JP4840285B2 - Cleaning method for submerged membrane module - Google Patents

Cleaning method for submerged membrane module Download PDF

Info

Publication number
JP4840285B2
JP4840285B2 JP2007209134A JP2007209134A JP4840285B2 JP 4840285 B2 JP4840285 B2 JP 4840285B2 JP 2007209134 A JP2007209134 A JP 2007209134A JP 2007209134 A JP2007209134 A JP 2007209134A JP 4840285 B2 JP4840285 B2 JP 4840285B2
Authority
JP
Japan
Prior art keywords
membrane module
water
cleaning
immersion
chemical solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007209134A
Other languages
Japanese (ja)
Other versions
JP2009039677A (en
Inventor
啓伸 鈴木
広明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007209134A priority Critical patent/JP4840285B2/en
Publication of JP2009039677A publication Critical patent/JP2009039677A/en
Application granted granted Critical
Publication of JP4840285B2 publication Critical patent/JP4840285B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、浸漬型膜モジュールの洗浄方法に関するものである。さらに詳しくは、上水道における浄水処理分野、工業用水や食品、医療プロセス用水といった産業用水製造分野、下水や工業廃水といった下廃水処理分野などに使用される浸漬型膜モジュールを薬液を用いて洗浄する方法に関するものである。   The present invention relates to a method for cleaning a submerged membrane module. More specifically, a method for cleaning a submerged membrane module used in a water purification process in a water supply, an industrial water production field such as industrial water, food, and medical process water, and a sewage treatment field such as sewage and industrial wastewater with a chemical solution It is about.

中空糸膜等の分離膜を用いた膜分離技術は、上水道における飲料用水製造分野、工業用水、工業用超純水、食品、医療といった産業用水製造分野、都市下水の浄化および工業廃水処理といった下排水処理分野などの幅広い分野に利用されている。また、膜分離に用いられる分離膜モジュールは、処理分野に係わらず加圧型と浸漬型に分類される。   Membrane separation technology using separation membranes such as hollow fiber membranes is used for drinking water production in the waterworks, industrial water, industrial ultrapure water, industrial water production such as food and medicine, municipal sewage purification and industrial wastewater treatment. It is used in a wide range of fields such as wastewater treatment. Moreover, the separation membrane module used for membrane separation is classified into a pressure type and an immersion type regardless of the processing field.

浸漬型の分離膜モジュールは、浸漬槽内に浸漬設置され、吸引圧あるいは水頭差による圧力を駆動力として、分離膜によるろ過を行うものであり、浸漬槽内の被処理水から膜ろ過水を得る浸漬型膜分離手段として用いられる。この浸漬型モジュールは、分離膜の1次側の表面と、浸漬槽内の被処理水とを接触させるために、分離膜の外側をケースで覆わないことが多い。ケースで覆う場合でも、被処理水が流通できる孔を多く設けたケースで覆われている。   The immersion type separation membrane module is immersed in the immersion tank and performs filtration through the separation membrane using the suction pressure or the pressure due to the water head difference as the driving force. The membrane filtration water is removed from the treated water in the immersion tank. It is used as an obtained immersion membrane separation means. In many cases, the immersion module does not cover the outer side of the separation membrane with a case in order to bring the primary surface of the separation membrane into contact with the water to be treated in the immersion tank. Even when covered with a case, it is covered with a case provided with many holes through which water to be treated can flow.

このような膜分離手段においては、被処理水をろ過するにあたって、被処理水中の水分は分離膜を介して透過水として取り出され、不純物は分離膜の表面上や多孔質部内にとどまるため、分離膜の目詰まりや分離膜間の流路閉塞が進行して、元来の透過水量が得られなくなる場合がある。   In such membrane separation means, when water to be treated is filtered, water in the water to be treated is taken out as permeated water through the separation membrane, and impurities remain on the surface of the separation membrane and in the porous part. The clogging of the membrane or the blockage of the flow path between the separation membranes may proceed, and the original amount of permeated water may not be obtained.

そこで、膜ろ過運転中に定期的に、分離膜の2次側から1次側へ透過水を逆流させることによって分離膜表面に付着、蓄積した不純物層(ケーキ層)を剥離、除去する逆流洗浄や、分離膜モジュール下部から連続的あるいは間欠的に空気を吹き込むことによって分離膜を揺動させたり、気泡によるせん断力によって分離膜表面や分離膜間に蓄積した不純物を剥離、除去したりする空気洗浄で代表される物理洗浄をおこなう。   Therefore, reverse flow cleaning that peels and removes the impurity layer (cake layer) that has adhered and accumulated on the surface of the separation membrane by causing the permeate to flow backward from the secondary side to the primary side of the separation membrane periodically during the membrane filtration operation. Or air that blows air continuously or intermittently from the bottom of the separation membrane module, or peels or removes impurities accumulated between the separation membrane surface or between the separation membranes by shearing force of bubbles Perform physical cleaning as represented by cleaning.

しかしながら、膜ろ過運転が長期におよぶと、前述の物理洗浄によっても除去できない不純物が分離膜表面や分離膜間に付着、蓄積するため、薬液を用いてこれらの不純物を溶解除去する薬品洗浄が必要になってくる。薬品洗浄は、分離膜に付着、蓄積した不純物を薬液によって溶解あるいは除去させる薬品洗浄工程と、分離膜モジュール内の薬液を洗い流すリンス工程から構成される。   However, if the membrane filtration operation lasts for a long time, impurities that cannot be removed even by the above-mentioned physical cleaning adhere to and accumulate on the separation membrane surface and between separation membranes, so chemical cleaning that uses chemicals to dissolve and remove these impurities is necessary. It becomes. The chemical cleaning includes a chemical cleaning process in which impurities attached and accumulated on the separation membrane are dissolved or removed by a chemical solution, and a rinsing process in which the chemical solution in the separation membrane module is washed away.

浸漬型膜モジュールの薬品洗浄方法については、一般的に、浸漬槽外へ浸漬型膜モジュールを取り出し、別に設けた薬液洗浄槽に浸漬型膜モジュールを移送し、この槽内に浸漬型膜モジュールを一定時間浸漬させるといった手法がとられる。しかしながら、この手法によって薬品洗浄をおこなうと、薬液を大量に使用するとともに、薬液洗浄槽という特別な洗浄設備を必要とする他、浸漬型膜モジュールを移送する工程と手段を必要とするので、大規模な浸漬型膜ろ過施設には不向きである。したがって、浸漬型膜モジュールの薬品洗浄を、浸漬槽に設置したままのオンラインにておこなうことが望まれている。   About the chemical cleaning method of the immersion type membrane module, generally, the immersion type membrane module is taken out of the immersion tank, the immersion type membrane module is transferred to a separate chemical cleaning tank, and the immersion type membrane module is placed in this tank. A technique of soaking for a certain time is taken. However, when chemical cleaning is performed by this method, not only a large amount of chemical solution is used, but also a special cleaning facility called a chemical solution cleaning tank is required, and a process and means for transferring a submerged membrane module are required. Not suitable for large-scale submerged membrane filtration facilities. Therefore, it is desired to perform chemical cleaning of the submerged membrane module online while being installed in the immersion tank.

膜モジュールをオンラインにて薬品洗浄する方法として、薬液貯槽から薬液を分離膜モジュールの2次側から1次側に向かって通液し、前記薬液貯槽と前記分離膜モジュールとを結ぶ配管の途中に設置したフィルタで薬液をろ過した後、再度分離膜モジュールの2次側に供給し、薬液を循環させる薬品洗浄方法が提案されている(特許文献1参照)。本方法は、膜モジュール内が閉鎖空間となっていて、その上部や下部に配管が接続している加圧型膜モジュールには適している。しかし、浸漬槽内に浸漬型膜モジュールが設置された装置に適用した場合、広い浸漬槽内の内壁面全体が薬液で汚染されることになり、ろ過工程再開前のリンス工程にて、浸漬槽内の広い内壁面全体をリンスするためにリンス水を大量に使用する必要があり、浸漬型膜モジュールのオンライン薬品洗浄には適していない。   As a method of cleaning the membrane module online, a chemical solution is passed from the chemical solution storage tank to the primary side from the secondary side of the separation membrane module, and in the middle of the pipe connecting the chemical solution storage tank and the separation membrane module. A chemical cleaning method has been proposed in which a chemical solution is filtered with an installed filter and then supplied again to the secondary side of the separation membrane module to circulate the chemical solution (see Patent Document 1). This method is suitable for a pressure-type membrane module in which the inside of the membrane module is a closed space and pipes are connected to the upper and lower portions. However, when applied to an apparatus in which an immersion membrane module is installed in the immersion tank, the entire inner wall surface in the wide immersion tank will be contaminated with the chemical solution, and in the rinse process before the filtration process restarts, the immersion tank It is necessary to use a large amount of rinsing water in order to rinse the entire large inner wall surface of the inside, which is not suitable for on-line chemical cleaning of the submerged membrane module.

