WO2013047466A1 - Membrane module cleaning method - Google Patents

Membrane module cleaning method Download PDF

Info

Publication number
WO2013047466A1
WO2013047466A1 PCT/JP2012/074470 JP2012074470W WO2013047466A1 WO 2013047466 A1 WO2013047466 A1 WO 2013047466A1 JP 2012074470 W JP2012074470 W JP 2012074470W WO 2013047466 A1 WO2013047466 A1 WO 2013047466A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
water
membrane module
raw water
backwash
Prior art date
Application number
PCT/JP2012/074470
Other languages
French (fr)
Japanese (ja)
Inventor
新谷 昌之
池田 啓一
智宏 前田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2013047466A1 publication Critical patent/WO2013047466A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases

Definitions

  • the present invention relates to a method for cleaning a membrane module used for membrane filtration treatment of raw water.
  • the membrane separation method using a hollow fiber membrane has features such as energy saving, space saving, labor saving, and improvement of filtered water quality, and therefore is widely used in various fields.
  • microfiltration membranes and ultrafiltration membranes are applied to pretreatment in water purification processes for producing industrial water and tap water from river water, groundwater, and sewage treated water, and seawater desalination reverse osmosis membrane treatment processes.
  • powdered activated carbon is added to raw water or the like for the purpose of removing soluble organic substances in the course of the membrane filtration treatment (Patent Document 1).
  • air such as air (hereinafter simply referred to as air) is introduced into the raw water side of the filtration membrane as air bubbles, or the raw water from the filtered water side in the opposite direction to the filtration process.
  • Back washing is generally performed in which filtered water or clarified water or the like is permeated to the side to remove suspended substances on the membrane surface.
  • Patent Documents 2 and 3 empty reverse simultaneous cleaning in which empty cleaning and back cleaning are performed simultaneously.
  • the backwash wastewater and air are mixed and discharged from the membrane module through the air vent pipe, a sufficient air flow rate is obtained due to the air vent pipe and the pressure loss of the module. And there is a problem that the backwash flow rate cannot be maintained.
  • the membrane surface may be crushed or the membrane surface may be roughened by vigorously rubbing the outer surface of the membrane through suspended substances separated from the membrane surface.
  • the degree of membrane rubbing is remarkable, and until now, it has been an obstacle to adding powdered activated carbon to the raw water of the membrane module.
  • suspended substances cannot be sufficiently separated from the membrane surface and accumulate in large quantities, resulting in a significant decrease in filtration performance. It was.
  • Patent Documents 4 and 5 a method has been proposed in which after the raw water in the membrane module is discharged once, backwash wastewater is discharged from the lower part of the membrane module, and backwashing is performed.
  • this method has a problem that a suspended substance that easily adheres to the membrane surface has insufficient peelability from the membrane, and the suspended substance accumulates in the membrane module.
  • Chlorine disinfectants have the effect of decomposing and removing organic substances such as humic substances and microorganism-derived proteins adhering to the membrane surface and membrane pores.
  • powdered activated carbon when powdered activated carbon is contained in the raw water, those chemicals are consumed by the powdered activated carbon, and there is a problem that the effect of decomposing and removing the film-adhered organic matter is reduced.
  • the backwash wastewater in the membrane module is discharged while performing backwashing, and then the membrane A method for cleaning a membrane module has been devised in which the raw water side in the module is filled with water and washed with air, and then the water on the raw water side in the membrane module is discharged out of the system.
  • this method it is possible to reduce the amount of suspended substances in the membrane module at the time of air washing, and to suppress membrane abrasion and at the same time effectively wash the membrane module.
  • chemicals were used for the backwash water it was possible to efficiently decompose and remove suspended substances adhering to the membrane surface.
  • the present invention can reduce the amount of suspended substances in the membrane module at the time of air washing without reducing the water recovery rate, reduce membrane abrasion, and at the same time, effectively wash the membrane module.
  • the purpose is to provide.
  • an object of the present invention is to provide a membrane module cleaning method capable of efficiently decomposing and removing suspended substances adhering to the membrane surface when chemicals are used for backwash water.
  • the method for cleaning the membrane module of the present invention for achieving the above object is as follows.
  • a membrane module cleaning method for cleaning a membrane module that obtains filtered water by membrane filtration of the raw water with a filtration membrane, wherein backwashing is performed while discharging backwash drainage from the lower part of the membrane module. And collecting the raw water side of the membrane in the membrane module with at least a part of the backwash wastewater collected in the collection step, An air washing step A for performing washing or an air washing step B for carrying out air washing while supplying at least a part of the backwash waste water collected in the collection step to the raw water side of the membrane in the membrane module is performed. Cleaning method for membrane modules.
  • a membrane module cleaning method for cleaning a membrane module that obtains filtered water by membrane filtration of the raw water with a filtration membrane, and performing backwashing while discharging backwash drainage from the lower part of the membrane module And a recovery step of recovering at least a part of the backwash wastewater, and a separation step of separating the backwash wastewater recovered in the recovery step into suspended substances and clarified water, An air washing step C in which the raw water side of the membrane is filled with the clarified water to perform air washing, or an air washing step in which air is washed while supplying the clarified water to the raw water side of the membrane in the membrane module.
  • the method for cleaning a membrane module of the present invention it is possible to reduce the amount of suspended solids at the time of air washing without reducing the water recovery rate, and to effectively clean the membrane module while suppressing membrane abrasion. Can do.
  • suspended substances attached to the membrane surface can be efficiently decomposed and removed.
  • FIG. 1 is an apparatus schematic flow diagram showing an example of a pressurized hollow fiber membrane filtration apparatus to which the first embodiment of the present invention is applied.
  • FIG. 2 is a schematic apparatus flow diagram illustrating an example of a pressurized hollow fiber membrane filtration apparatus to which the second embodiment of the present invention is applied.
  • FIG. 3 is an apparatus schematic flow diagram showing an example of a pressurized hollow fiber membrane filtration apparatus to which the third embodiment of the present invention is applied.
  • FIG. 4 is an apparatus schematic flow diagram showing the pressurized hollow fiber membrane filtration apparatus used in Comparative Example 4.
  • FIG. 1 shows a pressurized hollow fiber membrane filtration apparatus to which the first embodiment of the present invention is applied.
  • a pressurized hollow fiber membrane filtration device F1 includes a raw water tank 1, a membrane module 3 comprising a container in which a hollow fiber membrane HF is accommodated, a filtered water tank 4, a backwash wastewater recovery tank 6, an air blower 7, and A chemical reservoir 8 is provided.
  • the raw water tank 1 is provided with a pipeline PL1 for supplying the raw water RW to the raw water tank 1 from outside the system, and the raw water 1a is stored in the raw water tank 1.
  • the raw water tank 1 and the raw water side space 3A of the membrane module 3 are connected by a pipe line PL2, and a raw water valve 10 and a raw water supply pump 2 are provided in the pipe line PL2.
  • the filtered water side space 3B of the membrane module 3 and the filtered water tank 4 are connected by a pipe line PL3, and a filtered water valve 11 is provided in the pipe line PL3.
  • Pipe line PL4 is led out from filtered water tank 4, and its downstream end is connected to pipe line LP3 between membrane module 3 and filtered water valve 11.
  • the line PL4 is provided with a backwash pump 5 and a backwash valve 12.
  • the filtered water tank 4 stores filtered water 4a.
  • the filtered water tank 4 has a pipe line PL5 for discharging filtered water (treated water) TW out of the system.
  • a pipe line PL6 derived from the raw water side space 3A of the membrane module 3 is provided below the membrane module 3, and a drain valve 15 is provided in the pipe line PL6.
  • a branch line PL7 is provided between the membrane module 3 and the drain valve 15 and is branched from the pipe line PL6, and the downstream end thereof is connected to the backwash drainage recovery tank 6.
  • a backwash drainage recovery valve 16 is provided in the pipe line PL7. In the backwash drainage recovery tank 6, backwash drainage 6a is stored.
  • the pipe PL8 is led out from the backwash drainage tank 8, and its downstream end is coupled to the pipe PL2 between the raw water valve 10 and the raw water supply pump 2, and the backwash drainage supply is supplied to the pipe PL8.
  • a valve 17 is provided.
  • the backwash drainage recovery tank 6 is provided with a pipe line PL9 for discharging the backwash wastewater to the outside of the system.
  • the pipe line PL10 is led out from the upper part of the raw water side space 3A of the membrane module 3, the downstream end thereof is opened to the outside of the system, and an air vent valve 13 is provided in the pipe line PL10.
  • the pipe line PL11 is led out from the air blower 7, and the downstream end thereof is coupled to the pipe line PL6 between the membrane module 3, the drain valve 15 and the backwash drainage recovery valve 16.
  • An air supply valve 14 is provided in the pipe line PL11.
  • a pipe line PL12 is led out from the chemical liquid storage tank 8, and its downstream end is coupled to the pipe line PL4 between the backwash pump 5 and the backwash valve 12, and a chemical liquid supply pump 9 is provided in the pipe line PL12. It has been.
  • raw water 1a stored in the raw water tank 1 is supplied to a raw water side space 3A of the hollow fiber membrane HF in the membrane module 3 by a raw water supply pump 2.
  • the inside of the membrane module 3 includes a hollow fiber membrane HF whose opening end is fixed by an adhesive and an adhesive fixing portion FP on the raw water side space 3A of the hollow fiber membrane HF and the filtered water side of the hollow fiber membrane HF. It is divided into a space 3B.
  • the raw water 1 a is filtered by the hollow fiber membrane HF, and the filtered water 4 a flows from the space 3 B on the filtrate side of the hollow fiber membrane HF through the pipe line PL 3, passes through the filtered water valve 11, and passes through the filtered water tank. 4 is transferred.
  • the raw water valve 10 and the filtrate water valve 11 are open, and the backwash valve 12, the air vent valve 13, the air supply valve 14, the drain valve 15, the backwash drainage recovery valve 16, and the backwash drainage supply valve 17 are closed. It is. Part or all of the filtered water 4 a obtained by this filtration is stored in the filtered water tank 4.
  • the filtration process in the pressurization type hollow fiber membrane filtration device F1 supplies raw water 1a from the raw water tank 1 to the membrane module 3, and permeates the water from the raw water side of the hollow fiber membrane HF in the membrane module 3 to the filtered water side, and performs filtration. This is a step of transferring water to the filtered water tank 4.
  • the filtration time is appropriately set according to the quality of raw water, membrane filtration flux, etc.
  • the predetermined membrane filtration differential pressure or filtered water volume [m 3 ] in the case of constant pressure filtration, Filtration may be continued until a predetermined filtration flow rate [m 3 / hr] or filtered water amount [m 3 ] is reached.
  • the filtration flow rate indicates the amount of filtered water per unit time.
  • the membrane filtration flux indicates the filtration flow rate per effective membrane area.
  • the membrane module cleaning method of the present invention is performed, for example, as follows. First, the raw water valve 10 and the filtrate water valve 11 are closed, the raw water supply pump 2 is stopped, and the filtration process is stopped. Next, with the backwash drainage recovery valve 16 closed, the air vent valve 13 and the drainage valve 15 of the membrane module 3 are opened, and the backwash pump 5 is operated, so that filtered water is discharged from the hollow fiber in the membrane module 3.
  • the backwashing step is performed by allowing the membrane 3 to pass through the space 3B on the raw water side of the hollow fiber membrane in the membrane module 3 from the space 3B on the filtered water side of the membrane.
  • the backwash waste water on the raw water side flows from the membrane module 3 through the pipe line PL6 and is discharged out of the system through the drain valve 15.
  • the backwash drainage immediately after the start of backwashing contains a large amount of suspended matter peeled from the hollow fiber membrane HF, but the suspended matter decreases as the backwash time elapses.
  • the recovery process is such that the backwash drainage 6a is recovered in the backwash drainage recovery tank 6 by closing the drainage valve 15 and opening the backwash drainage recovery valve 16. Done.
  • the backwashing is started with the air vent valve 13 and the backwash drainage recovery valve 16 open and the drainage valve 15 is closed, and the backwash drainage immediately after backwashing is recovered.
  • the backwash wastewater immediately after the start of backwash is discharged outside the system by opening the drain valve 15. It is desirable to do.
  • the timing for switching backwash wastewater from draining out of the system to feeding water to the backwash wastewater collecting tank 6 is a method of automatically switching when the predetermined time has elapsed, the concentration of suspended solids There is a method of measuring when the value falls below a predetermined value. However, it is desirable to collect a sufficient amount of backwash wastewater to fill at least the raw water side of the membrane module 3.
  • the backwash flow rate [m 3 / hr] is preferably set lower than the flow rate of backwash wastewater discharged from the lower part of the membrane module 3 by its own weight.
  • the water level of the membrane module 3 gradually decreases, and the surroundings on the raw water side in the membrane module 3 become a gas state.
  • Conventional backwashing is performed in a state where the raw water side in the membrane module 3 is filled with water, and the backwash drainage is discharged out of the system through the air vent valve 13, so the water pressure is suspended. The peeling of the substance from the film surface was inhibited.
  • the backwash wastewater is discharged from the lower part of the membrane module, so that the backwash wastewater is discharged from the lower part of the membrane module 3.
  • resistance due to water pressure is eliminated during backwashing or becomes extremely low, so that suspended substances are easily peeled off from the membrane surface and the cleaning effect is enhanced.
  • At least a part of the raw water may be discharged by opening the air vent valve 13 and the drain valve 15.
  • the water on the raw water side in the membrane module 3 may remain, but at least half of the membrane is above the water surface so as to be in contact with the gas.
  • the entire membrane is above the water surface, and water is discharged so that the entire membrane is in contact with gas.
  • the raw water drained from the drain valve 15 is directly returned to the raw water tank 1 from the viewpoint of the water recovery rate.
  • the air drain valve 13 and the backwash drainage recovery valve 16 may be opened to collect the drained raw water in the backwash drainage recovery tank 6.
  • the water recovery rate here shows the ratio of the filtrate water production amount with respect to the raw water amount supplied to the membrane module 3.
  • the backwash drainage recovery valve 16 After carrying out the backwash process and the recovery process, the backwash drainage recovery valve 16 is closed, the backwash drainage supply valve 17 is opened, and the air vent valve 13 is left open, and the raw water supply pump 2 is opened.
  • the air supply valve 14 By operating, the raw water side in the membrane module 3 is filled with the collected backwash drainage, the air supply valve 14 is opened, and the air blower 7 is operated to supply air from below the membrane module 3, Perform an air wash.
  • the air washing may be performed after the raw water side in the membrane module 3 is filled with the collected backwash wastewater in advance, that is, the air washing step A, or the collected backwash wastewater on the raw water side in the membrane module 3.
  • the washing step B is preferable because the washing effect is high.
  • the water discharged from the upper portion of the membrane module 3, that is, the pipe PL10 via the air vent valve 13, is discharged to increase the water recovery rate. It is desirable to return to the water tank 1 or the backwash waste water collection tank 6.
  • chemicals can be added to the backwash water.
  • chemical treatment such as neutralization treatment is performed.
  • the drain valve 15 After completion of the drainage, the drain valve 15 is closed, the raw water valve 10 is opened, the raw water supply pump 2 is operated, the raw water is supplied to the membrane module 3, and the raw water side of the membrane module 3 is filled.
  • the raw water discharged from the upper part of the membrane module 3, that is, the pipe PL10 through the air vent valve 13 and discharged from the pipe PL10 is supplied to the raw water tank 1 or the backwash drainage recovery tank 6 in order to increase the water recovery rate. It is desirable to send to.
  • the raw water when the raw water contains high-hardness particles, the raw water flows into the backwash drainage recovery tank 6 and causes the filter membrane to be rubbed by the subsequent washing process, so that it can be sent to the raw water tank 1 as much as possible. preferable. Thereafter, the air vent valve 13 is closed, the filtrate water valve 11 is opened, and the filtration process is started again.
  • the present invention since most of the suspended solids can be removed by the backwashing step, it is possible to reduce the degree that the membrane is rubbed with the suspended solids and rubbed against the membrane during washing. Therefore, the present invention is particularly effective for washing the membrane module in membrane filtration when raw water contains high-hardness particles such as powdered activated carbon.
  • High hardness particles refer to particles having a hardness higher than the hardness of a filtration membrane used for filtration and washing.
  • high hardness particles include powdered activated carbon, metal powder, silt particles, sand, ceramic particles, and the like, and powdered activated carbon is preferably employed from the viewpoint of adsorption capability.
  • the hardness is measured by a measuring method based on ISO145777-1 (instrumented indentation hardness), and the measured hardness is compared. Judgment.
  • the filtration membrane is hollow, the membrane is cut and measured to have a flat membrane shape.
  • the backwash drainage recovery tank 6 has a capacity necessary to collect at least a sufficient amount of backwash drainage to fill the space 3A on the raw water side of the membrane module 3.
  • About the backwash waste water which overflowed the backwash waste water collection tank 6, in order to raise a water recovery rate, returning to the raw water tank 1 is desirable.
  • chemicals can be added to the backwash water. However, when chemicals are added at a high concentration, they can be returned to the raw water tank 1 after treatment with chemicals such as neutralization. desirable.
  • the cleaning method for the membrane module of the present invention may be performed every time after the filtration is completed, or may be sometimes performed in combination with another cleaning method. Moreover, the time for performing the backwashing step and the air washing step, and the ratio between them can be arbitrarily set, but the washing time for the backwashing step and the air washing step is about 30 seconds to 3 minutes. preferable. Furthermore, when the method for cleaning a membrane module of the present invention is repeated, it is preferable that the cleaning is performed 2 to 5 times.
  • a step for holding the membrane module 3 in a state of being filled with water in at least one of the steps. Therefore, after performing the backwashing step and the recovery step, water is supplied into the membrane module 3 to provide an immersion step in which the inside of the membrane module 3 is filled with water, and then the empty washing step is performed. It is preferable.
  • an organic or inorganic flocculant can be added to the raw water supplied to the raw water side of the membrane module 3 in the filtration step.
  • the flocculant By adding the flocculant, the effect of improving the releasability of the suspended substance can be obtained.
  • organic flocculants include dimethylamine-based and polyacrylamide-based cationic polymer flocculants.
  • polyaluminum chloride, polyaluminum sulfate, ferric chloride, polyiron, ferric sulfate, polysilica iron and the like can be used as the inorganic flocculant.
  • the membrane module 3 may be an external pressure type or an internal pressure type, but is preferably an external pressure type from the viewpoint of simplicity of pretreatment. Moreover, as a membrane filtration system, there is no problem even if it is a whole-volume filtration type module or a cross-flow filtration type module, but a whole-volume filtration type module is preferred from the viewpoint of low energy consumption. Furthermore, although it may be a pressurization type module or an immersion type module, a pressurization type module is preferable from the viewpoint that high flux filtration is possible.
  • the filtration membrane used in the membrane module 3 is not particularly limited as long as it is porous, but depending on the desired quality and amount of treated water, a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) is used. ), Or use both together.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • the shape of the filtration membrane there are a hollow fiber membrane, a flat membrane, a tubular membrane and the like, and any of them may be used.
  • Filter membrane materials include polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetra Including at least one selected from the group consisting of fluoroethylene-perfluoroalkyl vinyl ether copolymers, and chlorotrifluoroethylene-ethylene copolymers, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, and polyethersulfone. Further, from the viewpoint of film strength and chemical resistance, polyvinylidene fluoride (PVDF) is more preferable, and it has high hydrophilicity and excellent stain resistance. , Polyacrylonitrile is more preferable.
  • constant flow filtration or constant pressure filtration may be used, but constant flow filtration is performed because a constant amount of treated water can be obtained and the entire control is easy. preferable.
  • the chemicals to be added to the backwash water can be selected after appropriately setting the concentration and holding time so that the membrane does not deteriorate, but sodium hypochlorite, chlorine dioxide, chloramine, hydrogen peroxide, ozone It is preferable to contain at least one of these because the cleaning effect on the organic matter is increased. In addition, it is preferable to contain at least one of hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid and the like because the cleaning effect on aluminum, iron, manganese and the like is increased.
  • a chlorine-based disinfectant such as sodium hypochlorite is more preferable because of its immediate effect and low persistence.
  • the residual chlorine concentration of water used for backwashing is preferably in the range of 3 mg / L to 10 mg / L. If it is less than 3 mg / L, the cleaning effect of the film may be reduced and the effect may be lost. On the other hand, when the concentration is higher than 10 mg / L, the amount of chemicals used may increase, and depending on the material of the filtration membrane, the filtration membrane may be deteriorated.
  • the residual chlorine concentration is measured by a method based on the DPD (diethyl-p-phenylenediamine) absorptiometry described in “Water test method” 2001 edition (published by Japan Water Works Association).
  • DPD diethyl-p-phenylenediamine
  • the membrane module cleaning method of the present invention can also be used as a pretreatment of an RO membrane separation device that obtains fresh water by treating water to be treated such as seawater with an RO membrane or the like. At that time, if chemicals are added to the backwashing water in the backwashing process described above, the chemicals remaining in the membrane and on the membrane surface immediately after the start of the filtration process are contained in the membrane filtration water, affecting the subsequent RO membrane treatment. It is preferable to carry out a treatment such as neutralization as necessary.
  • a reducing agent such as sodium sulfite, sodium bisulfite, or sodium thiosulfate is backwashed.
  • a reducing agent such as sodium sulfite, sodium bisulfite, or sodium thiosulfate is backwashed.
  • an alkali such as sodium hydroxide or sodium hydrogen carbonate is added to the backwash waste water collecting tank 6 for neutralization.
  • an alkali such as sodium hydroxide or sodium hydrogen carbonate is added to the backwash waste water collecting tank 6 for neutralization. What is necessary is just to supply the backwash waste_water
  • the cleaning method for the membrane module of the present invention is used.
  • FIG. 2 shows a pressurized hollow fiber membrane filtration apparatus to which the second embodiment of the present invention is applied.
  • FIG. 2 shows a pressurization type hollow fiber membrane filtration device F2, but the same reference numerals are given to components of the device that overlap with the pressurization type hollow fiber membrane filtration device F1 shown in FIG.
  • the pressurization type hollow fiber membrane filtration device F2 shown in FIG. 2 the same description as that in the pressurization type hollow fiber membrane filtration device F1 shown in FIG. 1 is omitted.
  • the pressurization type hollow fiber membrane filtration device F2 shown in FIG. 2 is different from the pressurization type hollow fiber membrane filtration device F1 shown in FIG. 1 in that the backwash drainage is used instead of the backwash drainage recovery tank 6 shown in FIG. It is a point provided with the settling tank 18 for isolate
  • the downstream end of the pipe PL7 having the backwash drainage recovery valve 16 is coupled to the settling tank 18.
  • a pipe line PL ⁇ b> 21 is led out from the upper part of the settling tank 18, and its downstream end is connected to the clarified water tank 19.
  • a pipe line PL22 is led out from the lower part of the settling tank 18, and its downstream end is open to the outside of the system.
  • a suspended substance extraction valve 20 is provided in the pipe line PL22.
  • a pipe line PL23 is led out from the clarified water tank 19, and its downstream end is connected to the pipe line PL2 between the raw water valve 10 and the raw water supply pump 2.
  • a clarified water supply valve 21 is provided in the pipe line PL23.
  • a pipe line PL24 is led out from the upper part of the clarified water tank 19, and its downstream end is open to the outside of the system. The clarified water 19a exceeding the amount stored in the clarified water tank 19 is led out from the clarified water tank 19 by the pipe line PL24.
  • separation means for separating backwash wastewater used in the sedimentation tank 18 into water containing suspended solids and clarified water precipitation separation, coagulation sedimentation separation, pressurized flotation separation, centrifugation, sand filtration, UF / MF membrane separation, filter cloth separation, fibrous filter separation, cartridge filter separation, disk filter separation, filter press, belt press, vacuum dewatering, multiple disk dewatering, and the like can be selected.
  • Suspended substances are usually suitable for precipitation separation because of their large specific gravity and high sedimentation properties.
  • precipitation separation is preferable from the viewpoint of equipment cost, processing cost, and the like.
  • the drain valve 15 is closed, and the backwash valve 12, the air vent valve 13, and the backwash drainage recovery valve 16 are opened.
  • the backwash pump 5 is operated to carry out the backwash process.
  • the backwash drainage recovery valve 16 is closed, the clarified water supply valve 21 is opened, and the raw water supply pump 2 is operated while the air vent valve 13 remains open.
  • the raw water side space 3A in the membrane module 3 is filled with the clarified water, the air supply valve 14 is opened, and the air blower 7 is operated so that air is supplied from below the membrane module 3 to perform air washing. .
  • the air washing may be performed after the raw water side space 3A in the membrane module 3 is filled with the clarified water in advance, that is, the air washing step C, or the clarified water is added to the raw water side space 3A in the membrane module 3.
  • the washing step D is preferable because the washing effect is high.
  • the clarified water that overflows and is discharged from the upper part of the membrane module 3, that is, the pipe PL10 through the air vent valve 13, is used to increase the water recovery rate. It is desirable to return to the raw water tank 1 or the sedimentation tank 18.
  • chemicals can be added to the backwash water.
  • chemicals such as neutralization are performed when clear water is returned to the raw water tank 1. After that, it is preferable to return the clarified water to the raw water tank 1, and when the clarified water is returned to the precipitation tank 18, the chemicals can be reused. It is preferable to return to the tank 18.
  • the flush wastewater is discharged. Since the washing waste water usually has a higher concentration of suspended solids than the raw water, it is preferable that the pressurized hollow fiber membrane filtration device F1 (first embodiment) shown in FIG. However, in the pressurized hollow fiber membrane filtration device F2 (second embodiment) shown in FIG. 2, the suspended solids can be separated by the settling tank 18, so that the water washing rate is increased in order to increase the water recovery rate. It is preferable to send the waste water to the settling tank 18.
  • the concentration of suspended substances in the waste water is equal to that of the raw water as in the pressurization type hollow fiber membrane filtration device F 1 shown in FIG. 1 (first embodiment).
  • the washing waste water discharged from the drain valve 15 may be returned to the raw water tank 1 again.
  • chemicals can be added to the backwash water, but when adding high-concentration chemicals, chemical treatment such as neutralization treatment is performed when the waste water is collected in the raw water tank 1. After washing, it is preferable to return the washing waste water to the raw water tank 1, and when collecting in the sedimentation tank 18, chemicals can be reused. It is preferable to send it to the sedimentation tank 18 as it is.
  • the drainage valve 15 After completion of the drainage, the drainage valve 15 is closed, the raw water valve 10 is opened, the raw water supply pump 2 is operated, the raw water is supplied to the membrane module 3, and the space 3A on the raw water side of the membrane module 3 is filled.
  • the raw water discharged from the upper part of the membrane module 3, that is, the pipe PL10 through the air vent valve 13, is discharged to the raw water tank 1 or the sedimentation tank 18 in order to increase the water recovery rate. Is desirable.
  • the raw water that overflows and is discharged is sent to the sedimentation tank 18, the chemical concentration in the sedimentation tank 18 will decrease, so it overflows and is discharged.
  • the raw water to be used is preferably returned to the raw water tank 1.
  • the filtration time is preferably longer and more preferably 30 minutes or longer in order to sufficiently precipitate the suspended matter. preferable.
  • the clarified water overflowing the clarified water tank 19 is preferably returned to the raw water tank 1 in order to increase the water recovery rate.
  • a chemical can be added to the backwash water.
  • the backwash water is supplied to the raw water tank 1. It is desirable to return to
  • the effect of the chemical added to the backwash water depends on the chemical added in the separation treatment. Since it may attenuate, it is desirable to add an additional chemical to the clarified water when supplying the clarified water in the air washing step.
  • FIG. 3 shows a pressurized hollow fiber membrane filtration device to which the third embodiment of the present invention is applied.
  • FIG. 3 shows a pressurization type hollow fiber membrane filtration device F3, and the same reference numerals are given to components of the device that overlap with the pressurization type hollow fiber membrane filtration device F2 shown in FIG.
  • the pressurization type hollow fiber membrane filtration device F3 shown in FIG. 3 the same description as that in the pressurization type hollow fiber membrane filtration device F2 shown in FIG. 2 is omitted.
  • the pressurized hollow fiber membrane filtration device F3 (third embodiment) shown in FIG. 3 stores powdered activated carbon slurry in addition to the pressurized hollow fiber membrane filtration device F2 (second embodiment) shown in FIG.
  • an activated carbon slurry storage tank 22 for supplying powdered activated carbon to the raw water
  • a stirrer 24 for mixing and stirring the raw water and powdered activated carbon.
  • the activated carbon slurry storage tank 22 and the raw water tank 1 are coupled by a pipe line PL31, and a slurry supply pump 23 is provided in the pipe line PL31.
  • the raw water RW is supplied to the raw water tank 1 through the pipe line PL1.
  • a stirrer 24 is provided inside the raw water tank 1, a stirrer 24 is provided.
  • the raw material of the powdered activated carbon may be any of woody materials such as coconut shells and sawdust, and coal-based materials such as peat, lignite and bituminous coal. Further, the smaller the particle size of the powdered activated carbon is, the larger the specific surface area and the higher the adsorption ability, which is preferable. However, as a matter of course, it is necessary to make it larger than the pore diameter of the membrane filter of the membrane module so as not to be mixed into the filtrate water.
  • the organic polymer resin filtration membrane described above can be preferably used in the membrane module cleaning method of the present invention because the hardness is lower than the hardness of the high hardness particles such as powdered activated carbon used here. .
  • a pressure gauge is installed in each of the pipe line PL2 for supplying the raw water connected to the membrane module 3 to the membrane module 3 and the pipe line PL3 for leading the filtrate water from the membrane module 3, and the pressure gauge installed in the pipe line PL2.
  • the pressure on the filtrate side of the membrane module detected by the pressure gauge installed in the pipe line PL3 was subtracted from the pressure on the raw water side of the membrane module detected by, and the membrane filtration differential pressure was calculated.
  • Test 1 Using external pressure PVDF hollow fiber membrane module HFU-2008 (manufactured by Toray Industries, Inc.) (membrane area 11.5 m 2 ), using river water as raw water, membrane filtration flux 1.5 m 3 / m 2 / d, The membrane module is washed by the washing method of the present invention or the conventional washing method every 30 minutes for the filtration step, and the membrane module is operated for one month each, and the rate of increase in the membrane filtration differential pressure, and The water recovery rate was compared.
  • the backwashing flux in the backwashing process was 1.7 m 3 / m 2 / d, and the air flow rate in the air washing process was 14 L / min.
  • the membrane filtration differential pressure in the initial stage of operation was 10 kPa.
  • Table 1 shows the figure numbers of the membrane filtration devices used in each Example and each Comparative Example and the usage state of each process.
  • Table 2 shows the open / close state of each valve in each step and the operation and stop states of each pump (including an air blower).
  • the membrane module 3 was cleaned there. Every 30 minutes of filtration, backwash process BS1 (10 seconds), backwash process BS2 (50 seconds), backwash wastewater supply process (30 seconds), empty wash process (60 seconds), drainage process DS2 (15 seconds) The raw water supply step (30 seconds) was performed in this order.
  • the backwashing process BS1 is a process including an operation of discharging the backwash drainage to the outside of the apparatus system through the drain valve 15 and the pipe line PL6.
  • the backwash process BS2 is a process comprising an operation of supplying backwash wastewater to the backwash wastewater recovery tank 6 or the sedimentation tank 18 through the pipe PL7 via the backwash drainage recovery valve 16. It is a process including a wastewater recovery process.
  • the water level on the raw water side of the membrane module gradually decreases, and finally, the water level on the raw water side of the membrane module at the end of the backwashing step BS2 is equal to the filtration membrane length. It became about 1/3.
  • the membrane filtration differential pressure after 1 month operation was 40 kPa, and it was able to operate stably. At this time, the water recovery rate was 96.1%.
  • the membrane module 3 was cleaned there. Every 30 minutes of filtration, backwash process BS2 (60 seconds), clarified water supply process (30 seconds), air washing process (60 seconds), drainage process DS2 (15 seconds), and raw water supply process (30 seconds) Were performed in this order.
  • backwashing step BS2 the water level on the raw water side of the membrane module gradually decreases, and finally, the water level on the raw water side of the membrane module at the end of the backwashing step BS2 is about 1/3 of the filtration membrane length. became.
  • Example 2 since the backwash process BS1 was not performed, the amount of backwash water discharged out of the apparatus system decreased, and the water recovery rate increased to 97.7%.
  • the membrane filtration differential pressure after 1 month operation was 40 kPa, and it was possible to operate stably as in Example 1.
  • the drainage process DS1 (15 seconds) was performed before the backwash process BS2.
  • the raw water side of the membrane module was always filled with gas in the backwash process BS2.
  • the membrane filtration differential pressure after 1 month operation was 35 kPa, and compared with Examples 1 and 2, an increase in the membrane filtration differential pressure could be suppressed. It was confirmed that the cleaning effect is enhanced by performing the drainage process DS1 before the backwash process BS2.
  • the water recovery rate was 97.7%, which was a high recovery rate as in Example 2.
  • the backwashing step BS3 is a step consisting of an operation of draining out of the apparatus system through the air vent valve 13 and through the pipe line PL10. In the backwash process BS3, the water level on the raw water side of the membrane module was almost full.
  • the membrane filtration differential pressure after 1 month operation was 50 kPa, and the increase rate of the membrane filtration differential pressure was larger than in Examples 1 to 3.
  • the water recovery rate was 94.8%, which was lower than those in Examples 1 to 3.
  • Example 1 Except for not having the backwash drainage recovery tank 6, using the same device as the pressurized hollow fiber membrane filtration device F1 shown in FIG. 60 seconds), the drainage process DS2 (15 seconds), and the raw water supply process (30 seconds) were performed in this order.
  • the difference from Example 1 was that the air washing step was not performed, and the difference in the rate of increase in the membrane filtration differential pressure due to the presence or absence of the air washing step was examined.
  • the membrane filtration differential pressure after 1 month operation was 140 kPa, and a rapid increase in the membrane filtration differential pressure occurred compared to Example 1 having an air washing step after the back washing step. From this, it was confirmed that if there was no air washing step, the washing was insufficient and a rapid increase in the membrane filtration differential pressure occurred.
  • the water recovery rate was 94.8%, which was lower than those in Examples 1 to 3.
  • the membrane filtration differential pressure after 1 month operation was 40 kPa, and it was possible to operate stably as in Example 1. However, the water recovery rate was 93.2%, which was lower than that in Examples 1 to 3.
  • Table 3 shows the operation results in each Example and each Comparative Example in Test 1.
  • Test 2 Using the same membrane module and raw water as in the case of Test 1, the filtration process and the washing of the membrane module were repeated in the same manner. In Test 2, the rate of increase in the membrane filtration differential pressure and the water recovery rate when sodium hypochlorite was added as a chemical to the backwash water were compared.
  • Table 4 shows the figure numbers of the membrane filtration devices used in the examples and comparative examples and the usage status of each process.
  • Table 5 shows the open / close state of each valve in each step and the operation and stop states of each pump (including an air blower).
  • the water in the membrane module was collected and the residual chlorine concentration was measured.
  • the residual chlorine concentration was 3 mg / L and had a bactericidal effect.
  • the membrane filtration differential pressure did not increase from the start of operation, and could be operated stably.
  • the water recovery rate was 97.7%.
  • Example 4 Using the pressurized hollow fiber membrane filtration device F4 shown in FIG. 4, sodium hypochlorite was added so that the residual chlorine concentration in the backwash water was 10 mg / L, as in Example 4. However, unlike Example 4, the clarified water 19a obtained by separating suspended substances from the collected backwash wastewater was returned to the raw water tank 1.
  • the pressurized hollow fiber membrane filtration device F4 shown in FIG. 4 has a pipe line PL41 that is led out from the clarified water tank 19 and reaches the raw water tank 19, and a clarified water supply valve 21 is provided in the pipe line PL41. In this respect, it differs from the pressurized hollow fiber membrane filtration device F4 shown in FIG.
  • the water in the membrane module was collected and the residual chlorine concentration was measured.
  • the residual chlorine concentration was 0 mg / L
  • the effect of chlorine added to the backwash water was backwash water.
  • the water recovery rate was 97.7%.
  • Table 6 shows the operation results in Examples and Comparative Examples in Test 2. From this, compared with the conventional backwash wastewater recovery process for returning the backwash wastewater to the raw water tank, the backwash wastewater recovery process in the cleaning method of the present invention can suppress an increase in the membrane filtration differential pressure. confirmed.
  • Test 3 Using the same membrane module and raw water as in the case of Test 1, the filtration process and the washing of the membrane module were repeated in the same manner.
  • Test 3 using the pressurized hollow fiber membrane filtration device F3 shown in FIG. 3, powdered activated carbon was added to the raw water tank so that the concentration of powdered activated carbon was 50 mg / L, and the membrane filtration differential pressure was increased. The speed, the water recovery rate, and the surface state of the filtration membrane were compared.
  • Table 7 shows the figure numbers of the membrane filtration devices used in the examples and comparative examples and the usage status of each process.
  • Table 8 shows the open / close state of each valve in each step and the operation and stop states of each pump (including an air blower).
  • Method for evaluating the surface condition of the filtration membrane Disassemble the membrane module, place the membrane in a water tank containing pure water, and continue to aerate with air until there is no change in the suspended solids concentration in the water tank. Then, the outer surface of the membrane was observed with an electron microscope at a magnification of 10,000 times.
  • the membrane module was washed in the same manner as in Example 3 except that powdered activated carbon was added in the filtration step.
  • the membrane filtration differential pressure after 1 year operation was 52 kPa, and the operation could be performed stably.
  • the water recovery rate was 97.7%.
  • the membrane filtration differential pressure after 1 year operation was 120 kPa, which was larger than that in Example 5.
  • the water recovery rate was 94.8%.
  • the membrane module was disassembled and the membrane surface was observed with an electron microscope, only about 20% of the outer membrane surface was a smooth surface, and the other portions were not smooth, and many of the membrane pores were crushed. It was confirmed that it was rough or rough. That is, the degree of film rubbing was 80%.
  • Table 9 shows the operation results in Examples and Comparative Examples in Test 3.
  • the method for cleaning a membrane module of the present invention it is possible to reduce the amount of suspended substances in the membrane module at the time of air washing without lowering the water recovery rate, and at the same time, effectively reduce the membrane abrasion and at the same time Can be cleaned.
  • the suspended substances attached to the membrane surface can be efficiently decomposed and removed.
  • Raw water tank 1a Raw water 2: Raw water supply pump 3: Membrane module 3A: Space on the raw water side of the membrane module (hollow fiber membrane) 3B: Space on the filtrate side of the membrane module (hollow fiber membrane) 4: Filtered water tank 4a : Filtered water 5: Backwash pump 6: Backwash drainage recovery tank 6a: Backwash drainage 7: Air blower 8: Chemical liquid storage tank 9: Chemical liquid supply pump 10: Raw water valve 11: Filtration water valve 12: Backwash valve 13: Air vent valve 14: Air supply valve 15: Drain valve 16: Backwash drainage recovery valve 17: Backwash drainage supply valve 18: Precipitation tank 19: Clarified water tank 19a: Clarified water 20: Suspended matter extraction valve 21: Clarified water supply Valve 22: Activated carbon slurry storage tank 23: Slurry supply pump 24: Stirrers F1, F2, F3, F4: Pressurized hollow fiber membrane filtration device FP: Adhesive fixing part HF: Hollow fiber membranes PL1, PL2, PL3,

