JP2013034938A - Method for washing membrane module - Google Patents
Method for washing membrane module Download PDFInfo
- Publication number
- JP2013034938A JP2013034938A JP2011172562A JP2011172562A JP2013034938A JP 2013034938 A JP2013034938 A JP 2013034938A JP 2011172562 A JP2011172562 A JP 2011172562A JP 2011172562 A JP2011172562 A JP 2011172562A JP 2013034938 A JP2013034938 A JP 2013034938A
- Authority
- JP
- Japan
- Prior art keywords
- water
- membrane module
- membrane
- chemical
- cleaning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、水処理用膜モジュールの洗浄方法に関するものである。さらに詳しくは、上水道における浄水処理分野、工業用水や食品、医療プロセス用水といった産業用水製造分野、下水や工業廃水といった下廃水分野などに使用される水処理用膜モジュールを洗浄する方法に関するものである。 The present invention relates to a method for cleaning a membrane module for water treatment. More specifically, the present invention relates to a method of cleaning a membrane module for water treatment used in the field of water purification in waterworks, the field of industrial water production such as industrial water, food, and medical process water, and the field of sewage water such as sewage and industrial wastewater. .
膜分離法は、省エネルギー、省スペース、省力化および製品の品質向上等の特徴を有するため、様々な分野での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜は、河川水や地下水、下水処理水から、工業用水や水道水を製造する浄水プロセスへの適用があげられる。水処理で用いられる分離膜は大きくナノろ過膜(NF膜)/逆浸透膜(RO膜)、精密ろ過膜(MF膜)/限外ろ過膜(UF膜)の2つに分けられ、前者は海水やかん水からの脱塩、イオン除去などに用いられ、一方、後者は河川水や地下水、下水処理水から、工業用水や水道水を製造する浄水プロセスで用いられる。さらに、従来、活性汚泥法で処理されていた下水や産業廃水を、活性汚泥槽に直接浸漬させたMF膜/UF膜で処理する「膜分離活性汚泥法(Membrane Bioreacter;MBR)」と呼ばれる処理も活発に行なわれてきている。 The membrane separation method has features such as energy saving, space saving, labor saving, and product quality improvement, and therefore, its use in various fields is expanding. For example, microfiltration membranes and ultrafiltration membranes can be applied to water purification processes for producing industrial water and tap water from river water, groundwater, and sewage treated water. Separation membranes used in water treatment are broadly divided into two types: nanofiltration membranes (NF membranes) / reverse osmosis membranes (RO membranes), microfiltration membranes (MF membranes) / ultrafiltration membranes (UF membranes). It is used for desalination and ion removal from seawater and brine, while the latter is used in water purification processes that produce industrial water and tap water from river water, groundwater, and sewage water. Furthermore, a treatment called “Membrane Bioreactor (MBR)” in which sewage or industrial wastewater that has been treated by the activated sludge method is treated with an MF membrane / UF membrane directly immersed in the activated sludge tank. Has also been active.
水不足が叫ばれる昨今の状況から、これら膜を用いた水処理法は更なる技術開発が行なわれ、近年ではMF膜/UF膜を用いて海水あるいはかん水中の有機物や微粒子を除去、あるいは下水あるいは産業廃水をMBRにて浄化するといった前処理を行なった後に、RO膜でろ過して効率的に淡水を生産する「統合的膜利用システム(Integrated Membrane System;IMS)」と呼ばれる手法を採用する造水施設が、水不足に苦しむ中東地域やアジア地域等にて多数建設されている。 Due to the recent situation where water shortages are screamed, water treatment methods using these membranes have been further developed. In recent years, MF membranes / UF membranes have been used to remove organic matter and fine particles from seawater or brine, or sewage or After the pretreatment such as purifying industrial wastewater with MBR, it is filtered by RO membrane, and the method called “Integrated Membrane System (IMS)” is adopted to produce fresh water efficiently. Many water facilities have been constructed in the Middle East and Asia, which suffer from water shortages.
このような水処理用膜モジュール(以下、膜モジュールと呼称する。)には、大きく分けて、加圧型膜モジュールと浸漬型膜モジュールとが存在する。加圧型膜モジュールは、多数本の膜を容器内に収納し、容器の両方の端部あるいは片方の端部を種々の接着剤にて接着した形状となっており、ポンプにて膜モジュール内に導入された被処理水が加圧状態となり、膜面によってろ過を行うタイプの膜モジュールである。一方、浸漬型膜モジュールは、膜が大気中に露出した形状となっており、その膜モジュール大気開放された処理槽内に浸漬させ、ろ過水側を吸引等してろ過を行うタイプの膜モジュールである。 Such a membrane module for water treatment (hereinafter referred to as a membrane module) is roughly divided into a pressure membrane module and an immersion membrane module. The pressurization type membrane module has a shape in which a large number of membranes are accommodated in a container and both ends or one end of the container are bonded with various adhesives. This is a membrane module of the type in which the introduced water to be treated is in a pressurized state and is filtered by the membrane surface. On the other hand, the submerged membrane module has a shape in which the membrane is exposed to the atmosphere. The membrane module is a type of membrane module in which the membrane module is immersed in a treatment tank opened to the atmosphere and filtered by suctioning the filtered water side. It is.
加圧型膜モジュールは、浸漬型膜モジュールに比べろ過圧力をより大きく設定できることから、膜面積あたりの処理量が増加し、そのため処理に必要な膜モジュール本数を減らせる、設置面積を小さくできる等の長所を持つ。一方、浸漬型膜モジュールは、耐圧性の筒状ケースを必要とせず被処理水中に膜を浸漬させて使用されることから、膜間に詰まる濁質の排出性に優れ、高濁質の被処理水でも膜ろ過が行えるという長所がある。また、ろ過方法が単純であり、付帯配管も少ないことから、設備費を低減できる長所もある。 The pressure membrane module can set the filtration pressure higher than the submerged membrane module, so the processing amount per membrane area increases, so the number of membrane modules required for processing can be reduced, the installation area can be reduced, etc. Has advantages. On the other hand, the submerged membrane module does not require a pressure-resistant cylindrical case and is used by immersing the membrane in the water to be treated. There is an advantage that membrane filtration can be performed even with treated water. Moreover, since the filtration method is simple and there are few incidental piping, there also exists an advantage which can reduce installation cost.
浸漬型膜モジュールは前述したとおり、大気開放された処理槽内の被処理水中に膜モジュールを浸漬させ、ろ過水側を吸引等してろ過を行う。吸引ろ過の場合、浸漬型膜モジュールのろ過水出口から、膜モジュールのろ過水側を吸引する吸引手段(吸引ポンプなど)までの間のろ過水配管内は、ろ過工程中に、吸引されることにより負圧状態、ないしはそれに近い状態となるといった特徴も有している。 As described above, the submerged membrane module performs the filtration by immersing the membrane module in the water to be treated in the treatment tank open to the atmosphere and sucking the filtered water side. In the case of suction filtration, the inside of the filtrate pipe from the filtrate outlet of the submerged membrane module to the suction means (suction pump, etc.) that sucks the filtrate water side of the membrane module must be sucked during the filtration process. Therefore, it has a feature that it becomes a negative pressure state or a state close thereto.
