JP2011041907A - Water treatment system - Google Patents
Water treatment system Download PDFInfo
- Publication number
- JP2011041907A JP2011041907A JP2009191818A JP2009191818A JP2011041907A JP 2011041907 A JP2011041907 A JP 2011041907A JP 2009191818 A JP2009191818 A JP 2009191818A JP 2009191818 A JP2009191818 A JP 2009191818A JP 2011041907 A JP2011041907 A JP 2011041907A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- liquid
- separation
- treatment
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Activated Sludge Processes (AREA)
Abstract
Description
本発明は、生物処理プロセスと膜分離プロセスとを含む複数のプロセスから構成され、膜分離プロセスから発生する洗浄排水を生物処理プロセスによって処理する水処理システムに関する。 The present invention relates to a water treatment system that includes a plurality of processes including a biological treatment process and a membrane separation process, and treats washing wastewater generated from the membrane separation process by the biological treatment process.
近年、分離膜に関する技術開発が進み、省スペース、省力化およびろ過水質向上等の特長を有するため、水処理をはじめ様々な用途での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜は河川水や地下水や下水処理液から工業用水や水道水を製造する浄水プロセスへの適用や、海水淡水化逆浸透膜処理工程における前処理、膜分離活性汚泥法への適用が挙げられ、ナノろ過膜や逆浸透膜はイオン類の除去や、海水淡水化、廃水再利用プロセスへの適用が挙げられる。 In recent years, technological development related to separation membranes has progressed, and features such as space saving, labor saving, and improved filtered water quality have expanded the use in various applications including water treatment. For example, microfiltration membranes and ultrafiltration membranes can be applied to water purification processes that produce industrial water and tap water from river water, groundwater, and sewage treatment solutions, pretreatment in membrane desalination and reverse osmosis membrane treatment processes, membrane separation activity Application to the sludge method can be mentioned, and nanofiltration membranes and reverse osmosis membranes can be applied to removal of ions, seawater desalination, and wastewater reuse processes.
しかし、被処理液を分離膜によって膜分離すると、被処理液に含まれる濁質や有機物等の除去対象物が分離膜面に蓄積し、分離膜の閉塞現象が起こるため、分離膜のろ過抵抗が上昇し、やがて膜ろ過差圧が上限に達し、膜分離を行うことができなくなる。そこで膜ろ過性能を維持するため、分離膜の洗浄を行う必要がある。分離膜の洗浄には膜透過液を分離膜の2次側(膜透過液側)から1次側(被処理液側)へ逆流させる逆圧洗浄や、気体を分離膜の1次側に供給して分離膜の汚れを取る空気洗浄や、薬液を分離膜と接触させて洗浄する方法がある。これらの洗浄を有効に行うことが膜分離を安定に運転するために非常に重要である。 However, if the liquid to be processed is separated by a separation membrane, the removal target such as turbidity and organic matter contained in the liquid to be processed accumulates on the surface of the separation membrane, and the separation membrane is clogged. As a result, the pressure difference in membrane filtration reaches the upper limit, and membrane separation cannot be performed. Therefore, in order to maintain membrane filtration performance, it is necessary to wash the separation membrane. For cleaning the separation membrane, back-pressure cleaning is performed in which the membrane permeate flows backward from the secondary side (membrane permeate side) of the separation membrane to the primary side (liquid side to be treated), and gas is supplied to the primary side of the separation membrane. Then, there are an air cleaning method for removing dirt from the separation membrane and a cleaning method in which a chemical solution is brought into contact with the separation membrane. It is very important to perform these washings effectively in order to stably operate the membrane separation.
この分離膜の洗浄によって排出される洗浄排水の処理方法としては、従来、汚濁物質濃度が低い場合は河川や海洋へ放流し、高い場合は産業廃棄物として処理されてきた。洗浄排水は分離膜に蓄積された汚れを含む水を濃縮した濃縮水であるため、汚濁物質濃度が高いことが多い。洗浄排水を産業廃棄物として処理すると、コストが高くなり、また、廃棄した分、処理液の回収率が低減するといった問題点があった。 As a method for treating the washing wastewater discharged by washing the separation membrane, conventionally, when the pollutant concentration is low, it is discharged into a river or the ocean, and when it is high, it is treated as industrial waste. Since the washing wastewater is concentrated water obtained by concentrating water containing dirt accumulated in the separation membrane, the concentration of pollutants is often high. When the washing wastewater is treated as industrial waste, the cost increases, and there is a problem that the recovery rate of the treatment liquid is reduced by the amount of waste.
そのため、洗浄排水を産業廃棄物として処理する以外の方法として、特許文献1では逆洗すすぎ洗浄排水を被処理液タンクに流入させる方法が記載されている。しかし、この方法では塩素を含有しない水で逆洗すすぎ洗浄をした時のすすぎ洗浄排水しか利用できず、多量の塩素を含む逆洗洗浄排水は被処理液タンクに流入させることができないため、塩素濃度による制御が煩雑であることと、処理液の回収率が大幅に向上できないという問題点があった。また、特許文献2では被処理液を生物処理し、膜分離によって固液分離した透過水を逆浸透膜で膜分離するシステムにおいて、逆浸透膜から排出される濃縮水を生物処理槽に返送して処理する方法が記載されている。しかし、この方法では被処理液が海水やかん水など塩濃度の高い水の場合、微生物に影響が出るため適用することができなかった。 Therefore, as a method other than treating the washing wastewater as industrial waste, Patent Document 1 describes a method of causing the backwash rinse washing wastewater to flow into the liquid tank to be treated. However, in this method, only rinse washing wastewater when backwashing and rinsing with water containing no chlorine can be used, and backwashing washing wastewater containing a large amount of chlorine cannot flow into the liquid tank to be treated. There are problems that the control by the concentration is complicated and that the recovery rate of the treatment liquid cannot be significantly improved. Further, in Patent Document 2, in a system in which a liquid to be treated is biologically treated and permeated water separated by membrane separation is separated by a reverse osmosis membrane, the concentrated water discharged from the reverse osmosis membrane is returned to the biological treatment tank. Are described. However, this method cannot be applied when the liquid to be treated is water having a high salt concentration such as seawater or brine, because it affects microorganisms.