そこで、浸漬型膜モジュールを浸漬槽内に設置したままでオンラインにて薬品洗浄する場合に、薬品洗浄廃水量を低減できる技術として、浸漬槽内の被処理水を槽外に排出し、浸漬膜モジュールの膜の一部が水面上に表出したときに、膜の2次側へ薬液の注入を開始して1次側に浸出させることを特徴とする薬品洗浄方法が提案されている(特許文献2参照)。この手法では、浸漬型膜モジュールの膜の一部が水面上に表出したときに、膜の2次側から供給され1次側に浸出した薬液が浸漬槽内の被処理水により希釈されることはほとんどなく、また膜の2次側に注入された薬液は、水面上に表出した膜部分から優先的に膜の1次側に浸出するため、膜表面に浸出した薬液のほとんどは被処理水と接触することなく膜面に保持され、その後流下すると記載されている。   Therefore, as a technology that can reduce the amount of chemical cleaning waste water when online chemical cleaning is performed with the immersion membrane module installed in the immersion bath, the treated water in the immersion bath is discharged out of the bath, When a part of the membrane of the module is exposed on the surface of the water, a chemical cleaning method has been proposed in which injection of a chemical solution is started to the secondary side of the membrane and leached to the primary side (patent) Reference 2). In this method, when a part of the membrane of the submerged membrane module is exposed on the water surface, the chemical solution supplied from the secondary side of the membrane and leached to the primary side is diluted with the water to be treated in the immersion tank. The chemical injected into the secondary side of the membrane is preferentially leached from the membrane portion exposed on the water surface to the primary side of the membrane, so that most of the chemical solution leached on the membrane surface is covered. It is described that it is held on the membrane surface without coming into contact with the treated water and then flows down.

しかしながら、特許文献2の方法では、浸漬槽内の被処理水を排出する速度と、膜の2次側から薬液を注入する速度との関係が重要であるにもかかわらず、それら速度が明記されておらず、排出される被処理水と膜の1次側に浸出してくる薬液とを接触させないための条件が明確でない。さらに、特許文献2においては、膜の2次側に注入されて保持された薬液は、その後、透過水を膜の2次側から逆流させて洗浄することにより、膜の1次側へと排出し、次いで槽外へと排出している。このような手法によって、膜の2次側から薬液を排出させると、排出途中の薬液で浸漬槽の内壁面が汚染されてしまい、ろ過工程再開前に浸漬槽の内壁面に付着した薬液を洗浄除去する必要があり、多量のリンス水を要する。   However, in the method of Patent Document 2, although the relationship between the speed of discharging the water to be treated in the immersion tank and the speed of injecting the chemical solution from the secondary side of the membrane is important, these speeds are clearly specified. In addition, the conditions for preventing the discharged water to be treated from coming into contact with the chemical solution leached to the primary side of the membrane are not clear. Furthermore, in Patent Document 2, the chemical liquid injected and held on the secondary side of the membrane is then discharged to the primary side of the membrane by washing the permeated water back from the secondary side of the membrane. Then, it is discharged out of the tank. When the chemical solution is discharged from the secondary side of the membrane by such a technique, the inner wall surface of the immersion bath is contaminated with the chemical solution being discharged, and the chemical solution attached to the inner wall surface of the immersion bath is cleaned before the filtration process is resumed. It needs to be removed and requires a lot of rinse water.

また、上記以外の薬品洗浄技術として、浸漬槽内の被処理水を排出した後、浸漬型膜モジュールの2次側から薬液を間欠的に複数回通液し、その際、1回目に通液する薬液の量を、浸漬型膜モジュールの膜外表面全体にしみ出すのに十分な最低通液量よりも多くし、2回目以降に通液する薬液の量を、最低通液量の2〜5倍とすることを特徴とする薬品洗浄方法が提案されている(特許文献3参照)。しかしながら、特許文献3においては、浸漬型膜モジュールの2次側から通液した薬液が浸漬槽内に直接流れ込むため、特許文献1や2の場合と同様に浸漬槽内の広い内壁面が薬液で汚染されることになり、ろ過工程再開前に浸漬槽内の広い内壁面に付着した薬液を水洗等により洗浄除去する必要があり、多量のリンス水を要する。   Further, as a chemical cleaning technique other than the above, after draining the water to be treated in the immersion tank, the chemical solution is intermittently passed through the secondary side of the immersion membrane module a plurality of times. The amount of the chemical solution to be passed is larger than the minimum flow rate sufficient to ooze the entire outer surface of the submerged membrane module, and the amount of the chemical solution to be passed after the second time is set to 2 to 2 of the minimum flow rate. A chemical cleaning method characterized by a factor of 5 has been proposed (see Patent Document 3). However, in Patent Document 3, since the chemical liquid passed from the secondary side of the immersion membrane module flows directly into the immersion tank, the wide inner wall surface in the immersion tank is the chemical liquid as in Patent Documents 1 and 2. It will be contaminated, and it is necessary to wash and remove the chemical solution adhering to the wide inner wall surface in the immersion tank by water washing or the like before resuming the filtration process, which requires a large amount of rinse water.

特開2006-281022号公報JP 2006-281022 特開2006-255567号公報JP 2006-255567 A 特許第3583201号公報Japanese Patent No. 3582001

本発明の目的は、浸漬型膜モジュールの薬品洗浄を、膜モジュールを浸漬槽内に設置したままのオンラインにておこなうことができ、また薬品洗浄する際に使用する薬液の量を少量に抑えることができ、さらには浸漬槽内を薬液で汚染せずに薬品洗浄することができる、浸漬型膜モジュールの洗浄方法を提供すること、および、本薬品洗浄方法を行うために好適な浸漬型膜ろ過装置を提供することにある。   The purpose of the present invention is to perform chemical cleaning of the submerged membrane module on-line with the membrane module installed in the immersion tank, and to suppress the amount of chemical used for chemical cleaning to a small amount. Further, it is possible to provide a cleaning method for a submerged membrane module that can clean a chemical without contaminating the inside of the immersion tank with a chemical solution, and a submerged membrane filtration suitable for performing this chemical cleaning method To provide an apparatus.

上記目的を達成するための本発明は、次の事項で特定されるものである。
(1) 被処理水を貯留する浸漬槽内に設置されている浸漬型膜モジュールを洗浄する方法であって、浸漬槽内の被処理水を全量排出した後に、浸漬型膜モジュールの透過水取出口から薬液を通液し、浸漬型膜モジュール内の2次側が薬液で満たされた状態となった時に薬液の通液を停止して所定時間保持し、その後、膜モジュール内の2次側に薬液を保持したまま、浸漬槽内に水を供給し、浸漬型膜モジュールの下方から空気を噴出させて空気洗浄をおこなった後、浸漬槽内の水を全量排出し、その後に、被処理水を浸漬槽内に供給することを特徴とする浸漬型膜モジュールの洗浄方法。
(2) (1)に記載の浸漬型膜モジュールの洗浄方法において、被処理水を浸漬槽内に供給して貯留させた後に、浸漬型膜モジュール内の2次側の吸引を開始することにより、2次側の残存薬液を排出することを特徴とする浸漬型膜モジュールの洗浄方法。
(3) (1)または(2)に記載の浸漬型膜モジュールの洗浄方法において、浸漬型膜モジュールの透過水取出口から薬液が通液される時に浸漬型膜モジュール内の2次側から排出された残存透過水を、浸漬槽外に排出することを特徴とする浸漬型膜モジュールの洗浄方法。
(4) (1)〜(3)のいずれかに記載の浸漬型膜モジュールの洗浄方法において、空気洗浄後に浸漬槽内の水を全量排出した後、浸漬槽内に供給された被処理水のうちの初期の所定量もしくは所定時間は、浸漬槽内に貯留せずに排出することを特徴とする浸漬型膜モジュールの洗浄方法。
The present invention for achieving the above object is specified by the following items.
(1) A method for cleaning a submerged membrane module installed in a dipping tank for storing the water to be treated, and after draining all of the water to be treated in the dipping tank, the permeated water collection of the submerged membrane module is performed. When the chemical solution is passed from the outlet and the secondary side in the submerged membrane module is filled with the chemical solution, the chemical solution is stopped and held for a predetermined time. While maintaining the chemical solution, water is supplied into the immersion tank, air is blown out from below the immersion type membrane module to perform air cleaning, and then all the water in the immersion tank is discharged. A method for cleaning a submerged membrane module, characterized in that the submerged membrane module is supplied into the immersion tank.
(2) In the method for cleaning a submerged membrane module according to (1), by supplying water to be treated into the immersion tank and storing it, starting suction on the secondary side in the submerged membrane module A method for cleaning a submerged membrane module, characterized in that the remaining chemical solution on the secondary side is discharged.
(3) In the method for cleaning an immersion type membrane module according to (1) or (2), when the chemical solution is passed through the permeate outlet of the immersion type membrane module, the chemical solution is discharged from the secondary side in the immersion type membrane module. A method for cleaning a submerged membrane module, wherein the remaining permeated water is discharged out of the immersion tank.
(4) In the method for cleaning a submerged membrane module according to any one of (1) to (3), after all the water in the immersion tank has been discharged after air cleaning, the water to be treated supplied into the immersion tank among initial predetermined amount or a predetermined time, the washing method of the submerged membrane module, characterized in that the discharged without accumulating in the dipping bath.

(5) (1)〜(4)のいずれかに記載の浸漬型膜モジュールの洗浄方法において、浸漬型膜モジュール内の2次側に供給する薬液が、硫酸、塩酸、硝酸、シュウ酸、クエン酸、アスコルビン酸、水酸化ナトリウム、次亜塩素酸ナトリウム、過酸化水素、および界面活性剤よりなる群から選ばれる1種以上を含む薬液であることを特徴とする浸漬型膜モジュールの洗浄方法
(5) In the method for cleaning an immersion membrane module according to any one of (1) to (4), the chemical solution supplied to the secondary side in the immersion membrane module is sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, citric acid. A method for cleaning a submerged membrane module, which is a chemical solution containing at least one selected from the group consisting of acid, ascorbic acid, sodium hydroxide, sodium hypochlorite, hydrogen peroxide, and a surfactant .