これらの膜モジュールを用いて被処理水を膜ろ過すると、被処理水中に含まれる濁質や有機物等の除去対象物が膜面に蓄積し、膜の閉塞現象が起こるため、膜のろ過抵抗が上昇し、やがてろ過を行うことができなくなる。そこで、膜ろ過性能を維持するため、定期的に膜ろ過を停止し、物理洗浄を行うのが一般的である。通常、前述のろ過工程と物理洗浄工程とは、自動的に繰り返しで実施される。 When these membrane modules are used to filter the water to be treated, removal objects such as turbidity and organic matter contained in the water to be treated accumulate on the membrane surface, resulting in a membrane clogging phenomenon. As a result, it becomes impossible to perform filtration. Therefore, in order to maintain the membrane filtration performance, it is common to periodically stop the membrane filtration and perform physical cleaning. Usually, the filtration process and the physical cleaning process described above are automatically and repeatedly performed.
物理洗浄には、膜モジュール下部に空気を吹き込んで膜を水中で振動させることにより、膜面に付着した懸濁物質を震い落とす空気洗浄(空洗)や、膜モジュールのろ過方向とは逆方向、つまりろ過水側(2次側)から被処理水側(1次側)にろ過水などの水(洗浄水)を圧力で押し込み、膜などに付着した懸濁物質を排除する逆圧水洗浄(逆洗)などがある。通常の膜モジュールの運転では、これらの各工程が1回ずつ行われた後に膜から剥離した懸濁物質を系外に排出する排水工程が行われる。 For physical cleaning, air is blown into the lower part of the membrane module and the membrane is vibrated in water, so that the suspended matter adhering to the membrane surface is shaken off (air washing) and the filtration direction of the membrane module is reversed. Reverse pressure water that pushes water (wash water) such as filtered water under pressure in the direction, that is, from the filtered water side (secondary side) to the treated water side (primary side) There is washing (back washing). In the normal operation of the membrane module, after each of these steps is performed once, a drainage step of discharging the suspended matter separated from the membrane out of the system is performed.
しかしながら、膜ろ過運転が長期におよぶと、前述の物理洗浄によっても除去できない不純物が膜表面や膜間に付着、蓄積するため、薬品を用いてこれらの不純物を溶解除去する薬品洗浄が必要になってくる。薬品洗浄は、膜に付着、蓄積した不純物を薬品によって溶解あるいは除去させる薬品洗浄工程と、膜モジュール内の薬品を洗い流すリンス工程から構成される。 However, if the membrane filtration operation lasts for a long time, impurities that cannot be removed even by the above-mentioned physical cleaning adhere to and accumulate on the membrane surface and between the membranes, so that chemical cleaning that dissolves and removes these impurities using chemicals is necessary. Come. The chemical cleaning is composed of a chemical cleaning process for dissolving or removing impurities deposited and accumulated on the film by the chemical and a rinsing process for washing away the chemical in the membrane module.
膜モジュールをオンラインにて薬品洗浄する方法については、一般的に、膜モジュールを薬品に一定時間浸漬させる方法と、薬品を膜モジュール内で一定時間循環させる方法の2種類がある。 There are generally two methods for on-line chemical cleaning of the membrane module: a method of immersing the membrane module in the chemical for a fixed time and a method of circulating the chemical in the membrane module for a fixed time.
加圧型膜モジュールを例にとって膜モジュールのオンラインでの薬品洗浄方法を説明すると、薬品に浸漬させる方法では、膜モジュールの1次側または2次側から薬品を膜モジュール内に供給し、膜モジュール内の1次側および2次側が薬品に満たされた時点で供給を止め、数時間程度浸漬した後に膜モジュールから薬品を排出してリンス工程を実施する。一方、薬品を循環させる方法では、膜モジュールの1次側または2次側から薬品を膜モジュール内に供給し、膜モジュールから排出された薬品を再度膜モジュールに供給する操作を数時間継続させた後に膜モジュールから薬品を排出してリンス工程を実施する。 The on-line chemical cleaning method of the membrane module will be described by taking the pressure membrane module as an example. In the method of immersing in the chemical, the chemical is supplied into the membrane module from the primary side or the secondary side of the membrane module, and the membrane module When the primary side and the secondary side are filled with chemicals, the supply is stopped, and after immersing for about several hours, the chemicals are discharged from the membrane module and a rinsing step is performed. On the other hand, in the method of circulating the chemical, the operation of supplying the chemical into the membrane module from the primary side or the secondary side of the membrane module and continuing to supply the chemical discharged from the membrane module to the membrane module for several hours is continued. Later, chemicals are discharged from the membrane module and a rinsing process is performed.
しかしながら、上記のような方法で薬品洗浄を行うと、いずれの方法においても膜モジュール内に薬品が残存した状態でリンス工程に移るため、膜モジュール内から薬品を完全に洗い流すためにはリンス工程で大量の洗浄水が必要となるとともに、薬品を含有する廃水が大量に発生し、洗浄廃水pHの中和等でさらに別の薬品を使用することになり、廃水処理にコストがかかるといった課題がある。 However, when chemical cleaning is performed by the method described above, since the chemical remains in the membrane module in any method, the rinsing process is performed. There is a problem that a large amount of washing water is required and a large amount of waste water containing chemicals is generated, and another chemical is used for neutralization of the pH of the washing waste water. .
薬品洗浄で使用した薬品の廃水処理コストを削減するための手段として、特許文献1では、薬品貯留槽から薬品を膜モジュールの2次側から1次側に向かって通液し、前記薬品貯留槽と前記膜モジュールとを結ぶ配管の途中に設置したフィルタで薬品をろ過した後、再度膜モジュールの2次側に供給し、薬品を循環させる薬品洗浄方法が提案されている。本方法は、膜モジュール内が閉鎖空間となっていて、その上部や下部に配管が接続している加圧型膜モジュールには適しているものの、浸漬槽内に設置して膜ろ過を行う浸漬型膜モジュールに適用した場合、広い浸漬槽内を満たす必要があるため、薬品、リンス水ともに大量に使用する必要があり、結局、洗浄後の廃水処理によりコストがかかり、すべての膜モジュールに適用可能な薬品洗浄方法とは言えない。 As means for reducing the wastewater treatment cost of chemicals used in chemical cleaning, in Patent Document 1, a chemical is passed from a chemical storage tank toward the primary side from the secondary side of the membrane module, and the chemical storage tank A chemical cleaning method has been proposed in which a chemical is filtered with a filter installed in the middle of a pipe connecting the membrane module to the membrane module and then supplied again to the secondary side of the membrane module to circulate the chemical. This method is suitable for a pressurized membrane module where the inside of the membrane module is a closed space and pipes are connected to the upper and lower parts of the membrane module, but it is installed in an immersion tank and performs membrane filtration. When applied to membrane modules, it is necessary to fill a large immersion tank, so it is necessary to use a large amount of both chemicals and rinsing water. After all, wastewater treatment after cleaning is costly and can be applied to all membrane modules It cannot be said that it is a simple chemical cleaning method.