また、浄水場の中には分離膜の濃縮排水や逆洗排水を生物処理しているところがある。この場合も、被処理液が海水やかん水など塩濃度の高い水の場合、微生物に影響が出るため適用することができなかった。 Some water purification plants are biologically treating concentrated wastewater from separation membranes and backwash wastewater. In this case, too, when the liquid to be treated is water having a high salt concentration such as seawater or brine, it could not be applied because it affects microorganisms.
そこで、本発明の目的は、洗浄排水を効率的に処理でき、被処理液が塩を高濃度で含む水の場合でも分離膜を洗浄する際に発生する洗浄排水を処理することができる水処理システムを提供することである。 Accordingly, an object of the present invention is to provide a water treatment capable of treating cleaning wastewater efficiently and capable of treating the cleaning wastewater generated when washing the separation membrane even when the liquid to be treated contains water containing a high concentration of salt. Is to provide a system.
上記目的を達成するために、本発明における水処理システムは、以下の構成のいずれかからなる。
(1)被処理液Aを生物と接触させて処理する生物処理プロセスと、被処理液収容体内に設置された分離膜によって被処理液Bを膜分離する膜分離手段と、該被処理液収容体から排水を排出する排水手段と、該分離膜を洗浄する膜洗浄手段とを備える膜分離プロセスとを含む複数のプロセスから構成され、該膜洗浄手段によって発生する洗浄排水を含む該排水の少なくとも一部を該生物処理プロセスに供給する排水供給手段を備えている水処理システムにおいて、該膜洗浄手段が、該被処理液収容体に収容された被処理液Bを洗浄液で置換し、該洗浄液と前記分離膜とを接触させることにより該分離膜を洗浄する膜洗浄手段であることを特徴とする水処理システム。
(2)前記洗浄液を生物処理プロセスから入手した生物処理液Aとすることを特徴とする(1)に記載の水処理システム。
(3)前記生物処理プロセスが、被処理液Aを生物と接触させ、膜分離することによって生物処理液Aを入手し、該生物処理液Aを半透膜Aによって半透膜処理することで処理水Aと濃縮水Aを入手するプロセスであり、前記膜分離プロセスが、被処理液Bと該濃縮水Aの少なくとも一部を混合させた混合水を前記分離膜で膜分離するプロセスであることを特徴とする(1)または(2)に記載の水処理システム。
In order to achieve the above object, the water treatment system of the present invention has any of the following configurations.
(1) A biological treatment process in which the treatment liquid A is brought into contact with a living organism, a membrane separation means for separating the treatment liquid B by a separation membrane installed in the treatment liquid container, and the treatment liquid accommodation A plurality of processes including a drainage means for discharging wastewater from the body and a membrane separation process comprising a membrane washing means for washing the separation membrane, and at least of the wastewater including the washing wastewater generated by the membrane washing means In a water treatment system comprising a waste water supply means for supplying a part of the biological treatment process, the membrane washing means replaces the treatment liquid B contained in the treatment liquid container with a washing liquid, and the washing liquid And a membrane cleaning means for cleaning the separation membrane by bringing the separation membrane into contact with each other.
(2) The water treatment system according to (1), wherein the cleaning liquid is a biological treatment liquid A obtained from a biological treatment process.
(3) In the biological treatment process, the biological treatment liquid A is obtained by bringing the treatment liquid A into contact with a living organism and performing membrane separation, and the biological treatment liquid A is subjected to a semipermeable membrane treatment with the semipermeable membrane A. It is a process for obtaining treated water A and concentrated water A, and the membrane separation process is a process for membrane separation of mixed water obtained by mixing at least a part of liquid B to be treated and concentrated water A with the separation membrane. (1) or (2) water treatment system characterized by the above-mentioned.
本発明の効果は以下に示す通りである。 The effects of the present invention are as follows.
(1)膜分離プロセスの被処理液Bが海水やかん水などの塩含有水の場合、被処理液収容体内の被処理液を洗浄液に置換して分離膜を洗浄すると、洗浄排水の塩濃度は希釈されるため、生物処理することができる。また、洗浄排水を生物処理プロセスに供給することによって、処理液の回収率が向上し、また、産業廃棄物の減少によるコストの低減が可能である。生物処理プロセスの被処理液や生物処理槽の水素イオン濃度の調整を洗浄排水で行うことができる場合は、生物処理プロセスにおける使用薬液量を低減することができる。また、洗浄排水が生物処理槽に供給された際に生物が活動できる水素イオン濃度で維持できる場合は、洗浄排水を中和するための薬液を低減することができる。 (1) When the treatment liquid B in the membrane separation process is salt-containing water such as seawater or brine, when the separation liquid is washed by replacing the treatment liquid in the treatment liquid container with the washing liquid, the salt concentration of the washing wastewater is Because it is diluted, it can be biologically processed. Further, by supplying the cleaning wastewater to the biological treatment process, the recovery rate of the treatment liquid can be improved, and the cost can be reduced by reducing the industrial waste. When the adjustment of the hydrogen ion concentration of the liquid to be treated in the biological treatment process or the biological treatment tank can be performed with the washing waste water, the amount of the chemical solution used in the biological treatment process can be reduced. Moreover, when it can maintain with the hydrogen ion density | concentration which a living organism can act when cleaning wastewater is supplied to the biological treatment tank, the chemical | medical solution for neutralizing cleaning wastewater can be reduced.
(2)分離膜を洗浄する水に、他プロセスの被処理液から発生した処理液を用いると、被処理液Bと該処理液のイオン濃度や有機物濃度などが異なるため、被処理液Bよりも濃度の低い成分に対しては分離膜に付着している汚れ成分が処理液に溶けやすく、洗浄効果が高くなる。この場合、洗浄排水が高汚濁になりやすいため、該洗浄排水を生物処理することで産業廃棄物を低減することができる。 (2) When a treatment liquid generated from a treatment liquid of another process is used as the water for washing the separation membrane, the treatment liquid B and the treatment liquid have different ion concentrations, organic substance concentrations, and the like. However, for components with low concentrations, the dirt components adhering to the separation membrane are easily dissolved in the treatment liquid, and the cleaning effect is enhanced. In this case, since the washing wastewater is likely to become highly polluted, industrial waste can be reduced by biologically treating the washing wastewater.