本発明法によれば、浸漬型膜モジュールの薬品洗浄を、膜モジュールを浸漬槽内に設置したままのオンラインにておこなうことができ、さらに、薬品洗浄する際に使用する薬液の量を少量に抑えることができる。さらにまた、浸漬槽内を薬液で汚染することなく膜を薬品洗浄することができる。また、薬液の使用量が少ないために、薬品洗浄後のリンスで使用するリンス水の量を少なくすることも可能になる。   According to the method of the present invention, chemical cleaning of a submerged membrane module can be performed online while the membrane module is installed in the immersion tank, and the amount of chemical used for chemical cleaning can be reduced to a small amount. Can be suppressed. Furthermore, the membrane can be chemically cleaned without contaminating the immersion tank with a chemical solution. Further, since the amount of the chemical solution used is small, it is possible to reduce the amount of rinsing water used for rinsing after chemical cleaning.

以下、本発明の望ましい実施の形態を図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。
図1は、本発明における浸漬型膜モジュールの一実施態様を示す概略断面図である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to these.
FIG. 1 is a schematic cross-sectional view showing an embodiment of a submerged membrane module according to the present invention.

本発明における浸漬型膜モジュールとは、単独あるいは複数の分離膜を内部に配設して構成したものであって、分離膜の外周が露出しているものをいう。分離膜の形状には、中空糸膜、チューブラー膜、平膜等がある。ここで、中空糸膜とは直径2mm未満の円管状の分離膜、チューブラー膜とは直径2mm以上の円管状の膜をいう。本発明においては、いずれの形状の分離膜を用いても構わないが、透過水側(2次側)に薬品洗浄用の液体を封入した際に、その封入液体の保持が容易であり、大きな膜面積を確保し易いことから、円管状の中空糸膜やチューブラー膜が好適である。即ち、平膜の場合は、透過水側に保持した液体からの圧力により、膜の支持体からの剥離が引き起こされ易いが、円管状の中空糸膜やチューブラー膜の場合は、保持した液体からの圧力が膜の全方向に均一にかかり、膜の剥離等が引き起こされ難いからである。   The submerged membrane module in the present invention refers to a module in which a single or a plurality of separation membranes are disposed inside, and the outer periphery of the separation membrane is exposed. Examples of the shape of the separation membrane include a hollow fiber membrane, a tubular membrane, and a flat membrane. Here, the hollow fiber membrane means a tubular separation membrane having a diameter of less than 2 mm, and the tubular membrane means a tubular membrane having a diameter of 2 mm or more. In the present invention, any shape of separation membrane may be used, but when the liquid for chemical cleaning is sealed on the permeate side (secondary side), the sealed liquid can be easily held, Since it is easy to ensure the membrane area, a tubular hollow fiber membrane or a tubular membrane is preferable. That is, in the case of a flat membrane, the pressure from the liquid held on the permeate side tends to cause separation of the membrane from the support, but in the case of a tubular hollow fiber membrane or tubular membrane, the retained liquid This is because the pressure from is applied uniformly in all directions of the film and peeling of the film is difficult to cause.

また、中空糸膜を用いた浸漬型膜モジュール1としては、図1に示すように、通常数百本から数万本の中空糸膜2(中空糸膜は線でもって模式的に示されている。)を束ねた中空糸膜束の両端が接着固定されてなる膜モジュール構造が採られる。その接着固定部3の片端側(図1の上側)は中空糸膜端面が開口した状態で接着固定されている。もう一方の片端側(図1の下側)の接着固定部3′は中空糸膜端面が閉塞された状態で接着固定されている。   Further, as shown in FIG. 1, the submerged membrane module 1 using hollow fiber membranes is typically several hundred to tens of thousands of hollow fiber membranes 2 (hollow fiber membranes are schematically shown by lines). A membrane module structure in which both ends of a bundle of hollow fiber membranes bundled together is bonded and fixed. One end side (the upper side in FIG. 1) of the adhesive fixing portion 3 is adhesively fixed with the end surface of the hollow fiber membrane being opened. The other one end (lower side in FIG. 1) of the adhesive fixing portion 3 'is adhesively fixed with the end surface of the hollow fiber membrane closed.

中空糸膜2としては、多孔質の膜面を有する中空糸状の分離膜であれば、特に限定しないが、ポリアクリロニトリル、ポリフェニルスルホン、ポリフェニレンスルフィドスルホン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリスルホン、ポリビニルアルコール、酢酸セルロース等の有機素材や、セラミック等の無機素材からなる群から選ばれる少なくとも1種からなる中空糸膜であることが好ましく、さらに膜強度の点からポリフッ化ビニリデン製中空糸膜がより好ましい。中空糸膜表面の細孔径についても特に限定されないが、0.001μm〜1μmの範囲内で適宜選択すればよい。また、中空糸膜2の外径についても特に限定されないが、中空糸膜の揺動性が高く、洗浄性に優れるため、250μm〜2000μmの範囲内であることが好ましい。   The hollow fiber membrane 2 is not particularly limited as long as it is a hollow fiber-like separation membrane having a porous membrane surface. Polyacrylonitrile, polyphenylsulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, polypropylene, polyethylene, polysulfone, polyvinyl It is preferably a hollow fiber membrane made of at least one selected from the group consisting of organic materials such as alcohol and cellulose acetate, and inorganic materials such as ceramics, and more preferably a polyvinylidene fluoride hollow fiber membrane from the viewpoint of membrane strength. preferable. The pore diameter on the surface of the hollow fiber membrane is not particularly limited, but may be appropriately selected within the range of 0.001 μm to 1 μm. Also, the outer diameter of the hollow fiber membrane 2 is not particularly limited, but is preferably in the range of 250 μm to 2000 μm because the hollow fiber membrane has high oscillating property and excellent detergency.

また、中空糸膜束の両側端部を接着剤で接着固定する際の接着剤については、特に限定されないが、エポキシ樹脂、ウレタン樹脂などの熱硬化性樹脂を用いることが好ましい。   Moreover, although it does not specifically limit about the adhesive agent in adhering and fixing the both ends of a hollow fiber membrane bundle with an adhesive agent, It is preferable to use thermosetting resins, such as an epoxy resin and a urethane resin.

また、中空糸膜束の両端にそれぞれ形成された接着固定部3と接着固定部3’とは、その間に存在する多数本の中空糸膜2を介して繋がっており、その多数本の中空糸膜2では中空糸膜が並列に引き揃えられた状態にあり、この中空糸膜2の部分で膜ろ過機能が発揮される。この多数本の中空糸膜部分における並列引き揃え束は、特に補強部材を介在させない構造であってもよいし、また、補強手段を介在させた構造であってもよい。その補強手段を介在させた構造としては、例えば、断面積3〜700mmの好ましくは円筒形のステー(金属棒等)を1〜30本程度、中空糸の引き揃え束の外周や内部に配置し、接着固定部同士がステーによっても連結している構造や、ネット等の多孔板状素材を接着固定部間の中空糸膜引き揃え束の外周を覆うように配置した構造が挙げられる。 Further, the adhesive fixing portions 3 and the adhesive fixing portions 3 ′ formed at both ends of the hollow fiber membrane bundle are connected via a large number of hollow fiber membranes 2 existing therebetween, and the large number of hollow fibers. In the membrane 2, the hollow fiber membranes are arranged in parallel, and the membrane filtration function is exhibited in the hollow fiber membrane 2 portion. The parallel alignment bundles in the multiple hollow fiber membrane portions may have a structure in which no reinforcing member is interposed, or may have a structure in which a reinforcing means is interposed. As a structure with the reinforcing means interposed, for example, about 1 to 30 preferably cylindrical stays (metal rods, etc.) having a cross-sectional area of 3 to 700 mm 2 are arranged on the outer periphery or inside of the aligned bundle of hollow fibers. In addition, a structure in which the adhesive fixing portions are connected by a stay, or a structure in which a porous plate-like material such as a net is arranged so as to cover the outer periphery of the bundle of hollow fiber membranes between the adhesive fixing portions.

図2は浸漬型膜モジュールを浸漬槽内に配置した浸漬型膜ろ過装置の概略を示す図である。被処理水は、原水6として、浸漬槽5内に原水供給口から連続的あるいは断続的に流入される。流入した原水(被処理水)は、浸漬槽5内で液相5aと沈降した懸濁物質からなる沈降汚泥相5bに相分離される。浸漬槽5内には浸漬型膜モジュール1が浸漬設置されており、透過水配管の下流側に配設された吸引ポンプ8によって、浸漬型膜モジュール1内の分離膜、透過水配管7、及びろ過弁9を介して、液相5a内の被処理水が膜ろ過され、透過水(膜ろ過水)が取り出される(ろ過工程)。なお、この際、配管途中の開閉弁19は開状態である。このろ過工程において浸漬槽5内は静置状態におかれるために、液相5a中から懸濁物質が沈降して液相5a中の懸濁物質濃度が低減し、浸漬型膜モジュール1の分離膜への懸濁物質負荷が低減する。   FIG. 2 is a diagram showing an outline of a submerged membrane filtration apparatus in which a submerged membrane module is disposed in a submerged tank. The water to be treated is continuously or intermittently flowed as raw water 6 into the immersion tank 5 from the raw water supply port. The inflow raw water (treated water) is phase-separated in the immersion tank 5 into a liquid phase 5a and a settled sludge phase 5b made of settled suspended matter. The immersion type membrane module 1 is immersed in the immersion tank 5, and the separation membrane in the immersion type membrane module 1, the permeated water pipe 7, and the suction pump 8 disposed on the downstream side of the permeated water pipe Through the filtration valve 9, the water to be treated in the liquid phase 5a is subjected to membrane filtration, and permeated water (membrane filtered water) is taken out (filtration step). At this time, the on-off valve 19 in the middle of the piping is in an open state. In this filtration step, the immersion tank 5 is left stationary, so that suspended substances settle out of the liquid phase 5a and the concentration of suspended substances in the liquid phase 5a is reduced, so that the immersion membrane module 1 is separated. Suspended material load on the membrane is reduced.

ろ過工程を所定時間単独で行った後、吸引ポンプ8を停止し、ろ過弁9を閉じ、ろ過工程を停止する。引き続き、逆洗弁12を開き、逆洗ポンプ11によって逆洗水配管10を介して浸漬型膜モジュール1へ逆洗水を送り込み、中空糸膜の逆流洗浄を行う(逆洗工程)。同時に、空洗弁15を開き、空洗エア配管14と、浸漬型膜モジュール1の下部に設置した散気装置16とを介して、ブロワ13から供給される空気を液相5a内に送出させ、気泡を浸漬型膜モジュール1内に散気して中空糸膜を空気洗浄する(空洗工程)。逆流洗浄と空気洗浄とによって、浸漬型膜モジュール1内の中空糸膜が揺動され、中空糸膜の表面や中空糸膜間の流路に蓄積した懸濁物質を剥離、除去される。このとき、中空糸膜の表面や中空糸膜間の流路に蓄積した懸濁物質が液相5a中に舞い戻り、さらに、液相5a中を沈降途中あるいはいったん沈降した懸濁物質が舞い上がるので、液相5a中の懸濁物質濃度が上昇する。   After performing the filtration process alone for a predetermined time, the suction pump 8 is stopped, the filtration valve 9 is closed, and the filtration process is stopped. Subsequently, the backwash valve 12 is opened, and backwash water is sent to the submerged membrane module 1 through the backwash water pipe 10 by the backwash pump 11 to perform backwashing of the hollow fiber membrane (backwash process). At the same time, the air washing valve 15 is opened, and the air supplied from the blower 13 is sent into the liquid phase 5a through the air washing air pipe 14 and the air diffuser 16 installed in the lower part of the submerged membrane module 1. The air bubbles are diffused into the submerged membrane module 1 to clean the hollow fiber membrane with air (air washing step). By the backwashing and air washing, the hollow fiber membrane in the submerged membrane module 1 is swung, and the suspended substances accumulated on the surface of the hollow fiber membrane and the flow path between the hollow fiber membranes are peeled off and removed. At this time, suspended substances accumulated on the surface of the hollow fiber membrane and the flow path between the hollow fiber membranes flow back into the liquid phase 5a, and further, suspended substances that have settled in the liquid phase 5a or have settled once rise up. The suspended solid concentration in the liquid phase 5a increases.

一方、逆洗工程と空洗工程を行う前の時点では、ろ過工程を単独で行う時間、すなわち浸漬槽5内が静置状態となってからの液相5a中の懸濁物質の沈降時間が最も長くなっていて、沈降汚泥相5b内の懸濁物質量が最大となり、沈降した懸濁物質の濃縮が最も進んで懸濁物質濃度が最高となっている。従って、この時点で、浸漬槽5の底部に設けた排出弁18を開き、沈降汚泥相5b中の沈降した懸濁物質を汚泥として、排出配管17を介して浸漬槽外へと引抜く(排泥工程)。よって、排泥工程は、ろ過工程に次ぐ工程として、逆洗工程及び空洗工程の前工程として行う。   On the other hand, at the time before performing the back washing process and the air washing process, the time for performing the filtration process alone, that is, the settling time of the suspended substance in the liquid phase 5a after the immersion tank 5 is in a stationary state. It is the longest, the amount of suspended matter in the sedimented sludge phase 5b is maximized, the concentration of the suspended suspended matter is most advanced, and the suspended matter concentration is the highest. Therefore, at this time, the discharge valve 18 provided at the bottom of the immersion tank 5 is opened, and the suspended suspended matter in the settled sludge phase 5b is taken out as sludge and discharged outside the immersion tank via the discharge pipe 17 (discharge). Mud process). Therefore, a mud discharge process is performed as a pre-process of a backwashing process and an air washing process as a process following a filtration process.

ここで、静置状態とは、例えば、浸漬型分離膜モジュールの下方に設置された散気装置からの散気によって生ずる気液混相流による浸漬槽内での主に上下方向への循環流がなく、さらに、浸漬槽への流入水の流入によって生ずる主に上下方向への水流の乱れや偏流などが少なく、水流による懸濁物質の沈降阻害が小さい状態をいう。例えば、浸漬槽内の水流の平均流速が0.4m/min以下であり、かつ浸漬槽内の水流の平均上昇流速が80mm/min以下である状態をいう。   Here, the stationary state means, for example, that the circulation flow in the vertical direction mainly in the immersion tank is caused by the gas-liquid mixed phase flow generated by the air diffuser from the air diffuser installed below the immersion type separation membrane module. Furthermore, it means a state where there is little turbulence or drift in the water flow mainly due to the inflow of the inflow water into the immersion tank, and the sedimentation inhibition of suspended substances by the water flow is small. For example, it means a state where the average flow velocity of the water flow in the immersion bath is 0.4 m / min or less and the average flow velocity of the water flow in the immersion bath is 80 mm / min or less.

浸漬型膜モジュール1の薬品洗浄の必要が生じる状況としては、長期間のろ過運転をおこなった後が挙げられる。このような浸漬型膜モジュールの薬品洗浄を、浸漬槽内に膜モジュールを設置したままの状態、即ち浸漬型膜ろ過装置上でおこなうためには、図3に示す配管等の付属設備が必要となる。つまり、図2に示した浸漬型膜ろ過装置に、薬液供給配管20、薬液供給弁21、薬液供給ポンプ22、薬液廃棄弁23、薬液廃棄配管24、薬液廃棄用吸引ポンプ25を接続あるいは設置する。   As a situation where the chemical cleaning of the submerged membrane module 1 is necessary, it may be after a long-term filtration operation. In order to perform such chemical cleaning of the submerged membrane module in a state where the membrane module is installed in the submerged tank, that is, on the submerged membrane filtration device, additional equipment such as piping shown in FIG. 3 is required. Become. That is, the chemical liquid supply pipe 20, the chemical liquid supply valve 21, the chemical liquid supply pump 22, the chemical liquid disposal valve 23, the chemical liquid disposal pipe 24, and the chemical liquid disposal suction pump 25 are connected to or installed in the submerged membrane filtration apparatus shown in FIG. .

浸漬型膜モジュールの薬品洗浄方法の手順は、まず排出弁18を開にして、浸漬槽5内の被処理水を全量排出し(図4)、その後、開閉弁19および薬液供給弁21を開とし、薬液供給ポンプ22にて薬液を浸漬型膜モジュール1の2次側に供給する(図5)。この時、浸漬型膜モジュールの2次側およびその下流側の配管内に残存していた透過水が1次側に排出されるために、その残存透過水を浸漬槽外に排出する。残存透過水の排出が終了した時点で排出弁18を閉にする(図6)。なお、2次側から1次側へ排出される残存透過水の量は、浸漬型膜モジュール内の2次側の体積と配管内の体積とから知ることが可能であるため、残存透過水の排出が終了するまでの時間を、残存透過水量や薬液供給流速等の条件から求め、排出弁18を閉にするまでの時間を設定すればよい。また、このとき、排出した透過水には、供給した薬液が微量程度混入するだけであるために放流してもよい。薬液の供給はその後も続け、浸漬型膜モジュールの2次側が薬液で満たされた時点で、開閉弁19および薬液供給弁21を閉じ、その次に薬液供給ポンプ22を停止させ、この状態にて所定時間保持する(図7)。これによって膜内部および膜外表面に付着した懸濁物質を溶解または引き離すことが可能になる。なお、浸漬型膜モジュール1に供給する薬液量は、膜外表面に薬液が滲み出す程度で十分であるため、浸漬型膜モジュール1の2次側の体積と薬液供給配管内の体積に応じて決定すればよい。さらに、薬液供給後に閉にする開閉弁19および薬液供給弁21については、浸漬型膜モジュール1の2次側の体積と薬液供給配管内の体積に応じて決定される所定の薬液供給量の薬液が供給された時点で自動的に閉となるように設定されている。また、薬液を保持する時間は好ましくは5分から120分であり、より好ましくは30分から60分である。   The procedure of the chemical cleaning method for the submerged membrane module is as follows. First, the discharge valve 18 is opened to discharge all the water to be treated in the immersion tank 5 (FIG. 4), and then the on-off valve 19 and the chemical solution supply valve 21 are opened. Then, the chemical solution is supplied to the secondary side of the submerged membrane module 1 by the chemical solution supply pump 22 (FIG. 5). At this time, since the permeated water remaining in the secondary side of the submerged membrane module and the pipe on the downstream side thereof is discharged to the primary side, the remaining permeated water is discharged out of the immersion tank. When the discharge of the remaining permeate is finished, the discharge valve 18 is closed (FIG. 6). The amount of residual permeated water discharged from the secondary side to the primary side can be known from the volume on the secondary side in the submerged membrane module and the volume in the piping. What is necessary is just to set the time until the discharge valve 18 is closed by obtaining the time until the discharge is completed from conditions such as the amount of remaining permeated water and the chemical solution supply flow rate. At this time, the discharged permeated water may be discharged because only a small amount of the supplied chemical solution is mixed. The supply of the chemical solution continues thereafter, and when the secondary side of the submerged membrane module is filled with the chemical solution, the on-off valve 19 and the chemical solution supply valve 21 are closed, and then the chemical solution supply pump 22 is stopped, and in this state Hold for a predetermined time (FIG. 7). This makes it possible to dissolve or detach suspended substances attached to the inside and outside surfaces of the membrane. The amount of the chemical solution supplied to the submerged membrane module 1 is sufficient to allow the chemical solution to ooze out to the outer surface of the membrane, so that it depends on the volume on the secondary side of the submerged membrane module 1 and the volume in the chemical solution supply pipe. Just decide. Further, for the on-off valve 19 and the chemical solution supply valve 21 that are closed after the chemical solution is supplied, the chemical solution having a predetermined chemical solution supply amount that is determined according to the volume on the secondary side of the submerged membrane module 1 and the volume in the chemical solution supply pipe. It is set to be automatically closed when is supplied. Further, the time for holding the chemical solution is preferably 5 minutes to 120 minutes, more preferably 30 minutes to 60 minutes.

薬液を浸漬型膜モジュール1の2次側に一定時間保持した後、その薬液保持のままで、浸漬槽5内に水(被処理水や透過水等を用いる。)を浸漬型モジュール1が水没するまで供給する(図8)。浸漬型膜モジュール1が水で満たされた時点で水の供給を止め、空洗弁15を開とし、散気装置16を介してブロワ13から供給される空気にて空気洗浄をおこなう(図9)。この空気洗浄によって、薬液によって溶解され、また膜から引き離された懸濁物質を剥離、除去することが可能になる。続いて、空洗弁15を閉じ、その次にブロワ13を停止させ、空気洗浄を終了した後、排出弁18を開にして、浸漬槽内の水を全量排出する(図4)。このとき、排出した水には浸漬型膜モジュール1の2次側に保持した薬液がほとんど混入していないために放流しても問題はない。水の全量排出が終了した後、排出弁18を開にしたままで、浸漬槽5に被処理水を供給する。供給直後の被処理水を浸漬槽外に排出する(図10)。これによって、前述の水の全量排出の際に排出配管17内に残った懸濁物質を完全に排出することが可能になるとともに、排出した水内に微量に混入した薬液をさらに希釈することが可能となる。なお、被処理水を排出する時間は1分程度が好ましい。被処理水の排出から1分程度が経過した時点で排出弁18を閉じて、供給された被処理水を浸漬槽5内に貯留させる(図8)。   After holding the chemical solution on the secondary side of the submerged membrane module 1 for a certain period of time, the submerged module 1 is submerged in the immersion tank 5 while the chemical solution is held (water to be treated or permeated water is used). (FIG. 8). When the submerged membrane module 1 is filled with water, the supply of water is stopped, the flush valve 15 is opened, and air cleaning is performed with air supplied from the blower 13 via the air diffuser 16 (FIG. 9). ). This air cleaning makes it possible to peel off and remove suspended substances dissolved by the chemical solution and separated from the membrane. Subsequently, the air washing valve 15 is closed, then the blower 13 is stopped, and after the air washing is finished, the discharge valve 18 is opened, and the entire amount of water in the immersion tank is discharged (FIG. 4). At this time, there is no problem even if the discharged water is discharged because the chemical liquid held on the secondary side of the submerged membrane module 1 is hardly mixed. After the discharge of the entire amount of water is completed, the water to be treated is supplied to the dipping tank 5 with the discharge valve 18 kept open. The water to be treated immediately after the supply is discharged out of the immersion tank (FIG. 10). This makes it possible to completely discharge suspended substances remaining in the discharge pipe 17 when the above-mentioned total amount of water is discharged, and to further dilute the chemical solution mixed in a small amount in the discharged water. It becomes possible. The time for discharging the water to be treated is preferably about 1 minute. When about 1 minute has passed since the discharge of the water to be treated, the discharge valve 18 is closed, and the supplied water to be treated is stored in the immersion tank 5 (FIG. 8).

浸漬槽5に供給された被処理水中に浸漬型膜モジュール1全体が水没した時点で、被処理水の供給を止め、開閉弁19を開とし、切替弁23を薬液廃棄配管側に対して開とし、薬液廃棄用吸引ポンプ25によって、浸漬型膜モジュール1の2次側に残存している液体を廃液槽(図示なし)へ排出するとともに、薬液供給時に薬液によって汚染された配管内を透過水によって洗浄し、この洗浄水も廃液槽へ排出する(図11)。これによって、薬液で浸漬槽を汚染することなく、膜モジュールの2次側の薬液の排出をおこなうことができる。また、このとき廃液槽に排出する透過水量は浸漬型膜モジュール1内の2次側および配管内を十分に洗浄するために、薬品洗浄時に供給した薬液量の5〜10倍が好ましい。この際に廃液槽に排出する透過水量は、従来の薬品洗浄で使用するリンス水の量よりも大幅に少ない量であり、残存薬液を洗うためのリンス水を大幅に低減させることができる。   When the entire submerged membrane module 1 is submerged in the water to be treated supplied to the immersion tank 5, the supply of the water to be treated is stopped, the on-off valve 19 is opened, and the switching valve 23 is opened to the chemical waste pipe side. The liquid remaining on the secondary side of the submerged membrane module 1 is discharged to a waste liquid tank (not shown) by the chemical liquid disposal suction pump 25, and the permeated water is contaminated with the chemical liquid when supplying the chemical liquid. The washing water is also discharged into the waste liquid tank (FIG. 11). Thus, the chemical solution on the secondary side of the membrane module can be discharged without contaminating the immersion tank with the chemical solution. Further, at this time, the amount of permeated water discharged to the waste liquid tank is preferably 5 to 10 times the amount of the chemical solution supplied at the time of chemical cleaning in order to sufficiently clean the secondary side in the submerged membrane module 1 and the inside of the pipe. At this time, the amount of permeated water discharged to the waste liquid tank is much smaller than the amount of rinsing water used in conventional chemical cleaning, and the rinsing water for washing the remaining chemical liquid can be greatly reduced.

浸漬型膜モジュール1および配管内の残存薬液の洗浄(リンス)が終了した時点に、切替弁23を透過水配管側に対して開とし、透過水配管7のろ過弁9を開とすることより、吸引ポンプ8によって透過水を得る膜ろ過工程が再開される(図12)。この切り替えと同時に、薬液廃棄用吸引ポンプ25を止める。なお、切替弁23を薬液廃棄配管側に対して開となる状態から、透過水配管側に対して開となる状態へ切り替える操作に関しては、薬液廃棄配管に設置されたpH計、残留塩素計などにより、管内を流れる廃液のpHや残留塩素濃度などを自動測定し、そのpHが中性になる、または残留塩素濃度が基準値以下になるなどの基準を満たした時点で配管内残存薬液が洗浄除去されたと判断し、自動的に切り替えるようにすればよい。   When the cleaning (rinsing) of the submerged membrane module 1 and the remaining chemical solution in the pipe is completed, the switching valve 23 is opened with respect to the permeate pipe side, and the filtration valve 9 of the permeate pipe 7 is opened. Then, the membrane filtration step for obtaining the permeated water by the suction pump 8 is resumed (FIG. 12). Simultaneously with this switching, the chemical liquid disposal suction pump 25 is stopped. In addition, regarding the operation to switch the switching valve 23 from the state opened to the chemical waste pipe side to the state opened to the permeate pipe side, a pH meter, a residual chlorine meter, etc. installed in the chemical waste pipe Automatically measures the pH and residual chlorine concentration of the waste liquid flowing through the pipe, and when the pH becomes neutral or the residual chlorine concentration falls below the reference value, the residual chemical solution in the pipe is washed. It may be determined that it has been removed and switched automatically.

膜モジュール2次側から排出される薬液や水が流出される先の配管を薬液廃棄配管24から透過水配管7へと切り替えるための切替弁23としては、三方切替弁を用いればよいが、そのような切替機能が発揮できれば、他の切替手段を用いてもよい。   As the switching valve 23 for switching the pipe from which the chemical liquid or water discharged from the membrane module secondary side flows out from the chemical liquid disposal pipe 24 to the permeate pipe 7, a three-way switching valve may be used. Other switching means may be used as long as such a switching function can be exhibited.

本発明を、以下の実施例を用いてさらに詳細に説明する。なお、以下の実施例、比較例においては、外径1.5mm、公称孔径0.05μmのポリフッ化ビニリデン製中空糸膜3500本が収納され、上接着端側が開口し、下接着端側が封止された図1に示す構造の円筒形状浸漬型中空糸膜モジュール(長さ1m、有効膜面積15m)を用いた。この中空糸膜モジュールは、中空糸膜3500本からなる中空糸膜束の両端を接着剤で固定し、その接着固定部の一端側の一部を切断して中空糸膜内部を開口させ、上接着端の上に、透過水出口のあるモジュールキャップを被せることにより作製した。 The invention is explained in more detail using the following examples. In the following examples and comparative examples, 3500 polyvinylidene fluoride hollow fiber membranes having an outer diameter of 1.5 mm and a nominal pore diameter of 0.05 μm are accommodated, the upper adhesive end side is open, and the lower adhesive end side is sealed. A cylindrical immersed hollow fiber membrane module (length 1 m, effective membrane area 15 m 2 ) having the structure shown in FIG. 1 was used. In this hollow fiber membrane module, both ends of a hollow fiber membrane bundle consisting of 3500 hollow fiber membranes are fixed with an adhesive, a part of one end side of the adhesive fixing part is cut to open the inside of the hollow fiber membrane, It was produced by placing a module cap with a permeate outlet on the adhesive end.

[実施例1]
図3に示す浸漬型膜ろ過装置に上記浸漬型膜モジュールを設置した装置で、琵琶湖水を原水として供給し、1ヶ月間の膜ろ過運転を実施した。その結果、1か月後には、浸漬型膜モジュールの透過水量は初期値比で24.4%に低下した。
[Example 1]
In the apparatus in which the above immersion membrane module was installed in the immersion membrane filtration apparatus shown in FIG. 3, Lake Biwa water was supplied as raw water, and a membrane filtration operation was performed for one month. As a result, after one month, the permeated water amount of the submerged membrane module decreased to 24.4% in terms of the initial value ratio.

そこで、透過水量が低下した浸漬型膜モジュールの薬品洗浄を次の手順でおこなった。
まず、排出弁18を開にして、浸漬槽5内の被処理水を全量排出し、その後、開閉弁19および薬液供給弁21を開とし、薬液供給ポンプ22にて1N塩酸を浸漬型膜モジュールの2次側に供給した。なお、この時に供給した塩酸の総量は4Lであった。この量は、浸漬型膜モジュールと接続された配管内と浸漬型膜モジュールの2次側の総体積にほぼ相当する。また、薬液供給開始時から最初の4L分の水が排出された時点で排出弁18を閉とした。
Therefore, chemical cleaning of the submerged membrane module with reduced permeated water amount was performed according to the following procedure.
First, the discharge valve 18 is opened to discharge all of the water to be treated in the immersion tank 5, and then the on-off valve 19 and the chemical solution supply valve 21 are opened, and 1N hydrochloric acid is submerged by the chemical solution supply pump 22. To the secondary side. The total amount of hydrochloric acid supplied at this time was 4 L. This amount substantially corresponds to the total volume in the pipe connected to the submerged membrane module and on the secondary side of the submerged membrane module. Further, the discharge valve 18 was closed when the first 4 L of water was discharged from the start of supplying the chemical solution.

塩酸を4L供給した時点で、開閉弁19および薬液供給弁21を閉じ、その次に薬液供給ポンプ22を停止させ、その状態で60分間保持した。続いて、浸漬槽5に被処理水を、浸漬型膜モジュールが水没するまで供給し、空洗弁15を開け、散気装置16を介してブロワ13から供給される空気にて空気洗浄を1分間おこなった。空気洗浄終了後、排出弁18を開け、浸漬槽5内の被処理水を全量排出し、排出弁18を開けたまま被処理水を浸漬槽5に供給開始した。被処理水を1分供給した時点で排出弁18を閉じ、浸漬槽5に被処理水を供給し続け、浸漬型膜モジュールが水没した時点で被処理水の供給を止め、開閉弁19を開、および切替弁23を廃液槽側に対して開とし、薬液廃棄用吸引ポンプ25によって40L分の吸引をおこない、2次側に残存していた塩酸を排出した。   When 4 L of hydrochloric acid was supplied, the on-off valve 19 and the chemical solution supply valve 21 were closed, and then the chemical solution supply pump 22 was stopped and held in that state for 60 minutes. Subsequently, the water to be treated is supplied to the immersion tank 5 until the immersion membrane module is submerged, the air washing valve 15 is opened, and air washing is performed with air supplied from the blower 13 through the air diffuser 16. For a minute. After completion of the air cleaning, the discharge valve 18 was opened, the entire amount of the water to be treated in the immersion tank 5 was discharged, and the supply of the water to be treated to the immersion tank 5 was started with the discharge valve 18 being opened. When the water to be treated is supplied for 1 minute, the discharge valve 18 is closed, and the water to be treated is continuously supplied to the immersion tank 5. When the immersion membrane module is submerged, the supply of the water to be treated is stopped and the on-off valve 19 is opened. The switching valve 23 was opened with respect to the waste liquid tank side, and 40 L of suction was performed by the chemical liquid disposal suction pump 25 to discharge the hydrochloric acid remaining on the secondary side.

このようにして塩酸による薬品洗浄が終了した後に、上記と同じ手法にて、3,000mg/L次亜塩素酸ナトリウムによる薬品洗浄をおこなった。   After chemical cleaning with hydrochloric acid was completed in this way, chemical cleaning with 3,000 mg / L sodium hypochlorite was performed by the same method as described above.

全ての薬品洗浄が終了した後に、膜ろ過を再開して浸漬型膜モジュールの透過水量を測定したところ、初期値比で94.7%の値まで回復していた。   After all chemical cleaning was completed, membrane filtration was resumed and the amount of permeated water in the submerged membrane module was measured. As a result, the initial value ratio was recovered to 94.7%.

[比較例1]
実施例1の場合と同様、図3に示す浸漬型膜ろ過装置に前記浸漬型膜モジュールを設置した装置で、琵琶湖水を原水として供給し、1ヶ月間の膜ろ過運転を実施し、1か月経過後に透過水量が初期値比の24.4%まで低下した浸漬型膜モジュールに対し、次の手順で、薬品洗浄をおこなった。
[Comparative Example 1]
As in the case of Example 1, the submerged membrane filtration apparatus shown in FIG. 3 is installed with the submerged membrane module, and Lake Biwa water is supplied as raw water and subjected to a membrane filtration operation for one month. The chemical cleaning was performed by the following procedure for the submerged membrane module in which the permeated water amount decreased to 24.4% of the initial value ratio after the elapse of the month.

まず、開閉弁19および薬液供給弁21を開とし、薬液供給ポンプ22にて1N塩酸を浸漬型膜モジュールの2次側に供給した。なお、この時に供給した塩酸の量は10Lであった。   First, the on-off valve 19 and the chemical solution supply valve 21 were opened, and 1N hydrochloric acid was supplied to the secondary side of the submerged membrane module by the chemical solution supply pump 22. The amount of hydrochloric acid supplied at this time was 10 L.

塩酸を10L供給した時点で、開閉弁19および薬液供給弁21を閉じ、その次に薬液供給ポンプ22を停止させ、その状態で60分間保持した。   At the time when 10 L of hydrochloric acid was supplied, the on-off valve 19 and the chemical liquid supply valve 21 were closed, and then the chemical liquid supply pump 22 was stopped and held in that state for 60 minutes.

続いて、空洗弁15を開け、散気装置16を介してブロワ13から供給される空気にて空気洗浄を1分間おこなった。空気洗浄終了後、排出弁18を開け、浸漬槽5内の被処理水を全量排出した後、開閉弁19および逆洗弁12を開け、逆洗ポンプ11にて浸漬型膜モジュールの逆洗(リンス)をおこなった。逆洗を150L分おこなった時点で排出弁18を閉じ、浸漬槽5内の浸漬型膜モジュールが水没するまで逆洗水を供給した。   Subsequently, the air washing valve 15 was opened, and air washing was performed for 1 minute with air supplied from the blower 13 via the air diffuser 16. After the air cleaning is completed, the discharge valve 18 is opened and all the water to be treated in the immersion tank 5 is discharged. Then, the open / close valve 19 and the backwash valve 12 are opened, and the backwash pump 11 backwashes the submerged membrane module ( Rinse). When backwashing was performed for 150 L, the discharge valve 18 was closed, and backwash water was supplied until the submerged membrane module in the immersion tank 5 was submerged.

上記の塩酸による薬品洗浄においては、2次側に供給する塩酸は10L、リンス水は150Lとなり、塩酸は実施例1の2.5倍の量を使用し、リンス水は実施例1の約4倍の量を使用した。また、比較例1では、浸漬型膜モジュールと接続された配管内と浸漬型膜モジュールの2次側の総体積に対して過剰量の塩酸を供給したために、塩酸が浸漬型膜モジュールの1次側にも浸出してきたので、また、残存薬液を浸漬槽内を経由して外部に排出したので、浸漬槽内が薬液によって汚染され、この薬液汚染を洗浄(リンス)するために多量のリンス水が必要であった。   In the above chemical cleaning with hydrochloric acid, the amount of hydrochloric acid supplied to the secondary side is 10 L and the amount of rinse water is 150 L. The amount of hydrochloric acid is 2.5 times that of Example 1, and the rinse water is about 4 times that of Example 1. Double the amount was used. Moreover, in Comparative Example 1, since an excessive amount of hydrochloric acid was supplied to the total volume on the secondary side of the submerged membrane module in the pipe connected to the submerged membrane module, hydrochloric acid was the primary of the submerged membrane module. Since the remaining chemical solution was discharged to the outside through the immersion tank, the immersion tank was contaminated by the chemical solution, and a large amount of rinse water was used to clean (rinse) this chemical solution contamination. Was necessary.