そこで、特許文献2では、リンス水を回収リンス水タンクに集め、第一の回収膜で除濁を行った後にリンス水に再利用するか、第二の回収膜で濃縮を行い、透過水はリンス水として再利用し、濃縮水は薬品洗浄用の薬品として再利用する方法が提案されている。また、薬液洗浄工程が終了した後に膜モジュールから排出される薬品を薬品精製用膜モジュールでろ過して再利用する方法も提案されている。たしかに、本方法では、リンス水を膜ろ過して再びリンス水として利用するために廃水処理コストが低減可能となるが、新たに膜ろ過設備を設けることになるため、処理設備全体のスペースの拡大につながることになる。
Therefore, in
一方、特許文献3では、前処理膜を有する前処理装置から得られたろ過水の塩分を除去して淡水を生産するRO膜装置から発生する塩分が濃縮された濃縮水を前処理膜の洗浄水に利用する方法が提案されている。従来では、濃縮水は排水されるものであるため、前処理膜の洗浄に利用することでたしかに廃水処理コストの低減につながることになる。しかしながら、本方法は、RO膜による処理を行う装置のみで実現する方法であり、前処理膜(特許文献2中ではMF膜やUF膜としている)のみで処理する分野には適用できない。 On the other hand, in Patent Document 3, the pretreatment membrane is washed with concentrated water in which the salinity generated from the RO membrane device that produces fresh water by removing the salt content of the filtered water obtained from the pretreatment device having the pretreatment membrane. A method for use in water has been proposed. Conventionally, since the concentrated water is drained, the wastewater treatment costs are certainly reduced by using it for cleaning the pretreatment membrane. However, this method is a method realized only by an apparatus that performs processing using an RO membrane, and is not applicable to the field of processing using only a pretreatment membrane (referred to as MF membrane or UF membrane in Patent Document 2).
さらに、いずれの特許文献においても廃水処理コストの低減を図る技術として提案されているが、前記提案技術を適用した場合においても膜モジュールの薬品洗浄頻度を低くすることができない。 Further, although any patent document proposes a technique for reducing the wastewater treatment cost, even when the proposed technique is applied, the chemical cleaning frequency of the membrane module cannot be lowered.
本発明の目的は、膜モジュールの効率的な洗浄方法を提供し、膜モジュールを長期安定的に運転するとともに、廃水処理コストを低減する方法を提供することにある。 An object of the present invention is to provide an efficient cleaning method for a membrane module, to provide a method for stably operating the membrane module for a long period of time, and reducing wastewater treatment costs.
前記課題を解決するために本発明は次の構成をとる。 In order to solve the above problems, the present invention has the following configuration.
(1)被処理水を膜モジュールで膜ろ過してろ過水を得る膜ろ過方法における膜モジュールの洗浄方法であって、膜モジュールの1次側および2次側を洗浄用薬品に浸漬し、前記膜モジュールの1次側の洗浄用薬品を前記膜モジュールの系外に排出し、被処理水を前記膜モジュールに供給し、膜ろ過を再開し、膜ろ過再開初期のろ過水を薬品残留水槽に貯留し、前記薬品残留水槽に貯留した前記膜ろ過再開初期のろ過水を前記膜モジュールの2次側から1次側に洗浄水を圧送する逆圧水洗浄時に使用することを特徴とする膜モジュールの洗浄方法。 (1) A membrane module cleaning method in a membrane filtration method in which water to be treated is filtered with a membrane module to obtain filtered water, wherein the primary side and the secondary side of the membrane module are immersed in cleaning chemicals, The cleaning chemical on the primary side of the membrane module is discharged out of the system of the membrane module, the water to be treated is supplied to the membrane module, the membrane filtration is restarted, and the filtered water at the initial stage of the membrane filtration restart is put into the chemical residue water tank. The membrane module which is stored and used in the reverse pressure water cleaning in which the filtered water stored in the chemical residual water tank at the initial stage of the membrane filtration restart is pumped from the secondary side to the primary side of the membrane module. Cleaning method.
(2)膜ろ過の再開前に、前記被処理水で前記膜モジュールの1次側をフラッシングすることを特徴とする(1)に記載の膜モジュールの洗浄方法。 (2) The membrane module cleaning method according to (1), wherein the primary side of the membrane module is flushed with the water to be treated before the membrane filtration is restarted.
(3)前記被処理水で前記膜モジュールの1次側をフラッシングする際に、前記膜モジュールの1次側に空気を供給することを特徴とする(2)に記載の膜モジュールの洗浄方法。 (3) The method for cleaning a membrane module according to (2), wherein when flushing the primary side of the membrane module with the water to be treated, air is supplied to the primary side of the membrane module.
(4)前記薬品残留水槽に貯留した前記膜ろ過再開初期のろ過水と、ろ過水槽に貯留した通常のろ過水とを混合した水を逆圧水洗浄時に使用することを特徴とする(1)〜(3)のいずれかに記載の膜モジュールの洗浄方法。 (4) Water mixed with the filtered water at the initial stage of resumption of membrane filtration stored in the chemical residual water tank and normal filtered water stored in the filtered water tank is used for back pressure water cleaning (1) The washing | cleaning method of the membrane module in any one of-(3).
本発明によって、通常運転時においても膜モジュールの汚れ物質を効率的に除去することが可能となり、安定的な運転を長期間継続することが可能となるとともに、薬品洗浄頻度を低くすることができるため、使用する薬品量を抑えることができ、低処理コスト運転の実現が可能となる。 According to the present invention, it becomes possible to efficiently remove the contaminants from the membrane module even during normal operation, and it is possible to continue stable operation for a long period of time and to reduce the frequency of chemical cleaning. Therefore, the amount of chemicals to be used can be reduced, and low processing cost operation can be realized.
以下、本発明の好ましい実施の形態を、加圧型中空糸膜モジュールのろ過装置を例にとって、図面を参照しながら説明する。ただし、本発明の範囲がこれらに限られるものではない。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings, taking as an example a filtration device for a pressurized hollow fiber membrane module. However, the scope of the present invention is not limited to these.
図1は、本発明が適用される膜ろ過装置の一例を示す装置概略フロー図である。 FIG. 1 is an apparatus schematic flowchart showing an example of a membrane filtration apparatus to which the present invention is applied.