(3)被処理液Bが海水やかん水などの塩含有水の場合、生物処理プロセスの半透膜処理で発生した濃縮水Aを塩含有水である被処理液Bに混合することにより、被処理液Bの浸透圧を下げ、分離膜プロセスの半透膜処理するための昇圧ポンプの圧力を低減させることがある。この場合、生物処理した水は海水やかん水などよりも高い有機物濃度であることが多く、また、生物処理が適切に行われなかった場合にも有機物濃度が高くなるため、この生物処理した水を含む塩含有水を半透膜処理した場合に濃縮水B中の有機物濃度が高くなりやすい。そのため、生物処理プロセスで発生する濃縮水Aを被処理液Bに混合する場合は、該洗浄排水を生物処理することにより、産業廃棄物を低減することができる。 (3) When the liquid B to be treated is salt-containing water such as seawater or brine, the concentrated water A generated by the semipermeable membrane treatment of the biological treatment process is mixed with the liquid B to be treated, which is salt-containing water. The osmotic pressure of the treatment liquid B may be lowered to reduce the pressure of the booster pump for semipermeable membrane treatment in the separation membrane process. In this case, the biologically treated water often has a higher organic matter concentration than seawater, brine, etc., and the organic matter concentration also increases if the biological treatment is not performed properly. When the salt-containing water contained is subjected to a semipermeable membrane treatment, the organic matter concentration in the concentrated water B tends to increase. Therefore, when the concentrated water A generated in the biological treatment process is mixed with the liquid B, industrial waste can be reduced by biologically treating the washing wastewater.
以下、本発明の望ましい実施の形態を、図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to these.
図1は本発明が適用される水処理システムの概略図である。本発明に係る水処理システムは、生物処理プロセスとして、被処理液Aを収容する被処理液A槽1と、生物含有液5を収容する生物処理槽3と、被処理液A槽1から被処理液Aを生物含有液5に供給する被処理液A供給ポンプ2と、生物含有液5に浸漬するように設置される分離膜A4と、分離膜A4によって生物含有液5を固液分離し、生物処理液Aを取得するためのろ過用吸引ポンプ6と、生物処理液Aを収容する生物処理液A槽7とを備え、かつ、膜分離プロセスとして、被処理液Bを固液分離するための分離膜Bモジュール9と、被処理液Bを分離膜Bモジュール9に供給し、分離膜Bモジュール9により処理液Bを取得するための被処理液B供給ポンプ8と、処理液Bを収容する処理液B槽15、処理液B槽16と、分離膜Bモジュール9の被処理液Bに気体を噴出し、分離膜Bに気泡を接触させるための気体供給手段14と、処理液B槽15に収容される処理液Bを分離膜Bの2次側(処理液側)から1次側(被処理液側)へ逆流させるための逆圧洗浄用ポンプ17と、分離膜Bを薬液洗浄するための薬液を収容する薬液槽18と、薬液槽18に収容される薬液を分離膜Bに接触するように供給する薬液供給ポンプ19と、分離膜Bモジュール9に収容される被処理液Bを排出するために、分離膜Bモジュール9に設置する排水手段10と、分離膜Bモジュール9から排出する排水を生物処理プロセスの生物含有液5に供給するために、排水手段10に連通する洗浄排水移送管11と、洗浄排水移送管11に設置する洗浄排水供給ポンプ12と、分離膜Bモジュール9から排出する排水をシステム系外に排水するための洗浄排水排出バルブ13とを備えている。
FIG. 1 is a schematic view of a water treatment system to which the present invention is applied. The water treatment system according to the present invention includes, as biological treatment processes, a treatment liquid A tank 1 containing a treatment liquid A, a biological treatment tank 3 containing a
本装置の構造および使用方法を以下に具体的に述べる。 The structure and use method of this apparatus will be specifically described below.
被処理液A槽1に溜められた被処理液Aを、被処理液A供給ポンプ2により、生物含有液5を収容する生物処理槽3に供給することで、被処理液Aを生物に接触させている。
The liquid to be treated A stored in the liquid A tank 1 to be treated is supplied to the biological treatment tank 3 containing the
ここにおいて、生物含有液とは、微生物を含んだ混合液のことであり、例えば、活性汚泥や微生物培養液である。また、被処理液Aは、生物含有液中の微生物の基質となる物質を含む液体であり、例えば、家庭廃水、都市下水、工場廃水などの有機性廃液である。また、被処理液Aを生物含有液に供給する手段としては、例えば、被処理液槽や河川や湖沼などから吸引ポンプにより生物含有液に供給する吸引手段や、被処理液Aと生物含有液面との水頭差を利用して生物含有液に供給する手段でもよい。図1においては被処理液A槽1から吸引ポンプにより生物含有液に供給している。 Here, the organism-containing liquid is a mixed liquid containing microorganisms, such as activated sludge and a microorganism culture liquid. The liquid A to be treated is a liquid containing a substance that becomes a substrate of microorganisms in the organism-containing liquid, and is, for example, an organic waste liquid such as household wastewater, urban sewage, and factory wastewater. Moreover, as means for supplying the liquid to be treated A to the biological liquid, for example, a suction means for supplying the biological liquid with a suction pump from a liquid tank to be treated, a river or a lake, or the liquid A to be treated and the biological liquid It may be a means for supplying the organism-containing liquid by utilizing the water head difference with the surface. In FIG. 1, the biological liquid containing liquid is supplied from the liquid A to be treated 1 by a suction pump.
生物処理槽3は、生物含有液5を貯えることができれば特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽などが好ましく用いられる。また、生物処理槽3では、生物含有液5により被処理液Aを生物処理する。
The biological treatment tank 3 is not particularly limited as long as the
被処理液Aを生物処理して処理液を得る方法としては、活性汚泥法や膜分離活性汚泥法などがある。活性汚泥法は、活性汚泥などの微生物により廃水中の有機物や窒素・リンなどの汚濁物質の分解・除去を行い、次いで、汚泥混合液を重力沈降により固液分離し、上澄み水を放流する有機性廃水処理方法である。また、膜分離活性汚泥法は、活性汚泥などの微生物により廃水中の有機物や窒素・リンなどの汚濁物質の分解・除去を行い、清澄な処理液を得るにあたって膜分離を用いる方法のことをいう。膜分離方式は、浸漬膜方式、外部膜分離方式、回転平膜方式など特に問わない。 Examples of a method for obtaining a treatment liquid by biologically treating the liquid to be treated A include an activated sludge method and a membrane separation activated sludge method. In the activated sludge method, organic matter such as activated sludge is used to decompose and remove organic substances in wastewater and pollutants such as nitrogen and phosphorus, and then the sludge mixture is separated into solid and liquid by gravity sedimentation, and the supernatant water is discharged. Wastewater treatment method. The membrane separation activated sludge method refers to a method that uses membrane separation to decompose organic substances in wastewater and pollutants such as nitrogen and phosphorus by microorganisms such as activated sludge to obtain a clear treatment liquid. . The membrane separation method is not particularly limited, such as an immersion membrane method, an external membrane separation method, and a rotating flat membrane method.