上記のようにして塩酸による薬品洗浄が終了した後に、上記と同じ手法にて、3,000mg/L次亜塩素酸ナトリウムによる薬品洗浄をおこなった。   After completion of chemical cleaning with hydrochloric acid as described above, chemical cleaning with 3,000 mg / L sodium hypochlorite was performed in the same manner as described above.

上記の次亜塩素酸ナトリウムによる薬品洗浄においても、塩酸洗浄の時と同様、薬液による浸漬槽内の汚染が生じ、リンス水を大量に使用することが必要であった。   In the above chemical cleaning with sodium hypochlorite, as in the case of hydrochloric acid cleaning, the immersion tank was contaminated with a chemical solution, and it was necessary to use a large amount of rinse water.

全ての薬品洗浄が終了した後に、膜ろ過を再開して浸漬型膜モジュールの透過水量を測定したところ、初期値比で94.4%の値まで回復していた。   After all chemical cleaning was completed, membrane filtration was resumed and the amount of permeated water of the submerged membrane module was measured. As a result, the initial value ratio was recovered to 94.4%.

[比較例2]
図2に示す浸漬型膜ろ過装置に前記浸漬型膜モジュールを設置した装置で、琵琶湖水を原水として供給し、1ヶ月間の膜ろ過運転を実施し、1か月経過後に透過水量が初期値比の24.8%まで減少した浸漬型膜モジュールに対し、次の手順で、薬品洗浄をおこなった。
[Comparative Example 2]
2 is a device in which the immersion membrane module is installed in the immersion membrane filtration device shown in FIG. 2, and Lake Biwa water is supplied as raw water, and the membrane filtration operation is performed for one month. The chemical cleaning was carried out by the following procedure for the submerged membrane module reduced to 24.8% of the ratio.

まず、排出弁18を開け、浸漬槽5内の被処理水を全量排出した。次に浸漬槽5に1N塩酸を浸漬型膜モジュールが塩酸中に没するまで供給し、その状態で60分保持した。なお、この時に供給した塩酸の量は65Lであった。その後、空洗弁15を開け、散気装置16を介してブロワ13から供給される空気にて空気洗浄を1分間おこなった。空気洗浄後、排出弁18を開け、浸漬槽5内の塩酸を全量排出し、開閉弁19および逆洗弁12を開け、逆洗ポンプ11にて浸漬型膜モジュールの逆洗(リンス)をおこなった。なお、この時、逆洗水150L分の逆洗をおこなった。   First, the discharge valve 18 was opened, and all the water to be treated in the immersion tank 5 was discharged. Next, 1N hydrochloric acid was supplied to the immersion tank 5 until the immersion membrane module was immersed in hydrochloric acid, and the state was maintained for 60 minutes. The amount of hydrochloric acid supplied at this time was 65 L. Then, the air washing valve 15 was opened and air washing was performed for 1 minute with the air supplied from the blower 13 through the air diffuser 16. After air cleaning, the discharge valve 18 is opened, all the hydrochloric acid in the immersion tank 5 is discharged, the open / close valve 19 and the backwash valve 12 are opened, and the backwash pump 11 performs backwashing (rinsing) of the immersion type membrane module. It was. At this time, backwashing for 150 L of backwashing water was performed.

上記の塩酸による薬品洗浄においては、浸漬槽に供給する塩酸は65L、リンス水は150Lとなり、塩酸は実施例1の約16倍の量を使用し、リンス水は実施例1の約4倍の量を使用した。また、比較例2では、大量の塩酸を浸漬槽内に供給して塩酸洗浄したので浸漬槽内の広範囲が薬液によって汚染され、この薬液汚染を洗浄(リンス)するために多量のリンス水が必要であった。   In the above chemical cleaning with hydrochloric acid, 65 L of hydrochloric acid and 150 L of rinsing water to be supplied to the dipping bath are used, and the amount of hydrochloric acid used is about 16 times that of Example 1, and the rinsing water is about 4 times that of Example 1. Amount used. In Comparative Example 2, since a large amount of hydrochloric acid was supplied into the immersion tank and washed with hydrochloric acid, a wide area in the immersion tank was contaminated with the chemical solution, and a large amount of rinse water is required to clean (rinse) this chemical solution contamination. Met.

塩酸による薬品洗浄が終了した後に、上記と同じ手法にて、3,000mg/L次亜塩素酸ナトリウムによる薬品洗浄をおこなった。   After chemical cleaning with hydrochloric acid was completed, chemical cleaning with 3,000 mg / L sodium hypochlorite was performed in the same manner as described above.

上記の次亜塩素酸ナトリウムによる薬品洗浄においても、塩酸洗浄の時と同様、大量の薬液が必要であり、さらに、薬液による浸漬槽内の汚染を洗浄するためにリンス水を大量に使用することが必要であった。   In the above chemical cleaning with sodium hypochlorite, a large amount of chemical solution is required as in the case of hydrochloric acid cleaning, and a large amount of rinse water is used to clean the contamination in the immersion tank due to the chemical solution. Was necessary.

全ての薬品洗浄が終了した後に浸漬型膜モジュールの透過水量を測定したところ、初期値比で95.1%の値まで回復していた。   When the amount of permeated water of the submerged membrane module was measured after all the chemical cleaning was completed, the initial value ratio recovered to 95.1%.

本発明法は、浸漬槽内に設置された浸漬型膜モジュールを、そのままの状態で薬品洗浄する際に適用できる。浸漬型膜モジュールを設置した浸漬型膜ろ過装置は、例えば、上水道における飲料用水製造、工業用水、工業用超純水、食品、医療といった産業用水製造分野、都市下水の浄化および工業廃水処理といった下排水処理分野などに使用することできるが、これら用途に限られるものではない。   The method of the present invention can be applied to chemical cleaning of an immersion type membrane module installed in an immersion tank as it is. Submerged membrane filtration devices equipped with a submerged membrane module are used in, for example, drinking water production in waterworks, industrial water, industrial ultrapure water, food and medical industrial water production fields, municipal sewage purification, and industrial wastewater treatment. It can be used in the wastewater treatment field, but is not limited to these applications.

浸漬型膜モジュールの一実施態様を示す概略断面図である。It is a schematic sectional drawing which shows one embodiment of an immersion type membrane module. 薬品洗浄用設備を設けてない浸漬型膜ろ過装置の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the immersion type membrane filtration apparatus which does not provide the chemical cleaning equipment. 本発明による浸漬型膜ろ過装置の一実施態様を示す概略図である。It is the schematic which shows one embodiment of the immersion type membrane filtration apparatus by this invention. 図3に示す浸漬型膜ろ過装置において膜モジュールを薬品洗浄する際の一工程(全量排出工程)を示す概略図である。It is the schematic which shows one process at the time of carrying out chemical cleaning of the membrane module in the immersion type membrane filtration apparatus shown in FIG. 図3に示す浸漬型膜ろ過装置において膜モジュールを薬品洗浄する際の別の一工程(薬液供給工程I)を示す概略図である。It is the schematic which shows another 1 process (chemical | medical solution supply process I) at the time of carrying out chemical cleaning of the membrane module in the immersion type membrane filtration apparatus shown in FIG. 図3に示す浸漬型膜ろ過装置において膜モジュールを薬品洗浄する際の別の一工程(薬液供給工程II)を示す概略図である。It is the schematic which shows another 1 process (chemical | medical solution supply process II) at the time of carrying out chemical cleaning of the membrane module in the immersion type membrane filtration apparatus shown in FIG. 図3に示す浸漬型膜ろ過装置において膜モジュールを薬品洗浄する際の別の一工程(薬液保持工程)を示す概略図である。It is the schematic which shows another 1 process (chemical | medical solution holding process) at the time of carrying out chemical cleaning of the membrane module in the immersion type membrane filtration apparatus shown in FIG. 図3に示す浸漬型膜ろ過装置において膜モジュールを薬品洗浄する際の別の一工程(空気洗浄前の水供給工程)を示す概略図である。It is the schematic which shows another 1 process (water supply process before air washing | cleaning) at the time of carrying out chemical cleaning of the membrane module in the immersion type membrane filtration apparatus shown in FIG. 図3に示す浸漬型膜ろ過装置において膜モジュールを薬品洗浄する際の別の一工程(空気洗浄工程)を示す概略図である。It is the schematic which shows another 1 process (air washing process) at the time of carrying out chemical cleaning of the membrane module in the immersion type membrane filtration apparatus shown in FIG. 図3に示す浸漬型膜ろ過装置において膜モジュールを薬品洗浄する際の別の一工程(被処理水供給工程)を示す概略図である。It is the schematic which shows another 1 process (processed water supply process) at the time of carrying out chemical cleaning of the membrane module in the immersion type membrane filtration apparatus shown in FIG. 図3に示す浸漬型膜ろ過装置において膜モジュールを薬品洗浄する際の別の一工程(薬液排出工程)を示す概略図である。It is the schematic which shows another 1 process (chemical | medical solution discharge | emission process) at the time of carrying out chemical cleaning of the membrane module in the immersion type membrane filtration apparatus shown in FIG. 図3に示す浸漬型膜ろ過装置において膜モジュールによる膜ろ過が行われる工程を示す概略図である。It is the schematic which shows the process in which the membrane filtration by a membrane module is performed in the immersion type membrane filtration apparatus shown in FIG.