通常の膜ろ過運転において、膜モジュール1で処理する被処理水は、被処理水配管2から被処理水供給ポンプ3によって連続的に膜モジュール1の1次側に供給され、膜モジュール1内の膜によって膜モジュール1の2次側に膜ろ過される。なお、膜ろ過流束は、膜モジュ−ル1の1次側への被処理水供給量によって決定されるため、被処理水供給量の調整は被処理水弁4の開閉度合いによって行われる。膜モジュール1での膜ろ過によって得られたろ過水は、その後、ろ過水配管5およびろ過水弁6を介してろ過水槽7に流入し、ろ過水が貯留される(膜ろ過工程)。
In normal membrane filtration operation, the water to be treated in the membrane module 1 is continuously supplied from the
膜ろ過工程終了後は、被処理水供給ポンプ3を停止し、被処理水弁4およびろ過水弁6を閉じ、物理洗浄を開始する。逆洗では、通常、洗浄水にろ過水を用い、逆洗水配管8から逆洗ポンプ9によって一定時間、膜モジュール1の2次側に洗浄水を供給して膜表面や膜内部に蓄積した汚れ物質の除去を行う。なお、一般的に逆洗流束は、膜ろ過流束の1〜2倍程度とされており、膜モジュール1への洗浄水の供給量は、逆洗弁10の開閉度合いによって調整される。また、逆洗は逆洗排水弁12を開け、逆洗排水配管11を介して逆洗排水を系外に排出させながら実施される。なお、逆洗水には、膜表面や膜内部の汚れ物質を効率良く除去するために次亜塩素酸ナトリウムなどの酸化剤や硫酸などの酸を添加してもよい。また、逆洗水を加温しても同様な効果が期待できる。逆洗水の加温は、ろ過水槽7あるいは逆洗水配管8内にヒーターなどの加温設備を設け、30〜40℃程度とすることが好ましい。
After the membrane filtration step, the treated water supply pump 3 is stopped, the treated water valve 4 and the filtered water valve 6 are closed, and physical cleaning is started. In backwashing, filtered water is usually used as washing water, and the washing water is supplied from the
続いて、空気などの気体を膜モジュール1の下部から膜モジュール1内に供給して膜面を洗浄する空洗を実施する。なお、空気などの気体は被処理水供給配管2あるいは排水配管13から供給することが望ましい。さらに、空洗は逆洗とは別々に、逆洗の前後いずれのタイミングで実施、あるいは逆洗と同時に実施しても問題はないが、逆洗による膜表面や膜内部に蓄積した汚れ物質の除去と、空洗による懸濁物質の震い落としの両方の効果が期待できる同時の実施が好ましい形態である。
Subsequently, air washing such as supplying a gas such as air from the lower part of the membrane module 1 into the membrane module 1 to wash the membrane surface is performed. A gas such as air is preferably supplied from the treated
物理洗浄終了後、膜モジュール1内に残存する洗浄排水は排水弁14を開にし、排水配管13を介して系外に排出する。
After the physical cleaning is completed, the cleaning waste water remaining in the membrane module 1 is discharged outside the system through the
洗浄排水を膜モジュール1から排出した後は、通常、排水弁14を閉にし、膜ろ過工程を再開させるが、逆洗排水弁12を開とし、数秒〜数十秒間だけフラッシングを実施してから膜ろ過工程を再開させてもよい。数秒〜数十秒間のフラッシングを実施することにより、膜モジュール1の1次側に残存している汚れ物質を膜モジュール1の系外に排出することが可能となる。ここで、フラッシングとは、被処理水などを膜モジュール内に高流束で流すことにより、膜面や膜間の付着物を除去する洗浄方法である。
After draining the washing wastewater from the membrane module 1, normally the
通常の膜ろ過運転を長期間継続した後に実施する薬品洗浄は、膜モジュール1の1次側または2次側から薬品貯留槽(図示しない)から薬品供給ポンプ(図示しない)にて膜モジュール1内に供給し、膜モジュール1内の1次側および2次側が薬品に満たされた時点で供給を止め、数時間程度浸漬させるか、膜モジュール1の1次側または2次側から薬品貯留槽(図示しない)から薬品供給ポンプ(図示しない)にて薬品を膜モジュール1内に供給し、膜モジュール1から排出された薬品を再度、薬品貯留槽に戻し、膜モジュール1から排出された薬品を再度膜モジュール1に供給する操作を数時間継続させて行う(薬品を循環させる場合も、本発明の「浸漬」に含まれるものとする。)。なお、膜モジュールに供給する薬品を加温すると、より洗浄効果が一層期待できる。薬品の加温は、薬品貯留槽(図示しない)あるいは配管内にヒーターなどの加温設備を設け、30〜40℃程度とすることが好ましい。また、薬品浸漬している間に間欠的に膜モジュール1の下部から空気などの気体を供給して、膜表面に付着している汚れ物質の掻き取りを促進する方法も好ましく用いられる。膜モジュール1内の膜が薬品によって十分に洗浄された後は、排水弁14を開とし、排水配管13を介して膜モジュール1の1次側の洗浄用薬品を膜モジュール1の系外に排出する。また、薬品の排出時に膜モジュール1の下部から空気などの気体を供給して、膜表面に付着している汚れ物質の掻き取りを促進する方法も好ましく用いられる。
The chemical cleaning performed after the normal membrane filtration operation is continued for a long time is performed in the membrane module 1 from the chemical storage tank (not shown) from the primary or secondary side of the membrane module 1 by the chemical supply pump (not shown). When the primary side and the secondary side in the membrane module 1 are filled with chemicals, the supply is stopped and immersed for several hours, or the chemical storage tank (from the primary side or secondary side of the membrane module 1 ( The chemical is supplied into the membrane module 1 by a chemical supply pump (not shown) from the not shown), the chemical discharged from the membrane module 1 is returned again to the chemical storage tank, and the chemical discharged from the membrane module 1 is again supplied. The operation of supplying the membrane module 1 is continued for several hours (the case where the chemical is circulated is also included in the “immersion” of the present invention). In addition, if the chemical | medical agent supplied to a membrane module is heated, the cleaning effect can be expected further. It is preferable that the chemical is heated to about 30 to 40 ° C. by providing a chemical storage tank (not shown) or a heating facility such as a heater in the pipe. In addition, a method of intermittently supplying a gas such as air from the lower part of the membrane module 1 while immersing the chemical to promote scraping off of the dirt substance adhering to the membrane surface is also preferably used. After the membrane in the membrane module 1 is sufficiently washed with chemicals, the
また、膜ろ過運転では、1〜3日に1回の頻度で膜ろ過運転を一時的に停止させ、前述の薬品洗浄で使用する薬品濃度の1/10程度の濃度の薬品を用いた薬品洗浄を実施することもある。この薬品洗浄は、前述の薬品洗浄よりも浸漬時間が短く、15〜30分程度であること以外、洗浄操作方法は前述の薬品洗浄と同じである。 In the membrane filtration operation, the membrane filtration operation is temporarily stopped once every 1 to 3 days, and the chemical cleaning using a chemical having a concentration of about 1/10 of the chemical concentration used in the above chemical cleaning is performed. May be implemented. The chemical cleaning is the same as the chemical cleaning described above except that the immersion time is shorter than that of the chemical cleaning described above and is about 15 to 30 minutes.