Abstract

Provided is a membrane module cleaning method for cleaning a membrane module in which filtered water is obtained by membrane filtration of raw water using a filtration membrane, wherein a backwashing step for backwashing while backwashing drainage water is drained from below the membrane module and a recovery step for recovering at least some of the backwashing drainage water are conducted and followed by an air-washing step (A) for air-washing by filling the raw-water side of the membrane in the membrane module with at least some of the backwashing drainage water recovered in the recovery step, or an air-washing step (B) for air-washing while supplying the raw-water side of the membrane in the membrane module with at least some of the backwashing drainage water recovered in the recovery step.

Description

膜モジュールの洗浄方法Membrane module cleaning method
 本発明は、原水の膜ろ過処理に使用される膜モジュールの洗浄方法に関するものである。 The present invention relates to a method for cleaning a membrane module used for membrane filtration treatment of raw water.
 中空糸膜による膜分離法は、省エネルギー、省スペース、省力化、および、ろ過水質向上などの特長を有するため、様々な分野での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜は、河川水や地下水や下水処理水から工業用水や水道水を製造する浄水プロセスや、海水淡水化逆浸透膜処理工程における前処理へ適用されている。さらに、それらの膜ろ過処理の過程において、溶解性有機物の除去を目的として、原水等に粉末活性炭を添加する方法がある(特許文献1)。 The membrane separation method using a hollow fiber membrane has features such as energy saving, space saving, labor saving, and improvement of filtered water quality, and therefore is widely used in various fields. For example, microfiltration membranes and ultrafiltration membranes are applied to pretreatment in water purification processes for producing industrial water and tap water from river water, groundwater, and sewage treated water, and seawater desalination reverse osmosis membrane treatment processes. Furthermore, there is a method in which powdered activated carbon is added to raw water or the like for the purpose of removing soluble organic substances in the course of the membrane filtration treatment (Patent Document 1).
 しかし、ろ過の継続により原水中の懸濁物質が膜表面に蓄積することによって、膜に形成されている流体の透過孔が閉塞されるために、膜のろ過性能が徐々に低下する。 However, since the suspended substances in the raw water accumulate on the membrane surface due to the continuation of filtration, the permeation holes of the fluid formed in the membrane are blocked, and the filtration performance of the membrane gradually decreases.
 そこで、ろ過性能を維持するために、エアなどの気体(以下、単に、エアと云う)をろ過膜の原水側に気泡として導入する空洗や、ろ過工程とは逆方向にろ過水側から原水側にろ過水、あるいは、清澄水などを透過させて膜表面の懸濁物質を除去する逆洗が一般的に行われている。 Therefore, in order to maintain the filtration performance, air such as air (hereinafter simply referred to as air) is introduced into the raw water side of the filtration membrane as air bubbles, or the raw water from the filtered water side in the opposite direction to the filtration process. Back washing is generally performed in which filtered water or clarified water or the like is permeated to the side to remove suspended substances on the membrane surface.
 さらに、洗浄効果を高めるために、空洗と逆洗を同時に行う空逆同時洗浄が知られている(特許文献2、3)。しかし、前記空逆同時洗浄を行った場合、逆洗排水とエアが混合した状態でエア抜き配管を通って膜モジュールから排出されるため、エア抜き配管やモジュールの圧力損失によって、十分なエア流量や逆洗流量を維持することができなかったりするという問題があった。 Furthermore, in order to enhance the cleaning effect, empty reverse simultaneous cleaning in which empty cleaning and back cleaning are performed simultaneously is known (Patent Documents 2 and 3). However, when performing the above-described simultaneous reverse backwashing, since the backwash wastewater and air are mixed and discharged from the membrane module through the air vent pipe, a sufficient air flow rate is obtained due to the air vent pipe and the pressure loss of the module. And there is a problem that the backwash flow rate cannot be maintained.
 また、空洗を単独で実施した場合には、膜表面から剥離した懸濁物質を介して膜の外表面が激しくこすれあうことによって、膜表面が潰れたり、膜表面が粗くなったりするという膜擦過の問題があった。特に、粉末活性炭などの高硬度粒子を含む原水においては、膜擦過の程度が著しく、これまで、粉末活性炭を膜モジュールの原水に添加する際の障害となっていた。一方、空洗を実施せずに逆洗のみを実施した場合においては、懸濁物質が膜表面から十分に剥離しきれず、多量に蓄積していくので、ろ過性能の低下が大きいという問題があった。 In addition, when air washing is performed alone, the membrane surface may be crushed or the membrane surface may be roughened by vigorously rubbing the outer surface of the membrane through suspended substances separated from the membrane surface. There was a problem of scratching. In particular, in raw water containing high-hardness particles such as powdered activated carbon, the degree of membrane rubbing is remarkable, and until now, it has been an obstacle to adding powdered activated carbon to the raw water of the membrane module. On the other hand, when only backwashing is performed without performing air washing, suspended substances cannot be sufficiently separated from the membrane surface and accumulate in large quantities, resulting in a significant decrease in filtration performance. It was.
 また、一度膜モジュール内の原水を排出した後に、逆洗排水を膜モジュールの下部から排出しながら、逆洗を実施する方法が提案されている(特許文献4、5)。しかしながら、この方法では、膜面に固着しやすい懸濁物質に対しては、膜からのその剥離性が不十分であり、懸濁物質が膜モジュール内に蓄積するという問題があった。 Also, a method has been proposed in which after the raw water in the membrane module is discharged once, backwash wastewater is discharged from the lower part of the membrane module, and backwashing is performed (Patent Documents 4 and 5). However, this method has a problem that a suspended substance that easily adheres to the membrane surface has insufficient peelability from the membrane, and the suspended substance accumulates in the membrane module.
 一方、洗浄効果を高めるため、逆洗水に次亜塩素酸ナトリウムを添加したり、逆洗に用いる水にオゾン含有水を用いたりする方法が提案されている(特許文献3、6)。塩素系殺菌剤は、膜表面や膜細孔内に付着したフミン質や微生物由来のタンパク質等の有機物を分解、除去する効果がある。しかし、原水に粉末活性炭が含まれている場合には、粉末活性炭によってそれらの薬品が消費されてしまい、膜付着有機物を分解、除去する効果が低下するという問題があった。 On the other hand, methods for adding sodium hypochlorite to backwash water or using ozone-containing water for water used for backwashing have been proposed in order to enhance the cleaning effect (Patent Documents 3 and 6). Chlorine disinfectants have the effect of decomposing and removing organic substances such as humic substances and microorganism-derived proteins adhering to the membrane surface and membrane pores. However, when powdered activated carbon is contained in the raw water, those chemicals are consumed by the powdered activated carbon, and there is a problem that the effect of decomposing and removing the film-adhered organic matter is reduced.
JP10-309567AJP10-309567A JP2007-289940AJP2007-289940A JP2001-079366AJP2001-079366A JP06-170364AJP06-170364A JP2794304BJP 2794304B JP2001-187324AJP2001-187324A
 そこで、上記の従来技術の問題を解決するために、膜モジュール内の原水側の水を系外に排出した後に、逆洗を実施しながら膜モジュール内の逆洗排水を排出し、次いで、膜モジュール内の原水側を水で満たして空洗を行い、その後、膜モジュール内の原水側の水を系外に排出する膜モジュールの洗浄方法が考案された。 Therefore, in order to solve the above problems of the prior art, after draining the raw water side of the membrane module out of the system, the backwash wastewater in the membrane module is discharged while performing backwashing, and then the membrane A method for cleaning a membrane module has been devised in which the raw water side in the module is filled with water and washed with air, and then the water on the raw water side in the membrane module is discharged out of the system.
 この方法によれば、空洗時における膜モジュール内の懸濁物質の量を低減でき、膜擦過を抑えると同時に、効果的に膜モジュールを洗浄することが可能となった。とりわけ、高硬度粒子を含有する原水に対しても、膜擦過を低減する効果が大きく、長期間にわたって膜の透水性能を低下させることなく、安定した運転ができることが分かった。加えて、逆洗水に薬品を用いた場合には、膜の表面に付着している懸濁物質を効率的に分解、除去することが可能であった。 According to this method, it is possible to reduce the amount of suspended substances in the membrane module at the time of air washing, and to suppress membrane abrasion and at the same time effectively wash the membrane module. In particular, it was found that even raw water containing high-hardness particles has a great effect of reducing membrane scratching and can be operated stably without deteriorating the water permeability of the membrane over a long period of time. In addition, when chemicals were used for the backwash water, it was possible to efficiently decompose and remove suspended substances adhering to the membrane surface.
 しかしながら、この洗浄方法には、逆洗前および逆洗中に膜モジュール内の水を系外に排出するため、再度、空洗のために給水する必要があることから、前記空逆同時洗浄や、逆洗または空洗の単独洗浄に比べて、水回収率が低下するという問題があった。 However, in this cleaning method, since the water in the membrane module is discharged outside the system before and during the backwashing, it is necessary to supply water again for the airwashing. As compared with back washing or air washing alone, there is a problem that the water recovery rate is lowered.
 本発明は、水回収率を低下させることなく、空洗時における膜モジュール内の懸濁物質の量を削減でき、膜擦過を低減すると同時に、効果的に膜モジュールを洗浄する膜モジュールの洗浄方法を提供することを目的とする。加えて、逆洗水に薬品を用いた場合に、膜表面に付着した懸濁物質を効率的に分解、除去することが可能な膜モジュールの洗浄方法を提供することを目的とする。 The present invention can reduce the amount of suspended substances in the membrane module at the time of air washing without reducing the water recovery rate, reduce membrane abrasion, and at the same time, effectively wash the membrane module. The purpose is to provide. In addition, an object of the present invention is to provide a membrane module cleaning method capable of efficiently decomposing and removing suspended substances adhering to the membrane surface when chemicals are used for backwash water.
 上記目的を達成するための本発明の膜モジュールの洗浄方法は、次の通りである。 The method for cleaning the membrane module of the present invention for achieving the above object is as follows.
 (1)原水をろ過膜によって膜ろ過してろ過水を得る膜モジュールを洗浄する膜モジュールの洗浄方法であって、逆洗排水を前記膜モジュールの下部から排出しながら逆洗を行う逆洗工程と、前記逆洗排水の少なくとも一部を回収する回収工程とを実施した後に、前記膜モジュール内の膜の原水側を、前記回収工程で回収した少なくとも一部の逆洗排水で満たして、空洗を行う空洗工程A、あるいは、前記膜モジュール内の膜の原水側に、前記回収工程で回収した少なくとも一部の逆洗排水を供給しながら、空洗を行う空洗工程Bを実施してなる膜モジュールの洗浄方法。 (1) A membrane module cleaning method for cleaning a membrane module that obtains filtered water by membrane filtration of the raw water with a filtration membrane, wherein backwashing is performed while discharging backwash drainage from the lower part of the membrane module. And collecting the raw water side of the membrane in the membrane module with at least a part of the backwash wastewater collected in the collection step, An air washing step A for performing washing or an air washing step B for carrying out air washing while supplying at least a part of the backwash waste water collected in the collection step to the raw water side of the membrane in the membrane module is performed. Cleaning method for membrane modules.
 (2)原水をろ過膜によって膜ろ過してろ過水を得る膜モジュールを洗浄する膜モジュールの洗浄方法であって、逆洗排水を前記膜モジュールの下部から排出しながら逆洗を行う逆洗工程と、前記逆洗排水の少なくとも一部を回収する回収工程と、前記回収工程で回収した逆洗排水を懸濁物質と清澄水に分離処理する分離工程とを実施した後に、前記膜モジュール内の膜の原水側を、前記清澄水で満たして、空洗を行う空洗工程C、あるいは、前記膜モジュール内の膜の原水側に、前記清澄水を供給しながら、空洗を行う空洗工程Dを実施してなる膜モジュールの洗浄方法。 (2) A membrane module cleaning method for cleaning a membrane module that obtains filtered water by membrane filtration of the raw water with a filtration membrane, and performing backwashing while discharging backwash drainage from the lower part of the membrane module And a recovery step of recovering at least a part of the backwash wastewater, and a separation step of separating the backwash wastewater recovered in the recovery step into suspended substances and clarified water, An air washing step C in which the raw water side of the membrane is filled with the clarified water to perform air washing, or an air washing step in which air is washed while supplying the clarified water to the raw water side of the membrane in the membrane module. A method for cleaning a membrane module obtained by performing D.
 (3)前記分離工程における分離方法が、沈澱分離方法である前記(2)に記載の膜モジュールの洗浄方法。 (3) The membrane module cleaning method according to (2), wherein the separation method in the separation step is a precipitation separation method.
 (4)前記逆洗工程の前に、前記膜モジュール内の膜の原水側の少なくとも一部の水を排出してなる前記(1)乃至(3)のいずれかに記載の膜モジュールの洗浄方法。 (4) The membrane module cleaning method according to any one of (1) to (3), wherein at least part of the water on the raw water side of the membrane in the membrane module is discharged before the backwashing step. .
 (5)前記逆洗工程において、逆洗に用いる水に薬品を添加してなる前記(1)乃至(4)のいずれかに記載の膜モジュールの洗浄方法。 (5) The membrane module cleaning method according to any one of (1) to (4), wherein a chemical is added to water used for backwashing in the backwashing step.
 (6)前記薬品が、塩素系殺菌剤である前記(5)に記載の膜モジュールの洗浄方法。 (6) The method for cleaning a membrane module according to (5), wherein the chemical is a chlorine-based disinfectant.
 (7)前記逆洗に用いる水の残留塩素濃度が、3mg/L乃至10mg/Lの範囲である前記(6)に記載の膜モジュールの洗浄方法。 (7) The membrane module cleaning method according to (6), wherein a residual chlorine concentration of water used for the backwashing is in a range of 3 mg / L to 10 mg / L.
 (8)前記原水が、前記ろ過膜の硬度よりも高い硬度を有する粒子を含有する前記(1)乃至(7)のいずれかに記載の膜モジュールの洗浄方法。 (8) The membrane module cleaning method according to any one of (1) to (7), wherein the raw water contains particles having a hardness higher than that of the filtration membrane.
 本発明の膜モジュールの洗浄方法によれば、水回収率を低下させることなく、空洗時の懸濁物質の量を削減でき、膜擦過を抑えると同時に、効果的に膜モジュールを洗浄することができる。加えて、薬品を用いた場合には、膜表面に付着した懸濁物質を効率的に分解、除去することができる。 According to the method for cleaning a membrane module of the present invention, it is possible to reduce the amount of suspended solids at the time of air washing without reducing the water recovery rate, and to effectively clean the membrane module while suppressing membrane abrasion. Can do. In addition, when chemicals are used, suspended substances attached to the membrane surface can be efficiently decomposed and removed.
図1は、本発明の第1の実施形態が適用される加圧型中空糸膜ろ過装置の一例を示す装置概略フロー図である。FIG. 1 is an apparatus schematic flow diagram showing an example of a pressurized hollow fiber membrane filtration apparatus to which the first embodiment of the present invention is applied. 図2は、本発明の第2の実施形態が適用される加圧型中空糸膜ろ過装置の一例を示す装置概略フロー図である。FIG. 2 is a schematic apparatus flow diagram illustrating an example of a pressurized hollow fiber membrane filtration apparatus to which the second embodiment of the present invention is applied. 図3は、本発明の第3の実施形態が適用される加圧型中空糸膜ろ過装置の一例を示す装置概略フロー図である。FIG. 3 is an apparatus schematic flow diagram showing an example of a pressurized hollow fiber membrane filtration apparatus to which the third embodiment of the present invention is applied. 図4は、比較例4で使用した加圧型中空糸膜ろ過装置を示す装置概略フロー図である。FIG. 4 is an apparatus schematic flow diagram showing the pressurized hollow fiber membrane filtration apparatus used in Comparative Example 4.
 以下、図面を参照しながら、本発明をさらに詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to the drawings. In addition, this invention is not limited to the following embodiment.
 第1の実施形態:
 本発明の第1の実施形態が適用される加圧型中空糸膜ろ過装置を図1に示す。図1において、加圧型中空糸膜ろ過装置F1は、原水槽1、中空糸膜HFが収納された容器からなる膜モジュール3、ろ過水槽4、逆洗排水回収槽6、エアブロワー7、および、薬液貯留槽8を有する。
First embodiment:
FIG. 1 shows a pressurized hollow fiber membrane filtration apparatus to which the first embodiment of the present invention is applied. In FIG. 1, a pressurized hollow fiber membrane filtration device F1 includes a raw water tank 1, a membrane module 3 comprising a container in which a hollow fiber membrane HF is accommodated, a filtered water tank 4, a backwash wastewater recovery tank 6, an air blower 7, and A chemical reservoir 8 is provided.
 原水槽1には、系外から原水RWを原水槽1に供給する管路PL1が設けられ、原水1aが、原水槽1に貯留される。原水槽1と膜モジュール3の原水側の空間3Aは、管路PL2で結合され、管路PL2には、原水弁10と原水供給ポンプ2が設けられている。膜モジュール3のろ過水側の空間3Bとろ過水槽4は、管路PL3で結合され、管路PL3には、ろ過水弁11が設けられている。 The raw water tank 1 is provided with a pipeline PL1 for supplying the raw water RW to the raw water tank 1 from outside the system, and the raw water 1a is stored in the raw water tank 1. The raw water tank 1 and the raw water side space 3A of the membrane module 3 are connected by a pipe line PL2, and a raw water valve 10 and a raw water supply pump 2 are provided in the pipe line PL2. The filtered water side space 3B of the membrane module 3 and the filtered water tank 4 are connected by a pipe line PL3, and a filtered water valve 11 is provided in the pipe line PL3.
 ろ過水槽4から管路PL4が導出され、その下流端は、膜モジュール3とろ過水弁11との間において、管路LP3に結合されている。管路PL4には、逆洗ポンプ5と逆洗弁12が設けられている。ろ過水槽4には、ろ過水4aが貯留される。ろ過水槽4は、ろ過水(処理水)TWを系外に排出する管路PL5を有する。 Pipe line PL4 is led out from filtered water tank 4, and its downstream end is connected to pipe line LP3 between membrane module 3 and filtered water valve 11. The line PL4 is provided with a backwash pump 5 and a backwash valve 12. The filtered water tank 4 stores filtered water 4a. The filtered water tank 4 has a pipe line PL5 for discharging filtered water (treated water) TW out of the system.
 膜モジュール3の下部に、膜モジュール3の原水側の空間3Aから導出された管路PL6が設けられ、管路PL6には、排水弁15が設けられている。膜モジュール3と排水弁15との間において、管路PL6から分岐して管路PL7が設けられ、その下流端は、逆洗排水回収槽6に接続されている。管路PL7には、逆洗排水回収弁16が設けられている。逆洗排水回収槽6には、逆洗排水6aが貯留される。 A pipe line PL6 derived from the raw water side space 3A of the membrane module 3 is provided below the membrane module 3, and a drain valve 15 is provided in the pipe line PL6. A branch line PL7 is provided between the membrane module 3 and the drain valve 15 and is branched from the pipe line PL6, and the downstream end thereof is connected to the backwash drainage recovery tank 6. A backwash drainage recovery valve 16 is provided in the pipe line PL7. In the backwash drainage recovery tank 6, backwash drainage 6a is stored.