符号の説明Explanation of symbols

1:浸漬型膜モジュール
2:中空糸膜
3、3′:接着固定部
4:膜の2次側
5:浸漬槽
5a:液相
5b:沈降汚泥相
6:流入原水
7:透過水配管
8:吸引ポンプ
9:ろ過弁
10:逆洗水配管
11:逆洗ポンプ
12:逆洗弁
13:ブロワ
14:空洗エア配管
15:空洗弁
16:散気装置
17:排出配管
18:排出弁
19:開閉弁
20:薬液供給配管
21:薬液供給弁
22:薬液供給ポンプ
23:切替弁
24:薬液廃棄配管
25:薬液廃棄用吸引ポンプ
1: Submerged membrane module 2: Hollow fiber membrane 3, 3 ': Adhesive fixing part 4: Secondary side of membrane 5: Immersion tank 5a: Liquid phase 5b: Sedimented sludge phase 6: Inflow raw water 7: Permeate pipe 8: Suction pump 9: Filtration valve 10: Backwash water pipe 11: Backwash pump 12: Backwash valve 13: Blower 14: Air washing air pipe 15: Air washing valve 16: Air diffuser 17: Discharge pipe 18: Drain valve 19 : On-off valve 20: Chemical liquid supply pipe 21: Chemical liquid supply valve 22: Chemical liquid supply pump 23: Switching valve 24: Chemical liquid disposal pipe 25: Suction pump for chemical liquid disposal

Claims (5)

被処理水を貯留する浸漬槽内に設置されている浸漬型膜モジュールを洗浄する方法であって、浸漬槽内の被処理水を全量排出した後に、浸漬型膜モジュールの透過水取出口から薬液を通液し、浸漬型膜モジュール内の2次側が薬液で満たされた状態となった時に薬液の通液を停止して所定時間保持し、その後、膜モジュール内の2次側に薬液を保持したまま、浸漬槽内に水を供給し、浸漬型膜モジュールの下方から空気を噴出させて空気洗浄をおこなった後、浸漬槽内の水を全量排出し、その後に、被処理水を浸漬槽内に供給することを特徴とする浸漬型膜モジュールの洗浄方法。   A method for cleaning a submerged membrane module installed in a dipping tank for storing the water to be treated, and after discharging the whole amount of water to be treated in the dipping tank, a chemical solution from the permeate outlet of the submerged membrane module When the secondary side in the submerged membrane module is filled with the chemical solution, the chemical solution is stopped and held for a predetermined time, and then the chemical solution is held on the secondary side in the membrane module. As it is, water is supplied into the immersion tank, air is blown out from below the immersion membrane module to perform air cleaning, and then all the water in the immersion tank is discharged, and then the water to be treated is immersed in the immersion tank. A method for cleaning a submerged membrane module, characterized by being supplied into the inside. 請求項1に記載の浸漬型膜モジュールの洗浄方法において、被処理水を浸漬槽内に供給して貯留させた後に、浸漬型膜モジュール内の2次側の吸引を開始することにより、2次側の残存薬液を排出することを特徴とする浸漬型膜モジュールの洗浄方法。   The method for cleaning an immersion type membrane module according to claim 1, wherein after the water to be treated is supplied and stored in the immersion tank, the secondary side in the immersion type membrane module is started by starting suction. A method for cleaning a submerged membrane module, wherein the remaining chemical solution on the side is discharged. 請求項1または2に記載の浸漬型膜モジュールの洗浄方法において、浸漬型膜モジュールの透過水取出口から薬液が通液される時に浸漬型膜モジュール内の2次側から排出された残存透過水を、浸漬槽外に排出することを特徴とする浸漬型膜モジュールの洗浄方法。   3. The method for cleaning an immersion type membrane module according to claim 1 or 2, wherein the remaining permeated water discharged from the secondary side in the immersion type membrane module when a chemical solution is passed through the permeate outlet of the immersion type membrane module. Is discharged out of the immersion tank. A method for cleaning a submerged membrane module. 請求項1〜3のいずれかに記載の浸漬型膜モジュールの洗浄方法において、空気洗浄後に浸漬槽内の水を全量排出した後、浸漬槽内に供給された被処理水のうちの初期の所定量もしくは所定時間は、浸漬槽内に貯留せずに排出することを特徴とする浸漬型膜モジュールの洗浄方法。 The method for cleaning an immersion type membrane module according to any one of claims 1 to 3, wherein after the entire amount of water in the immersion tank is discharged after air cleaning, the initial portion of the water to be treated supplied into the immersion tank. quantitative or a predetermined time, washing method of submerged membrane module, characterized in that the discharged without accumulating in the dipping bath. 請求項1〜4のいずれかに記載の浸漬型膜モジュールの洗浄方法において、浸漬型膜モジュール内の2次側に供給する薬液が、硫酸、塩酸、硝酸、シュウ酸、クエン酸、アスコルビン酸、水酸化ナトリウム、次亜塩素酸ナトリウム、過酸化水素、および界面活性剤よりなる群から選ばれる1種以上を含む薬液であることを特徴とする浸漬型膜モジュールの洗浄方法。   In the washing | cleaning method of the immersion type membrane module in any one of Claims 1-4, the chemical | medical solution supplied to the secondary side in an immersion type membrane module is a sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, a citric acid, ascorbic acid, A method for cleaning an immersion membrane module, which is a chemical solution containing at least one selected from the group consisting of sodium hydroxide, sodium hypochlorite, hydrogen peroxide, and a surfactant.
JP2007209134A 2007-08-10 2007-08-10 Cleaning method for submerged membrane module Expired - Fee Related JP4840285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007209134A JP4840285B2 (en) 2007-08-10 2007-08-10 Cleaning method for submerged membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007209134A JP4840285B2 (en) 2007-08-10 2007-08-10 Cleaning method for submerged membrane module

Publications (2)

Publication Number Publication Date
JP2009039677A JP2009039677A (en) 2009-02-26
JP4840285B2 true JP4840285B2 (en) 2011-12-21

Family

ID=40441019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007209134A Expired - Fee Related JP4840285B2 (en) 2007-08-10 2007-08-10 Cleaning method for submerged membrane module

Country Status (1)

Country Link
JP (1) JP4840285B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289802B2 (en) * 2011-07-06 2018-03-07 三菱ケミカル株式会社 Filtration membrane cleaner and filtration membrane cleaning method
CN103351056B (en) * 2013-04-23 2015-01-14 中山大学 Apparatus and method of online chemical backwashing membrane assembly
CN104209007A (en) * 2014-09-11 2014-12-17 镇江华域环保设备制造有限公司 Flux recovery and maintenance method for water purification filtering element
JP2019188276A (en) * 2018-04-19 2019-10-31 住友電気工業株式会社 Washing method of filtration module, and filtration equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782566B2 (en) * 1991-12-27 1998-08-06 株式会社 荏原製作所 Membrane filtration device
JP3488535B2 (en) * 1995-02-27 2004-01-19 源三 小澤 Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device
JP3494744B2 (en) * 1995-03-17 2004-02-09 前澤工業株式会社 Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device
JP3290558B2 (en) * 1995-04-25 2002-06-10 株式会社クボタ Cleaning method for immersion type membrane cartridge
JP3583201B2 (en) * 1995-09-14 2004-11-04 三菱レイヨン株式会社 Cleaning method for separation membrane module
JPH11267475A (en) * 1998-03-23 1999-10-05 Kubota Corp Method for washing separating membrane
JP2000300969A (en) * 1999-04-23 2000-10-31 Mitsubishi Rayon Co Ltd Cleaning method for separating membrane module
JP2006198462A (en) * 2005-01-18 2006-08-03 Toray Ind Inc Washing method of flat membrane element
JP4867180B2 (en) * 2005-03-16 2012-02-01 栗田工業株式会社 Immersion membrane separator and chemical cleaning method therefor

Also Published As

Publication number Publication date
JP2009039677A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
JP4920990B2 (en) Separation membrane cleaning method
WO2011158559A1 (en) Method for cleaning membrane modules
JPH11156166A (en) Cleaning method for hollow fiber membrane module
KR101320719B1 (en) An Apparatus for Cleaning Hollow Fiber Membrane and A Method Therefor
JP5230071B2 (en) Water treatment method and water treatment apparatus by membrane filtration
JP4840285B2 (en) Cleaning method for submerged membrane module
JP2018023965A (en) Cleaning method for external pressure type filtration module and filtration device
JP2013202481A (en) Cleaning method of separation membrane module
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2006281022A (en) Method and apparatus for cleaning of separation membrane module
JP2009233504A (en) Method of cleaning dipping-type membrane module and cleaner for dipping-type membrane module as well as dipping-type membrane filter using the same
JP2008246424A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus
JP2011041907A (en) Water treatment system
JP2017176951A (en) Method for cleaning separation membrane module
JP2013034938A (en) Method for washing membrane module
JP2006263584A (en) Method for cleaning membrane filtration apparatus
JP5874866B1 (en) Operation method of turbidity removal membrane module
JP2000271454A (en) Spiral type membrane element and method for operating and washing spiral type membrane module
JP3943748B2 (en) Cleaning method for membrane filtration equipment
JP2010188250A (en) Water treatment method
JP5251472B2 (en) Membrane module cleaning method
JP2015123436A (en) Water treatment method
JP4156984B2 (en) Cleaning method for separation membrane module
JP2000271461A (en) Spiral type membrane element and operation of spiral type membrane module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees