9.5になるように、アルカリ剤供給ポンプ2を稼働して、アルカリ剤貯留槽1内に貯留している水酸化ナトリウム溶液をアルカリ調整槽4に供給した。精密ろ過膜/限外ろ過膜モジュール7には東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸限外ろ過膜で膜面積が72mの加圧型膜モジュール3本を用い、アルカリ水供給弁6とろ過水弁9を開いて、アルカリ水供給ポンプ5を稼動して、膜ろ過流束1.5m/m/dで全量ろ過した。また、アニオン荷電型のナノろ過膜/逆浸透膜モジュール17には圧力容器内に東レ(株)製逆浸透膜エレメント(SUL−G20F、分離膜のゼータ電位:−32mV)を6本装填したものを用い、膜透過流量240m/d、膜濃縮水流量60m/d、水回収率80%でクロスフロー運転した。ナノろ過膜/逆浸透膜モジュール17の膜濃縮水はMLSSが8,000mg/L活性汚泥槽18に流入して、東レ(株)製の公称孔径0.08μmで膜面積1.4mのポリフッ化ビニリデン製平膜エレメント100枚を集積させた精密ろ過膜/限外ろ過膜モジュール19でろ過した。水理学的滞留時間(HRT)は6時間とした。
Example 1
As shown in FIG. 1, the alkaline agent supply pump 2 is operated so that the pH of the factory effluent having a turbidity of 4 degrees as raw water, an oil concentration of 35 mg / l, and a pH of 6.5 is 9.5. The sodium hydroxide solution stored in the storage tank 1 was supplied to the alkali adjustment tank 4. For the microfiltration membrane / ultrafiltration membrane module 7, three pressure-type membrane modules having a membrane area of 72 m 2 made of polyvinylidene fluoride hollow fiber ultrafiltration membrane with a molecular weight cut off of 150,000 Da manufactured by Toray Industries, Inc. were used. The alkaline water supply valve 6 and the filtration water valve 9 were opened, the alkaline water supply pump 5 was operated, and the entire amount was filtered with a membrane filtration flux of 1.5 m 3 / m 2 / d. The anion charged nanofiltration membrane / reverse osmosis membrane module 17 is loaded with six reverse osmosis membrane elements (SUL-G20F, separation membrane zeta potential: -32 mV) manufactured by Toray Industries, Inc. in a pressure vessel. Was used for cross-flow operation at a membrane permeation flow rate of 240 m 3 / d, a membrane concentrated water flow rate of 60 m 3 / d, and a water recovery rate of 80%. The membrane concentrated water of the nanofiltration membrane / reverse osmosis membrane module 17 flows into the activated sludge tank 18 with MLSS of 8,000 mg / L, and is a polyfluorocarbon having a nominal pore size of 0.08 μm and a membrane area of 1.4 m 2 manufactured by Toray Industries, Inc. Filtration was performed with a microfiltration membrane / ultrafiltration membrane module 19 in which 100 flat membrane elements made of vinylidene fluoride were integrated. The hydraulic residence time (HRT) was 6 hours.

精密ろ過膜/限外ろ過膜モジュール7は30minろ過した後、アルカリ水供給弁6とろ過水弁9を閉じて、アルカリ水供給ポンプ5を停止すると同時に、エア抜き弁8と逆洗弁12と空洗弁14を開き、逆洗ポンプ11を稼動して、流束1.5m/dの逆圧洗浄と膜モジュールの下方から空気を供給する100L/minの空気洗浄を同時に1min実施した。その後、逆洗弁12と空洗弁14を閉じ、逆洗ポンプ11を停止すると同時に、排水弁15を開いて、精密ろ過膜/限外ろ過膜モジュール7内の水を系外に全量排出した。その後、排水弁15を閉じて、アルカリ水供給弁6を開いて、アルカリ水供給ポンプ5を稼動して、pHを9.5に調整した原水を精密ろ過膜/限外ろ過膜モジュール7内に供給後、ろ過水弁9を開き、エア抜き弁8を閉じて、ろ過工程に戻り、上記工程を繰り返していった。   After the microfiltration membrane / ultrafiltration membrane module 7 has been filtered for 30 minutes, the alkaline water supply valve 6 and the filtration water valve 9 are closed and the alkaline water supply pump 5 is stopped. The air washing valve 14 was opened, the back washing pump 11 was operated, and back washing with a flow rate of 1.5 m / d and air washing at 100 L / min for supplying air from below the membrane module were simultaneously performed for 1 min. Thereafter, the backwash valve 12 and the air washing valve 14 are closed and the backwash pump 11 is stopped. At the same time, the drain valve 15 is opened to discharge all the water in the microfiltration membrane / ultrafiltration membrane module 7 out of the system. . Thereafter, the drain valve 15 is closed, the alkaline water supply valve 6 is opened, the alkaline water supply pump 5 is operated, and the raw water whose pH is adjusted to 9.5 is put into the microfiltration membrane / ultrafiltration membrane module 7. After the supply, the filtered water valve 9 was opened, the air vent valve 8 was closed, the flow returned to the filtration step, and the above steps were repeated.

その結果、精密ろ過膜/限外ろ過膜モジュール7のろ過差圧は運転開始直後18kPaに対し、2ヶ月後も26kPaと安定運転が行えており、薬液洗浄をすることはなかった。また、ナノろ過膜/逆浸透膜モジュール17の運転圧力は運転開始直後0.85MPaに対し、2ヶ月後も1.05MPaと安定していた。   As a result, the filtration differential pressure of the microfiltration membrane / ultrafiltration membrane module 7 was stable at 26 kPa after 2 months with respect to 18 kPa immediately after the start of operation, and the chemical solution was not washed. Moreover, the operating pressure of the nanofiltration membrane / reverse osmosis membrane module 17 was stable at 1.05 MPa even after 2 months with respect to 0.85 MPa immediately after the start of operation.

(比較例1)
原水に水酸化ナトリウム溶液を供給しない以外は、実施例1と全く同じ方法で運転を行った。
(Comparative Example 1)
The operation was performed in exactly the same manner as in Example 1 except that no sodium hydroxide solution was supplied to the raw water.

その結果、精密ろ過膜/限外ろ過膜モジュール7のろ過差圧は運転開始直後18kPaに対し、12日後には150kPaに達し、薬品洗浄せざるを得なかった。また、ナノろ過膜/逆浸透膜モジュール17の運転圧力は運転開始直後0.85MPaに対し、20日後には3.5MPaに達し、薬品洗浄せざるを得なかった。   As a result, the filtration differential pressure of the microfiltration membrane / ultrafiltration membrane module 7 reached 150 kPa after 12 days with respect to 18 kPa immediately after the start of operation, and had to be washed with chemicals. Moreover, the operating pressure of the nanofiltration membrane / reverse osmosis membrane module 17 reached 3.5 MPa after 20 days, compared with 0.85 MPa immediately after the start of operation, and had to be washed with chemicals.

(比較例2)
原水に水酸化ナトリウム溶液を供給せず、精密ろ過膜/限外ろ過膜モジュール7を使用せず、原水を直接ナノろ過膜/逆浸透膜モジュール17で膜分離した以外は、実施例1と全く同じ方法で運転を行った。
(Comparative Example 2)
Except for supplying the sodium hydroxide solution to the raw water, not using the microfiltration membrane / ultrafiltration membrane module 7, and directly separating the raw water with the nanofiltration membrane / reverse osmosis membrane module 17, the same as in Example 1. Driving was done in the same way.

その結果、ナノろ過膜/逆浸透膜モジュール17の運転圧力は運転開始直後0.85MPaに対し、4日後には3.5MPaに達し、薬品洗浄せざるを得なかった。   As a result, the operating pressure of the nanofiltration membrane / reverse osmosis membrane module 17 reached 3.5 MPa after 4 days compared with 0.85 MPa immediately after the start of operation, and had to be washed with chemicals.

(比較例3)
pH6.5の工場排水のpHが8になるように、水酸化ナトリウム溶液を供給した以外は、実施例1と全く同じ方法で運転を行った。
(Comparative Example 3)
The operation was performed in exactly the same manner as in Example 1 except that the sodium hydroxide solution was supplied so that the pH of the industrial wastewater at pH 6.5 was 8.

その結果、精密ろ過膜/限外ろ過膜モジュール7のろ過差圧は運転開始直後18kPaに対し、25日後には150kPaに達し、薬品洗浄せざるを得なかった。また、ナノろ過膜/逆浸透膜モジュール17の運転圧力は運転開始直後0.85MPaに対し、35日後には3.5MPaに達し、薬品洗浄せざるを得なかった。   As a result, the filtration differential pressure of the microfiltration membrane / ultrafiltration membrane module 7 reached 150 kPa after 25 days with respect to 18 kPa immediately after the start of operation, and had to be washed with chemicals. In addition, the operating pressure of the nanofiltration membrane / reverse osmosis membrane module 17 reached 3.5 MPa after 35 days against 0.85 MPa immediately after the start of operation, and had to be washed with chemicals.

(比較例4)
pH6.5の工場排水のpHが8になるように、水酸化ナトリウム溶液を供給し、精密ろ過膜/限外ろ過膜モジュール7を使用せず、原水を直接ナノろ過膜/逆浸透膜モジュール17で膜分離した以外は、実施例1と全く同じ方法で運転を行った。
(Comparative Example 4)
The sodium hydroxide solution is supplied so that the pH of the factory wastewater of pH 6.5 is 8, and the raw water is directly removed from the nanofiltration membrane / reverse osmosis membrane module 17 without using the microfiltration membrane / ultrafiltration membrane module 7. The operation was carried out in exactly the same manner as in Example 1 except that the membrane was separated.

その結果、ナノろ過膜/逆浸透膜モジュール17の運転圧力は運転開始直後0.85MPaに対し、11日後には3.5MPaに達し、薬品洗浄せざるを得なかった。   As a result, the operating pressure of the nanofiltration membrane / reverse osmosis membrane module 17 reached 3.5 MPa after 11 days, compared with 0.85 MPa immediately after the start of operation, and had to be washed with chemicals.

(比較例5)
圧力容器内にアニオン荷電型ではなく、カチオン荷電型の東レ(株)製逆浸透膜エレメント(SU−220、分離膜のゼータ電位:+7mV)を6本装填した以外は実施例1と全く同じ方法で運転を行った。
(Comparative Example 5)
Exactly the same method as in Example 1 except that 6 pressure-reversed reverse osmosis membrane elements (SU-220, zeta potential of the separation membrane: +7 mV) manufactured by Toray Industries, Inc. were loaded in the pressure vessel instead of the anion charge type. I drove in.

その結果、精密ろ過膜/限外ろ過膜モジュール7のろ過差圧は運転開始直後18kPaに対し、2ヶ月後も26kPaと安定運転が行えており、薬液洗浄をすることはなかった。ところが、ナノろ過膜/逆浸透膜モジュール17の運転圧力は運転開始直後0.85MPaに対し、7日後には3.5MPaに達し、薬品洗浄せざるを得なかった。   As a result, the filtration differential pressure of the microfiltration membrane / ultrafiltration membrane module 7 was stable at 26 kPa after 2 months with respect to 18 kPa immediately after the start of operation, and the chemical solution was not washed. However, the operating pressure of the nanofiltration membrane / reverse osmosis membrane module 17 reached 3.5 MPa after 7 days, compared with 0.85 MPa immediately after the start of operation, and had to be washed with chemicals.

1:アルカリ剤貯留槽
2:アルカリ剤供給ポンプ
3:攪拌機
4:アルカリ調整槽
5:アルカリ水供給ポンプ
6:アルカリ水供給弁
7:精密ろ過膜/限外ろ過膜モジュール
8:エア抜き弁
9:ろ過水弁
10:ろ過水貯留槽
11:逆洗ポンプ
12:逆洗弁
13:エアブロワー
14:空洗弁
15:排水弁
16:ブースターポンプ
17:アニオン荷電型のナノろ過膜/逆浸透膜モジュール
18:活性汚泥槽
19:精密ろ過膜/限外ろ過膜モジュール
20:散気管
21:吸引ろ過ポンプ
1: Alkaline agent storage tank 2: Alkaline agent supply pump 3: Stirrer 4: Alkali adjustment tank 5: Alkaline water supply pump 6: Alkaline water supply valve 7: Microfiltration membrane / ultrafiltration membrane module 8: Air vent valve 9: Filtration water valve 10: Filtration water storage tank 11: Back washing pump 12: Back washing valve 13: Air blower 14: Air washing valve 15: Drain valve 16: Booster pump 17: Anion charge type nano filtration membrane / reverse osmosis membrane module 18: Activated sludge tank 19: Microfiltration membrane / ultrafiltration membrane module 20: Air diffuser 21: Suction filtration pump

Claims (8)

油分を含有する原水に対しpHが9以上になるまでアルカリ剤を添加した後に、アニオン荷電型のナノろ過膜または逆浸透膜で膜分離して、膜透過水と膜濃縮水を得る造水方法。   A fresh water producing method for obtaining membrane permeated water and membrane concentrated water by adding an alkaline agent to the raw water containing oil until the pH reaches 9 or more and then separating the membrane with an anionically charged nanofiltration membrane or reverse osmosis membrane . アルカリ剤が水酸化ナトリウムまたは水酸化カリウムを含む、請求項1に記載の造水方法。   The fresh water generation method according to claim 1, wherein the alkaline agent contains sodium hydroxide or potassium hydroxide. pHが9以上になるまでアルカリ剤を添加した後の原水の濁度が0.1度以上の場合に、アルカリ剤を添加した後に精密ろ過膜または限外ろ過膜で膜ろ過して前処理膜ろ過水を得て、続いて前処理膜ろ過水をアニオン荷電型のナノろ過膜または逆浸透膜で膜分離する請求項1または2に記載の造水方法。   When the turbidity of the raw water after adding the alkaline agent until the pH becomes 9 or higher is 0.1 degree or higher, the membrane is filtered through a microfiltration membrane or an ultrafiltration membrane after the alkaline agent is added. The fresh water generation method according to claim 1 or 2, wherein filtrated water is obtained, and the pretreated membrane filtrate is subsequently subjected to membrane separation with an anionically charged nanofiltration membrane or a reverse osmosis membrane. pHが9以上になるまでアルカリ剤を添加した後、pHが9未満になるまで酸を添加してからアニオン荷電型のナノろ過膜または逆浸透膜で膜分離する請求項1または2に記載の造水方法。   The alkaline agent is added until the pH becomes 9 or more, then the acid is added until the pH becomes less than 9, and then the membrane is separated by an anionically charged nanofiltration membrane or reverse osmosis membrane. Fresh water generation method. pHが9以上になるまでアルカリ剤を添加した後の原水の濁度が0.1度以上の場合に、アルカリ剤を添加した後に精密ろ過膜または限外ろ過膜で膜ろ過し、続いて前処理膜ろ過水のpHが9未満になるまで酸を添加してからアニオン荷電型のナノろ過膜または逆浸透膜で膜分離する請求項4に記載の造水方法。   When the turbidity of the raw water after adding the alkaline agent until the pH becomes 9 or higher is 0.1 degree or higher, after adding the alkaline agent, membrane filtration with a microfiltration membrane or ultrafiltration membrane, followed by The fresh water generation method according to claim 4, wherein the acid is added until the pH of the treated membrane filtrate is less than 9, and then membrane separation is performed with an anion charge type nanofiltration membrane or a reverse osmosis membrane. pHが9未満になるまで酸を添加した後の原水の濁度が0.1度以上の場合に、酸を添加した後に精密ろ過膜または限外ろ過膜で膜ろ過して前処理膜ろ過水を得て、続いて前処理膜ろ過水をアニオン荷電型のナノろ過膜または逆浸透膜で膜分離する請求項4に記載の造水方法。   When the turbidity of the raw water after addition of the acid until the pH is less than 9 is 0.1 degree or more, the membrane is filtered through a microfiltration membrane or an ultrafiltration membrane after the acid is added, and pretreated membrane filtrate And subsequently separating the pretreated membrane filtrate with an anionically charged nanofiltration membrane or reverse osmosis membrane. 膜濃縮水を生物処理する、請求項1〜6のいずれかに記載の造水方法。   The fresh water generation method according to any one of claims 1 to 6, wherein the membrane concentrated water is biologically treated. 膜濃縮水のpHを6以上8以下に調整した後に生物処理する、請求項7に記載の造水方法。   The fresh water generation method according to claim 7, wherein the biological treatment is performed after adjusting the pH of the membrane concentrated water to 6 or more and 8 or less.
JP2012205384A 2012-09-19 2012-09-19 Water production method Pending JP2014057931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012205384A JP2014057931A (en) 2012-09-19 2012-09-19 Water production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012205384A JP2014057931A (en) 2012-09-19 2012-09-19 Water production method

Publications (1)

Publication Number Publication Date
JP2014057931A true JP2014057931A (en) 2014-04-03

Family

ID=50614919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012205384A Pending JP2014057931A (en) 2012-09-19 2012-09-19 Water production method

Country Status (1)

Country Link
JP (1) JP2014057931A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
WO2017110288A1 (en) * 2015-12-22 2017-06-29 住友電気工業株式会社 Water treatment method and water treatment system
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater
WO2018181262A1 (en) * 2017-03-29 2018-10-04 株式会社Aztech Oily wastewater treatment device and oily wastewater treatment method using same
JP2020032351A (en) * 2018-08-29 2020-03-05 株式会社神戸製鋼所 Mobile water purification device
JP2020089852A (en) * 2018-12-07 2020-06-11 オルガノ株式会社 Regeneration method and regeneration device of filtration membrane, and filtration method and filtration device of oil-containing wastewater
WO2020116005A1 (en) * 2018-12-07 2020-06-11 オルガノ株式会社 Appratus and method for filtrating oil-containing drainage water, and method and apparatus for restoring filtration membrane device
WO2022054417A1 (en) * 2020-09-08 2022-03-17 日東電工株式会社 Method for processing oil-containing wastewater
WO2022071027A1 (en) * 2020-09-30 2022-04-07 日東電工株式会社 Method for treating wastewater containing organic substance

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016209842A (en) * 2015-05-12 2016-12-15 栗田工業株式会社 Organic wastewater treatment method
WO2017110288A1 (en) * 2015-12-22 2017-06-29 住友電気工業株式会社 Water treatment method and water treatment system
WO2018020591A1 (en) * 2016-07-26 2018-02-01 栗田工業株式会社 Method for treating organic wastewater
JP7104423B2 (en) 2017-03-29 2022-07-21 株式会社Aztech Oil-water wastewater treatment equipment and oil-water wastewater treatment method using this
WO2018181262A1 (en) * 2017-03-29 2018-10-04 株式会社Aztech Oily wastewater treatment device and oily wastewater treatment method using same
JPWO2018181262A1 (en) * 2017-03-29 2020-02-20 株式会社Aztech Oil-water wastewater treatment apparatus and oil-water wastewater treatment method using the same
JP2020032351A (en) * 2018-08-29 2020-03-05 株式会社神戸製鋼所 Mobile water purification device
JP2020089852A (en) * 2018-12-07 2020-06-11 オルガノ株式会社 Regeneration method and regeneration device of filtration membrane, and filtration method and filtration device of oil-containing wastewater
WO2020116005A1 (en) * 2018-12-07 2020-06-11 オルガノ株式会社 Appratus and method for filtrating oil-containing drainage water, and method and apparatus for restoring filtration membrane device
JP7222684B2 (en) 2018-12-07 2023-02-15 オルガノ株式会社 Method and device for regenerating filtration membrane, and method and device for filtering oil-containing wastewater
EP4234070A3 (en) * 2018-12-07 2023-09-20 Organo Corporation Appratus and method for filtrating oil-containing drainage water, and method and apparatus for restoring filtration membrane device
WO2022054417A1 (en) * 2020-09-08 2022-03-17 日東電工株式会社 Method for processing oil-containing wastewater
JP2022045203A (en) * 2020-09-08 2022-03-18 日東電工株式会社 Method for processing oil-containing wastewater
US20220305445A1 (en) * 2020-09-08 2022-09-29 Nitto Denko Corporation Method of treating oil-containing discharged water
WO2022071027A1 (en) * 2020-09-30 2022-04-07 日東電工株式会社 Method for treating wastewater containing organic substance

Similar Documents

Publication Publication Date Title
JP2014057931A (en) Water production method
Konvensional A review of oilfield wastewater treatment using membrane filtration over conventional technology
US8580115B2 (en) Method for cleaning filtration membrane modules and membrane bioreactor system for treating untreated water or wastewater or activated sludge
Chen et al. Membrane separation: basics and applications
CN106103349A (en) Method for treating water
Chen et al. Membrane filtration
JP2015077530A (en) Water production method and water production device
KR101333677B1 (en) A defecator using the membrane with silicon carbide material for waste liquid
CN203360192U (en) Treatment device for difficultly degradable industrial wastewater
JP5586749B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP2006272218A (en) Two-stage membrane filtration system and operation method of two-stage membrane filtration system
KR20170033611A (en) Water treatment system and water treatment method
KR100538126B1 (en) Ds-mt system
JP2009214062A (en) Operation method of immersion type membrane module
JP5269331B2 (en) Waste water treatment equipment
Qrenawi et al. Membrane Bioreactor (MBR) as a Reliable Technology for Wastewater Treatment
Razavi et al. Industrial wastewater treatment by using of membrane
Huang et al. Pilot-plant study of a high recovery membrane filtration process for drinking water treatment
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
KR102315906B1 (en) Membrane filtration for advanced water treatment device using hydraulic head differential
JP6118668B2 (en) Water treatment system
Choksuchart et al. Surface water clarification by ultrafiltration with an immersed membrane system: effect of coagulation/aeration on flux enhancement
Töre et al. Developments in membrane bioreactor technologies and evaluation on case study applications for recycle and reuse of miscellaneous wastewaters
CN107892409A (en) A kind of efficient reuse method of eider down industrial wastewater and its device