 逆洗排水回収槽8から管路PL8が導出されて、その下流端は、原水弁10と原水供給ポンプ2との間において、管路PL2に結合され、管路PL8には、逆洗排水供給弁17が設けられている。逆洗排水回収槽6には、逆洗排水を系外に排出する管路PL9が付設されている。 The pipe PL8 is led out from the backwash drainage tank 8, and its downstream end is coupled to the pipe PL2 between the raw water valve 10 and the raw water supply pump 2, and the backwash drainage supply is supplied to the pipe PL8. A valve 17 is provided. The backwash drainage recovery tank 6 is provided with a pipe line PL9 for discharging the backwash wastewater to the outside of the system.
 膜モジュール3の原水側の空間3Aの上部から、管路PL10が導出され、その下流端は、系外に開放され、管路PL10には、エア抜き弁13が設けられている。 The pipe line PL10 is led out from the upper part of the raw water side space 3A of the membrane module 3, the downstream end thereof is opened to the outside of the system, and an air vent valve 13 is provided in the pipe line PL10.
 エアブロワー7から管路PL11が導出され、その下流端は、膜モジュール3と排水弁15および逆洗排水回収弁16との間において、管路PL6に結合されている。管路PL11には、エア供給弁14が設けられている。 The pipe line PL11 is led out from the air blower 7, and the downstream end thereof is coupled to the pipe line PL6 between the membrane module 3, the drain valve 15 and the backwash drainage recovery valve 16. An air supply valve 14 is provided in the pipe line PL11.
 薬液貯留槽8から管路PL12が導出され、その下流端は、逆洗ポンプ5と逆洗弁12との間において、管路PL4に結合され、管路PL12には、薬液供給ポンプ9が設けられている。 A pipe line PL12 is led out from the chemical liquid storage tank 8, and its downstream end is coupled to the pipe line PL4 between the backwash pump 5 and the backwash valve 12, and a chemical liquid supply pump 9 is provided in the pipe line PL12. It has been.
 図1(加圧型中空糸膜ろ過装置F1)において、原水槽1に溜められた原水1aを原水供給ポンプ2により膜モジュール3内の中空糸膜HFの原水側の空間3Aに供給する。膜モジュール3の内部は、接着剤によって開孔端部が固定された中空糸膜HFおよびその接着固定部FPによって、中空糸膜HFの原水側の空間3Aと中空糸膜HFのろ過水側の空間3Bとに区分されている。 In FIG. 1 (pressurized hollow fiber membrane filtration device F1), raw water 1a stored in the raw water tank 1 is supplied to a raw water side space 3A of the hollow fiber membrane HF in the membrane module 3 by a raw water supply pump 2. The inside of the membrane module 3 includes a hollow fiber membrane HF whose opening end is fixed by an adhesive and an adhesive fixing portion FP on the raw water side space 3A of the hollow fiber membrane HF and the filtered water side of the hollow fiber membrane HF. It is divided into a space 3B.
 膜モジュール3内で、原水1aは、中空糸膜HFによってろ過され、ろ過水4aは、中空糸膜HFのろ過水側の空間3Bから管路PL3を流れ、ろ過水弁11を経て、ろ過水槽4へと移送される。この時、原水弁10、ろ過水弁11は開であり、逆洗弁12、エア抜き弁13、エア供給弁14、排水弁15、逆洗排水回収弁16、逆洗排水供給弁17は閉である。このろ過により得られるろ過水4aは、ろ過水槽4に、その一部または全量が溜められる。 In the membrane module 3, the raw water 1 a is filtered by the hollow fiber membrane HF, and the filtered water 4 a flows from the space 3 B on the filtrate side of the hollow fiber membrane HF through the pipe line PL 3, passes through the filtered water valve 11, and passes through the filtered water tank. 4 is transferred. At this time, the raw water valve 10 and the filtrate water valve 11 are open, and the backwash valve 12, the air vent valve 13, the air supply valve 14, the drain valve 15, the backwash drainage recovery valve 16, and the backwash drainage supply valve 17 are closed. It is. Part or all of the filtered water 4 a obtained by this filtration is stored in the filtered water tank 4.
 加圧型中空糸膜ろ過装置F1におけるろ過工程は、原水槽1から原水1aを膜モジュール3に供給して膜モジュール3内の中空糸膜HFの原水側からろ過水側に水を透過し、ろ過水をろ過水槽4へ移送する工程である。 The filtration process in the pressurization type hollow fiber membrane filtration device F1 supplies raw water 1a from the raw water tank 1 to the membrane module 3, and permeates the water from the raw water side of the hollow fiber membrane HF in the membrane module 3 to the filtered water side, and performs filtration. This is a step of transferring water to the filtered water tank 4.
 ろ過時間は、原水の水質や膜ろ過流束等に応じて、適宜設定されるが、定流量ろ過の場合は、所定の膜ろ過差圧やろ過水量[m]、定圧ろ過の場合は、所定のろ過流量[m/hr]やろ過水量[m]、に到達するまで、ろ過を継続させてもよい。なお、ろ過流量とは、単位時間あたりのろ過水量を示す。また、膜ろ過流束とは、有効膜面積あたりのろ過流量を示す。 The filtration time is appropriately set according to the quality of raw water, membrane filtration flux, etc. In the case of constant flow filtration, the predetermined membrane filtration differential pressure or filtered water volume [m 3 ], in the case of constant pressure filtration, Filtration may be continued until a predetermined filtration flow rate [m 3 / hr] or filtered water amount [m 3 ] is reached. The filtration flow rate indicates the amount of filtered water per unit time. The membrane filtration flux indicates the filtration flow rate per effective membrane area.
 加圧型中空糸膜ろ過装置F1において、本発明の膜モジュールの洗浄方法は、例えば、以下のように実施される。まず、原水弁10とろ過水弁11を閉にして、原水供給ポンプ2を停止して、ろ過工程を停止する。次に、逆洗排水回収弁16を閉にしたまま、膜モジュール3のエア抜き弁13と排水弁15を開き、逆洗ポンプ5を稼動させることにより、ろ過水を膜モジュール3内の中空糸膜のろ過水側の空間3Bから膜モジュール3内の中空糸膜の原水側の空間3Aに透過させることによって、逆洗工程が行われる。 In the pressurized hollow fiber membrane filtration device F1, the membrane module cleaning method of the present invention is performed, for example, as follows. First, the raw water valve 10 and the filtrate water valve 11 are closed, the raw water supply pump 2 is stopped, and the filtration process is stopped. Next, with the backwash drainage recovery valve 16 closed, the air vent valve 13 and the drainage valve 15 of the membrane module 3 are opened, and the backwash pump 5 is operated, so that filtered water is discharged from the hollow fiber in the membrane module 3. The backwashing step is performed by allowing the membrane 3 to pass through the space 3B on the raw water side of the hollow fiber membrane in the membrane module 3 from the space 3B on the filtered water side of the membrane.
 このとき原水側の逆洗排水は、膜モジュール3から管路PL6を流れ、排水弁15を経て、系外に排出される。逆洗開始直後の逆洗排水は、中空糸膜HFから剥離した懸濁物質を多く含むが、逆洗時間が経過するにしたがって懸濁物質は少なくなっていく。懸濁物質の量が少なくなったとき、排水弁15を閉とし、逆洗排水回収弁16を開にすることにより、逆洗排水回収槽6内に逆洗排水6aが回収される回収工程が行われる。 At this time, the backwash waste water on the raw water side flows from the membrane module 3 through the pipe line PL6 and is discharged out of the system through the drain valve 15. The backwash drainage immediately after the start of backwashing contains a large amount of suspended matter peeled from the hollow fiber membrane HF, but the suspended matter decreases as the backwash time elapses. When the amount of suspended substances is reduced, the recovery process is such that the backwash drainage 6a is recovered in the backwash drainage recovery tank 6 by closing the drainage valve 15 and opening the backwash drainage recovery valve 16. Done.
 前記逆洗工程の開始にあたり、エア抜き弁13と逆洗排水回収弁16を開き、排水弁15を閉とした状態で、逆洗を開始し、逆洗直後の逆洗排水を逆洗排水回収槽6へ送水することも可能であるが、回収した逆洗排水中に懸濁物質を多く含むことから、逆洗開始直後の逆洗排水は、排水弁15を開にして、系外に排出することが望ましい。 At the start of the backwash process, the backwashing is started with the air vent valve 13 and the backwash drainage recovery valve 16 open and the drainage valve 15 is closed, and the backwash drainage immediately after backwashing is recovered. Although it is possible to send water to the tank 6, since the recovered backwash wastewater contains a lot of suspended solids, the backwash wastewater immediately after the start of backwash is discharged outside the system by opening the drain valve 15. It is desirable to do.
 前記逆洗工程において、逆洗排水を系外への排水から逆洗排水回収槽6への送水へ切り替えるタイミングは、予め決められた時間となったときに自動で切り替える方法、懸濁物質の濃度を測定し、所定値を下回ったときに切り替える方法などがある。ただし、少なくとも膜モジュール3の原水側を充填するのに十分な量の逆洗排水を回収することが望ましい。 In the backwashing step, the timing for switching backwash wastewater from draining out of the system to feeding water to the backwash wastewater collecting tank 6 is a method of automatically switching when the predetermined time has elapsed, the concentration of suspended solids There is a method of measuring when the value falls below a predetermined value. However, it is desirable to collect a sufficient amount of backwash wastewater to fill at least the raw water side of the membrane module 3.
 前記逆洗工程において、逆洗流量[m/hr]は、逆洗排水が自重により膜モジュール3下部から排出される流量より、低く設定することが好ましい。この場合、次第に膜モジュール3の水位が下がっていき、膜モジュール3内の原水側の周囲が気体となった状態となる。従来の逆洗は、膜モジュール3内の原水側を水で満たした状態で実施しており、逆洗排水は、エア抜き弁13を通って系外に排出されていたので、水圧が懸濁物質の膜表面からの剥離を阻害していた。 In the backwashing step, the backwash flow rate [m 3 / hr] is preferably set lower than the flow rate of backwash wastewater discharged from the lower part of the membrane module 3 by its own weight. In this case, the water level of the membrane module 3 gradually decreases, and the surroundings on the raw water side in the membrane module 3 become a gas state. Conventional backwashing is performed in a state where the raw water side in the membrane module 3 is filled with water, and the backwash drainage is discharged out of the system through the air vent valve 13, so the water pressure is suspended. The peeling of the substance from the film surface was inhibited.
 これに対し、本発明では、逆洗排水を膜モジュールの下部から排出しながら逆洗を行うため、逆洗排水が膜モジュール3の下部から排出されている状態において、逆洗が行われる。そのため、逆洗時に水圧による抵抗がなくなる、あるいは、極めて低くなるため、懸濁物質が膜表面から剥離しやすくなり、洗浄効果が高くなる。 In contrast, in the present invention, the backwash wastewater is discharged from the lower part of the membrane module, so that the backwash wastewater is discharged from the lower part of the membrane module 3. For this reason, resistance due to water pressure is eliminated during backwashing or becomes extremely low, so that suspended substances are easily peeled off from the membrane surface and the cleaning effect is enhanced.
 前記逆洗工程を実施する前に、エア抜き弁13および排水弁15を開として、原水の少なくとも一部を排出してもよい。膜モジュール3内の原水側の水は残っていてもかまわないが、少なくとも膜の半分が水面より上となり、気体に触れるようにする。好ましくは、水位がろ過膜長さの1/3以下になるまで、より好ましくは膜全体が水面よりも上となり、膜全体が気体に触れるように水を排出する。 Before performing the backwashing step, at least a part of the raw water may be discharged by opening the air vent valve 13 and the drain valve 15. The water on the raw water side in the membrane module 3 may remain, but at least half of the membrane is above the water surface so as to be in contact with the gas. Preferably, until the water level becomes 1/3 or less of the length of the filtration membrane, more preferably, the entire membrane is above the water surface, and water is discharged so that the entire membrane is in contact with gas.
 このとき、水回収率の観点から排水弁15から排水された原水は、直接原水槽1に戻すことが好ましい。また、エア抜き弁13および逆洗排水回収弁16を開として、排水した原水を逆洗排水回収槽6に回収してもかまわない。なお、ここでの水回収率とは、膜モジュール3に供給した原水量に対するろ過水生産量の割合を示す。 At this time, it is preferable that the raw water drained from the drain valve 15 is directly returned to the raw water tank 1 from the viewpoint of the water recovery rate. Further, the air drain valve 13 and the backwash drainage recovery valve 16 may be opened to collect the drained raw water in the backwash drainage recovery tank 6. In addition, the water recovery rate here shows the ratio of the filtrate water production amount with respect to the raw water amount supplied to the membrane module 3.
 さらに、洗浄効果を高める方法としては、薬液供給ポンプ9を稼働して、逆洗に用いる水(逆洗水)に、薬液貯留槽8内の薬品を添加することが望ましい。 Furthermore, as a method for enhancing the cleaning effect, it is desirable to operate the chemical liquid supply pump 9 and add the chemicals in the chemical liquid storage tank 8 to the water used for backwashing (backwash water).
 前記逆洗工程および回収工程を実施した後、逆洗排水回収弁16を閉にして、逆洗排水供給弁17を開とし、エア抜き弁13は開のままの状態で、原水供給ポンプ2を稼動することにより、膜モジュール3内の原水側に、回収した逆洗排水を満たし、エア供給弁14を開とし、エアブロワー7を稼動することで、膜モジュール3の下方からエアを供給し、空洗を行う。 After carrying out the backwash process and the recovery process, the backwash drainage recovery valve 16 is closed, the backwash drainage supply valve 17 is opened, and the air vent valve 13 is left open, and the raw water supply pump 2 is opened. By operating, the raw water side in the membrane module 3 is filled with the collected backwash drainage, the air supply valve 14 is opened, and the air blower 7 is operated to supply air from below the membrane module 3, Perform an air wash.
 空洗は、予め膜モジュール3内の原水側を、回収した逆洗排水で満たした後に行う方式、すなわち、空洗工程Aでもよいし、膜モジュール3内の原水側に、回収した逆洗排水を供給しながら行う方式、すなわち、空洗工程Bであってもよいが、空洗工程Bのほうが、洗浄効果が高いので好ましい。 The air washing may be performed after the raw water side in the membrane module 3 is filled with the collected backwash wastewater in advance, that is, the air washing step A, or the collected backwash wastewater on the raw water side in the membrane module 3. However, the washing step B is preferable because the washing effect is high.
 前記空洗工程Aおよび前記空洗工程Bにおいて、膜モジュール3の上部、すなわち、エア抜き弁13を経て管路PL10から、オーバーフローして排出される水は、水回収率を上げるために、原水槽1、あるいは、逆洗排水回収槽6に戻すことが望ましい。 In the air washing step A and the air washing step B, the water discharged from the upper portion of the membrane module 3, that is, the pipe PL10 via the air vent valve 13, is discharged to increase the water recovery rate. It is desirable to return to the water tank 1 or the backwash waste water collection tank 6.
 ここで、逆洗水中に薬品を添加した場合、薬品が原水槽1、あるいは、逆洗排水回収槽6に流入することになるが、原水槽1に戻す場合は、流入した薬品は、原水槽1内で希釈されるため、通常は、原水に影響を及ぼすことは少ない。しかし、高濃度に薬品を添加した場合は、中和処理などの薬品の処理を行った後に、原水槽1に戻すことが望ましい。逆洗排水回収槽6に戻す場合には、薬品を再利用することができるため、中和処理などを実施せず、そのまま逆洗排水回収槽6に戻すことが好ましい。 Here, when a chemical is added to the backwash water, the chemical flows into the raw water tank 1 or the backwash drainage recovery tank 6. When returning to the raw water tank 1, Since it is diluted within 1, it usually has little effect on raw water. However, when a chemical is added at a high concentration, it is desirable to return to the raw water tank 1 after performing a chemical treatment such as a neutralization treatment. When returning to the backwash wastewater recovery tank 6, since chemicals can be reused, it is preferable to return to the backwash wastewater recovery tank 6 as it is without performing neutralization.
 その後、エア供給弁14を閉にするとともに、エアブロワー7を停止して空洗工程を終了する。 Thereafter, the air supply valve 14 is closed and the air blower 7 is stopped to complete the air washing process.
 次いで、排水弁15、または、逆洗排水回収弁16の一方を開にすることで、膜モジュール3の原水側の膜面や膜細孔内から剥離した懸濁物質を含んだ水(空洗排水)を、膜モジュール3の原水側の空間3Aから排出する。空洗排水は、通常、懸濁物質の濃度が原水より高いことから、排水弁15から系外に排出することが好ましいが、懸濁物質の濃度が原水の懸濁物質濃度以下の場合には、水回収率を上げるために、排水弁15から排水された空洗排水を原水槽1に戻すか、あるいは、逆洗排水回収弁16を経由して空洗排水を再び逆洗排水回収槽6に回収することが好ましい。 Next, by opening one of the drainage valve 15 or the backwash drainage recovery valve 16, water containing suspended substances separated from the membrane surface and membrane pores on the raw water side of the membrane module 3 (empty washing) The waste water) is discharged from the space 3A on the raw water side of the membrane module 3. Since the concentration of suspended solids is usually higher than that of raw water, it is preferable that the waste water is discharged out of the system from the drain valve 15. However, when the concentration of suspended solids is below the suspended solids concentration of raw water, In order to increase the water recovery rate, the washing waste water drained from the drain valve 15 is returned to the raw water tank 1 or the washing waste water is again returned to the back washing drain collection tank 6 via the back washing drain recovery valve 16. It is preferable to collect in
 ここで、先述のとおり、逆洗水中に薬品を添加することができるが、高濃度に薬品を添加したとき、原水槽1に逆洗水を回収する場合は、中和処理などの薬品の処理を行った後に、原水槽1に戻すことが好ましく、逆洗排水回収槽6に逆洗水を回収する場合は、薬品を再利用することができるため、中和処理などを実施せず、空洗排水をそのまま逆洗排水回収槽6に送ることが好ましい。 Here, as described above, chemicals can be added to the backwash water. However, when the chemicals are added at a high concentration, when the backwash water is collected in the raw water tank 1, chemical treatment such as neutralization treatment is performed. Is preferably returned to the raw water tank 1, and when backwash water is collected in the backwash wastewater collection tank 6, chemicals can be reused. It is preferable to send the washing waste water to the back washing waste water collecting tank 6 as it is.
 前記排水終了後に、排水弁15を閉、原水弁10を開とし、原水供給ポンプ2を稼動して、原水を膜モジュール3に供給し、膜モジュール3の原水側を満水にする。ここで、膜モジュール3の上部、すなわち、エア抜き弁13を経て管路PL10からオーバーフローして排出される原水は、水回収率を上げるために、原水槽1、あるいは、逆洗排水回収槽6に送ることが望ましい。 After completion of the drainage, the drain valve 15 is closed, the raw water valve 10 is opened, the raw water supply pump 2 is operated, the raw water is supplied to the membrane module 3, and the raw water side of the membrane module 3 is filled. Here, the raw water discharged from the upper part of the membrane module 3, that is, the pipe PL10 through the air vent valve 13 and discharged from the pipe PL10, is supplied to the raw water tank 1 or the backwash drainage recovery tank 6 in order to increase the water recovery rate. It is desirable to send to.
 ただし、原水に高硬度粒子を含む場合には、原水が逆洗排水回収槽6に流入することにより、続く空洗工程によって、ろ過膜の擦過を引き起こすことから、なるべく原水槽1に送ることが好ましい。その後、エア抜き弁13を閉、ろ過水弁11を開とし、再びろ過工程を開始する。 However, when the raw water contains high-hardness particles, the raw water flows into the backwash drainage recovery tank 6 and causes the filter membrane to be rubbed by the subsequent washing process, so that it can be sent to the raw water tank 1 as much as possible. preferable. Thereafter, the air vent valve 13 is closed, the filtrate water valve 11 is opened, and the filtration process is started again.