生物処理槽3に導入する活性汚泥は、排水処理等に一般に利用されるものであり、種汚泥としては他の排水処理施設の引き抜き汚泥などが通常使用される。活性汚泥法では、汚泥濃度として2,000mg/L〜5,000mg/L程度で被処理液Aの滞留時間は通常1時間〜24時間で運転され、膜分離活性汚泥法では、汚泥濃度として2,000mg/L〜20,000mg/L程度で被処理液Aの滞留時間は通常1時間〜24時間で運転されるが、被処理液Aの性状に応じて最適なものを採択するのがよい。また、凝集剤を添加する装置を設置して、生物処理槽3内に貯えられた活性汚泥を含む被処理液Aに凝集剤を添加することも、リンや溶解性の有機物を膜分離活性汚泥処理液から削減できるという点で好ましい。 The activated sludge introduced into the biological treatment tank 3 is generally used for wastewater treatment and the like, and as the seed sludge, drawn sludge from other wastewater treatment facilities is usually used. In the activated sludge method, the sludge concentration is about 2,000 mg / L to 5,000 mg / L and the residence time of the liquid to be treated A is usually operated in 1 hour to 24 hours. In the membrane separation activated sludge method, the sludge concentration is 2 The residence time of the treatment liquid A is usually 1 to 24 hours at about 2,000 mg / L to 20,000 mg / L, but it is preferable to select the optimum one according to the properties of the treatment liquid A. . In addition, by installing a device for adding a flocculant and adding flocculant to the liquid A to be treated containing activated sludge stored in the biological treatment tank 3, it is also possible to remove phosphorus and soluble organic matter from membrane-separated activated sludge. This is preferable in that it can be reduced from the processing solution.
また、生物含有液5の中には分離膜A4が浸漬設置され、分離膜A4の処理液側に、処理液取得手段としてのろ過用吸引ポンプ6が設けられ、このろ過用吸引ポンプ6は、分離膜A4の処理液側と配管により連通されている。ろ過用吸引ポンプ6を作動させることによって分離膜A4により生物含有液5が膜分離され、生物処理・膜分離された処理を入手する。入手した生物処理液Aは生物処理液A槽7に収容し、システム外に放流するか、工業用水や修景用水などで再利用することができる。生物処理液A槽7は、生物処理液Aを貯えることができれば特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽などが好ましく用いられる。ここにおいて、生物含有液から処理液を入手する手段としては、例えば、分離膜による固液分離手段や、生物含有液中の固形分を重力により沈降させ、処理液として上澄み液を入手する固液分離手段でもよいが、分離膜による固液分離手段の方が処理液の水質は良く、処理液を再利用することができるため好ましい。図1においては分離膜を用いている。また、膜分離による固液分離では、分離膜の1次側(被処理液側)と2次側(処理液側)とに圧力差を発生させることにより分離膜の透過水である処理液を取得するが、ここにおいて、圧力差を発生させるための処理液取得手段としては、例えば、被処理液側を加圧するための加圧手段でもよいし、処理液側から吸引ポンプによって負圧を加えるための吸引手段でもよいし、また、生物含有液と配管出口などとの水頭差を利用して圧力差を発生させる手段でもよい。図1においては吸引ポンプを用いている。
In addition, a separation membrane A4 is immersed in the organism-containing
分離膜A4の膜構造としては、多孔質膜や、多孔質膜に機能層を複合化した複合膜などが挙げられるが、特に限定されるものではない。これらの膜の具体例としては、ポリアクリロニトリル多孔質膜、ポリイミド多孔質膜、ポリエーテルスルホン多孔質膜、ポリフェニレンスルフィドスルフォン多孔質膜、ポリテトラフルオロエチレン多孔質膜、ポリフッ化ビニリデン多孔質膜、ポリプロピレン多孔質膜、ポリエチレン多孔質膜等の多孔質膜などが挙げられるが、ポリフッ化ビニリデン多孔質膜やポリテトラフルオロエチレン多孔質膜は耐薬品性が高いため、特に好ましい。さらに、これら多孔質膜に機能層として架橋型シリコーン、ポリブタジエン、ポリアクリロニトリルブタジエン、エチレンプロピレンラバー、ネオプレンゴム等のゴム状高分子を複合化した複合膜を挙げることができる。 Examples of the membrane structure of the separation membrane A4 include a porous membrane and a composite membrane in which a functional layer is combined with the porous membrane, but are not particularly limited. Specific examples of these membranes include polyacrylonitrile porous membrane, polyimide porous membrane, polyethersulfone porous membrane, polyphenylene sulfide sulfone porous membrane, polytetrafluoroethylene porous membrane, polyvinylidene fluoride porous membrane, polypropylene Examples of the porous film include a porous film and a porous film such as a polyethylene porous film, and a polyvinylidene fluoride porous film and a polytetrafluoroethylene porous film are particularly preferable because of high chemical resistance. Furthermore, a composite film in which a rubbery polymer such as cross-linked silicone, polybutadiene, polyacrylonitrile butadiene, ethylene propylene rubber, or neoprene rubber is compounded as a functional layer can be given as a functional layer.
