JP2009214062A - Operation method of immersion type membrane module - Google Patents

Operation method of immersion type membrane module Download PDF

Info

Publication number
JP2009214062A
JP2009214062A JP2008062252A JP2008062252A JP2009214062A JP 2009214062 A JP2009214062 A JP 2009214062A JP 2008062252 A JP2008062252 A JP 2008062252A JP 2008062252 A JP2008062252 A JP 2008062252A JP 2009214062 A JP2009214062 A JP 2009214062A
Authority
JP
Japan
Prior art keywords
filtration
membrane
water
membrane module
immersion tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008062252A
Other languages
Japanese (ja)
Inventor
Tamotsu Kitade
有 北出
Ryota Takagi
亮太 高木
Tomohiro Maeda
智宏 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008062252A priority Critical patent/JP2009214062A/en
Publication of JP2009214062A publication Critical patent/JP2009214062A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method which can efficiently improves a water recovery rate, reduce a load on the membrane module, and prevent clogging of a membrane when performing the membrane separation of water by a membrane module installed in an immersion tank. <P>SOLUTION: In a method for producing membrane-filtered water by a water treatment apparatus wherein a filtration membrane module is immersed and installed in the immersion tank storing raw water and a raw water supply port is provide below the upper end of the filtration membrane module, the method includes a water supply and filtration process (a) of extracting the membrane-filtered water by sucking the membrane-filtered water side of the filtration membrane module while supplying the raw water of an amount equal to or more than the amount of extracted membrane-filtered water, and an air cleaning process (c) for cleaning the filtration membrane module by supplying air to the raw water side of the membrane module after stopping membrane filtration are carried out once or repeatedly, and then the water supply and filtration process (a), a filtration process at a lowered liquid level (b) where the liquid level in the immersion tank is lowered by performing the membrane filtration where the supply amount of the raw water is adjusted to zero or an amount less than the amount of the membrane-filtered water, the air cleaning process (c) and a water discharge process (d) of discharging the raw water in the immersion tank to the outside of the tank. The above processes are carried out in this order. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水の膜ろ過処理を行うための浸漬型膜モジュールの運転方法に関するものである。   The present invention relates to an operation method of a submerged membrane module for performing a membrane filtration treatment of water.

膜ろ過による膜分離法は、省エネルギー、省スペース、省力化およびろ過水質向上等の特長を有するため、様々な分野において使用が拡大してきている。例えば、精密ろ過膜や限外ろ過膜を河川水や地下水や下水処理水から工業用水や水道水を製造する浄水プロセスへの適用や、海水淡水化逆浸透膜処理工程における前処理への適用があげられる。また、膜分離に用いられるろ過膜モジュールは、処理分野に係わらず加圧型と浸漬型に分類される。浸漬型の膜モジュールは浸漬槽内に浸漬設置され、吸引あるいは水頭差を駆動力として、ろ過膜を介して浸漬槽内の原水から膜ろ過水を得る浸漬型膜分離手段に用いられる。   The membrane separation method by membrane filtration has features such as energy saving, space saving, labor saving, and improvement of filtered water quality, and therefore has been used in various fields. For example, microfiltration membranes and ultrafiltration membranes can be applied to water purification processes that produce industrial water and tap water from river water, groundwater and sewage treated water, and to pretreatment in seawater desalination reverse osmosis membrane treatment processes. can give. Moreover, the filtration membrane module used for membrane separation is classified into a pressurization type and an immersion type irrespective of the processing field. The immersion type membrane module is immersed and installed in an immersion tank, and is used as an immersion type membrane separation means that obtains membrane filtrate from raw water in the immersion tank through a filtration membrane using suction or water head difference as a driving force.

浸漬型膜モジュールで水処理を行う場合、原水を浸漬槽内に連続または間欠的に給水し、浸漬槽内に浸漬設置された膜モジュールをポンプ等で吸引ろ過することによって膜ろ過水が得られる。原水を膜でろ過すると、原水に含まれる濁質や有機物、無機物等の除去対象物が膜面に蓄積し、膜の目詰まりが起こる。これにより膜のろ過抵抗が上昇し、やがてろ過を継続することができなくなる。そこで膜ろ過性能を維持するため、定期的に膜の洗浄を行う必要がある。膜の洗浄には膜ろ過水を膜の2次側(ろ過水側)から1次側(原水側)へ逆流させる逆洗工程や、気体を膜の1次側に供給して膜の汚れを取る空洗工程や、空洗工程や逆洗工程で出た汚れを膜が浸漬された槽内から排出する排水工程がある。また逆洗工程や空洗工程で取れない汚れがある場合には、薬液を一定時間膜と接触させて洗浄する薬液洗浄がある。これらの洗浄手段を有効に行うことが膜ろ過を安定に運転するために非常に重要である。   When water treatment is performed with a submerged membrane module, raw water is continuously or intermittently supplied into the immersion tank, and membrane filtered water is obtained by suction filtration of the membrane module immersed in the immersion tank with a pump or the like. . When raw water is filtered through a membrane, removal objects such as turbidity, organic matter, and inorganic matter contained in the raw water accumulate on the membrane surface, resulting in clogging of the membrane. As a result, the filtration resistance of the membrane increases, and it becomes impossible to continue the filtration over time. Therefore, in order to maintain the membrane filtration performance, it is necessary to periodically wash the membrane. Membrane cleaning can be done by backwashing the membrane filtered water from the secondary side (filtrated water side) to the primary side (raw water side) or by supplying gas to the primary side of the membrane to clean the membrane. There are an air washing step for removing and a draining step for discharging dirt generated in the air washing step and the back washing step from the tank in which the membrane is immersed. In addition, when there is dirt that cannot be removed in the back washing process or the empty washing process, there is a chemical cleaning in which the chemical is brought into contact with the membrane for a certain period of time. Effectively performing these cleaning means is very important for stable operation of membrane filtration.

また、膜ろ過において、装置に給水する原水の量と装置から得られる膜ろ過水の比、すなわち回収率(膜ろ過水量/原水量)を高めることが求められ、装置の性能として重要である。例えば装置に供給した原水量が100で、装置から得られた膜ろ過水量が90の場合、回収率は90%となる。回収率を高めるには逆洗工程や空洗工程で膜から剥がれた汚れを浸漬槽から排水する排水量を減らせば良いが、この排水量を減らすと浸漬槽内に汚れを多く残存することとなり、膜にかかる負荷が増えるため、膜の目詰まりが起こりやすくなる傾向がある。   Further, in membrane filtration, it is required to increase the ratio of the raw water supplied to the apparatus and the ratio of the membrane filtered water obtained from the apparatus, that is, the recovery rate (membrane filtered water amount / raw water amount), which is important as the performance of the apparatus. For example, when the amount of raw water supplied to the apparatus is 100 and the amount of membrane filtrate obtained from the apparatus is 90, the recovery rate is 90%. In order to increase the recovery rate, it is only necessary to reduce the amount of wastewater drained from the immersion tank by removing the dirt peeled off from the membrane in the backwashing process and the air washing process, but if this drainage amount is reduced, a large amount of dirt will remain in the immersion tank. Therefore, the film tends to be clogged.