 本発明によれば、逆洗工程によって大部分の懸濁物質を除去できることから、空洗時に膜が懸濁物質によってこすれあって膜擦過する程度を低減することが可能である。したがって、とりわけ、原水に粉末活性炭などの高硬度粒子を含む場合の膜ろ過における膜モジュールの洗浄に、本発明は有効である。 According to the present invention, since most of the suspended solids can be removed by the backwashing step, it is possible to reduce the degree that the membrane is rubbed with the suspended solids and rubbed against the membrane during washing. Therefore, the present invention is particularly effective for washing the membrane module in membrane filtration when raw water contains high-hardness particles such as powdered activated carbon.
 高硬度粒子とは、ろ過や洗浄に供されるろ過膜の硬度よりも高い硬度を有する粒子のことを指す。このような高硬度粒子としては、粉末活性炭や金属粉、シルト粒子、砂、セラミックス粒子等が挙げられるが、吸着能力の観点から粉末活性炭が好ましく採用される。 High hardness particles refer to particles having a hardness higher than the hardness of a filtration membrane used for filtration and washing. Examples of such high hardness particles include powdered activated carbon, metal powder, silt particles, sand, ceramic particles, and the like, and powdered activated carbon is preferably employed from the viewpoint of adsorption capability.
 ここで、高硬度粒子の硬度がろ過膜の硬度よりも高いかどうかの判定については、ISO14577-1(計装化押し込み硬さ)に準拠した測定法で測定し、測定された硬度を比較して判定する。ただし、ろ過膜が中空状のものに関しては、膜を切り開き平膜状にしたものを測定する。 Here, for determining whether the hardness of the high hardness particles is higher than the hardness of the filtration membrane, the hardness is measured by a measuring method based on ISO145777-1 (instrumented indentation hardness), and the measured hardness is compared. Judgment. However, when the filtration membrane is hollow, the membrane is cut and measured to have a flat membrane shape.
 また、従来技術として、逆洗排水を回収して原水槽に戻す方法が広く取られているが、薬品を含んだ逆洗排水が、原水槽1で希釈されることにより、薬品の効果が消滅していた。本発明によれば、薬品を含んだ逆洗排水を再び、次の空洗工程において使用することができることから、薬品の効果を消滅させることなく、高い洗浄効果が得られる。 In addition, as a conventional technique, a method of collecting backwash wastewater and returning it to the raw water tank is widely used. However, when the backwash wastewater containing the chemical is diluted in the raw water tank 1, the effect of the chemical disappears. Was. According to the present invention, since the backwash waste water containing the chemical can be used again in the next air washing step, a high cleaning effect can be obtained without eliminating the effect of the chemical.
 逆洗排水回収槽6は、少なくとも膜モジュール3の原水側の空間3Aを充填するのに十分な量の逆洗排水を回収するのに必要な容量があることが好ましい。逆洗排水回収槽6をオーバーフローした逆洗排水については、水回収率を上げるために、原水槽1に戻すことが望ましい。ここでも、先述のとおり、逆洗水中に薬品を添加することができるが、高濃度に薬液を添加した場合は、中和処理などの薬品の処理を行った後に、原水槽1に戻すことが望ましい。 It is preferable that the backwash drainage recovery tank 6 has a capacity necessary to collect at least a sufficient amount of backwash drainage to fill the space 3A on the raw water side of the membrane module 3. About the backwash waste water which overflowed the backwash waste water collection tank 6, in order to raise a water recovery rate, returning to the raw water tank 1 is desirable. Again, as described above, chemicals can be added to the backwash water. However, when chemicals are added at a high concentration, they can be returned to the raw water tank 1 after treatment with chemicals such as neutralization. desirable.
 本発明の膜モジュールの洗浄方法は、ろ過終了後に毎回行っても構わないし、別の洗浄方法と組み合わせて時々行っても構わない。また、逆洗工程および空洗工程を行う時間、それらの間の比率は、任意に設定できるが、逆洗工程と空洗工程を合わせた洗浄時間は、30秒乃至3分程度であることが好ましい。さらに、本発明の膜モジュールの洗浄方法を繰り返す場合は、2乃至5回程度とすることが好ましい。 The cleaning method for the membrane module of the present invention may be performed every time after the filtration is completed, or may be sometimes performed in combination with another cleaning method. Moreover, the time for performing the backwashing step and the air washing step, and the ratio between them can be arbitrarily set, but the washing time for the backwashing step and the air washing step is about 30 seconds to 3 minutes. preferable. Furthermore, when the method for cleaning a membrane module of the present invention is repeated, it is preferable that the cleaning is performed 2 to 5 times.
 逆洗水に薬品を添加する場合には、必ずしも毎回の洗浄工程で逆洗水に薬品を添加する必要は無く、数サイクルの度に、逆洗水に薬品を添加した洗浄を行うことが薬品の使用量を減らすために有効である。 When adding chemicals to backwashing water, it is not always necessary to add chemicals to backwashing water in each washing process, and it is recommended that chemicals be added to backwashing water every several cycles. It is effective to reduce the amount of use.
 また、各工程間の少なくとも一つで膜モジュール3内を水で満たしたままの状態で保持させる工程(浸漬工程)を設けることにより、懸濁物質の剥離性をさらに高めることが可能となる。従って、逆洗工程および回収工程を実施した後に、膜モジュール3内に水を供給して膜モジュール3内を水で満たしたままの状態の浸漬工程を設け、その後に、空洗工程を実施することが好ましい。 In addition, it is possible to further enhance the releasability of suspended substances by providing a step (immersion step) for holding the membrane module 3 in a state of being filled with water in at least one of the steps. Therefore, after performing the backwashing step and the recovery step, water is supplied into the membrane module 3 to provide an immersion step in which the inside of the membrane module 3 is filled with water, and then the empty washing step is performed. It is preferable.
 とりわけ、逆洗水中に薬品を添加することにより、薬品を含んだ水が膜モジュール3内に保持されるため、浸漬工程において薬品による懸濁物質の分解が促進されることから効果的である。この際、必ずしも毎回の洗浄工程で浸漬工程を設ける必要は無く、数サイクルの度に、浸漬工程を設けることが、稼働率を低下させないために有効である。 In particular, by adding a chemical to the backwash water, water containing the chemical is retained in the membrane module 3, which is effective because the decomposition of the suspended substance by the chemical is promoted in the dipping process. At this time, it is not always necessary to provide an immersion process in each cleaning process, and it is effective to provide an immersion process every several cycles in order not to reduce the operating rate.
 また、ろ過工程で膜モジュール3の原水側に供給する原水には、有機系もしくは無機系の凝集剤を添加することも可能である。凝集剤を添加することで、懸濁物質の剥離性を向上させる効果が得られる。有機系凝集剤としては、ジメチルアミン系やポリアクリルアミド系のカチオン高分子凝集剤、などを使用することができる。一方、無機系凝集剤としては、ポリ塩化アルミニウムやポリ硫酸アルミニウム、塩化第二鉄、ポリ鉄、硫酸第二鉄、ポリシリカ鉄等を使用することができる。 In addition, an organic or inorganic flocculant can be added to the raw water supplied to the raw water side of the membrane module 3 in the filtration step. By adding the flocculant, the effect of improving the releasability of the suspended substance can be obtained. Examples of organic flocculants include dimethylamine-based and polyacrylamide-based cationic polymer flocculants. On the other hand, polyaluminum chloride, polyaluminum sulfate, ferric chloride, polyiron, ferric sulfate, polysilica iron and the like can be used as the inorganic flocculant.
 膜モジュール3としては、外圧式でも内圧式であっても差し支えはないが、前処理の簡便さの観点から、外圧式が好ましい。また、膜ろ過方式としては、全量ろ過型モジュールでも、クロスフローろ過型モジュールであっても差し支えはないが、エネルギー消費量が少ないという点から、全量ろ過型モジュールが好ましい。さらに、加圧型モジュールであっても、浸漬型モジュールであっても差し支えはないが、高流束ろ過が可能であるという点から、加圧型モジュールが好ましい。 The membrane module 3 may be an external pressure type or an internal pressure type, but is preferably an external pressure type from the viewpoint of simplicity of pretreatment. Moreover, as a membrane filtration system, there is no problem even if it is a whole-volume filtration type module or a cross-flow filtration type module, but a whole-volume filtration type module is preferred from the viewpoint of low energy consumption. Furthermore, although it may be a pressurization type module or an immersion type module, a pressurization type module is preferable from the viewpoint that high flux filtration is possible.
 膜モジュール3で使用されるろ過膜としては、多孔質であれば特に限定されないが、所望の処理水の水質や水量によって、精密ろ過膜(MF膜)を用いたり、限外ろ過膜(UF膜)を用いたり、あるいは、両者を併用したりする。例えば、濁質成分、大腸菌、クリプトスポリジウム等を除去したい場合は、MF膜でもUF膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、UF膜を用いることが好ましい。 The filtration membrane used in the membrane module 3 is not particularly limited as long as it is porous, but depending on the desired quality and amount of treated water, a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane) is used. ), Or use both together. For example, when removing turbid components, Escherichia coli, Cryptosporidium, etc., either MF membrane or UF membrane may be used. However, when removing viruses, high molecular organic substances, etc., UF membrane is used. preferable.
 ろ過膜の形状としては、中空糸膜、平膜、管状膜等があるが、いずれでも構わない。 As the shape of the filtration membrane, there are a hollow fiber membrane, a flat membrane, a tubular membrane and the like, and any of them may be used.
 ろ過膜の材質としては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、およびクロロトリフルオロエチレン-エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホン等からなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに、膜強度や耐薬品性の点からは、ポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性に優れるという点からは、ポリアクリロニトリルがより好ましい。 Filter membrane materials include polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetra Including at least one selected from the group consisting of fluoroethylene-perfluoroalkyl vinyl ether copolymers, and chlorotrifluoroethylene-ethylene copolymers, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, and polyethersulfone. Further, from the viewpoint of film strength and chemical resistance, polyvinylidene fluoride (PVDF) is more preferable, and it has high hydrophilicity and excellent stain resistance. , Polyacrylonitrile is more preferable.
 ろ過運転の制御方法としては、定流量ろ過であっても、定圧ろ過であってもよいが、一定の処理水量が得られ、また、全体の制御が容易であるという点から、定流量ろ過が好ましい。 As a control method of the filtration operation, either constant flow filtration or constant pressure filtration may be used, but constant flow filtration is performed because a constant amount of treated water can be obtained and the entire control is easy. preferable.
 逆洗水に添加する薬品としては、膜が劣化しない程度の濃度および保持時間を適宜設定した上で、選択することができるが、次亜塩素酸ナトリウム、二酸化塩素、クロラミン、過酸化水素、オゾン等を少なくとも1つ含有した方が、有機物に対して洗浄効果が高くなるので好ましい。また、塩酸、硫酸、硝酸、クエン酸、シュウ酸等を少なくとも1つ含有した方が、アルミニウム、鉄、マンガン等に対して洗浄効果が高くなるので好ましい。 The chemicals to be added to the backwash water can be selected after appropriately setting the concentration and holding time so that the membrane does not deteriorate, but sodium hypochlorite, chlorine dioxide, chloramine, hydrogen peroxide, ozone It is preferable to contain at least one of these because the cleaning effect on the organic matter is increased. In addition, it is preferable to contain at least one of hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid and the like because the cleaning effect on aluminum, iron, manganese and the like is increased.
 とりわけ、次亜塩素酸ナトリウムなどの塩素系殺菌剤は、即効性が強く、残留性が低いことからより好ましい。 In particular, a chlorine-based disinfectant such as sodium hypochlorite is more preferable because of its immediate effect and low persistence.
 塩素系殺菌剤を使用する場合には、逆洗に用いる水の残留塩素濃度が、3mg/L乃至10mg/Lの範囲にあることが好ましい。3mg/L未満であると、膜の洗浄効果が低下し、効果がなくなることがある。また、10mg/Lより高いと、薬品の使用量が上昇することや、ろ過膜の材質によっては、ろ過膜の劣化を引き起こすことがある。 When using a chlorine-based disinfectant, the residual chlorine concentration of water used for backwashing is preferably in the range of 3 mg / L to 10 mg / L. If it is less than 3 mg / L, the cleaning effect of the film may be reduced and the effect may be lost. On the other hand, when the concentration is higher than 10 mg / L, the amount of chemicals used may increase, and depending on the material of the filtration membrane, the filtration membrane may be deteriorated.
 ここで、残留塩素濃度は、「上水試験方法」2001年版(日本水道協会発行)記載のDPD(ジエチル-p-フェニレンジアミン)吸光光度法に準拠する方法で測定するものとする。 Here, the residual chlorine concentration is measured by a method based on the DPD (diethyl-p-phenylenediamine) absorptiometry described in “Water test method” 2001 edition (published by Japan Water Works Association).
 本発明の膜モジュールの洗浄方法は、海水等の被処理水をRO膜などで処理して淡水を得るRO膜分離装置の前処理として使用することもできる。その際、先述の逆洗工程において逆洗水中に薬品を添加した場合には、ろ過工程開始直後において膜内部および膜表面に残存した薬品が膜ろ過水中に含まれ、後段のRO膜処理に影響を及ぼすことがあることから、必要に応じて中和等の処理を施すことが好ましい。 The membrane module cleaning method of the present invention can also be used as a pretreatment of an RO membrane separation device that obtains fresh water by treating water to be treated such as seawater with an RO membrane or the like. At that time, if chemicals are added to the backwashing water in the backwashing process described above, the chemicals remaining in the membrane and on the membrane surface immediately after the start of the filtration process are contained in the membrane filtration water, affecting the subsequent RO membrane treatment. It is preferable to carry out a treatment such as neutralization as necessary.
 例えば、逆洗水中に次亜塩素酸ナトリウム、二酸化塩素、クロラミン、過酸化水素、オゾン等の酸化剤を添加した場合には、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウムなどの還元剤を逆洗排水回収槽6に添加することによって還元処理した後に、膜モジュール3に回収した逆洗排水を供給すればよい。また、逆洗水中に塩酸、硫酸、硝酸、クエン酸、シュウ酸などの酸を添加した場合には、水酸化ナトリウムや炭酸水素ナトリウムなどのアルカリを逆洗排水回収槽6に添加して中和処理した後に、膜モジュール3に回収した逆洗排水を供給すればよい。 For example, when an oxidizing agent such as sodium hypochlorite, chlorine dioxide, chloramine, hydrogen peroxide, or ozone is added to the backwash water, a reducing agent such as sodium sulfite, sodium bisulfite, or sodium thiosulfate is backwashed. What is necessary is just to supply the backwash waste_water | drain collect | recovered to the membrane module 3 after carrying out a reduction process by adding to the waste_water | drain collection | recovery tank 6. When acid such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, or oxalic acid is added to the backwash water, an alkali such as sodium hydroxide or sodium hydrogen carbonate is added to the backwash waste water collecting tank 6 for neutralization. What is necessary is just to supply the backwash waste_water | drain collect | recovered to the membrane module 3 after processing.
 ただし、これらの処理だけではろ過膜内部に残留する薬品を除去できないことから、例えば、先述の逆洗工程において逆洗水に酸化剤を添加した場合には、本発明の膜モジュールの洗浄方法に加えて、還元剤を添加した水で逆洗を行うことが好ましい。 However, since these treatments alone cannot remove chemicals remaining inside the filtration membrane, for example, when an oxidizing agent is added to the backwash water in the backwashing process described above, the cleaning method for the membrane module of the present invention is used. In addition, it is preferable to perform backwashing with water to which a reducing agent is added.
 第2の実施形態:
 本発明の第2の実施形態が適用される加圧型中空糸膜ろ過装置を図2に示す。図2には、加圧型中空糸膜ろ過装置F2が示されるが、図1に示される加圧型中空糸膜ろ過装置F1と重複する装置の構成要素については、同じ符号が付されている。図2に示す加圧型中空糸膜ろ過装置F2の説明において、図1に示す加圧型中空糸膜ろ過装置F1における説明と同じ説明は、省略されている。
Second embodiment:
FIG. 2 shows a pressurized hollow fiber membrane filtration apparatus to which the second embodiment of the present invention is applied. FIG. 2 shows a pressurization type hollow fiber membrane filtration device F2, but the same reference numerals are given to components of the device that overlap with the pressurization type hollow fiber membrane filtration device F1 shown in FIG. In the description of the pressurization type hollow fiber membrane filtration device F2 shown in FIG. 2, the same description as that in the pressurization type hollow fiber membrane filtration device F1 shown in FIG. 1 is omitted.
 図2に示す加圧型中空糸膜ろ過装置F2が、図1に示す加圧型中空糸膜ろ過装置F1と異なる点は、図1に示す逆洗排水回収槽6の代わりに、逆洗排水を、懸濁物質を含む水と清澄水に分離するための沈殿槽18と、得られた清澄水を貯留するための清澄水槽19とが設けられている点である。 The pressurization type hollow fiber membrane filtration device F2 shown in FIG. 2 is different from the pressurization type hollow fiber membrane filtration device F1 shown in FIG. 1 in that the backwash drainage is used instead of the backwash drainage recovery tank 6 shown in FIG. It is a point provided with the settling tank 18 for isolate | separating into the water containing a suspended solid, and clear water, and the clear water tank 19 for storing the obtained clear water.
 図2において、沈殿槽18には、逆洗排水回収弁16を有する管路PL7の下流端が結合されている。沈殿槽18の上方部分からは、管路PL21が導出され、その下流端は、清澄水槽19に接続されている。沈殿槽18の下方部分からは、管路PL22が導出され、その下流端は、系外に開放されている。管路PL22には、懸濁物質引抜弁20が設けられている。 2, the downstream end of the pipe PL7 having the backwash drainage recovery valve 16 is coupled to the settling tank 18. A pipe line PL <b> 21 is led out from the upper part of the settling tank 18, and its downstream end is connected to the clarified water tank 19. A pipe line PL22 is led out from the lower part of the settling tank 18, and its downstream end is open to the outside of the system. A suspended substance extraction valve 20 is provided in the pipe line PL22.
 清澄水槽19から、管路PL23が導出され、その下流端は、原水弁10と原水供給ポンプ2との間において、管路PL2に接続されている。管路PL23には、清澄水供給弁21が設けられている。清澄水槽19の上方部分から、管路PL24が導出され、その下流端は、系外に開放されている。管路PL24により、清澄水槽19の貯留量を超えた清澄水19aが、清澄水槽19から導出される。 A pipe line PL23 is led out from the clarified water tank 19, and its downstream end is connected to the pipe line PL2 between the raw water valve 10 and the raw water supply pump 2. A clarified water supply valve 21 is provided in the pipe line PL23. A pipe line PL24 is led out from the upper part of the clarified water tank 19, and its downstream end is open to the outside of the system. The clarified water 19a exceeding the amount stored in the clarified water tank 19 is led out from the clarified water tank 19 by the pipe line PL24.