さらに、膜ろ過装置が海水淡水化や下水再利用の際に用いられる装置のように膜モジュール1のろ過水をさらに逆浸透膜で処理する装置であった場合(いわゆる、「MF/UF+RO」)、逆浸透膜での処理時に発生する濃縮水で通常の物理洗浄やフラッシングを行い、薬品洗浄を実施する際に薬品を希釈するために逆浸透膜での処理によって得られた淡水を用いる方法を採用することも可能である。 Further, when the membrane filtration device is a device that further treats the filtered water of the membrane module 1 with a reverse osmosis membrane, such as a device used in seawater desalination or sewage reuse (so-called “MF / UF + RO”). In order to dilute chemicals when carrying out normal physical washing and flushing with concentrated water generated during treatment with reverse osmosis membranes and performing chemical washing, a method using fresh water obtained by treatment with reverse osmosis membranes It is also possible to adopt.
本発明では、膜モジュール1の1次側から薬品を排出した後(つまり、薬品洗浄工程が終了した後)、リンス工程を次のように行う。被処理水を被処理水配管2から被処理水供給ポンプ3によって連続的に膜モジュール1の1次側に供給させ、膜モジュール1内の膜によって膜モジュール1の2次側に膜ろ過させるとともに、薬品残留水流入弁16を開とし、薬品残留水流入配管15を介して、薬品残留水槽17に薬品が残留しているろ過水を貯留する。なお、この操作は膜モジュール1内のpHや酸化還元電位(ORP)、残留塩素濃度などの水質が正常値(目安は、pH:6.5〜8.0、ORP:+200〜+700mV、残留塩素濃度:0.1mg/L以下)になるまで継続し、正常値になった際には薬品残留水流入弁16を閉じ、ろ過水弁6を開とし、ろ過水をろ過水槽7に再度貯留させる。
In the present invention, after the chemical is discharged from the primary side of the membrane module 1 (that is, after the chemical cleaning step is completed), the rinsing step is performed as follows. The treated water is continuously supplied from the treated
本発明のようなリンス工程を実施することにより、一般的に薬品洗浄のリンス水として使用されるろ過水を利用しなくなるために、膜ろ過設備全体におけるろ過水の回収率(供給した被処理水量に対して生産水として利用可能なろ過水量の割合)を高めることが可能になるとともに、膜モジュール1内のpHやORP、残留塩素濃度などを短時間で正常値にするためにリンス水に添加されることがある中和剤や還元剤などの使用もなくなり、処理コストの低減に寄与することができる。 By carrying out the rinsing step as in the present invention, it is not necessary to use filtered water that is generally used as rinsing water for chemical cleaning. The ratio of the amount of filtered water that can be used as product water) can be increased, and added to the rinse water to bring the pH, ORP, residual chlorine concentration, etc. in the membrane module 1 to normal values in a short time. This eliminates the use of neutralizing agents and reducing agents that can be used, and can contribute to a reduction in processing costs.
また、薬品洗浄工程終了時に、膜モジュール1の1次側に膜表面へ付着していた汚れ物質が残存している場合には、本発明のリンス工程時に再度、汚れ物質が膜表面に付着することが懸念されるため、逆洗排水弁12を開とし、数秒〜数十秒間だけフラッシングを実施してから薬品残留水槽17への薬品残留水の貯留を開始すればよい。数秒〜数十秒間のフラッシングを実施することにより、膜モジュール1の1次側に残存している膜表面へ付着していた汚れ物質の膜表面への再付着を防止することが可能となる。さらに、前記フラッシング時に膜モジュール1の下部から空気を供給することで、効率よく残存する汚れ物質を膜モジュール1の外に排出することができ、フラッシング時間を短くすることが可能となり好ましい形態となる。
In addition, when a dirt substance adhered to the membrane surface remains on the primary side of the membrane module 1 at the end of the chemical cleaning process, the dirt substance adheres to the membrane surface again during the rinsing process of the present invention. Therefore, it is only necessary to open the
ところで、膜モジュール1の1次側に残存している膜表面へ付着していた汚れ物質の膜モジュール1の1次側からの排出を目的として、膜モジュール1の2次側からろ過水槽7に貯留されたろ過水を洗浄水として数秒から数十秒間供給して逆洗排水配管を介して洗浄水を排出させてから被処理水を膜モジュール1に供給する方法が考えられるが、本方法では、微量ながらろ過水を消費することになるため、本発明よりもろ過水の回収率が低下し、処理コストのアップにつながる。 By the way, for the purpose of discharging dirt substances adhering to the membrane surface remaining on the primary side of the membrane module 1 from the primary side of the membrane module 1, the secondary side of the membrane module 1 is transferred to the filtered water tank 7. A method of supplying the treated water to the membrane module 1 after supplying the stored filtered water as cleaning water for several seconds to several tens of seconds and discharging the cleaning water through the backwash drainage pipe is conceivable. However, since the filtrate is consumed in a small amount, the recovery rate of the filtrate is lower than that of the present invention, leading to an increase in the processing cost.
薬品洗浄が終了し、通常工程(膜ろ過と物理洗浄の繰り返し)に戻った後、本発明では物理洗浄(逆洗)時に、薬品洗浄の際に薬品残留水槽17に貯留された薬品残留水を薬品残留水供給ポンプ19にて、薬品残留水供給配管18を介して膜モジュール1の2次側に一定時間供給し、逆洗排水配管11を介して逆洗排水を系外に排出させながら実施する。なお、膜モジュール1への薬品残留水の供給量は、薬品残留水供給弁20の開閉度合いによって調整される。
After the chemical cleaning is completed and the process returns to the normal process (repetition of membrane filtration and physical cleaning), in the present invention, the chemical residual water stored in the chemical
続いて実施する空洗は、前記と同様に逆洗とは別々に、逆洗の前後いずれのタイミングで実施、あるいは逆洗と同時に実施しても問題はないが、逆洗による膜表面や膜内部に蓄積した汚れ物質の除去と、空洗による懸濁物質の震い落としの両方の効果が期待できる同時の実施が好ましい形態である。 Subsequent to the air washing performed in the same manner as described above, there is no problem if it is carried out at any timing before or after the back washing, or simultaneously with the back washing. The simultaneous implementation that can be expected to have both the effects of removing the dirt accumulated in the interior and shaking off the suspended solids by rinsing is a preferred mode.
また、薬品残留水は、その量に限りがあることから薬品洗浄後初期には使用せず、一定期間はろ過水を用いた逆洗を行い、その後、膜表面や膜内に汚れ物質が蓄積してきた時点で薬品残留水を用いた逆洗を行ってもよい。なお、ろ過水を用いた逆洗を行う際に膜表面や膜内部の汚れ物質を効率良く除去するために次亜塩素酸ナトリウムなどの酸化剤や硫酸などの酸を洗浄水に添加してもよいが、処理コスト低減のためには、酸化剤や酸を添加しない方が好ましい。 In addition, since the amount of chemical residual water is limited, it is not used in the initial stage after chemical cleaning, but backwashing with filtered water is performed for a certain period of time, and then dirt substances accumulate on the membrane surface and in the membrane. At this point, backwashing using chemical residual water may be performed. In addition, when performing backwashing with filtered water, an oxidizing agent such as sodium hypochlorite or an acid such as sulfuric acid may be added to the washing water in order to efficiently remove the contaminants on the membrane surface and inside the membrane. However, in order to reduce the processing cost, it is preferable not to add an oxidizing agent or an acid.