回収率を効率的に高め、かつ膜の目詰まりを防ぎながら運転する方法として、特許文献1には、浸漬型膜ろ過装置の下部に汚れを溜めて、回収率を高める方法が記載されている。また特許文献2には、空洗工程や逆洗工程で膜から剥がれた汚れを浸漬槽上部から排出する方法が記載されている。しかし、特許文献1の方法では、浸漬槽下部に汚れ保留スペースを設ける必要があるため、薬液洗浄時に薬液量が多く必要になるという問題がある。また、特許文献2の方法では、十分に回収率を高めることができないという問題がある。
特開2006−255587号公報 特表2003−513785号公報
As a method for efficiently increasing the recovery rate and preventing clogging of the membrane, Patent Document 1 describes a method for increasing the recovery rate by collecting dirt in the lower part of the submerged membrane filtration device. . Patent Document 2 describes a method for discharging dirt peeled off from a film in an empty washing process or a back washing process from the upper part of the immersion tank. However, in the method of Patent Document 1, since it is necessary to provide a dirt holding space at the lower part of the immersion tank, there is a problem that a large amount of the chemical solution is required when cleaning the chemical solution. Moreover, the method of Patent Document 2 has a problem that the recovery rate cannot be sufficiently increased.
JP 2006-255587 A Special table 2003-513785 gazette

本発明の目的は、浸漬槽内に浸漬設置したろ過膜モジュールによって原水を膜分離して膜ろ過水を製造する際に、水回収率を効率良く高めるとともに、膜モジュールへの負荷を軽減させ、膜の目詰まりを抑えることができる運転方法を提供することにある。   The purpose of the present invention is to efficiently increase the water recovery rate and reduce the load on the membrane module when producing membrane filtered water by separating the raw water by the membrane membrane module immersed in the immersion tank, An object of the present invention is to provide an operation method capable of suppressing clogging of a membrane.

上記目的を達成するため、本発明の浸漬型膜モジュールの運転方法は、次の特徴を有するものである。
(1)原水を貯留した浸漬槽内にろ過膜モジュールが浸漬設置され、ろ過膜モジュール上端よりも下方に原水供給口が設けられている水処理装置によって膜ろ過水を製造する際の、ろ過膜モジュールの運転方法であって、(a)膜ろ過水の取り出し水量と同量以上の原水を給水しながら、ろ過膜モジュールの膜ろ過水側を吸引して膜ろ過水を取り出す給水ろ過工程と(c)膜ろ過を停止し膜モジュールの原水側に空気を供給してろ過膜モジュールを洗浄する空洗工程とを1回もしくは繰り返して行った後、前記(a)給水ろ過工程を行い、次いで、(b)原水供給量を零もしくは膜ろ過水の水量よりも少ない量として膜ろ過することにより浸漬槽内の液面を下げる液面低下ろ過工程と、前記(c)空洗工程と、(d)浸漬槽内の原水を浸漬槽外へ排出する排水工程とをこの順で行うことを特徴とする浸漬型膜モジュールの運転方法。
(2)上記(1)記載の運転方法において、膜モジュール上端より下の浸漬槽内の貯水体積(V)に対する、(c)空洗工程の実施後に(a)給水ろ過工程を開始から5分間における原水供給量と膜ろ過水取り出し量との差(I)の比(I/V)が0.5以上であることを特徴とする浸漬型膜モジュールの運転方法。
(3)上記(1)記載の運転方法において、(a)給水ろ過工程の間に(c)空洗工程を実施する際、膜モジュール上端より下の浸漬槽内の貯水体積(V)に対する、膜モジュール上端より上部の浸漬槽内の原水量(H)の比(H/V)が0.5以上であることを特徴とする浸漬型膜モジュールの運転方法。
(4)上記(2)又は上記(3)記載の運転方法において、(b)液面低下ろ過工程の実施時の膜ろ過流束が(a)給水ろ過工程の実施時の膜ろ過流束よりも低いことを特徴とする浸漬型膜モジュールの運転方法。
(5)上記(4)記載の運転方法において、(a)給水ろ過工程におけるろ過流量制御手段が定流量ろ過であり、かつ、(b)液面低下ろ過工程におけるろ過流量制御手段が定圧ろ過であることを特徴とする浸漬型膜モジュールの運転方法。
In order to achieve the above object, the operation method of the submerged membrane module of the present invention has the following characteristics.
(1) Filtration membrane when membrane filtration water is produced by a water treatment apparatus in which a filtration membrane module is immersed in a dipping tank storing raw water and a raw water supply port is provided below the upper end of the filtration membrane module (A) A feed water filtration step of sucking the membrane filtrate side of the filtration membrane module and taking out the membrane filtrate water while supplying raw water equal to or more than the amount of the membrane filtrate water to be taken out ( c) After the membrane filtration is stopped and the air washing step of supplying air to the raw water side of the membrane module to wash the filtration membrane module once or repeatedly, (a) performing the feed water filtration step, (B) a liquid level lowering filtration step for lowering the liquid level in the immersion tank by performing membrane filtration with the raw water supply amount being zero or less than the amount of membrane filtration water, (c) the air washing step, (d ) Immerse the raw water in the immersion tank The method of operating submerged membrane module and draining process and performing in this order to be discharged to.
(2) In the operation method described in (1) above, (a) the water filtration step is performed for 5 minutes after the start of the (c) air washing step for the water storage volume (V) in the immersion tank below the upper end of the membrane module. The operation method of the submerged membrane module, wherein the ratio (I / V) of the difference (I) between the raw water supply amount and the membrane filtrate water removal amount in the above is 0.5 or more.
(3) In the operation method described in (1) above, when (c) the air washing step is performed during the (a) feed water filtration step, the water storage volume (V) in the immersion tank below the upper end of the membrane module, A method for operating a submerged membrane module, wherein the ratio (H / V) of the amount of raw water (H) in the immersion tank above the upper end of the membrane module is 0.5 or more.
(4) In the operation method described in (2) or (3) above, the membrane filtration flux at the time of (b) the liquid level lowering filtration step is (a) the membrane filtration flux at the time of the feed water filtration step. A method for operating a submerged membrane module, characterized by being low.
(5) In the operation method described in (4) above, (a) the filtration flow rate control means in the feed water filtration step is constant flow filtration, and (b) the filtration flow rate control means in the liquid level lowering filtration step is constant pressure filtration. A method for operating a submerged membrane module, comprising:

本発明の浸漬型膜モジュールの運転方法によれば、効率良く回収率を高めながら、かつ膜モジュールへ負荷を軽減させ、膜の目詰まりを抑えながら運転することができる。   According to the operation method of the submerged membrane module of the present invention, it is possible to operate while efficiently increasing the recovery rate, reducing the load on the membrane module, and suppressing clogging of the membrane.

本発明法の実施形態を、図1に示す浸漬型膜モジュールろ過装置を用いて水処理する場合を例にとって、図1及び図2を参照しながら以下に説明する。但し、本発明が以下に示す実施態様に限定される訳ではない。   The embodiment of the method of the present invention will be described below with reference to FIGS. 1 and 2, taking as an example the case of water treatment using the submerged membrane module filtration device shown in FIG. 1. However, the present invention is not limited to the embodiments described below.

図1は、本発明法が適用される浸漬型膜ろ過装置の一例を模式的に示す概略フロー図である。浸漬槽1内にはろ過膜モジュール2が浸漬設置されている。ろ過膜モジュールよりも下方に原水供給口が設けられている。   FIG. 1 is a schematic flow diagram schematically showing an example of a submerged membrane filtration apparatus to which the method of the present invention is applied. A filtration membrane module 2 is immersed in the immersion tank 1. A raw water supply port is provided below the membrane filter module.

(a)膜ろ過水の取り出し水量と同量以上の原水を給水しながら、ろ過膜モジュールの膜ろ過水側を吸引して膜ろ過水を取り出す給水ろ過工程(以下、給水ろ過工程(a)という。)では、原水が浸漬槽1に原水配管3を介して原水供給口から給水され、吸引ポンプ5によって膜モジュール2、ろ過弁6、膜ろ過水配管4を介して膜ろ過水が取り出される。この工程では、原水の給水量をろ過水量と同量ないしはそれ以上とすることにより、浸漬槽内液の液面WLは一定に保たれまたは徐々に上昇する。給水ろ過工程(a)を所定時間行った後、吸引ポンプ5を停止し、ろ過弁6を閉じ、給水ろ過工程を停止する。本工程では、膜ろ過水が得られると同時に原水中の懸濁物が膜に蓄積し、膜の汚れが進む。   (A) A feed water filtration step (hereinafter referred to as a feed water filtration step (a)) for sucking the membrane filtrate side of the filtration membrane module and taking out the membrane filtrate water while supplying raw water equal to or greater than the amount of the membrane filtrate water taken out )), The raw water is supplied to the immersion tank 1 from the raw water supply port through the raw water pipe 3, and the membrane filtrate is taken out by the suction pump 5 through the membrane module 2, the filtration valve 6, and the membrane filtrate pipe 4. In this step, the liquid level WL of the liquid in the immersion bath is kept constant or gradually rises by setting the amount of raw water supplied to be equal to or more than the amount of filtered water. After performing the feed water filtration step (a) for a predetermined time, the suction pump 5 is stopped, the filtration valve 6 is closed, and the feed water filtration step is stopped. In this step, membrane filtrate is obtained, and at the same time, the suspension in the raw water accumulates on the membrane, and the membrane becomes dirty.

そこで、給水ろ過工程(a)の後には、(c)膜ろ過を停止し膜モジュールの原水側に空気を供給してろ過膜モジュールを洗浄する空洗工程(以下、空洗工程(c)という。)を行う。この時、給水も停止させることが好ましい。この空洗工程(c)では、膜モジュール2の下方に配置した散気装置から、空洗弁12、空洗エア配管11を介して、ブロワ10により供給される空気を気泡として散気する。また空洗工程(c)と同時またはその前後に、逆洗弁9を開き、逆洗ポンプ8によって逆洗水配管7を介して膜モジュール2の2次側へ逆洗水を送り込み逆流洗浄を行う工程(以下、逆洗工程という。)を実施してもかまわない。これらによって膜表面に空気や水を衝突させ、ろ過膜を揺動させ、膜表面や膜間の流路に蓄積した懸濁物質を剥離・除去され、剥がされた汚れは浸漬槽内の液中の全体に均一に懸濁物質として分散する。   Therefore, after the feed water filtration step (a), (c) the membrane filtration is stopped and air is supplied to the raw water side of the membrane module to wash the filtration membrane module (hereinafter referred to as the “air washing step (c)”. .)I do. At this time, it is preferable to stop the water supply. In this air washing step (c), air supplied from the blower 10 is diffused as bubbles from the air diffuser disposed below the membrane module 2 through the air washing valve 12 and the air washing air pipe 11. At the same time before or after the air washing step (c), the backwash valve 9 is opened, and the backwash water is sent to the secondary side of the membrane module 2 through the backwash water pipe 7 by the backwash pump 8 to perform the backwash. You may implement the process (henceforth a backwashing process) to perform. By these, air and water collide with the membrane surface, the filtration membrane is swung, and suspended substances accumulated on the membrane surface and between the membranes are peeled off and removed. Are uniformly dispersed as a suspended substance.

本発明法では、給水ろ過工程(a)の後に空洗工程(c)を行なう。この給水ろ過工程(a)と空洗工程(c)とは、繰り返して行ってもかまわない(図2における繰り返しA)。   In this invention method, an air washing process (c) is performed after a feed water filtration process (a). The feed water filtration step (a) and the air washing step (c) may be repeated (repetition A in FIG. 2).

給水ろ過工程(a)と空洗工程(c)との後には再度、給水ろ過工程(a)を行ない、その後に、(b)原水供給量を零もしくは膜ろ過水の水量よりも少ない量として膜ろ過することにより浸漬槽内の液面を下げる液面低下ろ過工程(以下、液面低下ろ過工程(b)という。)を行う。この工程では、原水の給水を停止または膜ろ過水量より少ない量で原水を給水しながら膜ろ過することにより浸漬槽内の液面WLを下げていく。   After the feed water filtration step (a) and the air washing step (c), the feed water filtration step (a) is performed again, and then (b) the raw water supply amount is zero or less than the amount of membrane filtrate water. A liquid level lowering filtration step (hereinafter referred to as a liquid level lowering filtration step (b)) for lowering the liquid level in the immersion tank is performed by membrane filtration. In this step, the liquid level WL in the immersion tank is lowered by stopping the supply of the raw water or performing membrane filtration while supplying the raw water in an amount smaller than the amount of membrane filtration water.

液面低下ろ過工程(b)の次に、前記した空洗工程(c)を行った後に、(d)浸漬槽内の原水を浸漬槽外へ排出する排水工程(以下、排水工程(d)という。)を行う。この工程では、排水弁14を開き、排水配管13を介して槽内液を浸漬槽外へと引抜く。この槽内液の排水により、槽内液中に分散した懸濁物質は槽内液とともに排出される。排水工程(d)の終了後は、給水ろ過工程(a)を再度行うために、原水配管3を介して浸漬槽内に原水を給水する給水工程が行われ、次いで、給水ろ過工程(a)が再開される。   After the liquid level lowering filtration step (b), after performing the above-described air washing step (c), (d) a draining step (hereinafter referred to as draining step (d)) for discharging the raw water in the immersion bath to the outside of the immersion bath. ). In this step, the drain valve 14 is opened, and the liquid in the tank is drawn out of the immersion tank through the drain pipe 13. Due to the drainage of the liquid in the tank, the suspended matter dispersed in the liquid in the tank is discharged together with the liquid in the tank. After completion of the drainage step (d), in order to perform the feed water filtration step (a) again, a feed water step for feeding the raw water into the immersion tank through the raw water pipe 3 is performed, and then the feed water filtration step (a) Is resumed.

本発明法によって実施される運転工程の工程順序の一例を図2(工程フロー図)に示す。この図2の実施態様では、給水ろ過工程(a)と空洗工程(c)を繰り返して行った後、給水ろ過工程(a)、液面低下ろ過工程(b)、空洗工程(c)、排水工程(d)をこの順で行う。その後は、給水を行い、給水ろ過工程(a)に戻り、運転を繰り返す(繰り返しB)。   An example of the process sequence of the operation process implemented by the method of the present invention is shown in FIG. 2 (process flow diagram). In the embodiment of FIG. 2, after repeatedly performing the feed water filtration step (a) and the air washing step (c), the feed water filtration step (a), the liquid level lowering filtration step (b), and the air washing step (c). The drainage step (d) is performed in this order. After that, water is supplied, the process returns to the water supply filtration step (a), and the operation is repeated (repeat B).

給水ろ過工程(a)と空洗工程(c)とは、1回ずつ行うのでもよいし、繰り返して行ってもかまわない(繰り返しA)。また、その給水ろ過工程(a)と空洗工程(c)との間に液面低下ろ過工程(b)を行ってもかまわない。このように液面低下ろ過工程(b)を実施すると、浸漬槽の膜モジュール上端より上に水を溜めるスペースを最小限に抑えることができるため、より好ましい。繰り返しAにおける繰り返し回数は、多くても数十回程度以下の範囲とすることが好ましい。給水ろ過工程(a)の後に空洗工程(c)を行うことにより、膜に蓄積した汚れが一旦膜から剥離するため、空洗工程(c)を実施しない場合に比べ、膜への汚れの蓄積を減らすことができる。   The feed water filtration step (a) and the air washing step (c) may be performed once or repeatedly (repetition A). Moreover, you may perform a liquid level fall filtration process (b) between the feed water filtration process (a) and an air washing process (c). When the liquid level lowering filtration step (b) is performed in this manner, it is more preferable because a space for storing water above the upper end of the membrane module of the immersion tank can be minimized. The number of repetitions in the repetition A is preferably in the range of at most about several tens of times. By performing the air washing step (c) after the feed water filtration step (a), dirt accumulated in the membrane is once peeled off from the membrane, so that the dirt on the membrane is less than when the air washing step (c) is not performed. Accumulation can be reduced.

給水ろ過工程(a)を行う際には、膜モジュールよりも下方の原水供給口から原水を槽内に供給し、膜ろ過水量と同量以上の原水量を給水することが重要である。空洗工程(c)を実施した後、給水ろ過工程(a)を実施すると、膜モジュール上端より下方の浸漬槽内の槽内液(w2)は再び膜モジュール側に引き寄せられてろ過されるが、それと同時にその槽内液(w2)中に浮遊している懸濁物質は再び膜モジュール内のろ過膜に付着する。しかし、原水給水量が膜ろ過水量以上であるため、膜モジュール上端より上の浸漬槽内の液(w1)は、膜モジュール側に引き寄せられることが少なく、その液(w1)中に浮遊した懸濁物質は、膜ろ過されることなくそのまま膜モジュール上端より上の浸漬槽内液(w1)中に浮遊して残留する。   When performing the feed water filtration step (a), it is important to supply raw water from the raw water supply port below the membrane module into the tank and supply a raw water amount equal to or greater than the amount of membrane filtered water. When the feed water filtration step (a) is performed after the air washing step (c), the liquid in the bath (w2) in the immersion bath below the upper end of the membrane module is again drawn to the membrane module side and filtered. At the same time, the suspended substance suspended in the liquid (w2) in the tank again adheres to the filtration membrane in the membrane module. However, since the raw water supply amount is equal to or greater than the membrane filtration water amount, the liquid (w1) in the immersion tank above the upper end of the membrane module is hardly attracted to the membrane module side, and the suspended suspension in the liquid (w1). The turbid substance remains floating in the immersion tank liquid (w1) above the upper end of the membrane module without being filtered.

その給水ろ過工程(a)を続けていくと、膜モジュール上端より下の膜モジュール近傍の浸漬槽内液は、やがて給水される原水と同等の水質となる。膜モジュール上端より上の浸漬槽内液(w1)中に浮遊した懸濁物質は、空洗工程によって剥がれた濁質であり、非常に細かい懸濁物質となっているため、ほとんどは自然沈降することなくそのまま浮遊した状態を保つ。これにより、膜モジュールの膜面に付着して蓄積されるはずの汚れを膜モジュール上部に浮遊させたままの状態で膜ろ過を行うことができ、膜面の汚れ負荷を下げることができるため、膜の目詰まりを防ぎながら運転することが可能である。   If the feed water filtration step (a) is continued, the liquid in the immersion tank near the membrane module below the upper end of the membrane module will eventually have a water quality equivalent to the raw water supplied. Suspended substances suspended in the immersion tank liquid (w1) above the upper end of the membrane module are turbid substances that have been peeled off by the air washing process and become very fine suspended substances. It keeps floating as it is. As a result, it is possible to perform membrane filtration with the dirt that should be accumulated on the membrane surface of the membrane module suspended in the upper part of the membrane module, so that the dirt load on the membrane surface can be reduced. It is possible to operate while preventing clogging of the membrane.

液面低下ろ過工程(b)では、給水ろ過工程(a)によって膜モジュール上端より上の浸漬槽内液(w1)中に溜まった液を、原水の給水を停止または膜ろ過水量より少ない給水量として膜ろ過することにより、浸漬槽内液面WLを徐々に下げていく。本工程を行うことによって、続いて行う排水工程(d)の実施時に、浸漬槽内から排出する排水量を減らし、回収率を向上させることができる。この際、浸漬槽内液面WLが低下することにより、膜モジュール上端より上部の浸漬槽内に溜まった懸濁物質を多く含む水が膜モジュール近傍に降下し、膜モジュールの膜面でろ過されることとなるため、膜への負荷が一時的に大きくなる。そこで、液面低下ろ過工程(b)においては給水ろ過工程(a)に比べ、膜ろ過流束を下げ、膜の負荷を一時的に低減させることが好ましい。   In the liquid level lowering filtration step (b), the water accumulated in the immersion tank liquid (w1) above the upper end of the membrane module in the feed water filtration step (a) is stopped or the feed water amount is less than the membrane filtration water amount. As a result, the liquid level WL in the immersion bath is gradually lowered. By carrying out this step, the amount of drainage discharged from the immersion tank can be reduced and the recovery rate can be improved during the subsequent drainage step (d). At this time, since the liquid level WL in the immersion tank is lowered, water containing a large amount of suspended matter accumulated in the immersion tank above the upper end of the membrane module falls to the vicinity of the membrane module and is filtered by the membrane surface of the membrane module. Therefore, the load on the membrane temporarily increases. Therefore, in the liquid level lowering filtration step (b), it is preferable to lower the membrane filtration flux and temporarily reduce the membrane load as compared to the feed water filtration step (a).

液面低下ろ過工程(b)を行う時間は給水ろ過工程(a)の時間に比べると1/10程度と短いため、一時的に膜ろ過流束を下げても、装置の平均膜ろ過水量が大幅に減ることが無いため、効率の良い運転を実現することが可能である。膜ろ過流束を下げる方法としては、給水ろ過工程(a)の際は吸引ポンプ5のインバーターや、ろ過水配管4途中に設置された定流量弁によって、膜ろ過流量を一定流量に保つ定流量ろ過とし、液面低下ろ過工程(b)の際には、これらインバーターの制御や定流量弁の制御値を給水ろ過工程(a)終了時の制御値のままに保ち、定圧ろ過とすることによって、自然にろ過流量を低下させる方法が、最も簡単に実施することができるため好ましい。定圧ろ過とすることにより、懸濁物質を多く含む水をろ過することになる液面低下ろ過工程(b)の際にも、運転差圧を高めること無く、安定に運転することができ、膜ろ過差圧が膜モジュールの限界差圧以上に達することなく、運転することが可能となる。   Since the time for performing the liquid level lowering filtration step (b) is as short as 1/10 compared with the time for the feed water filtration step (a), even if the membrane filtration flux is temporarily lowered, the average amount of membrane filtration water in the device is Since it does not significantly decrease, it is possible to realize efficient operation. As a method for lowering the membrane filtration flux, a constant flow rate that keeps the membrane filtration flow rate constant by using an inverter of the suction pump 5 or a constant flow valve installed in the middle of the filtrate piping 4 during the feed water filtration step (a). By filtering and maintaining the control value of the inverter and the constant flow valve at the control value at the end of the feed water filtration step (a) in the liquid level lowering filtration step (b), constant pressure filtration is performed. A method of naturally reducing the filtration flow rate is preferable because it can be most easily performed. By performing constant pressure filtration, it is possible to operate stably without increasing the operating differential pressure even in the liquid level lowering filtration step (b) in which water containing a large amount of suspended substances is filtered. The operation can be performed without the filtration differential pressure exceeding the limit differential pressure of the membrane module.