 沈殿槽18において用いられる、逆洗排水を、懸濁物質を含む水と清澄水に分離するための分離手段として、沈殿分離、凝集沈殿分離、加圧浮上分離、遠心分離、砂ろ過、UF/MF膜分離、ろ布分離、繊維状フィルター分離、カートリッジフィルター分離、ディスクフィルター分離、フィルタープレス、ベルトプレス、真空脱水、多重円板脱水、などの手段が選択できる。懸濁物質は、通常、比重が大きく、沈降性が高いことから、沈殿分離が適している。また、設備コスト、処理コストなどの観点からも沈殿分離が好ましい。 As separation means for separating backwash wastewater used in the sedimentation tank 18 into water containing suspended solids and clarified water, precipitation separation, coagulation sedimentation separation, pressurized flotation separation, centrifugation, sand filtration, UF / MF membrane separation, filter cloth separation, fibrous filter separation, cartridge filter separation, disk filter separation, filter press, belt press, vacuum dewatering, multiple disk dewatering, and the like can be selected. Suspended substances are usually suitable for precipitation separation because of their large specific gravity and high sedimentation properties. Also, precipitation separation is preferable from the viewpoint of equipment cost, processing cost, and the like.
 図2に示す加圧型中空糸膜ろ過装置F2においては、ろ過工程を終了した後、排水弁15を閉にして、逆洗弁12、エア抜き弁13、逆洗排水回収弁16を開とした状態で、逆洗ポンプ5を稼動させ、逆洗工程を実施する。この逆洗工程において、逆洗排水全量を沈殿槽18に送ることが好ましい。これにより、図1に示す加圧型中空糸膜ろ過装置F1(第1の実施形態)よりも系外に排出する逆洗排水の量が減り、水回収率をより高めることができる。 In the pressurization type hollow fiber membrane filtration device F2 shown in FIG. 2, after finishing the filtration step, the drain valve 15 is closed, and the backwash valve 12, the air vent valve 13, and the backwash drainage recovery valve 16 are opened. In this state, the backwash pump 5 is operated to carry out the backwash process. In this backwashing step, it is preferable to send the total amount of backwash wastewater to the settling tank 18. Thereby, the amount of backwash drainage discharged out of the system can be reduced more than the pressurized hollow fiber membrane filtration device F1 (first embodiment) shown in FIG. 1, and the water recovery rate can be further increased.
 逆洗排水が沈殿槽18に流入することで、沈殿槽18内の清澄水が清澄水槽19内へと押し出されることにより、清澄水槽19が清澄水19aで満たされる。 As the backwash wastewater flows into the settling tank 18, the clear water in the settling tank 18 is pushed out into the clear water tank 19, so that the clear water tank 19 is filled with the clear water 19a.
 前記逆洗工程を実施した後、逆洗排水回収弁16を閉にして、清澄水供給弁21を開とし、エア抜き弁13は開のままの状態で、原水供給ポンプ2を稼動することにより、膜モジュール3内の原水側の空間3Aに前記清澄水を満たし、エア供給弁14を開とし、エアブロワー7を稼動することで、膜モジュール3の下方からエアを供給し、空洗を行う。 After performing the backwashing step, the backwash drainage recovery valve 16 is closed, the clarified water supply valve 21 is opened, and the raw water supply pump 2 is operated while the air vent valve 13 remains open. The raw water side space 3A in the membrane module 3 is filled with the clarified water, the air supply valve 14 is opened, and the air blower 7 is operated so that air is supplied from below the membrane module 3 to perform air washing. .
 空洗は、予め膜モジュール3内の原水側の空間3Aを前記清澄水で満たした後に行う方式、すなわち、空洗工程Cでもよいし、膜モジュール3内の原水側の空間3Aに前記清澄水を供給しながら行う方式、すなわち、空洗工程Dであってもよいが、空洗工程Dのほうが、洗浄効果が高いので好ましい。 The air washing may be performed after the raw water side space 3A in the membrane module 3 is filled with the clarified water in advance, that is, the air washing step C, or the clarified water is added to the raw water side space 3A in the membrane module 3. However, the washing step D is preferable because the washing effect is high.
 前記空洗工程Cおよび前記空洗工程Dにおいて、膜モジュール3の上部、すなわち、エア抜き弁13を経て管路PL10から、オーバーフローして排出される清澄水は、水回収率を上げるために、原水槽1、あるいは、沈殿槽18に戻すことが望ましい。 In the air washing step C and the air washing step D, the clarified water that overflows and is discharged from the upper part of the membrane module 3, that is, the pipe PL10 through the air vent valve 13, is used to increase the water recovery rate. It is desirable to return to the raw water tank 1 or the sedimentation tank 18.
 ここで、先述のとおり、逆洗水中に薬品を添加することができるが、高濃度の薬液を添加したとき、清澄水を原水槽1に戻す場合は、中和処理などの薬品の処理を行った後に、清澄水を原水槽1に戻すことが好ましく、清澄水を沈殿槽18に戻す場合は、薬品を再利用することできるため、中和処理などを実施せず、そのまま、清澄水を沈殿槽18に戻すことが好ましい。 Here, as described above, chemicals can be added to the backwash water. However, when high-concentration chemicals are added, chemicals such as neutralization are performed when clear water is returned to the raw water tank 1. After that, it is preferable to return the clarified water to the raw water tank 1, and when the clarified water is returned to the precipitation tank 18, the chemicals can be reused. It is preferable to return to the tank 18.
 その後、エア供給弁14を閉にするとともに、エアブロワー7を停止して空洗工程を終了する。 Thereafter, the air supply valve 14 is closed and the air blower 7 is stopped to complete the air washing process.
 次いで、排水弁15、または、逆洗排水回収弁16の一方を開にすることで、空洗排水を排出する。空洗排水は、通常、懸濁物質の濃度が原水より高いことから、図1に示す加圧型中空糸膜ろ過装置F1(第1の実施形態)では、系外に排出することが好ましかったが、図2に示す加圧型中空糸膜ろ過装置F2(第2の実施形態)においては、沈殿槽18によって懸濁物質を分離することができることから、水回収率を上げるために、空洗排水を沈殿槽18に送ることが好ましい。 Next, by opening one of the drainage valve 15 or the backwash drainage recovery valve 16, the flush wastewater is discharged. Since the washing waste water usually has a higher concentration of suspended solids than the raw water, it is preferable that the pressurized hollow fiber membrane filtration device F1 (first embodiment) shown in FIG. However, in the pressurized hollow fiber membrane filtration device F2 (second embodiment) shown in FIG. 2, the suspended solids can be separated by the settling tank 18, so that the water washing rate is increased in order to increase the water recovery rate. It is preferable to send the waste water to the settling tank 18.
 なお、空洗排水を排水弁15から排水する場合、図1に示す加圧型中空糸膜ろ過装置F1(第1の実施形態)と同様に、空洗排水の懸濁物質の濃度が原水の懸濁物質濃度以下のとき、排水弁15から排水された空洗排水を再び原水槽1に戻してもよい。 In addition, when draining the waste water from the drain valve 15, the concentration of suspended substances in the waste water is equal to that of the raw water as in the pressurization type hollow fiber membrane filtration device F 1 shown in FIG. 1 (first embodiment). When the turbidity substance concentration is less than or equal to the turbid substance concentration, the washing waste water discharged from the drain valve 15 may be returned to the raw water tank 1 again.
 ここで、先述のとおり、逆洗水中に薬品を添加することができるが、高濃度の薬品を添加するとき、空洗排水を原水槽1に回収する場合は、中和処理などの薬品の処理を行った後に、空洗排水を原水槽1に戻すことが好ましく、沈殿槽18に回収する場合は、薬品を再利用することができるため、中和処理などを実施せず、空洗排水をそのまま沈殿槽18に送ることが好ましい。 Here, as described above, chemicals can be added to the backwash water, but when adding high-concentration chemicals, chemical treatment such as neutralization treatment is performed when the waste water is collected in the raw water tank 1. After washing, it is preferable to return the washing waste water to the raw water tank 1, and when collecting in the sedimentation tank 18, chemicals can be reused. It is preferable to send it to the sedimentation tank 18 as it is.
 前記排水終了後に、排水弁15を閉、原水弁10を開とし、原水供給ポンプ2を稼動して、原水を膜モジュール3に供給し、膜モジュール3の原水側の空間3Aを満水にする。ここで、膜モジュール3の上部、すなわち、エア抜き弁13を経て管路PL10からオーバーフローして排出される原水は、水回収率を上げるために、原水槽1、あるいは、沈殿槽18に送ることが望ましい。 After completion of the drainage, the drainage valve 15 is closed, the raw water valve 10 is opened, the raw water supply pump 2 is operated, the raw water is supplied to the membrane module 3, and the space 3A on the raw water side of the membrane module 3 is filled. Here, the raw water discharged from the upper part of the membrane module 3, that is, the pipe PL10 through the air vent valve 13, is discharged to the raw water tank 1 or the sedimentation tank 18 in order to increase the water recovery rate. Is desirable.
 ただし、逆洗工程において逆洗水に薬品を添加した場合には、オーバーフローして排出される原水を沈殿槽18に送ると、沈殿槽18内の薬品濃度が低下することから、オーバーフローして排出される原水は、原水槽1に戻すことが好ましい。 However, when chemicals are added to the backwashing water in the backwashing process, if the raw water that overflows and is discharged is sent to the sedimentation tank 18, the chemical concentration in the sedimentation tank 18 will decrease, so it overflows and is discharged. The raw water to be used is preferably returned to the raw water tank 1.
 その後、エア抜き弁13を閉、ろ過水弁11を開とし、再びろ過工程を開始する。このろ過工程の期間に、沈殿槽18内の逆洗排水中の懸濁物質が沈降して、逆洗排水は、懸濁物質と清澄水に分離される。 Thereafter, the air vent valve 13 is closed, the filtrate water valve 11 is opened, and the filtration process is started again. During this filtration step, suspended substances in the backwash wastewater in the settling tank 18 are settled, and the backwash wastewater is separated into suspended substances and clarified water.
 図2に示す加圧型中空糸膜ろ過装置F2(第2の実施形態)では、懸濁物質の沈殿を十分に行うために、ろ過時間は、長い方が好ましく、30分以上であることがより好ましい。 In the pressurized hollow fiber membrane filtration device F2 (second embodiment) shown in FIG. 2, the filtration time is preferably longer and more preferably 30 minutes or longer in order to sufficiently precipitate the suspended matter. preferable.
 なお、沈殿槽18底部には、懸濁物質が蓄積されていくため、定期的に懸濁物質引抜弁20を開にして、適宜懸濁物質を系外に排出することが好ましい。 It should be noted that since suspended substances are accumulated at the bottom of the sedimentation tank 18, it is preferable to periodically open the suspended substance extraction valve 20 and appropriately discharge the suspended substances out of the system.
 清澄水槽19をオーバーフローした清澄水については、水回収率を上げるために、原水槽1に戻すことが望ましい。ここで、先述のとおり、逆洗水中に薬品を添加することができるが、高濃度に薬液を添加した場合は、中和処理などの薬品の処理を行った後に、逆洗水を原水槽1に戻すことが望ましい。 The clarified water overflowing the clarified water tank 19 is preferably returned to the raw water tank 1 in order to increase the water recovery rate. Here, as described above, a chemical can be added to the backwash water. However, when a chemical solution is added at a high concentration, after the chemical treatment such as neutralization is performed, the backwash water is supplied to the raw water tank 1. It is desirable to return to
 なお、分離手段として、凝集沈殿処理、加圧浮上分離などの凝集剤などの薬品を含む処理を実施した場合には、逆洗水中に添加した薬品の効果が、分離処理において、添加した薬品によって減衰することがあるため、空洗工程における清澄水の供給の際に、清澄水に薬品を追加添加することが望ましい。 In addition, when a treatment containing a chemical such as a flocculant such as a coagulation sedimentation treatment or pressurized flotation separation is performed as a separation means, the effect of the chemical added to the backwash water depends on the chemical added in the separation treatment. Since it may attenuate, it is desirable to add an additional chemical to the clarified water when supplying the clarified water in the air washing step.
 第3の実施形態:
 本発明の第3の実施態様が適用される加圧型中空糸膜ろ過装置を図3に示す。図3には、加圧型中空糸膜ろ過装置F3が示されるが、図2に示される加圧型中空糸膜ろ過装置F2と重複する装置の構成要素については、同じ符号が付されている。図3に示す加圧型中空糸膜ろ過装置F3の説明において、図2に示す加圧型中空糸膜ろ過装置F2における説明と同じ説明は、省略されている。
Third embodiment:
FIG. 3 shows a pressurized hollow fiber membrane filtration device to which the third embodiment of the present invention is applied. FIG. 3 shows a pressurization type hollow fiber membrane filtration device F3, and the same reference numerals are given to components of the device that overlap with the pressurization type hollow fiber membrane filtration device F2 shown in FIG. In the description of the pressurization type hollow fiber membrane filtration device F3 shown in FIG. 3, the same description as that in the pressurization type hollow fiber membrane filtration device F2 shown in FIG. 2 is omitted.
 図3に示す加圧型中空糸膜ろ過装置F3の特徴は、原水に粉末活性炭が添加される点にある。図3に示す加圧型中空糸膜ろ過装置F3(第3の実施形態)には、図2に示す加圧型中空糸膜ろ過装置F2(第2の実施形態)に加えて、粉末活性炭スラリーを貯留する活性炭スラリー貯槽22と、原水に粉末活性炭を供給するスラリー供給ポンプ23と、原水と粉末活性炭を混合撹拌する攪拌機24が設けられている。 3 is characterized in that powdered activated carbon is added to raw water. The pressurized hollow fiber membrane filtration device F3 (third embodiment) shown in FIG. 3 stores powdered activated carbon slurry in addition to the pressurized hollow fiber membrane filtration device F2 (second embodiment) shown in FIG. There are provided an activated carbon slurry storage tank 22, a slurry supply pump 23 for supplying powdered activated carbon to the raw water, and a stirrer 24 for mixing and stirring the raw water and powdered activated carbon.
 図3において、活性炭スラリー貯槽22と原水槽1とは、管路PL31により結合され、管路PL31には、スラリー供給ポンプ23が設けられている。原水槽1には、管路PL1を通じて、原水RWが供給される。原水槽1の内部には、攪拌機24が設けられている。 3, the activated carbon slurry storage tank 22 and the raw water tank 1 are coupled by a pipe line PL31, and a slurry supply pump 23 is provided in the pipe line PL31. The raw water RW is supplied to the raw water tank 1 through the pipe line PL1. Inside the raw water tank 1, a stirrer 24 is provided.
 粉末活性炭の原料は、ヤシ殻やおが屑などの木質系や泥炭、亜炭、瀝青炭などの石炭系のいずれでも構わない。また、粉末活性炭の粒径は、小さければ小さいほど、比表面積が大きくなり、吸着能が高くなるので好ましい。ただし、当然のことながら、ろ過水に混入しないよう膜モジュールのろ過膜の孔径より大きくする必要がある。 The raw material of the powdered activated carbon may be any of woody materials such as coconut shells and sawdust, and coal-based materials such as peat, lignite and bituminous coal. Further, the smaller the particle size of the powdered activated carbon is, the larger the specific surface area and the higher the adsorption ability, which is preferable. However, as a matter of course, it is necessary to make it larger than the pore diameter of the membrane filter of the membrane module so as not to be mixed into the filtrate water.
 なお、上述した有機高分子樹脂製のろ過膜は、ここに用いられる粉末活性炭などの高硬度粒子の硬度よりも硬度が低いため、本発明の膜モジュールの洗浄方法において、好ましく使用することができる。 The organic polymer resin filtration membrane described above can be preferably used in the membrane module cleaning method of the present invention because the hardness is lower than the hardness of the high hardness particles such as powdered activated carbon used here. .
 以下において、本発明の実施例、および、比較例を説明する。 Hereinafter, examples of the present invention and comparative examples will be described.
 膜ろ過差圧の評価方法:
 膜モジュール3に接続されている原水を膜モジュール3に供給する管路PL2とろ過水を膜モジュール3から導出する管路PL3のそれぞれに、圧力計を設置し、管路PL2に設置した圧力計が検出した膜モジュールの原水側の圧力から管路PL3に設置した圧力計が検出した膜モジュールのろ過水側の圧力を差し引いて、膜ろ過差圧を算出した。
Evaluation method of membrane filtration differential pressure:
A pressure gauge is installed in each of the pipe line PL2 for supplying the raw water connected to the membrane module 3 to the membrane module 3 and the pipe line PL3 for leading the filtrate water from the membrane module 3, and the pressure gauge installed in the pipe line PL2. The pressure on the filtrate side of the membrane module detected by the pressure gauge installed in the pipe line PL3 was subtracted from the pressure on the raw water side of the membrane module detected by, and the membrane filtration differential pressure was calculated.
 試験1:
 外圧式PVDF中空糸膜モジュールHFU-2008(東レ(株)製)(膜面積11.5m)を用いて、河川水を原水として、膜ろ過流束1.5m/m/dで、定流量ろ過し、30分のろ過工程毎に、本発明の洗浄方法、または、従来の洗浄方法で、膜モジュールの洗浄を行い、各1ヶ月間運転し、膜ろ過差圧の上昇速度、および、水回収率を比較した。なお、逆洗工程における逆洗流束は、1.7m/m/dとし、空洗工程におけるエア流量は、14L/minとした。運転初期の膜ろ過差圧は、いずれも10kPaであった。各実施例および各比較例において使用した膜ろ過装置の図番と各工程の使用状態を、表1に示した。また、各工程における各弁の開閉状態、および、各ポンプ(エアブロワーを含む)の稼動および停止状態を、表2に示した。
Test 1:
Using external pressure PVDF hollow fiber membrane module HFU-2008 (manufactured by Toray Industries, Inc.) (membrane area 11.5 m 2 ), using river water as raw water, membrane filtration flux 1.5 m 3 / m 2 / d, The membrane module is washed by the washing method of the present invention or the conventional washing method every 30 minutes for the filtration step, and the membrane module is operated for one month each, and the rate of increase in the membrane filtration differential pressure, and The water recovery rate was compared. The backwashing flux in the backwashing process was 1.7 m 3 / m 2 / d, and the air flow rate in the air washing process was 14 L / min. The membrane filtration differential pressure in the initial stage of operation was 10 kPa. Table 1 shows the figure numbers of the membrane filtration devices used in each Example and each Comparative Example and the usage state of each process. In addition, Table 2 shows the open / close state of each valve in each step and the operation and stop states of each pump (including an air blower).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 逆洗排水回収槽6を有する図1に示す加圧型中空糸膜ろ過装置F1を用いて、そこにおける膜モジュール3の洗浄を行った。30分のろ過毎に、逆洗工程BS1(10秒)、逆洗工程BS2(50秒)、逆洗排水供給工程(30秒)、空洗工程(60秒)、排水工程DS2(15秒)、および、原水供給工程(30秒)を、この順に行った。 Using the pressurized hollow fiber membrane filtration device F1 shown in FIG. 1 having the backwash drainage recovery tank 6, the membrane module 3 was cleaned there. Every 30 minutes of filtration, backwash process BS1 (10 seconds), backwash process BS2 (50 seconds), backwash wastewater supply process (30 seconds), empty wash process (60 seconds), drainage process DS2 (15 seconds) The raw water supply step (30 seconds) was performed in this order.
 ここで、逆洗工程BS1は、逆洗排水を、排水弁15を経由して管路PL6を通じて、装置系外に排出する操作からなる工程である。逆洗工程BS2は、逆洗排水を、逆洗排水回収弁16を経由して管路PL7を通じて、逆洗排水回収槽6、または、沈殿槽18へ供給する操作からなる工程であり、逆洗排水の回収工程を含む工程である。逆洗工程BS1および逆洗工程BS2において、膜モジュールの原水側の水位は、次第に低下し、最終的に、逆洗工程BS2の終了時における膜モジュールの原水側の水位は、ろ過膜長さの1/3程度になった。 Here, the backwashing process BS1 is a process including an operation of discharging the backwash drainage to the outside of the apparatus system through the drain valve 15 and the pipe line PL6. The backwash process BS2 is a process comprising an operation of supplying backwash wastewater to the backwash wastewater recovery tank 6 or the sedimentation tank 18 through the pipe PL7 via the backwash drainage recovery valve 16. It is a process including a wastewater recovery process. In the backwashing step BS1 and the backwashing step BS2, the water level on the raw water side of the membrane module gradually decreases, and finally, the water level on the raw water side of the membrane module at the end of the backwashing step BS2 is equal to the filtration membrane length. It became about 1/3.