いずれの方法を採用した場合においても、逆洗時に薬品が残留したろ過水を用いることができるため、新たな薬品の添加なしに、あるいは低減化した状態でも通常工程時から効率的な膜モジュール1の洗浄が可能となり、ろ過水を用いた逆洗での膜ろ過運転よりも薬品洗浄を開始する時期を遅くすることが可能となる。 Regardless of which method is employed, filtered water in which chemicals remain during backwashing can be used, so that the membrane module 1 can be efficiently used from the normal process without adding new chemicals or even in a reduced state. This makes it possible to delay the time for starting chemical cleaning as compared to membrane filtration operation by backwashing using filtered water.
ここで、薬品残留水槽17に比較的高濃度の薬品残留水を貯留できた場合、図1に示した逆洗方法以外に、図2に示すように薬品残留水をろ過水を用いた洗浄水に添加する方法も適用可能である。本方法では、1回の逆洗における薬品残留水の消費量が少なく抑えることができる。
Here, when a relatively high concentration of chemical residual water can be stored in the chemical
本発明において、薬品洗浄に使用される薬品は、硫酸、塩酸、硝酸、シュウ酸、クエン酸、アスコルビン酸、水酸化ナトリウム、次亜塩素酸ナトリウム、過酸化水素、および界面活性剤からなる群から選ばれる1種以上を含む薬品であることが好ましい。これらの薬品を用いれば、被処理水中に含まれる無機物や有機物等の汚れ物質を溶解あるいは分解させることが可能となり膜モジュール1の安定的な運転を長期間継続することが可能となる。 In the present invention, the chemical used for chemical cleaning is selected from the group consisting of sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, citric acid, ascorbic acid, sodium hydroxide, sodium hypochlorite, hydrogen peroxide, and a surfactant. It is preferable that it is a chemical | medical agent containing 1 or more types chosen. If these chemicals are used, it is possible to dissolve or decompose inorganic substances and organic substances contained in the water to be treated, and it is possible to continue the stable operation of the membrane module 1 for a long period of time.
また、薬品を用いた膜モジュール1の洗浄方法として、異なる2種の薬品を用いて、それぞれの薬品での洗浄を連続で行うことも好ましく用いられる。その方法は特に限定されるものではないが、例えば、最初に次亜塩素酸ナトリウムを用いた洗浄により、膜表面および膜内に蓄積された有機物由来の汚れ物質を溶解あるいは分解させ、膜モジュール1の系外に排出し、その後、クエン酸を用いた洗浄により、膜表面および膜内に蓄積した無機物由来の汚れ物質を溶解あるいは分解させ、膜モジュール1の系外に排出させる方法もある。さらには、薬品を用いた洗浄を行う場合、膜モジュール1内すべてが薬品を含有させた洗浄水で満たされた後に、その状態を維持、つまり、薬品での浸漬を一定時間行うことがより好ましく採用される。これらの方法を用いて洗浄を行うことで、被処理水由来の汚れ物質のほぼ全てを膜モジュール1の系外に排出することができ、膜モジュール1の安定的な運転を長期間継続することが可能となる。このように、異なる2種の薬品を用いて薬品洗浄を行う際には、薬品残留水槽17を2つ設置し、それぞれの薬品残留水を貯留してもよいし、薬品残留水槽17を1つ設置し、いずれかの薬品残留水を貯留してもよい。
In addition, as a method for cleaning the membrane module 1 using chemicals, it is also preferable to use two different types of chemicals and continuously perform cleaning with each chemical. The method is not particularly limited. For example, the membrane module 1 is prepared by dissolving or decomposing organic matter-derived contaminants accumulated on the membrane surface and in the membrane by first washing with sodium hypochlorite. There is also a method of discharging out of the system of the membrane module 1 and then dissolving or decomposing the inorganic material-derived soil substances accumulated on the surface of the membrane and in the membrane by washing with citric acid and discharging it out of the system of the membrane module 1. Furthermore, when cleaning with a chemical is performed, it is more preferable to maintain the state after all the membrane module 1 is filled with cleaning water containing the chemical, that is, to perform immersion for a certain period of time. Adopted. By performing cleaning using these methods, almost all of the contaminants derived from the water to be treated can be discharged out of the membrane module 1, and the membrane module 1 can be stably operated for a long time. Is possible. In this way, when performing chemical cleaning using two different types of chemicals, two chemical
本発明で用いる膜モジュール1の形状としては、中空糸膜、チューブラー膜、平膜等がある。ここで、中空糸膜とは直径2mm未満の円筒状の分離膜、チューブラー膜とは直径2mm以上の円管状の分離膜をいう。本発明においては、いずれの形状の膜モジュールを用いても構わないが、一般的に高い膜ろ過流束での逆洗ができない構造であることが多い平膜形状の膜モジュールよりも、充分に高い膜ろ過流束での逆洗ができる構造である中空糸膜やチューブラー膜形状の膜モジュールを用いた方が薬品洗浄時に膜表面および膜内の汚れ物質を溶解または分解しやすいので好ましい。 Examples of the shape of the membrane module 1 used in the present invention include a hollow fiber membrane, a tubular membrane, and a flat membrane. Here, the hollow fiber membrane refers to a cylindrical separation membrane having a diameter of less than 2 mm, and the tubular membrane refers to a tubular separation membrane having a diameter of 2 mm or more. In the present invention, any shape membrane module may be used, but it is sufficiently more than a flat membrane shape membrane module which is generally a structure that cannot be backwashed with a high membrane filtration flux. It is preferable to use a hollow fiber membrane or a tubular membrane membrane module that can be backwashed with a high membrane filtration flux because the surface of the membrane and the contaminants in the membrane are easily dissolved or decomposed during chemical cleaning.
また、分離膜としては、本発明の主旨からどのようなものでも構わないが、一般的には除濁用途として用いられる精密ろ過膜や限外ろ過膜が好ましい。 The separation membrane may be any membrane from the gist of the present invention, but in general, a microfiltration membrane or an ultrafiltration membrane used for turbidity is preferred.
精密ろ過膜や限外ろ過膜に使用される膜の素材は、特に限定しないが、ポリアクリロニトリル、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロースやセラミック等の無機素材からなる群から選ばれる少なくとも1種を含んでいると好ましい。さらに膜強度、耐薬品性の点から、ポリフッ化ビニリデンを主成分とする樹脂膜であることがより好ましい。 The material of the membrane used for the microfiltration membrane and the ultrafiltration membrane is not particularly limited, but polyacrylonitrile, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl alcohol, cellulose acetate, ceramic, etc. It is preferable that at least one selected from the group consisting of these inorganic materials is included. Further, from the viewpoint of film strength and chemical resistance, a resin film mainly composed of polyvinylidene fluoride is more preferable.
膜表面の細孔径についても特に限定されないが、0.001μm〜1μmの範囲内で適宜選択することができる。 The pore diameter on the membrane surface is not particularly limited, but can be appropriately selected within the range of 0.001 μm to 1 μm.