液面低下ろ過工程(b)に続いて空洗工程(c)を行い、浸漬槽内液中の全体に懸濁物質を浮遊させた後、排水工程(d)で浸漬槽内から浸漬槽内液中1aの懸濁物質を排出する。   Subsequent to the liquid level lowering filtration step (b), the air washing step (c) is performed, the suspended substance is suspended in the entire liquid in the immersion bath, and then in the immersion bath from the immersion bath in the drainage step (d). Drain the suspended material of 1a in the liquid.

給水ろ過工程(a)を行う際に、懸濁物質を膜モジュール上端より上の槽内に溜めながら運転するためには、膜モジュール上端より下の浸漬槽内貯水体積(V)に比較して、空洗工程(c)実施後に給水ろ過工程(a)を開始から5分間における原水給水量と膜ろ過水取り出し量との差(I)の比(I/V)が0.5以上であることが好ましい。ここでは、原水の給水量と膜ろ過水取り出し量とは体積でもって表す。その差(I)の体積が大きいほど、懸濁物質を膜上部へと迅速に押し上げることができ、膜モジュールでろ過する懸濁物質量を減らすことができ、膜モジュールの負荷が低下し、膜のファウリングを抑えることが可能となる。特に、給水ろ過工程(a)開始時は懸濁物質が浸漬槽内全体に分散した状態であるため、給水ろ過工程(a)を開始してすぐに多量の原水を給水し、その後原水給水量を膜ろ過水量と同等まで減らしていくことも好ましい。ただし、原水の給水量から膜ろ過水量を引いた量(I)が大きすぎると、液面が急激に上昇し過ぎて槽内液が浸漬槽から溢れ出やすくなるので、浸漬槽の上部スペースが多く必要となって、浸漬槽が大きくなり過ぎ、装置コスト的に好ましくない。そのため、膜モジュール上端より下の浸漬槽内貯水体積(V)に比較して、空洗工程(c)実施後に給水ろ過工程(a)を開始から5分間における原水給水量と膜ろ過水量との差(I)との比(I/V)は大きくても2以下とすることが好ましい。   When performing the feed water filtration step (a), in order to operate while accumulating suspended substances in the tank above the upper end of the membrane module, compared with the water storage volume (V) in the immersion tank below the upper end of the membrane module. The ratio (I / V) of the difference (I) between the raw water supply amount and the membrane filtrate removal amount in 5 minutes from the start of the feed water filtration step (a) after the air washing step (c) is performed is 0.5 or more. It is preferable. Here, the amount of raw water supply and the amount of membrane filtrate removal are expressed by volume. The larger the volume of the difference (I), the faster the suspended material can be pushed up to the upper part of the membrane, the amount of suspended material filtered by the membrane module can be reduced, the load on the membrane module is reduced, and the membrane It becomes possible to suppress fouling. In particular, when the feed water filtration step (a) is started, suspended substances are dispersed throughout the immersion tank, so a large amount of raw water is fed immediately after the feed water filtration step (a) is started, and then the raw water feed amount It is also preferable to reduce the amount of water to the same level as the amount of membrane filtration water. However, if the amount (I) obtained by subtracting the amount of membrane filtration water from the amount of raw water supplied is too large, the liquid level rises too rapidly and the liquid in the tank tends to overflow from the immersion tank. A large amount is required, and the immersion tank becomes too large, which is not preferable in terms of apparatus cost. Therefore, compared with the water storage volume (V) in the immersion tank below the upper end of the membrane module, the feed water filtration step (a) after the start of the air washing step (c) The ratio (I / V) to the difference (I) is preferably at most 2 or less.

懸濁物質を膜上部に溜めながら運転するための、もう一つの方法としては、給水ろ過工程(a)の間に空洗工程(c)を実施する時に、膜モジュール上端より下の浸漬槽内の貯水体積(V)に対する、膜モジュール上端より上部の浸漬槽内の液量(H)との比(H/V)を0.5以上とすることが好ましい。上記した比(H/V)が大きいほど、空洗工程(c)実施時に懸濁物質が浸漬槽内の液の全体に均一に懸濁した時でも、膜モジュール上端より上部の液(w1)中により多くの懸濁物質が移行するため、給水ろ過工程(a)を開始した際に、膜モジュール上端より下の液(w2)中に存在する懸濁物質が相対的に少なくなるため、膜モジュールでろ過される液中の懸濁物質が少なくなり、負荷量が低減させることができる。上記した比(H/V)が大きいほど膜の負荷を減らすことができるが、大きすぎると浸漬槽上部のスペースが多く必要となるため、浸漬槽が大きくなり装置コスト的に好ましくない。そのため、上記した比(H/V)は大きくても5以下とすることが好ましい。   Another way to operate while accumulating suspended substances in the upper part of the membrane is as follows: in the immersion tank below the upper end of the membrane module when the air washing step (c) is performed during the feed water filtration step (a). The ratio (H / V) of the liquid volume (H) in the immersion tank above the upper end of the membrane module to the water storage volume (V) is preferably 0.5 or more. The larger the ratio (H / V), the higher the liquid (w1) above the upper end of the membrane module, even when the suspended substance is uniformly suspended throughout the liquid in the immersion tank during the air washing step (c). Since more suspended solids migrate inside, when the feed water filtration step (a) is started, the suspended solids present in the liquid (w2) below the upper end of the membrane module are relatively less. Suspended substances in the liquid filtered by the module are reduced, and the load can be reduced. The larger the ratio (H / V), the more the load on the film can be reduced. However, if the ratio is too large, a large space above the immersion tank is required, which increases the immersion tank and is not preferable in terms of apparatus cost. Therefore, the ratio (H / V) described above is preferably 5 or less at most.

浸漬槽内に原水を給水する原水供給口の位置は、膜モジュール上端よりも下方であればよい。槽内に供給された水が、膜モジュール上端より上部の浸漬槽内液(w1)と混ざらないようにするためには、膜モジュール上端に近い位置ではなく、膜モジュールの下端位置近傍もしくはそれよりも下であることが好ましく、さらに、浸漬槽の最も下部付近に原水供給口を設けることが好ましい。また、給水によって浸漬槽内の液の全体が混合流とならないように、給水口に整流筒を設け、給水の勢いを分散させて給水することがより好ましい。   The position of the raw water supply port for supplying raw water into the immersion tank may be lower than the upper end of the membrane module. In order to prevent the water supplied into the tank from being mixed with the immersion tank liquid (w1) above the upper end of the membrane module, it is not located near the upper end of the membrane module, but near or lower than the lower end position of the membrane module. It is also preferable that the raw water supply port is provided near the lowermost part of the immersion tank. Further, it is more preferable that a rectifying cylinder is provided at the water supply port so that the entire liquid in the immersion tank does not become a mixed flow by water supply, and the water supply is dispersed and supplied.

なお、ここで、膜モジュール上端より下の浸漬槽内の貯水体積(V)は、膜モジュール上端より下の浸漬槽内体積から、浸漬されている膜モジュール体積及び槽内の配管や部材や散気管等の体積を除いた体積であり、即ち、原水が溜まる部分の浸漬槽内の体積のことである。また、膜モジュール上端より上部の浸漬槽内の原水量(H)は、膜モジュール上端より上の浸漬槽内体積から、槽内の配管や部材等を除いた体積であり、即ち、原水が溜まる部分の浸漬槽内の液量のことである。   Here, the water storage volume (V) in the immersion tank below the upper end of the membrane module is determined based on the volume of the immersed membrane module and the piping, members, and scattering in the tank from the volume in the immersion tank below the upper end of the membrane module. The volume excluding the volume of the trachea and the like, that is, the volume in the immersion tank where the raw water accumulates. Further, the raw water amount (H) in the immersion tank above the upper end of the membrane module is a volume obtained by removing the piping and members in the tank from the immersion tank volume above the upper end of the membrane module, that is, the raw water is accumulated. It is the amount of liquid in the immersion tank of the part.

浸漬槽内に浸漬設置された膜モジュールの上端とは、ろ過膜が膜モジュールとして配置され、その膜モジュール内で実際にろ過機能を発揮するろ過膜部分のうちの垂直方向の最も高い位置のことである。図1の場合では符号Pが膜モジュールの上端の高さに相当する。ここで、膜モジュール内に配置したろ過膜は、中空糸膜でも平膜でも良いが、膜の洗浄性および設置面積あたりの膜面積比から中空糸膜の方がより好ましい。中空糸膜は、垂直に配置されていることが好ましいが、水平に配置されていてもよい。   The upper end of the membrane module immersed in the immersion tank is the highest position in the vertical direction of the filtration membrane part where the filtration membrane is arranged as a membrane module and actually performs the filtration function in the membrane module It is. In the case of FIG. 1, the symbol P corresponds to the height of the upper end of the membrane module. Here, the filtration membrane disposed in the membrane module may be a hollow fiber membrane or a flat membrane, but the hollow fiber membrane is more preferable from the viewpoint of the cleaning property of the membrane and the membrane area ratio per installation area. The hollow fiber membranes are preferably arranged vertically, but may be arranged horizontally.

ここで、膜ろ過流束とは、膜面積あたりの膜ろ過水量のことであり、膜ろ過流束を高めることは、膜ろ過装置の効率を高める上で重要となる。   Here, the membrane filtration flux is the amount of membrane filtration water per membrane area, and increasing the membrane filtration flux is important in increasing the efficiency of the membrane filtration device.

本発明において用いる浸漬型膜モジュール装置は、膜モジュール上端より上部に水を溜めるスペースが必要である。また、膜モジュール上端より下の浸漬槽内スペースは膜モジュールを除いた容積ができる限り小さい方がより好ましく、かつ浸漬槽内体積あたりの膜モジュール密度が高い方が好ましい。またこのような理由から膜モジュール下部にスペースを設けず、なるべく浸漬槽の下部に近い部分に膜モジュールを設置したほうがより好ましい。   The submerged membrane module device used in the present invention requires a space for storing water above the upper end of the membrane module. Further, the space in the immersion tank below the upper end of the membrane module is more preferably as small as possible without the membrane module, and the density of the membrane module per volume in the immersion tank is preferably higher. For this reason, it is more preferable not to provide a space at the lower part of the membrane module and to install the membrane module as close to the lower part of the immersion bath as possible.

給水ろ過工程(a)は通常5〜60分程度であり、空洗工程(c)は5〜120秒程度であるのが好ましい。排水工程(d)では浸漬槽内液を全量排出するのが好ましいが、浸漬槽内液の一部を排出することでもかまわない。液面低下ろ過工程(b)では、液面を下げれば下げるほど回収率が高くなるため好ましいが、通常、膜モジュール上端の上50cmの位置から膜モジュール中央部の位置までの間となるまで液面を低下させることが好ましい。   The feed water filtration step (a) is usually about 5 to 60 minutes, and the air washing step (c) is preferably about 5 to 120 seconds. In the draining step (d), it is preferable to discharge the entire amount of the liquid in the immersion tank, but a part of the liquid in the immersion tank may be discharged. In the liquid level lowering filtration step (b), the lower the liquid level, the higher the recovery rate, which is preferable. However, the liquid level is usually between 50 cm above the upper end of the membrane module and the center of the membrane module. It is preferable to reduce the surface.

ここで、膜モジュールに使用するろ過膜としては、ろ過機能を有する多孔質膜であれば特に限定しないが、セラミック等の無機素材や、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、クロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコール、ポリエーテルスルホン、塩化ビニールからなる群から選ばれる少なくとも1種類の重合体を含んでいる多孔質膜が挙げられる。さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)製多孔質膜が好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリル製多孔質膜が好ましい。膜表面の細孔径については特に限定されず、精密ろ過膜であっても限外ろ過膜であってもかまわない。   Here, the filtration membrane used in the membrane module is not particularly limited as long as it is a porous membrane having a filtration function, but is not limited to inorganic materials such as ceramics, polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer. , Polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, chlorotrifluoroethylene-ethylene copolymer, polyfluoride Examples thereof include a porous membrane containing at least one polymer selected from the group consisting of vinylidene chloride, polysulfone, cellulose acetate, polyvinyl alcohol, polyethersulfone, and vinyl chloride. Furthermore, a polyvinylidene fluoride (PVDF) porous film is preferable from the viewpoint of film strength and chemical resistance, and a polyacrylonitrile porous film is preferable from the viewpoint of high hydrophilicity and strong stain resistance. The pore diameter on the membrane surface is not particularly limited and may be a microfiltration membrane or an ultrafiltration membrane.

(実施例1)
外圧式PVDF限外ろ過中空糸膜を配設した浸漬型膜モジュールCFU−1015V(東レ(株)製)1本を浸漬槽内に浸漬設置した装置を使用して、図1に示したフローにて以下の条件で水処理実験を行った。この装置において、膜モジュールの上端より下の浸漬槽内の貯水体積(V)は25リットルであり、原水供給口は膜モジュールの下端よりも下に配置されていた。
Example 1
The flow shown in FIG. 1 is obtained by using an apparatus in which one immersion type membrane module CFU-1015V (manufactured by Toray Industries, Inc.) provided with an external pressure PVDF ultrafiltration hollow fiber membrane is immersed in an immersion tank. The water treatment experiment was conducted under the following conditions. In this apparatus, the water storage volume (V) in the immersion tank below the upper end of the membrane module was 25 liters, and the raw water supply port was disposed below the lower end of the membrane module.

下水処理場で処理した水を原水として供給し、ろ過流速1.5m/(m・d)の定流量ろ過方式にて、給水ろ過工程(a)を10分間行った後、空洗工程(c)を15秒間実施し、再び給水ろ過工程(a)を10分間、空洗工程(c)を15秒間、給水ろ過工程(a)を10分間実施した。給水ろ過工程(a)ではろ過水量よりも3リットル/分多い量の給水を行った。 The water treated at the sewage treatment plant is supplied as raw water, and after performing the feed water filtration step (a) for 10 minutes by a constant flow rate filtration method with a filtration flow rate of 1.5 m 3 / (m 2 · d), an air washing step (C) was carried out for 15 seconds, the feed water filtration step (a) was again carried out for 10 minutes, the air washing step (c) was carried out for 15 seconds, and the feed water filtration step (a) was carried out for 10 minutes. In the feed water filtration step (a), water was supplied in an amount 3 liters / minute greater than the amount of filtered water.