 1ヶ月運転後の膜ろ過差圧は、40kPaであり、安定的に運転できた。このとき、水回収率は、96.1%であった。 The membrane filtration differential pressure after 1 month operation was 40 kPa, and it was able to operate stably. At this time, the water recovery rate was 96.1%.
 沈殿槽18と清澄水槽19を有する図2に示す加圧型中空糸膜ろ過装置F2を用いて、そこにおける膜モジュール3の洗浄を行った。30分のろ過毎に、逆洗工程BS2(60秒)、清澄水供給工程(30秒)、空洗工程(60秒)、排水工程DS2(15秒)、および、原水供給工程(30秒)を、この順に行った。逆洗工程BS2において、膜モジュールの原水側の水位は、次第に低下し、最終的に、逆洗工程BS2の終了時における膜モジュールの原水側の水位は、ろ過膜長さの1/3程度になった。 Using the pressurized hollow fiber membrane filtration device F2 shown in FIG. 2 having the sedimentation tank 18 and the clarified water tank 19, the membrane module 3 was cleaned there. Every 30 minutes of filtration, backwash process BS2 (60 seconds), clarified water supply process (30 seconds), air washing process (60 seconds), drainage process DS2 (15 seconds), and raw water supply process (30 seconds) Were performed in this order. In the backwashing step BS2, the water level on the raw water side of the membrane module gradually decreases, and finally, the water level on the raw water side of the membrane module at the end of the backwashing step BS2 is about 1/3 of the filtration membrane length. became.
 実施例2では、逆洗工程BS1を行わなかったことから、装置系外に排出される逆洗水の量が減少したことにより、水回収率は、97.7%に上昇した。1ヶ月運転後の膜ろ過差圧は、40kPaであり、実施例1と同様に安定的に運転できた。 In Example 2, since the backwash process BS1 was not performed, the amount of backwash water discharged out of the apparatus system decreased, and the water recovery rate increased to 97.7%. The membrane filtration differential pressure after 1 month operation was 40 kPa, and it was possible to operate stably as in Example 1.
 実施例2における運転工程において、逆洗工程BS2の前に、排水工程DS1(15秒)を実施した。逆洗工程BS2の前に、排水工程DS1を実施することにより、逆洗工程BS2において、膜モジュールの原水側は、常に、気体で満たされていた。 In the operation process in Example 2, the drainage process DS1 (15 seconds) was performed before the backwash process BS2. By performing the drainage process DS1 before the backwash process BS2, the raw water side of the membrane module was always filled with gas in the backwash process BS2.
 1ヶ月運転後の膜ろ過差圧は、35kPaであり、実施例1および2と比べて、膜ろ過差圧の上昇を抑えることができた。逆洗工程BS2の前に排水工程DS1を実施することにより、洗浄効果が高くなることが確認された。水回収率は、97.7%であり、実施例2と同様に高い回収率であった。 The membrane filtration differential pressure after 1 month operation was 35 kPa, and compared with Examples 1 and 2, an increase in the membrane filtration differential pressure could be suppressed. It was confirmed that the cleaning effect is enhanced by performing the drainage process DS1 before the backwash process BS2. The water recovery rate was 97.7%, which was a high recovery rate as in Example 2.
比較例1Comparative Example 1
 逆洗排水回収槽6を持たない他は、図1に示す加圧型中空糸膜ろ過装置F1と同じ装置を用いて、30分のろ過毎に、従来の一般的な洗浄方法である、逆洗工程BS3(60秒)、空洗工程(60秒)、排水工程(15秒)、および、原水供給工程(30秒)を、この順に行った。 Except for not having the backwash drainage recovery tank 6, using the same apparatus as the pressurized hollow fiber membrane filtration apparatus F1 shown in FIG. The process BS3 (60 seconds), the air washing process (60 seconds), the drainage process (15 seconds), and the raw water supply process (30 seconds) were performed in this order.
 ここで、逆洗工程BS3は、エア抜き弁13を経由して管路PL10を通じて、装置系外に排水する操作からなる工程である。逆洗工程BS3においては、膜モジュールの原水側の水位は、ほぼ満水状態であった。 Here, the backwashing step BS3 is a step consisting of an operation of draining out of the apparatus system through the air vent valve 13 and through the pipe line PL10. In the backwash process BS3, the water level on the raw water side of the membrane module was almost full.
 1ヶ月運転後の膜ろ過差圧は、50kPaであり、実施例1乃至3の場合に比べて、膜ろ過差圧の上昇速度が大きくなった。水回収率は、94.8%であり、実施例1乃至3の場合に比べて、低かった。 The membrane filtration differential pressure after 1 month operation was 50 kPa, and the increase rate of the membrane filtration differential pressure was larger than in Examples 1 to 3. The water recovery rate was 94.8%, which was lower than those in Examples 1 to 3.
比較例2Comparative Example 2
 比較例1と同様に、逆洗排水回収槽6を持たない他は、図1に示す加圧型中空糸膜ろ過装置F1と同じ装置を用いて、30分のろ過毎に、逆洗工程BS1(60秒)、排水工程DS2(15秒)、および、原水供給工程(30秒)を、この順に行った。実施例1との違いは、空洗工程を行わなかったことであり、空洗工程の有無による膜ろ過差圧の上昇速度の違いを調べた。 As in Comparative Example 1, except for not having the backwash drainage recovery tank 6, using the same device as the pressurized hollow fiber membrane filtration device F1 shown in FIG. 60 seconds), the drainage process DS2 (15 seconds), and the raw water supply process (30 seconds) were performed in this order. The difference from Example 1 was that the air washing step was not performed, and the difference in the rate of increase in the membrane filtration differential pressure due to the presence or absence of the air washing step was examined.
 1ヶ月運転後の膜ろ過差圧は、140kPaとなり、逆洗工程の後に空洗工程を有する実施例1と比べて、急激な膜ろ過差圧の上昇が起きた。これより、空洗工程が無いと洗浄が不十分となり、急激な膜ろ過差圧の上昇が起きることが確認された。水回収率は、94.8%であり、実施例1乃至3の場合に比べて、低かった。 The membrane filtration differential pressure after 1 month operation was 140 kPa, and a rapid increase in the membrane filtration differential pressure occurred compared to Example 1 having an air washing step after the back washing step. From this, it was confirmed that if there was no air washing step, the washing was insufficient and a rapid increase in the membrane filtration differential pressure occurred. The water recovery rate was 94.8%, which was lower than those in Examples 1 to 3.
比較例3Comparative Example 3
 比較例1と同様に、逆洗排水回収槽6を持たない他は、図1に示す加圧型中空糸膜ろ過装置F1と同じ装置を用いて、30分のろ過毎に、逆洗工程BS1(60秒)、原水供給工程(30秒)、空洗工程(60秒)、排水工程DS2(15秒)、および、原水供給工程(30秒)を、この順に行った。実施例1との違いは、逆洗排水の回収工程が無いことであり、逆洗排水の回収工程の有無による膜ろ過差圧の上昇速度と水回収率の違いを調べた。 As in Comparative Example 1, except for not having the backwash drainage recovery tank 6, using the same device as the pressurized hollow fiber membrane filtration device F1 shown in FIG. 60 seconds), raw water supply step (30 seconds), air washing step (60 seconds), drainage step DS2 (15 seconds), and raw water supply step (30 seconds) were performed in this order. The difference from Example 1 is that there is no backwash wastewater recovery step, and the difference in the rate of increase in membrane filtration differential pressure and the water recovery rate due to the presence or absence of the backwash wastewater recovery step was investigated.
 1ヶ月運転後の膜ろ過差圧は、40kPaであり、実施例1の場合と同様に安定的に運転できた。しかし、水回収率は、93.2%であり、実施例1乃至3の場合と比べて、低下した。 The membrane filtration differential pressure after 1 month operation was 40 kPa, and it was possible to operate stably as in Example 1. However, the water recovery rate was 93.2%, which was lower than that in Examples 1 to 3.
 試験1における各実施例および各比較例における運転結果を、表3に示した。 Table 3 shows the operation results in each Example and each Comparative Example in Test 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験2:
 試験1の場合と同じ膜モジュールと原水を用いて、同じようにろ過工程と膜モジュールの洗浄を繰り返し行った。試験2では、逆洗水に薬品として、次亜塩素酸ナトリウムを添加した場合における膜ろ過差圧の上昇速度と水回収率の比較を行った。
Test 2:
Using the same membrane module and raw water as in the case of Test 1, the filtration process and the washing of the membrane module were repeated in the same manner. In Test 2, the rate of increase in the membrane filtration differential pressure and the water recovery rate when sodium hypochlorite was added as a chemical to the backwash water were compared.
 実施例および比較例において使用した膜ろ過装置の図番と各工程の使用状態を、表4に示した。また、各工程における各弁の開閉状態、および、各ポンプ(エアブロワーを含む)の稼動および停止状態を、表5に示した。 Table 4 shows the figure numbers of the membrane filtration devices used in the examples and comparative examples and the usage status of each process. Table 5 shows the open / close state of each valve in each step and the operation and stop states of each pump (including an air blower).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 図2に示す加圧型中空糸膜ろ過装置F2を用いて、30分のろ過毎に、逆洗工程BS2において、逆洗水中に残留塩素濃度が10mg/Lとなるように、次亜塩素酸ナトリウムを添加した他は、実施例3の場合と同様の膜モジュールの洗浄を行った。 Using the pressurized hollow fiber membrane filtration device F2 shown in FIG. 2, sodium hypochlorite so that the residual chlorine concentration in the backwash water becomes 10 mg / L in the backwash step BS2 every 30 minutes of filtration. The membrane module was washed in the same manner as in Example 3 except that was added.
 空洗工程開始直前に、膜モジュール内の水を採水し、残留塩素濃度を測定した結果、残留塩素濃度は、3mg/Lであり、殺菌効果を有していた。その結果、1ヶ月間の運転において、膜ろ過差圧は、運転開始時から上昇することはなく、安定して運転できた。水回収率は、97.7%であった。 Just before the start of the air washing step, the water in the membrane module was collected and the residual chlorine concentration was measured. As a result, the residual chlorine concentration was 3 mg / L and had a bactericidal effect. As a result, in the operation for one month, the membrane filtration differential pressure did not increase from the start of operation, and could be operated stably. The water recovery rate was 97.7%.
比較例4Comparative Example 4
 図4に示す加圧型中空糸膜ろ過装置F4を用いて、実施例4の場合と同様に、逆洗水中の残留塩素濃度が10mg/Lとなるように、次亜塩素酸ナトリウムを添加した。ただし、実施例4とは異なり、回収した逆洗排水から懸濁物質を分離した清澄水19aを、原水槽1に戻した。 Using the pressurized hollow fiber membrane filtration device F4 shown in FIG. 4, sodium hypochlorite was added so that the residual chlorine concentration in the backwash water was 10 mg / L, as in Example 4. However, unlike Example 4, the clarified water 19a obtained by separating suspended substances from the collected backwash wastewater was returned to the raw water tank 1.
 そのため、図4に示す加圧型中空糸膜ろ過装置F4は、清澄水槽19から導出され、原水槽19に至る管路PL41を有し、管路PL41に、清澄水供給弁21が設けられている点において、図3に示す加圧型中空糸膜ろ過装置F4と異なる。 Therefore, the pressurized hollow fiber membrane filtration device F4 shown in FIG. 4 has a pipe line PL41 that is led out from the clarified water tank 19 and reaches the raw water tank 19, and a clarified water supply valve 21 is provided in the pipe line PL41. In this respect, it differs from the pressurized hollow fiber membrane filtration device F4 shown in FIG.
 空洗工程開始直前に、膜モジュール内の水を採水し、残留塩素濃度を測定した結果、残留塩素濃度は、0mg/Lであり、逆洗水中に添加した塩素の効果は、逆洗水が原水槽中の原水と混合したことによって、完全に失活していた。この結果、1ヶ月運転後の膜ろ過差圧は、14kPaであり、運転開始時に比べて、膜ろ過差圧は、4kPa上昇した。水回収率は、97.7%であった。 Immediately before the start of the air washing process, the water in the membrane module was collected and the residual chlorine concentration was measured. As a result, the residual chlorine concentration was 0 mg / L, and the effect of chlorine added to the backwash water was backwash water. Was completely deactivated by mixing with the raw water in the raw water tank. As a result, the membrane filtration differential pressure after one month of operation was 14 kPa, and the membrane filtration differential pressure increased by 4 kPa compared to when the operation was started. The water recovery rate was 97.7%.
 試験2における実施例および比較例における運転結果を、表6に示した。これより、原水槽に逆洗排水を戻す従来の逆洗排水の回収工程に比べて、本発明の洗浄方法における逆洗排水の回収工程によれば、膜ろ過差圧の上昇が抑えられることが確認された。 Table 6 shows the operation results in Examples and Comparative Examples in Test 2. From this, compared with the conventional backwash wastewater recovery process for returning the backwash wastewater to the raw water tank, the backwash wastewater recovery process in the cleaning method of the present invention can suppress an increase in the membrane filtration differential pressure. confirmed.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 試験3:
 試験1の場合と同じ膜モジュールと原水を用いて、同じようにろ過工程と膜モジュールの洗浄を繰り返し行った。試験3では、図3に示す加圧型中空糸膜ろ過装置F3を用いて、原水槽に、粉末活性炭の濃度が、50mg/Lとなるように、粉末活性炭を添加し、膜ろ過差圧の上昇速度、水回収率、ろ過膜の表面状態の比較を行った。実施例および比較例において使用した膜ろ過装置の図番と各工程の使用状態を、表7に示した。また、各工程における各弁の開閉状態、および、各ポンプ(エアブロワーを含む)の稼動および停止状態を、表8に示した。
Test 3:
Using the same membrane module and raw water as in the case of Test 1, the filtration process and the washing of the membrane module were repeated in the same manner. In Test 3, using the pressurized hollow fiber membrane filtration device F3 shown in FIG. 3, powdered activated carbon was added to the raw water tank so that the concentration of powdered activated carbon was 50 mg / L, and the membrane filtration differential pressure was increased. The speed, the water recovery rate, and the surface state of the filtration membrane were compared. Table 7 shows the figure numbers of the membrane filtration devices used in the examples and comparative examples and the usage status of each process. Table 8 shows the open / close state of each valve in each step and the operation and stop states of each pump (including an air blower).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 ろ過膜の表面状態の評価方法:
 膜モジュールを解体し、純水の入った水槽内に膜を入れて、水槽内の懸濁物質濃度に変化が見られなくなるまで、空気で曝気し続け、膜外表面の懸濁物質を純水で洗い落とした後、電子顕微鏡を用いて、倍率10,000倍で、膜外表面を観察した。
Method for evaluating the surface condition of the filtration membrane:
Disassemble the membrane module, place the membrane in a water tank containing pure water, and continue to aerate with air until there is no change in the suspended solids concentration in the water tank. Then, the outer surface of the membrane was observed with an electron microscope at a magnification of 10,000 times.
 図3に示す加圧型中空糸膜ろ過装置F3を用いて、ろ過工程において粉末活性炭を添加した他は、実施例3の場合と同様の膜モジュールの洗浄を行った。 Using the pressurized hollow fiber membrane filtration device F3 shown in FIG. 3, the membrane module was washed in the same manner as in Example 3 except that powdered activated carbon was added in the filtration step.
 1年運転後の膜ろ過差圧は、52kPaであり、安定して運転を行うことができた。水回収率は、97.7%であった。膜モジュールを解体して、膜表面を電子顕微鏡で観察したところ、膜外表面の約90%の部分は、平滑な面であることが確認された。すなわち、膜擦過の程度は、10%であった。 The membrane filtration differential pressure after 1 year operation was 52 kPa, and the operation could be performed stably. The water recovery rate was 97.7%. When the membrane module was disassembled and the membrane surface was observed with an electron microscope, it was confirmed that about 90% of the outer membrane surface was a smooth surface. That is, the degree of film rubbing was 10%.
比較例5Comparative Example 5
 沈殿槽18および清澄水槽19を持たない他は、図3に示す加圧型中空糸膜ろ過装置F3を用いて、ろ過工程において粉末活性炭を添加した他は、実施例1の場合と同様の膜モジュールの洗浄を行った。 A membrane module similar to that in Example 1 except that the activated carbon fiber is added in the filtration step using the pressurized hollow fiber membrane filtration device F3 shown in FIG. Was washed.
 1年間運転後の膜ろ過差圧は、120kPaとなり、実施例5の場合に比べて、大きくなった。水回収率は、94.8%であった。膜モジュールを解体して、膜表面を電子顕微鏡で観察したところ、膜外表面の約20%の部分のみが、平滑な面であり、他の部分は、平滑ではなく、膜孔の多くが潰れていたり、荒くなっていることが確認された。すなわち、膜擦過の程度は、80%であった。 The membrane filtration differential pressure after 1 year operation was 120 kPa, which was larger than that in Example 5. The water recovery rate was 94.8%. When the membrane module was disassembled and the membrane surface was observed with an electron microscope, only about 20% of the outer membrane surface was a smooth surface, and the other portions were not smooth, and many of the membrane pores were crushed. It was confirmed that it was rough or rough. That is, the degree of film rubbing was 80%.
 試験3における実施例および比較例における運転結果を、表9に示した。 Table 9 shows the operation results in Examples and Comparative Examples in Test 3.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 本発明の膜モジュールの洗浄方法によれば、水回収率を低下させることなく、空洗時における膜モジュール内の懸濁物質の量を削減でき、膜擦過を低減すると同時に、効果的に膜モジュールを洗浄することが可能となる。加えて、逆洗水に薬品を用いた場合に、膜表面に付着した懸濁物質を効率的に分解、除去することが可能となる。 According to the method for cleaning a membrane module of the present invention, it is possible to reduce the amount of suspended substances in the membrane module at the time of air washing without lowering the water recovery rate, and at the same time, effectively reduce the membrane abrasion and at the same time Can be cleaned. In addition, when chemicals are used for the backwash water, the suspended substances attached to the membrane surface can be efficiently decomposed and removed.
1:原水槽
1a:原水
2:原水供給ポンプ
3:膜モジュール
3A:膜モジュール(中空糸膜)の原水側の空間
3B:膜モジュール(中空糸膜)のろ過水側の空間
4:ろ過水槽
4a:ろ過水
5:逆洗ポンプ
6:逆洗排水回収槽
6a:逆洗排水
7:エアブロワー
8:薬液貯留槽
9:薬液供給ポンプ
10:原水弁
11:ろ過水弁
12:逆洗弁
13:エア抜き弁
14:エア供給弁
15:排水弁
16:逆洗排水回収弁
17:逆洗排水供給弁
18:沈殿槽
19:清澄水槽
19a:清澄水
20:懸濁物質引抜弁
21:清澄水供給弁
22:活性炭スラリー貯槽
23:スラリー供給ポンプ
24:攪拌機
F1、F2、F3、F4:加圧型中空糸膜ろ過装置
FP:接着固定部
HF:中空糸膜
PL1、PL2、PL3、PL4、PL5、PL6、PL7、PL8、PL9、PL10、PL11、PL12、PL21、PL22、PL23、PL24、PL31、PL41:管路
RW:原水
TW:処理水(ろ過水)
1: Raw water tank 1a: Raw water 2: Raw water supply pump 3: Membrane module 3A: Space on the raw water side of the membrane module (hollow fiber membrane) 3B: Space on the filtrate side of the membrane module (hollow fiber membrane) 4: Filtered water tank 4a : Filtered water 5: Backwash pump 6: Backwash drainage recovery tank 6a: Backwash drainage 7: Air blower 8: Chemical liquid storage tank 9: Chemical liquid supply pump 10: Raw water valve 11: Filtration water valve 12: Backwash valve 13: Air vent valve 14: Air supply valve 15: Drain valve 16: Backwash drainage recovery valve 17: Backwash drainage supply valve 18: Precipitation tank 19: Clarified water tank 19a: Clarified water 20: Suspended matter extraction valve 21: Clarified water supply Valve 22: Activated carbon slurry storage tank 23: Slurry supply pump 24: Stirrers F1, F2, F3, F4: Pressurized hollow fiber membrane filtration device FP: Adhesive fixing part HF: Hollow fiber membranes PL1, PL2, PL3, PL4, PL5, PL6 , PL7, PL8, PL , PL10, PL11, PL12, PL21, PL22, PL23, PL24, PL31, PL41: line RW: raw water TW: treated water (filtered water)