また、分離膜A4の膜孔径は、活性汚泥を固形成分と溶解成分とに固液分離できる程度の孔径であることが好ましい。膜孔径が大きければ、膜透水性が向上するが、膜ろ過水に固形成分が含有する可能性が高くなる傾向がある。一方、膜孔径が小さければ、膜ろ過水に固形成分が含有する可能性が小さくなるが、膜透水性が低下する傾向がある。具体的には、0.01〜0.5μmとすることが好ましく、0.05〜0.5μmとすることがさらに好ましい。 Moreover, it is preferable that the membrane pore diameter of separation membrane A4 is a pore diameter which can carry out solid-liquid separation of activated sludge into a solid component and a dissolved component. If the membrane pore size is large, the membrane permeability is improved, but the possibility that a solid component is contained in the membrane filtrate tends to increase. On the other hand, if the membrane pore size is small, the possibility that a solid component is contained in the membrane filtrate is reduced, but the membrane permeability tends to be lowered. Specifically, it is preferably 0.01 to 0.5 μm, and more preferably 0.05 to 0.5 μm.
分離膜A4の形態には中空糸膜、管状膜、平膜などが存在するが、いずれの形態のものでも本発明に用いることができる。ここで、中空糸膜とは外径2mm未満の円管状の分離膜、管状膜とは外径2mm以上の円管状の分離膜である。そしてこれらの分離膜は、中空糸膜の場合は中空糸膜をU字状やI字状に束ねてケースに収納した中空糸膜エレメントに、管状膜の場合はチューブラー型エレメントに、平膜の場合はスパイラル型エレメントやプレート・アンド・フレーム型エレメントにし、単独、あるいは複数個を組み合わせてモジュール化することが好ましい。 The form of the separation membrane A4 includes a hollow fiber membrane, a tubular membrane, a flat membrane, and the like, but any form can be used in the present invention. Here, the hollow fiber membrane is a tubular separation membrane having an outer diameter of less than 2 mm, and the tubular membrane is a tubular separation membrane having an outer diameter of 2 mm or more. In the case of hollow fiber membranes, these separation membranes are hollow fiber membrane elements that are bundled in a U-shape or I-shape and accommodated in a case. In the case of tubular membranes, tubular-type elements are used. In this case, it is preferable that a spiral type element or a plate-and-frame type element is used, and a single element or a combination of a plurality of elements are modularized.
また、分離膜A4による固液分離方式には、全量を固液分離する全量ろ過と、分離膜表面において流れを発生させながら固液分離を行うクロスフローろ過がある。本発明ではいずれの固液分離方式でも構わないが、生物処理プロセスで膜分離を行う場合では、膜面の流れによるせん断応力により、固液分離に伴い膜面に付着する生物含有液中成分を剥離させながら運転することが可能なので、クロスフローろ過である方が好ましい。 In addition, the solid-liquid separation method using the separation membrane A4 includes total filtration for solid-liquid separation of the entire amount and cross-flow filtration for performing solid-liquid separation while generating a flow on the surface of the separation membrane. In the present invention, any solid-liquid separation method may be used, but in the case of performing membrane separation in a biological treatment process, the component in the biological liquid that adheres to the membrane surface due to the solid-liquid separation due to the shear stress due to the flow of the membrane surface. Since it is possible to operate while peeling, cross flow filtration is preferred.
また、分離膜Bモジュール9内には分離膜Bが収容されていて、被処理液B供給ポンプ8により、被処理液Bを分離膜Bモジュール9に供給し、かつ、分離膜Bの1次側(被処理液側)を加圧することで、分離膜Bの2次側(処理液側)に連通している配管により処理液Bを入手する。入手した処理液Bは処理液B槽15と処理液B槽16に収容し、システム外に放流するか、工業用水や修景用水などで再利用することができる。処理液B槽15や処理液B槽16は、処理液Bを貯えることができれば特に制限されるものではなく、コンクリート槽、繊維強化プラスチック槽などが好ましく用いられる。ここにおいて、被処理液Bは分離膜によって捕捉することできる汚濁物質を含んだ、生物処理に影響を与える程度に浸透圧が高い液であり、例えば、海水やかん水、および、海水やかん水を凝集沈殿や砂ろ過などの前処理をした前処理液などの液である。また、分離膜Bモジュール9で処理液を取得する手段としては、例えば、被処理液側を加圧するための加圧手段でもよいし、処理液側から吸引ポンプによって負圧を加えるための吸引手段でもよいし、また、被処理液と配管出口などとの水頭差を利用して圧力差を発生させる手段でもよい。図1においては加圧ポンプを用いている。
The separation membrane B is accommodated in the separation membrane B module 9, and the treatment liquid B is supplied to the separation membrane B module 9 by the treatment liquid B supply pump 8. By pressurizing the side (the liquid to be treated), the treatment liquid B is obtained through a pipe communicating with the secondary side (the treatment liquid side) of the separation membrane B. The obtained processing liquid B can be stored in the processing
ここで、分離膜Bとは、被処理液に圧力を加えることにより、もしくは処理液側からポンプで吸引することにより、被処理液中に含まれる一定粒子径以上の物質を捕捉し、それらの物質が除かれた処理液を生成する機能を有するものであり、その捕捉粒子径の違いにより、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などがある。本発明で用いられる分離膜としては、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜のいずれでもよい。 Here, the separation membrane B captures substances having a certain particle diameter or more contained in the liquid to be treated by applying pressure to the liquid to be treated or sucking with a pump from the treatment liquid side. It has a function of generating a treatment liquid from which substances are removed, and there are a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, and the like depending on the difference in the trapped particle diameter. The separation membrane used in the present invention may be any of a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, and a reverse osmosis membrane.
精密ろ過膜、限外ろ過膜の素材としては、ポリアクリロニトリル、ポリスルフォン、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、酢酸セルロース、ポリエチレン、ポリプロピレン、塩素化ポリエチレン等の有機素材や、セラミック等の無機素材などを挙げることができる。本発明においては、その素材は特に限定しないが、ポリフッ化ビニリデン、塩素化ポリエチレン、ポリアクリロニトリル、酢酸セルロース、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォンが耐汚れ性や洗浄回復性が良いため好ましい。 Materials for microfiltration membranes and ultrafiltration membranes include organic materials such as polyacrylonitrile, polysulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, cellulose acetate, polyethylene, polypropylene, and chlorinated polyethylene, and inorganic materials such as ceramics. Materials can be listed. In the present invention, the material is not particularly limited, but polyvinylidene fluoride, chlorinated polyethylene, polyacrylonitrile, cellulose acetate, polyphenylene sulfone, and polyphenylene sulfide sulfone are preferable because they have good stain resistance and washing recovery properties.
また、ナノろ過膜、逆浸透膜の素材としては、ポリアミド系、ポリピペラジンアミド系、ポリエステルアミド系、あるいは水溶性のビニルポリマーを架橋したものなどがある。本発明においては、その素材は特に限定しないが、透過水量、耐薬品性などの点からポリアミド系やポリピペラジンアミド系の膜が好ましい。 Examples of the material for the nanofiltration membrane and reverse osmosis membrane include polyamide-based, polypiperazine amide-based, polyester amide-based, and water-soluble vinyl polymers that are crosslinked. In the present invention, the material is not particularly limited, but a polyamide-based or polypiperazine amide-based film is preferable from the viewpoint of the amount of permeated water and chemical resistance.
分離膜Bモジュール9の形態には中空糸膜、管状膜、平膜などが存在するが、いずれの形態のものでも本発明に用いることができる。ここで、中空糸膜とは外径2mm未満の円管状の分離膜、管状膜とは外径2mm以上の円管状の分離膜である。そしてこれらの分離膜は、中空糸膜の場合は中空糸膜をU字状やI字状に束ねてケースに収納した中空糸膜エレメントに、管状膜の場合はチューブラー型エレメントに、平膜の場合はスパイラル型エレメントやプレート・アンド・フレーム型エレメントにし、単独、あるいは複数個を組み合わせてモジュール化することが好ましい。 The form of the separation membrane B module 9 includes a hollow fiber membrane, a tubular membrane, a flat membrane, and the like, but any form can be used in the present invention. Here, the hollow fiber membrane is a tubular separation membrane having an outer diameter of less than 2 mm, and the tubular membrane is a tubular separation membrane having an outer diameter of 2 mm or more. In the case of hollow fiber membranes, these separation membranes are hollow fiber membrane elements that are bundled in a U-shape or I-shape and accommodated in a case. In the case of tubular membranes, tubular-type elements are used. In this case, it is preferable that a spiral type element or a plate-and-frame type element is used, and a single element or a combination of a plurality of elements are modularized.
また、分離膜Bモジュール9による固液分離方式には、全量を固液分離する全量ろ過と、分離膜表面において流れを発生させながら固液分離を行うクロスフローろ過がある。本発明ではいずれの固液分離方式でも構わないが、膜分離プロセスでは、エネルギー消費量が少ないという点から全量ろ過である方が好ましい。さらに、加圧型であっても浸漬型であっても差し支えはないが、高流速の膜分離が可能であるという点から加圧型である方が好ましい。 The solid-liquid separation method using the separation membrane B module 9 includes total-volume filtration for solid-liquid separation of the entire amount and cross-flow filtration for performing solid-liquid separation while generating a flow on the surface of the separation membrane. In the present invention, any solid-liquid separation method may be used. However, in the membrane separation process, it is preferable to use the total amount filtration because the energy consumption is small. Furthermore, although it may be a pressurization type or an immersion type, the pressurization type is preferred from the viewpoint that membrane separation at a high flow rate is possible.
また、分離膜Bモジュール9は所定時間の膜分離を行った後、分離膜表面に付着した汚れを除去するために、膜洗浄が行われる。膜洗浄手段としては、例えば、気体を分離膜の1次側に供給して分離膜を振動させることによって汚れを取る空気洗浄や、処理液を分離膜の2次側(処理液側)から1次側(被処理液側)へ逆流させ分離膜の汚れを除去する逆圧洗浄や、薬液を分離膜と接触させて洗浄する方法などがある。 The separation membrane B module 9 is subjected to membrane cleaning in order to remove dirt adhered to the surface of the separation membrane after membrane separation for a predetermined time. Examples of the membrane cleaning means include air cleaning for removing dirt by supplying gas to the primary side of the separation membrane and vibrating the separation membrane, and processing liquid from the secondary side (processing liquid side) of the separation membrane. There are methods such as back pressure cleaning that reversely flows to the next side (liquid side to be treated) to remove dirt on the separation membrane, and a method of cleaning by bringing a chemical solution into contact with the separation membrane.
空気洗浄を行う場合は、分離膜Bに気泡を接触させるために、気体供給手段14から分離膜Bモジュール9内の被処理液Bに気体を供給する。ここにおいて、気体供給手段は、例えば、コンプレッサーやブロアなどの送気手段である。 When air cleaning is performed, in order to bring bubbles into contact with the separation membrane B, a gas is supplied from the gas supply means 14 to the liquid B to be processed in the separation membrane B module 9. Here, the gas supply means is an air supply means such as a compressor or a blower.
また、逆圧洗浄を行う場合は、処理液B槽15に収容している処理液Bを、逆圧洗浄用ポンプ17により、分離膜Bの2次側(処理液側)から加圧して、1次側(被処理液側)へ逆流させ、汚れを剥がし取る。
Further, when performing back pressure cleaning, the processing liquid B accommodated in the processing
また、薬液洗浄を行う場合は、薬液槽18と、薬液を供給する薬液供給ポンプ19とを備え、薬液洗浄の方法として、逆圧洗浄の際に、逆流させる処理液に薬液を添加し、分離膜に薬液を接触させる方法や、薬液を分離膜の1次側もしくは2次側に供給し分離膜に接触させる方法などがある。
Further, when performing chemical cleaning, a
これら膜洗浄手段は単独で行っても、組み合わせて同時に行ってもよい。 These film cleaning means may be performed alone or in combination.
薬液としては、塩酸、硫酸、硝酸、クエン酸、シュウ酸、アスコルビン酸、亜硫酸水素ナトリウム、水酸化ナトリウム、次亜塩素酸ナトリウム等の薬剤を含有する水溶液が分離膜を破損しない薬剤に限り使用できる。酸水溶液としては、廃液処理の観点から有機酸よりも無機酸の水溶液であることがより好ましい。逆圧洗浄薬液の濃度は10 mg/L から10000 mg/Lであることが好ましい。10 mg/Lより低くなると洗浄効果が十分で無く、10000 mg/Lより高くなると薬剤のコストが高くなり不経済となるからである。このような点から、100 mg/Lから1000 mg/Lであることがより好ましい。薬剤は1種類とするよりも2種類以上を順番に使用することが好ましく、例えば酸と次亜塩素酸ナトリウムを交互に使用することや、アルカリの後に酸を使用することがより好ましい。図1においては逆圧洗浄の際に逆流させる処理液に薬液を添加している。 As chemicals, aqueous solutions containing drugs such as hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid, ascorbic acid, sodium hydrogen sulfite, sodium hydroxide, sodium hypochlorite can be used only for drugs that do not damage the separation membrane. . The acid aqueous solution is more preferably an inorganic acid aqueous solution than an organic acid from the viewpoint of waste liquid treatment. The concentration of the counter-pressure cleaning chemical is preferably 10 mg / L to 10000 mg / L. This is because if it is lower than 10 mg / L, the cleaning effect is not sufficient, and if it is higher than 10000 mg / L, the cost of the drug becomes high and it becomes uneconomical. From such a point, it is more preferable that it is 100 mg / L to 1000 mg / L. It is preferable to use two or more kinds of drugs in order rather than one kind. For example, it is more preferable to use an acid and sodium hypochlorite alternately or to use an acid after alkali. In FIG. 1, a chemical solution is added to a processing solution to be backflowed at the time of back pressure cleaning.
これらの膜洗浄手段を行うと、分離膜Bモジュール9内から排出された洗浄排水は、分離膜から除去された汚れを含むことになり、分離膜Bモジュール9と連通している排水手段10により分離膜Bモジュール9外に排出する。ここにおいて、排水手段は、例えば、バルブであり、膜洗浄後にバルブを開にすることで洗浄排水を分離膜Bモジュール9外に排出する。 When these membrane cleaning means are performed, the cleaning wastewater discharged from the separation membrane B module 9 includes dirt removed from the separation membrane, and the drainage means 10 communicating with the separation membrane B module 9 It is discharged out of the separation membrane B module 9. Here, the drainage means is, for example, a valve, and the cleaning wastewater is discharged out of the separation membrane B module 9 by opening the valve after the membrane cleaning.
ここで、被処理液Bは生物処理に影響を与える程度に浸透圧が高い液であり、例えば、海水やかん水などである。そのため、分離膜Bモジュール9内が被処理液Bの状態で膜洗浄手段を行うと、発生した洗浄排水を生物含有液5に供給することができない。そのため、膜洗浄手段を行う前に、分離膜Bモジュール9内の被処理液Bを排水手段10により分離膜Bモジュール9外に排出し、洗浄排水排出バルブ13を開にすることによりシステム外に排出し、洗浄排水排出バルブ13を閉にして、生物処理に影響を与えない程度に浸透圧が低い液を用いて膜洗浄手段を行うと、本発明を使用することができる。とくに、薬液洗浄では、薬液槽で薬液を分離膜に接触させる設定濃度に調整することが多く、被処理液が海水やかん水などの浸透圧が高い液であれば、濃度調整に、水道水や工業用水、逆浸透膜処理液などの浸透圧が低い液を利用することが多いため、本発明を効果的に使用することができる。膜洗浄手段前に分離膜Bモジュール9内から排出した被処理液Bは、有機物濃度が取水時の被処理液Bと同程度であるため、取水場所に戻すことができ、産業廃棄物にはならない。
Here, the to-be-processed liquid B is a liquid whose osmotic pressure is high to the extent that it affects biological treatment, such as seawater or brine. Therefore, if the membrane cleaning means is performed while the separation membrane B module 9 is in the state of the liquid B to be processed, the generated cleaning wastewater cannot be supplied to the organism-containing
生物処理に影響を与えない程度に浸透圧が低い液を用いて膜洗浄手段を行い、排水手段10により排出された洗浄排水は、排水手段10と連通している洗浄排水移送管11により、生物処理プロセスに移送される。ここにおいて、生物処理プロセスでの移送先は、生物含有液5、もしくは、生物含有液5の上流側であり、図1においては生物含有液5の上流側である被処理液A槽1に移送している。これにより、洗浄排水中の濁質や有機成分は生物含有液5で生物処理され、産業廃棄物として廃棄されなくなる。また、被処理液Aの有機成分濃度が低い場合、生物含有液中の微生物を維持するために有機性薬液、例えば、メタノールなどを添加することがあるが、洗浄排水を生物含有液5に流入させることで、有機性薬液の使用量が低減することがある。
Membrane cleaning means is performed using a liquid having a low osmotic pressure to the extent that it does not affect biological treatment, and the cleaning wastewater discharged by the drainage means 10 is biologically transferred by a cleaning
また、膜洗浄手段で他プロセスの被処理液から発生した処理液を用いて逆圧洗浄もしくは空気洗浄を行うと、被処理液Bと該処理液のイオン濃度や有機物濃度などが異なるため、被処理液Bよりも濃度の低い成分に対しては分離膜に付着している汚れ成分が処理液に溶けやすく、洗浄効果が高くなるので好ましい。図2では、生物処理プロセスで発生する生物処理液Aを収容している生物処理液A槽7に連通する配管を分離膜Bモジュール9に連通し、該配管に設置する逆圧洗浄用ポンプ17を用いて、生物処理液Aを分離膜Bの2次側(処理液側)から1次側(被処理液側)へ逆流させ分離膜の汚れを取り除いている。
In addition, when the membrane cleaning means performs back-pressure cleaning or air cleaning using the processing liquid generated from the processing liquid of another process, the ionic concentration or organic substance concentration of the processing liquid B is different from that of the processing liquid. A component having a concentration lower than that of the treatment liquid B is preferable because the dirt component adhering to the separation membrane is easily dissolved in the treatment liquid and the cleaning effect is enhanced. In FIG. 2, a pipe communicating with the biological treatment
また、図3では、生物処理プロセスで発生する生物処理液Aを半透膜A20で半透膜処理している。半透膜とは、ナノろ過膜や逆浸透膜のことであり、半透膜処理によって処理液と濃縮水が発生する。この濃縮水を半透膜Aと連通する濃縮水A移送配管で被処理液B槽22に送液し、被処理液Bと混合し、分離膜Bモジュール9で膜分離する。生物処理プロセスで発生する濃縮水を被処理液Bに混合する場合は、洗浄排水を生物処理することにより、産業廃棄物を低減することができるため、本発明を用いることは好ましい。
Moreover, in FIG. 3, the biological treatment liquid A generated in the biological treatment process is subjected to a semipermeable membrane treatment with a semipermeable membrane A20. The semipermeable membrane is a nanofiltration membrane or a reverse osmosis membrane, and a treatment liquid and concentrated water are generated by the semipermeable membrane treatment. This concentrated water is sent to the
また、図4のように、膜分離プロセスで処理液Bを半透膜処理するための半透膜B24と、半透膜処理するために処理液Bを加圧する半透膜B供給ポンプ23と、半透膜処理によって発生する半透膜処理液Bを収容する半透膜処理液B槽と、濃縮水Bを収容する濃縮水B槽とを備え、処理液Bを半透膜処理すること、処理水を得ることができ、工業用水などで用いることができるため、好ましい。
Further, as shown in FIG. 4, a semipermeable membrane B24 for semipermeable membrane treatment of the treatment liquid B in the membrane separation process, a semipermeable membrane
本発明における水処理システムによると分離膜から発生する洗浄排水を効率的に処理でき、廃棄水量を少なくできるので、例えば、下廃水と海水を複数のプロセスで処理するシステムなどに有効に適用することができる。 According to the water treatment system of the present invention, the washing waste water generated from the separation membrane can be efficiently treated and the amount of waste water can be reduced. For example, the present invention is effectively applied to a system that treats sewage wastewater and seawater in a plurality of processes. Can do.