本発明における被処理水としては、特に限定されるものではなく、河川水、湖沼水、地下水、工業用水、都市下水、工業廃水等のいずれの水でも構わなく、また、これらの水に凝集、沈殿、ろ過、吸着、生物処理等の処理を施した水でも構わない。 The treated water in the present invention is not particularly limited, and may be any water such as river water, lake water, ground water, industrial water, municipal sewage, industrial wastewater, etc. Water that has been subjected to treatment such as precipitation, filtration, adsorption, or biological treatment may also be used.
実施例および比較例を実施するために公称分画分子量150kDaのポリフッ化ビニリデン製中空糸UF膜からなる加圧型膜モジュール(東レ株式会社製HFU−2008)を3本準備し、図1に示したフローの膜ろ過装置を用いて膜ろ過運転を行った。なお、実施例および比較例の実施には、濁度2〜3NTUの表流水を原水として用いた。また、実施例および比較例では、1回/日の頻度で膜ろ過運転を一時的に停止させ、300mg/Lの次亜塩素酸ナトリウムを膜モジュールの2次側から供給し、膜モジュールの1次側および2次側が次亜塩素酸ナトリウムで満たされるまで供給を継続し、次亜塩素酸ナトリウムの供給を停止した後に、膜モジュールを20分間浸漬する薬品洗浄を実施した。 Three pressure-type membrane modules (HFU-2008 manufactured by Toray Industries, Inc.) made of polyvinylidene fluoride hollow fiber UF membrane having a nominal molecular weight cut off of 150 kDa were prepared and shown in FIG. Membrane filtration operation was performed using a flow membrane filtration device. In addition, in the implementation of the examples and comparative examples, surface water with a turbidity of 2 to 3 NTU was used as raw water. In Examples and Comparative Examples, the membrane filtration operation is temporarily stopped once / day, and 300 mg / L sodium hypochlorite is supplied from the secondary side of the membrane module. Supply was continued until the secondary side and the secondary side were filled with sodium hypochlorite. After the supply of sodium hypochlorite was stopped, chemical cleaning was performed in which the membrane module was immersed for 20 minutes.
<実施例1> 1回/日の頻度で実施する次亜塩素酸ナトリウムによる薬品洗浄を実施した後に、膜モジュールの1次側の次亜塩素酸ナトリウムを膜モジュールの系外に排出し、被処理水を膜モジュールの1次側に供給し、膜ろ過を再開し、残留塩素濃度が0.1mg/L以下になるまでろ過水を薬品残留水槽に貯留した。その後、膜ろ過運転を継続することでろ過水をろ過水槽に貯留し、ろ過を30分継続させた後薬品残留水槽に貯留した次亜塩素酸ナトリウム含有水を用いて1分間逆洗を行った。その後、空洗を1分間行い、膜モジュール内から洗浄排水を排出した。さらにその後、被処理水を膜モジュールに供給して、再度、膜ろ過運転を開始した。 <Example 1> After performing chemical cleaning with sodium hypochlorite performed once a day, sodium hypochlorite on the primary side of the membrane module is discharged out of the system of the membrane module. Treated water was supplied to the primary side of the membrane module, membrane filtration was resumed, and filtered water was stored in the chemical residual water tank until the residual chlorine concentration became 0.1 mg / L or less. Then, by continuing the membrane filtration operation, filtered water was stored in the filtered water tank, and after filtration was continued for 30 minutes, backwashing was performed for 1 minute using sodium hypochlorite-containing water stored in the chemical residual water tank. . After that, washing with air was performed for 1 minute, and washing waste water was discharged from the inside of the membrane module. Thereafter, the water to be treated was supplied to the membrane module, and the membrane filtration operation was started again.
その結果、運転開始から2ヶ月後の膜モジュールの透水性能は、初期値比63.8%であった。また、そのときのろ過水の回収率は99.6%であった。 As a result, the water permeability of the membrane module two months after the start of operation was 63.8% of the initial value ratio. Moreover, the recovery rate of the filtrate at that time was 99.6%.
<実施例2> 実施例1と同様に1回/日の頻度で実施する次亜塩素酸ナトリウムによる薬品洗浄を実施した後に、膜モジュールの1次側の次亜塩素酸ナトリウムを膜モジュールの系外に排出し、被処理水を膜モジュールの1次側に供給し、膜ろ過を再開し、残留塩素濃度が0.1mg/L以下になるまでろ過水を薬品残留水槽に貯留した。その後、膜ろ過運転を継続することでろ過水をろ過水槽に貯留し、ろ過を30分継続させた後ろ過水槽に貯留されたろ過水に薬品残留水槽に貯留された次亜塩素酸ナトリウム含有ろ過水を逆洗供給量の1/10の量となるよう供給したものを用いて1分間逆洗を行った。その後、空洗を1分間行い、膜モジュール内から洗浄排水を排出した。さらにその後、被処理水を膜モジュールに供給して、再度、膜ろ過運転を開始した。 <Example 2> After performing chemical cleaning with sodium hypochlorite carried out once / day as in Example 1, the sodium hypochlorite on the primary side of the membrane module was replaced with the membrane module system. The water to be treated was supplied to the primary side of the membrane module, the membrane filtration was resumed, and the filtrate was stored in the chemical residual water tank until the residual chlorine concentration became 0.1 mg / L or less. After that, filtered water is stored in the filtered water tank by continuing the membrane filtration operation, and after filtration is continued for 30 minutes, the sodium hypochlorite-containing filter stored in the chemical residual water tank is stored in the filtered water stored in the filtered water tank. Backwashing was carried out for 1 minute using water supplied to 1/10 of the backwashing supply. Then, it washed with air for 1 minute and discharged | emitted washing waste_water | drain from the inside of a membrane module. Thereafter, the water to be treated was supplied to the membrane module, and the membrane filtration operation was started again.
その結果、運転開始から2ヶ月後の膜モジュールの透水性能は、初期値比42.5%であった。また、そのときのろ過水の回収率は96.4%であった。
As a result, the water permeability of the
<比較例1> 1回/日の頻度で実施する次亜塩素酸ナトリウムによる薬品洗浄を実施した後に、膜モジュールの1次側の次亜塩素酸ナトリウムを膜モジュールの系外に排出し、ろ過水槽に貯留されたろ過水を膜モジュールの2次側から1次側に向けて圧送するリンス工程を実施し、リンス水の残留塩素濃度が0.1mg/Lになるまでリンス工程を継続した。その後、膜ろ過運転を再開し、ろ過を30分継続させた後ろ過水槽に貯留されたろ過水を用いて1分間逆洗を行った。その後、空洗を1分間行い、膜モジュール内から洗浄排水を排出した。さらにその後、被処理水を膜モジュールに供給して、再度、膜ろ過運転を開始した。 <Comparative Example 1> After performing chemical cleaning with sodium hypochlorite performed once / day, sodium hypochlorite on the primary side of the membrane module is discharged out of the membrane module and filtered. A rinsing process in which the filtered water stored in the water tank was pumped from the secondary side to the primary side of the membrane module was performed, and the rinsing process was continued until the residual chlorine concentration in the rinsing water reached 0.1 mg / L. Thereafter, the membrane filtration operation was resumed, and filtration was continued for 30 minutes, and then backwashing was performed for 1 minute using the filtrate stored in the filtrate tank. After that, washing with air was performed for 1 minute, and washing waste water was discharged from the inside of the membrane module. Thereafter, the water to be treated was supplied to the membrane module, and the membrane filtration operation was started again.
その結果、運転開始から2ヶ月後の膜モジュールの透水性能は、初期値比23.7%であった。また、そのときのろ過水の回収率は90.3%であった。 As a result, the water permeability of the membrane module after 2 months from the start of operation was 23.7% of the initial value ratio. Moreover, the recovery rate of the filtrate at that time was 90.3%.
以上より、実施例1および2における運転開始2ヶ月後の膜モジュールの透水性能の初期値比およびろ過水の回収率は、いずれも比較例における運転開始2ヶ月後の膜モジュールの透水性能の初期値比およびろ過水の回収率よりも優れていることが示された。また、実施例の中でも薬品残留水をそのまま逆洗水に利用する実施例の方が、ろ過水利用の逆洗水に薬品残留水を添加する実施例よりも薬品洗浄頻度およびろ過水の回収率の両方で優れている。
From the above, the initial value ratio of the water permeability of the
本発明は、上水道における浄水処理分野、工業用水や食品、医療プロセスといった産業用水製造分野、下水や工業廃水といった下廃水分野などにおいて、膜モジュールを効率的に、かつ低処理コストで洗浄する方法として使用することができる。 The present invention is a method for cleaning membrane modules efficiently and at low processing costs in the field of water purification in waterworks, the field of industrial water production such as industrial water, food, and medical processes, and the field of sewage such as sewage and industrial wastewater. Can be used.
1:膜モジュール
2:被処理水配管
3:被処理水供給ポンプ
4:被処理水弁
5:ろ過水配管
6:ろ過水弁
7:ろ過水槽
8:逆洗水配管
9:逆洗ポンプ
10:逆洗弁
11:逆洗排水配管
12:逆洗排水弁
13:排水配管
14:排水弁
15:薬品残留水流入配管
16:薬品残留水流入弁
17:薬品残留水槽
18:薬品残留水供給配管
19:薬品残留水供給ポンプ
20:薬品残留水供給弁
21:逆止弁
1: membrane module 2: treated water pipe 3: treated water supply pump 4: treated water valve 5: filtered water pipe 6: filtered water valve 7: filtered water tank 8: backwash water pipe 9: backwash pump 10: Backwash valve 11: Backwash drain pipe 12: Backwash drain valve 13: Drain pipe 14: Drain valve 15: Chemical residual water inlet pipe 16: Chemical residual water inlet valve 17: Chemical residual water tank 18: Chemical residual water supply pipe 19 : Chemical residual water supply pump 20: Chemical residual water supply valve 21: Check valve
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011172562A JP2013034938A (en) | 2011-08-08 | 2011-08-08 | Method for washing membrane module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011172562A JP2013034938A (en) | 2011-08-08 | 2011-08-08 | Method for washing membrane module |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013034938A true JP2013034938A (en) | 2013-02-21 |
Family
ID=47885075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011172562A Withdrawn JP2013034938A (en) | 2011-08-08 | 2011-08-08 | Method for washing membrane module |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013034938A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015009214A (en) * | 2013-06-28 | 2015-01-19 | パナソニックIpマネジメント株式会社 | Hydrogen peroxide-containing effluent treatment apparatus and treatment method |
KR20160143768A (en) | 2014-05-08 | 2016-12-14 | 오르가노 코포레이션 | Filtration treatment system and filtration treatment method |
US10420344B2 (en) | 2013-08-28 | 2019-09-24 | Organo Corporation | Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane |
CN117776451A (en) * | 2024-01-22 | 2024-03-29 | 惠州市兴牧环保科技股份有限公司 | Reclaimed water purification system and treatment process thereof |
-
2011
- 2011-08-08 JP JP2011172562A patent/JP2013034938A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015009214A (en) * | 2013-06-28 | 2015-01-19 | パナソニックIpマネジメント株式会社 | Hydrogen peroxide-containing effluent treatment apparatus and treatment method |
TWI656100B (en) * | 2013-06-28 | 2019-04-11 | 日商松下知識產權經營股份有限公司 | Hydrogen peroxide-containing drainage treatment device and treatment method |
US10420344B2 (en) | 2013-08-28 | 2019-09-24 | Organo Corporation | Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane |
KR20160143768A (en) | 2014-05-08 | 2016-12-14 | 오르가노 코포레이션 | Filtration treatment system and filtration treatment method |
KR20180116470A (en) | 2014-05-08 | 2018-10-24 | 오르가노 코포레이션 | Filtration treatment system and filtration treatment method |
KR20190051084A (en) | 2014-05-08 | 2019-05-14 | 오르가노 코포레이션 | Filtration treatment system and filtration treatment method |
US10351444B2 (en) | 2014-05-08 | 2019-07-16 | Organo Corporation | Filtration treatment system and filtration treatment method |
CN117776451A (en) * | 2024-01-22 | 2024-03-29 | 惠州市兴牧环保科技股份有限公司 | Reclaimed water purification system and treatment process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5453711B2 (en) | Cleaning method for external pressure hollow fiber membrane module | |
JP2007130523A (en) | Membrane washing method for water treatment system | |
JP2006297376A (en) | Method for cleaning separation membrane | |
JP2011125822A (en) | Method for washing membrane module and fresh water generator | |
WO2011158559A1 (en) | Method for cleaning membrane modules | |
JPWO2012098969A1 (en) | Membrane module cleaning method, fresh water generation method and fresh water generation device | |
JP2015229146A (en) | Cleaning method of membrane module | |
JP2009006209A (en) | Cleaning method of hollow fiber membrane module | |
JP2013202481A (en) | Cleaning method of separation membrane module | |
JP2013034938A (en) | Method for washing membrane module | |
JP2009101349A (en) | Cleaning method of immersion type membrane module | |
JP2002361054A (en) | Method for washing membrane filtration apparatus | |
JP5120106B2 (en) | Method and apparatus for treating organic alkaline wastewater | |
JP2009240903A (en) | Membrane filtration method | |
JP4840285B2 (en) | Cleaning method for submerged membrane module | |
KR20140128841A (en) | Apparatus for Cross cleaning water of membrane module and the operating method thereof | |
JP2011041907A (en) | Water treatment system | |
JP2008246424A (en) | Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus | |
JP5017922B2 (en) | Water treatment method | |
JP2006281022A (en) | Method and apparatus for cleaning of separation membrane module | |
JP2011104504A (en) | Washing method of water treatment facility | |
JP2017176951A (en) | Method for cleaning separation membrane module | |
JP2004057883A (en) | Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor | |
WO2011108589A1 (en) | Method for washing porous membrane module, and fresh water generator | |
JP2005046762A (en) | Water treatment method and water treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141104 |