Claims (8)

  1.  原水をろ過膜によって膜ろ過してろ過水を得る膜モジュールを洗浄する膜モジュールの洗浄方法であって、逆洗排水を前記膜モジュールの下部から排出しながら逆洗を行う逆洗工程と、前記逆洗排水の少なくとも一部を回収する回収工程とを実施した後に、前記膜モジュール内の膜の原水側を、前記回収工程で回収した少なくとも一部の逆洗排水で満たして、空洗を行う空洗工程A、あるいは、前記膜モジュール内の膜の原水側に、前記回収工程で回収した少なくとも一部の逆洗排水を供給しながら、空洗を行う空洗工程Bを実施してなる膜モジュールの洗浄方法。 A membrane module washing method for washing a membrane module to obtain filtered water by membrane filtration of raw water through a filtration membrane, a backwashing step of performing backwashing while discharging backwash wastewater from the lower part of the membrane module, After performing the recovery step of recovering at least a part of the backwash wastewater, the raw water side of the membrane in the membrane module is filled with at least a part of the backwash wastewater recovered in the recovery step, and then air washing is performed. A membrane formed by performing an air washing step A or an air washing step B in which air washing is performed while supplying at least a part of the backwash drainage recovered in the recovery step to the raw water side of the membrane in the membrane module How to clean the module.
  2.  原水をろ過膜によって膜ろ過してろ過水を得る膜モジュールを洗浄する膜モジュールの洗浄方法であって、逆洗排水を前記膜モジュールの下部から排出しながら逆洗を行う逆洗工程と、前記逆洗排水の少なくとも一部を回収する回収工程と、前記回収工程で回収した逆洗排水を懸濁物質と清澄水に分離処理する分離工程とを実施した後に、前記膜モジュール内の膜の原水側を、前記清澄水で満たして、空洗を行う空洗工程C、あるいは、前記膜モジュール内の膜の原水側に、前記清澄水を供給しながら、空洗を行う空洗工程Dを実施してなる膜モジュールの洗浄方法。 A membrane module washing method for washing a membrane module to obtain filtered water by membrane filtration of raw water through a filtration membrane, a backwashing step of performing backwashing while discharging backwash wastewater from the lower part of the membrane module, After performing a recovery step for recovering at least a part of the backwash wastewater and a separation step for separating the backwash wastewater recovered in the recovery step into suspended substances and clarified water, the raw water of the membrane in the membrane module An air washing step C for filling the clarified water with the clarified water and performing an air washing or an air washing step D for performing an air washing while supplying the clarified water to the raw water side of the membrane in the membrane module A method for cleaning a membrane module.
  3.  前記分離工程における分離方法が、沈澱分離方法である請求項2に記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to claim 2, wherein the separation method in the separation step is a precipitation separation method.
  4.  前記逆洗工程の前に、前記膜モジュール内の膜の原水側の少なくとも一部の水を排出してなる請求項1乃至3のいずれかに記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to any one of claims 1 to 3, wherein at least a part of water on the raw water side of the membrane in the membrane module is discharged before the backwashing step.
  5.  前記逆洗工程において、逆洗に用いる水に薬品を添加してなる請求項1乃至4のいずれかに記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to any one of claims 1 to 4, wherein a chemical is added to water used for backwashing in the backwashing step.
  6.  前記薬品が、塩素系殺菌剤である請求項5に記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to claim 5, wherein the chemical is a chlorine-based disinfectant.
  7.  前記逆洗に用いる水の残留塩素濃度が、3mg/L乃至10mg/Lの範囲である請求項6に記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to claim 6, wherein the residual chlorine concentration of water used for the backwashing is in the range of 3 mg / L to 10 mg / L.
  8.  前記原水が、前記ろ過膜の硬度よりも高い硬度を有する粒子を含有する請求項1乃至7のいずれかに記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to any one of claims 1 to 7, wherein the raw water contains particles having a hardness higher than that of the filtration membrane.
PCT/JP2012/074470 2011-09-29 2012-09-25 Membrane module cleaning method WO2013047466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-214224 2011-09-29
JP2011214224 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013047466A1 true WO2013047466A1 (en) 2013-04-04