1:被処理液A槽
2:被処理液A供給ポンプ
3:生物処理槽
4:分離膜A
5:生物含有液
6:ろ過用吸引ポンプ
7:生物処理液A槽
8:被処理液B供給ポンプ
9:分離膜Bモジュール
10:排水手段
11:洗浄排水移送管
12:洗浄排水供給ポンプ
13:洗浄排水排出バルブ
14:気体供給手段
15:処理液B槽
16:処理液B槽
17:逆圧洗浄用ポンプ
18:薬液槽
19:薬液供給ポンプ
20:半透膜A
21:濃縮水A移送配管
22:被処理液B槽
23:半透膜B供給ポンプ
24:半透膜B
25:半透膜処理液B槽
26:濃縮水B槽
1: treated liquid A tank 2: treated liquid A supply pump 3: biological treatment tank 4: separation membrane A
5: Bio-containing liquid 6: Filtration suction pump 7: Biological treatment liquid A tank 8: Liquid to be treated B supply pump 9: Separation membrane B module 10: Drainage means 11: Wash drainage transfer pipe 12: Wash drainage supply pump 13: Cleaning drainage discharge valve 14: Gas supply means 15: Treatment liquid B tank 16: Treatment liquid B tank 17: Back pressure washing pump 18: Chemical liquid tank 19: Chemical liquid supply pump 20: Semipermeable membrane A
21: Concentrated water A transfer pipe 22: Liquid B to be treated 23: Semipermeable membrane B supply pump 24: Semipermeable membrane B
25: Semipermeable membrane treatment liquid B tank 26: Concentrated water B tank
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009191818A JP2011041907A (en) | 2009-08-21 | 2009-08-21 | Water treatment system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009191818A JP2011041907A (en) | 2009-08-21 | 2009-08-21 | Water treatment system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011041907A true JP2011041907A (en) | 2011-03-03 |
Family
ID=43829752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009191818A Pending JP2011041907A (en) | 2009-08-21 | 2009-08-21 | Water treatment system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011041907A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4933679B1 (en) * | 2011-10-18 | 2012-05-16 | 株式会社神鋼環境ソリューション | Seawater desalination method and seawater desalination apparatus |
JP2013085983A (en) * | 2011-10-13 | 2013-05-13 | Kurita Water Ind Ltd | Organic wastewater collection processing device and collection processing method |
US9333464B1 (en) | 2014-10-22 | 2016-05-10 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
USD779631S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Gasification device |
-
2009
- 2009-08-21 JP JP2009191818A patent/JP2011041907A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013085983A (en) * | 2011-10-13 | 2013-05-13 | Kurita Water Ind Ltd | Organic wastewater collection processing device and collection processing method |
JP4933679B1 (en) * | 2011-10-18 | 2012-05-16 | 株式会社神鋼環境ソリューション | Seawater desalination method and seawater desalination apparatus |
WO2013058125A1 (en) * | 2011-10-18 | 2013-04-25 | 株式会社神鋼環境ソリューション | Seawater desalination method, and seawater desalination device |
US9333464B1 (en) | 2014-10-22 | 2016-05-10 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
US9956530B2 (en) | 2014-10-22 | 2018-05-01 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
US10702831B2 (en) | 2014-10-22 | 2020-07-07 | Koch Separation Solutions, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
USD779631S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Gasification device |
USD779632S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Bundle body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8910799B2 (en) | Integrated membrane system for distributed water treatment | |
JP5691522B2 (en) | Fresh water generation system and operation method thereof | |
JP5804228B1 (en) | Water treatment method | |
JPWO2011016410A1 (en) | Water treatment apparatus and water treatment method | |
JPH1015365A (en) | Method for cleaning membrane | |
JPH09313902A (en) | Chemical cleaning method for immersion type ceramic membrane separation device | |
JP2011125822A (en) | Method for washing membrane module and fresh water generator | |
WO2013111826A1 (en) | Desalination method and desalination device | |
CN115121124A (en) | Method and apparatus for cleaning filtration membrane, and water treatment system | |
JP2007130523A (en) | Membrane washing method for water treatment system | |
JP4923428B2 (en) | Membrane separation method and membrane separation apparatus | |
JP2013202481A (en) | Cleaning method of separation membrane module | |
JP2011041907A (en) | Water treatment system | |
JP2008279335A (en) | Apparatus and method for water reclamation | |
JP2008246424A (en) | Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus | |
JP2002248324A (en) | Membrane separation apparatus and its backwashing method | |
KR20110077177A (en) | Low-energy system for purifying waste water using forward osmosis | |
JP2013034938A (en) | Method for washing membrane module | |
JP4525857B1 (en) | Pretreatment apparatus and pretreatment method for water treatment system | |
JP2006272135A (en) | Membrane separation method and membrane separation device | |
JP5120106B2 (en) | Method and apparatus for treating organic alkaline wastewater | |
JP2011104504A (en) | Washing method of water treatment facility | |
WO2011108589A1 (en) | Method for washing porous membrane module, and fresh water generator | |
JP2007203144A (en) | Water treatment method and water treatment equipment | |
JP2017176951A (en) | Method for cleaning separation membrane module |