最後の給水ろ過工程(a)の後、液面低下ろ過工程(b)を実施し、膜モジュール上端まで浸漬槽内液面を低下させた。液面低下ろ過工程(b)実施の際、原水の給水は停止し、給水ろ過工程(a)終了時のろ過圧力で定圧ろ過を行った。液面低下ろ過工程(b)の終了後、空洗工程(c)を30秒間実施した。この際、同時に逆洗工程を実施した。空洗工程(c)実施後、排水工程(d)を実施し、浸漬槽内水を全て浸漬槽外に排出した。その後、原水を浸漬槽内に給水し、膜モジュールの上端部まで原水を満たした。その後再び給水ろ過工程(a)に戻るという手順で、一連の運転を繰り返し実施した。   After the final feed water filtration step (a), a liquid level lowering filtration step (b) was performed to lower the liquid level in the immersion tank to the upper end of the membrane module. During the liquid level lowering filtration step (b), the raw water was stopped, and constant pressure filtration was performed at the filtration pressure at the end of the feed water filtration step (a). After completion of the liquid level lowering filtration step (b), an air washing step (c) was performed for 30 seconds. At this time, a backwashing step was simultaneously performed. After the air washing step (c), the drainage step (d) was performed, and all the water in the immersion tank was discharged out of the immersion tank. Thereafter, the raw water was supplied into the immersion tank, and the raw water was filled up to the upper end of the membrane module. Then, a series of operation was repeated in the procedure of returning to the feed water filtration step (a) again.

運転を開始した初期の膜差圧は25℃温度補正差圧で20kPaであり、1ヶ月間運転を行った後の膜差圧は25℃温度補正差圧で30kPaであり、安定した運転を続けることができた。また、排水工程(d)終了から次の排水工程(d)終了までの間の、膜ろ過運転中の最小差圧と最大差圧の差は、平均5kPaであった。また回収率は95%であった。   The initial membrane differential pressure after starting operation is 20 kPa at 25 ° C temperature corrected differential pressure, and the membrane differential pressure after operating for one month is 30 kPa at 25 ° C temperature corrected differential pressure. I was able to. The difference between the minimum differential pressure and the maximum differential pressure during the membrane filtration operation from the end of the drainage process (d) to the end of the next drainage process (d) was 5 kPa on average. The recovery rate was 95%.

なお、本実施例では、膜モジュール上端より下の浸漬槽内の貯水体積(V)に対する、空洗工程(c)実施後の給水ろ過工程(a)開始から5分間の原水給水体積から膜ろ過水体積を引いた体積(I)の比(I/V)は0.6であった。   In this embodiment, the membrane filtration from the raw water supply volume for 5 minutes from the start of the feed water filtration step (a) after the air washing step (c) is performed on the water storage volume (V) in the immersion tank below the upper end of the membrane module. The ratio (I / V) of volume (I) minus water volume was 0.6.

(比較例1)
実施例1と同様の原水、装置を用いて、ろ過流速1.5m/(m・d)の定流量ろ過方式にて給水ろ過工程(a)を30分間行った後、空洗工程(c)を60秒間実施した。この際同時に逆洗工程を実施した。空洗工程(c)実施後に、排水工程(d)を実施し、浸漬槽内液を全て浸漬槽外に排出した。その後、原水を浸漬槽内に給水し、膜モジュール上端部まで原水を満たした。その後再び給水ろ過工程(a)に戻りこの一連の運転を繰り返し実施した。給水ろ過工程(a)ではろ過水量と同量の水を給水した。
(Comparative Example 1)
Using the same raw water and apparatus as in Example 1, the feed water filtration step (a) was performed for 30 minutes by a constant flow rate filtration method with a filtration flow rate of 1.5 m 3 / (m 2 · d), and then the air washing step ( c) was carried out for 60 seconds. At the same time, a backwashing step was performed. After the air washing step (c), the drainage step (d) was performed, and all the liquid in the immersion tank was discharged out of the immersion tank. Thereafter, the raw water was supplied into the immersion tank, and the raw water was filled up to the upper end of the membrane module. Then, it returned to the feed water filtration step (a) again and repeated this series of operations. In the feed water filtration step (a), the same amount of filtered water was supplied.

運転を開始した初期の膜差圧は25℃温度補正差圧で20kPaであり、1ヶ月間運転を行った後の膜差圧は25℃温度補正差圧で50kPaであり、実施例1に比べ差圧上昇が速かった。また、排水工程(d)終了から次の排水工程(d)終了までの間の、膜ろ過運転中の最小差圧と最大差圧の差は、平均10kPaであった。また回収率は94%であった。   The initial membrane differential pressure when the operation was started was 20 kPa at a temperature corrected differential pressure of 25 ° C., and the differential pressure after one month of operation was 50 kPa at a temperature corrected differential pressure of 25 ° C., compared with Example 1. The differential pressure increased rapidly. Further, the difference between the minimum differential pressure and the maximum differential pressure during the membrane filtration operation from the end of the drainage step (d) to the end of the next drainage step (d) was 10 kPa on average. The recovery rate was 94%.

本発明法は、浸漬槽内にろ過膜モジュールを浸漬設置した水処理装置を運転する際に適用される。さらに詳しくは、上水道における飲料用水製造分野、工業用水、工業用超純水、食品、医療といった産業用水製造分野、都市下水の浄化および工業廃水処理といった下廃水処理分野や海水淡水化逆浸透膜前処理などに使用される浸漬型膜モジュールを用いた水処理方法に適用されるが、これらに限られるものではない。   The method of the present invention is applied when operating a water treatment apparatus in which a filtration membrane module is immersed in an immersion tank. More specifically, in the field of drinking water production in waterworks, industrial water, industrial ultrapure water, industrial water production such as food and medicine, sewage treatment fields such as municipal sewage purification and industrial wastewater treatment, and in front of seawater desalination reverse osmosis membranes Although it applies to the water treatment method using the immersion type membrane module used for a process etc., it is not restricted to these.

本発明法が適用される浸漬型膜ろ過装置の一例を示す装置概略フロー図である。It is an apparatus general | schematic flowchart which shows an example of the immersion type membrane filtration apparatus with which this invention method is applied. 本発明法を実施する工程順序の好ましい一実施態様を示す工程フロー図である。It is a process flow figure showing one preferred embodiment of a process order which carries out the method of the present invention.

符号の説明Explanation of symbols

1 :浸漬槽
w1:膜モジュール上端より上の浸漬槽内液
w2:膜モジュール上端より下の浸漬槽内液
WL:浸漬槽内液の液面(水位)
P:膜モジュール上端の水平面
2 :膜モジュール
3 :原水配管
4 :膜ろ過水配管
5 :吸引ポンプ
6 :ろ過弁
7 :逆洗水配管
8 :逆洗ポンプ
9 :逆洗弁
10 :ブロワ
11 :空洗エア配管
12 :空洗弁
13 :排水配管
14 :排水弁
1: immersion tank w1: liquid in immersion tank above upper end of membrane module w2: liquid in immersion tank below upper end of membrane module WL: liquid level (water level) of liquid in immersion tank
P: Horizontal plane at the upper end of the membrane module 2: Membrane module 3: Raw water piping 4: Membrane filtration water piping 5: Suction pump 6: Filtration valve 7: Backwash water piping 8: Backwash pump 9: Backwash valve 10: Blower 11: Air washing air pipe 12: Air washing valve 13: Drain piping 14: Drain valve

Claims (5)

原水を貯留した浸漬槽内にろ過膜モジュールが浸漬設置され、ろ過膜モジュール上端よりも下方に原水供給口が設けられている水処理装置によって膜ろ過水を製造する際の、ろ過膜モジュールの運転方法であって、(a)膜ろ過水の取り出し水量と同量以上の原水を給水しながら、ろ過膜モジュールの膜ろ過水側を吸引して膜ろ過水を取り出す給水ろ過工程と(c)膜ろ過を停止し膜モジュールの原水側に空気を供給してろ過膜モジュールを洗浄する空洗工程とを1回もしくは繰り返して行った後、前記(a)給水ろ過工程を行い、次いで、(b)原水供給量を零もしくは膜ろ過水の水量よりも少ない量として膜ろ過することにより浸漬槽内の液面を下げる液面低下ろ過工程と、前記(c)空洗工程と、(d)浸漬槽内の原水を浸漬槽外へ排出する排水工程とをこの順で行うことを特徴とする浸漬型膜モジュールの運転方法。   Operation of the filtration membrane module when the membrane filtration water is produced by the water treatment device in which the filtration membrane module is immersed in the immersion tank storing the raw water and the raw water supply port is provided below the upper end of the filtration membrane module (A) A feed water filtration step of sucking the membrane filtrate side of the filtration membrane module and taking out the membrane filtrate water while supplying raw water equal to or greater than the amount of the membrane filtrate water taken out, and (c) the membrane After the filtration is stopped and the air washing step of supplying air to the raw water side of the membrane module to wash the filtration membrane module is performed once or repeatedly, the (a) feed water filtration step is performed, and then (b) A liquid level lowering filtration step for lowering the liquid level in the immersion tank by performing membrane filtration with the raw water supply amount being zero or less than the amount of membrane filtration water, (c) the washing step, and (d) the immersion tank. The raw water inside is drained out of the immersion tank The method of operating submerged membrane module and draining process and performing in this order to. 請求項1記載の運転方法において、膜モジュール上端より下の浸漬槽内の貯水体積(V)に対する、(c)空洗工程の実施後に(a)給水ろ過工程を開始から5分間における原水供給量と膜ろ過水取り出し量との差(I)の比(I/V)が0.5以上であることを特徴とする浸漬型膜モジュールの運転方法。   The operation method according to claim 1, wherein the water supply volume (V) in the immersion tank below the upper end of the membrane module is (c) after the air washing step (a) the raw water supply amount in 5 minutes from the start of the feed water filtration step. The operation method of the submerged membrane module, wherein the ratio (I / V) of the difference (I) between the amount of the filtered water and the amount of the membrane filtrate is 0.5 or more. 請求項1記載の運転方法において、(a)給水ろ過工程の間に(c)空洗工程を実施する際、膜モジュール上端より下の浸漬槽内の貯水体積(V)に対する、膜モジュール上端より上部の浸漬槽内の原水量(H)の比(H/V)が0.5以上であることを特徴とする浸漬型膜モジュールの運転方法。   2. The operation method according to claim 1, wherein (a) during the feed water filtration step, (c) when performing the air washing step, from the upper end of the membrane module with respect to the water storage volume (V) in the immersion tank below the upper end of the membrane module. A method for operating a submerged membrane module, wherein the ratio (H / V) of the amount of raw water (H) in the upper immersion tank is 0.5 or more. 請求項2または3記載の運転方法において、(b)液面低下ろ過工程の実施時の膜ろ過流束が(a)給水ろ過工程の実施時の膜ろ過流束よりも低いことを特徴とする浸漬型膜モジュールの運転方法。   The operation method according to claim 2 or 3, characterized in that (b) the membrane filtration flux at the time of carrying out the liquid level lowering filtration step is lower than the membrane filtration flux at the time of (a) carrying out the feed water filtration step. Operation method of submerged membrane module. 請求項4記載の運転方法において、(a)給水ろ過工程におけるろ過流量制御手段が定流量ろ過であり、かつ、(b)液面低下ろ過工程におけるろ過流量制御手段が定圧ろ過であることを特徴とする浸漬型膜モジュールの運転方法。   5. The operation method according to claim 4, wherein (a) the filtration flow rate control means in the feed water filtration step is constant flow filtration, and (b) the filtration flow rate control means in the liquid level lowering filtration step is constant pressure filtration. A method for operating the submerged membrane module.
JP2008062252A 2008-03-12 2008-03-12 Operation method of immersion type membrane module Pending JP2009214062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062252A JP2009214062A (en) 2008-03-12 2008-03-12 Operation method of immersion type membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062252A JP2009214062A (en) 2008-03-12 2008-03-12 Operation method of immersion type membrane module

Publications (1)

Publication Number Publication Date
JP2009214062A true JP2009214062A (en) 2009-09-24

Family

ID=41186512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062252A Pending JP2009214062A (en) 2008-03-12 2008-03-12 Operation method of immersion type membrane module

Country Status (1)

Country Link
JP (1) JP2009214062A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105000693A (en) * 2015-06-30 2015-10-28 潍坊友容实业有限公司 Water desalination device using label for monitoring and control method thereof
JP2016073937A (en) * 2014-10-07 2016-05-12 三菱化学株式会社 Multitubular separation membrane module and liquid treatment method
WO2019230295A1 (en) * 2018-06-01 2019-12-05 オルガノ株式会社 Device for purifying scrubber drainage water, method for same, and salinity gradient power system
CN111408274A (en) * 2020-03-30 2020-07-14 苏州热工研究院有限公司 Inorganic ceramic membrane component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016073937A (en) * 2014-10-07 2016-05-12 三菱化学株式会社 Multitubular separation membrane module and liquid treatment method
CN105000693A (en) * 2015-06-30 2015-10-28 潍坊友容实业有限公司 Water desalination device using label for monitoring and control method thereof
WO2019230295A1 (en) * 2018-06-01 2019-12-05 オルガノ株式会社 Device for purifying scrubber drainage water, method for same, and salinity gradient power system
JP2019209241A (en) * 2018-06-01 2019-12-12 オルガノ株式会社 Device and method of decontaminating scrubber effluent, and salinity difference power generation system
JP7175636B2 (en) 2018-06-01 2022-11-21 オルガノ株式会社 Scrubber wastewater purification device and method, and salinity concentration difference power generation system
CN111408274A (en) * 2020-03-30 2020-07-14 苏州热工研究院有限公司 Inorganic ceramic membrane component

Similar Documents

Publication Publication Date Title
KR101306389B1 (en) Method for cleaning separation membrane module, and method for fresh water generation
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
JP2012239948A (en) Method for washing filter medium, and water treatment apparatus
JP5467793B2 (en) Operation method of submerged membrane separator
KR20140033154A (en) Washing method for separation membrane module
WO2011158559A1 (en) Method for cleaning membrane modules
WO2013111826A1 (en) Desalination method and desalination device
JP2015155076A (en) Separation film module cleaning method
JP5181987B2 (en) Cleaning method for submerged membrane module
JP2013202481A (en) Cleaning method of separation membrane module
JP5001923B2 (en) Water treatment apparatus and water treatment method
JP2009214062A (en) Operation method of immersion type membrane module
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP2006281163A (en) Cleaning method of filter membrane
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
WO2013047466A1 (en) Membrane module cleaning method
WO2021200752A1 (en) Method and program for determining cleaning trouble in fresh water generator
JP5251472B2 (en) Membrane module cleaning method
JP2013034938A (en) Method for washing membrane module
JP2017176951A (en) Method for cleaning separation membrane module
JP4335193B2 (en) Method and apparatus for treating organic wastewater
JP2015123436A (en) Water treatment method
JP2006239609A (en) Operation method of hollow fiber membrane module
JP7213711B2 (en) Water treatment device and water treatment method