Family

ID=47995498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/074470 WO2013047466A1 (en) 2011-09-29 2012-09-25 Membrane module cleaning method

Country Status (1)

Country Link
WO (1) WO2013047466A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354370A (en) * 2020-11-12 2021-02-12 浙江天行健水务有限公司 Ceramic membrane chemical cleaning waste liquid treatment process
EP3932527A4 (en) * 2019-02-26 2022-12-14 Toray Industries, Inc. Method for operating membrane filtration unit and membrane filtration unit
WO2023210530A1 (en) * 2022-04-26 2023-11-02 栗田工業株式会社 Water treatment facility and method for operating water treatment facility

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137849A (en) * 1999-11-10 2001-05-22 Hitachi Plant Eng & Constr Co Ltd Purifeid water production system and method therefor
JP2003053160A (en) * 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd Cleaning method for separating membrane and membrane filtrater
JP2007245058A (en) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd Water treatment method by means of membrane filtration, and water treatment apparatus
JP2009154135A (en) * 2007-12-27 2009-07-16 Toshiba Corp Water treatment system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137849A (en) * 1999-11-10 2001-05-22 Hitachi Plant Eng & Constr Co Ltd Purifeid water production system and method therefor
JP2003053160A (en) * 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd Cleaning method for separating membrane and membrane filtrater
JP2007245058A (en) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd Water treatment method by means of membrane filtration, and water treatment apparatus
JP2009154135A (en) * 2007-12-27 2009-07-16 Toshiba Corp Water treatment system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3932527A4 (en) * 2019-02-26 2022-12-14 Toray Industries, Inc. Method for operating membrane filtration unit and membrane filtration unit
CN112354370A (en) * 2020-11-12 2021-02-12 浙江天行健水务有限公司 Ceramic membrane chemical cleaning waste liquid treatment process
WO2023210530A1 (en) * 2022-04-26 2023-11-02 栗田工業株式会社 Water treatment facility and method for operating water treatment facility
JP7396395B2 (en) 2022-04-26 2023-12-12 栗田工業株式会社 Water treatment equipment and how to operate it

Similar Documents

Publication Publication Date Title
JP4968413B2 (en) Separation membrane module cleaning method and fresh water generation method
JP5954182B2 (en) Cleaning method for separation membrane module
JP5804228B1 (en) Water treatment method
WO2013111826A1 (en) Desalination method and desalination device
JP2012239948A (en) Method for washing filter medium, and water treatment apparatus
WO2013176145A1 (en) Cleaning method for separation membrane module
JP2012239947A (en) Water treatment method and water treatment apparatus
JP2013202481A (en) Cleaning method of separation membrane module
WO2013047466A1 (en) Membrane module cleaning method
WO2013121921A1 (en) Method for cleaning separation-membrane module
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP2009214062A (en) Operation method of immersion type membrane module
JP2011041907A (en) Water treatment system
WO2012057176A1 (en) Water-treatment method and desalinization method
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP2012239936A (en) Water treatment method and apparatus
JP2006239609A (en) Operation method of hollow fiber membrane module
JP2005103510A (en) Method for cleaning liquid chemical
JP6444606B2 (en) Water treatment equipment
JP2024036939A (en) Water treatment method and equipment
JP2011083656A (en) Method of washing membrane module and membrane filtration apparatus
JP2005270906A (en) Membrane-washing method and membrane separation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP