JP4867180B2 - Immersion membrane separator and chemical cleaning method therefor - Google Patents
Immersion membrane separator and chemical cleaning method therefor Download PDFInfo
- Publication number
- JP4867180B2 JP4867180B2 JP2005075361A JP2005075361A JP4867180B2 JP 4867180 B2 JP4867180 B2 JP 4867180B2 JP 2005075361 A JP2005075361 A JP 2005075361A JP 2005075361 A JP2005075361 A JP 2005075361A JP 4867180 B2 JP4867180 B2 JP 4867180B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- membrane
- treated
- chemical
- water tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims description 203
- 239000000126 substance Substances 0.000 title claims description 147
- 238000004140 cleaning Methods 0.000 title claims description 104
- 238000000034 method Methods 0.000 title claims description 30
- 238000007654 immersion Methods 0.000 title claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 216
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 27
- 238000000926 separation method Methods 0.000 claims description 23
- 238000005374 membrane filtration Methods 0.000 claims description 21
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 18
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 18
- 238000002347 injection Methods 0.000 claims description 16
- 239000007924 injection Substances 0.000 claims description 16
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 claims description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 10
- 238000007599 discharging Methods 0.000 claims description 10
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 8
- 102000004190 Enzymes Human genes 0.000 claims description 6
- 108090000790 Enzymes Proteins 0.000 claims description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 6
- 239000011668 ascorbic acid Substances 0.000 claims description 6
- 229960005070 ascorbic acid Drugs 0.000 claims description 6
- 235000010323 ascorbic acid Nutrition 0.000 claims description 6
- 235000015165 citric acid Nutrition 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 6
- 238000002386 leaching Methods 0.000 claims description 6
- 229910017604 nitric acid Inorganic materials 0.000 claims description 6
- 235000006408 oxalic acid Nutrition 0.000 claims description 6
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 6
- 239000004094 surface-active agent Substances 0.000 claims description 6
- 239000005708 Sodium hypochlorite Substances 0.000 claims description 5
- 239000012459 cleaning agent Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 31
- 239000007788 liquid Substances 0.000 description 20
- 230000000694 effects Effects 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 12
- 238000001914 filtration Methods 0.000 description 12
- 239000002351 wastewater Substances 0.000 description 8
- 238000005273 aeration Methods 0.000 description 7
- 239000002699 waste material Substances 0.000 description 7
- 238000011282 treatment Methods 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 239000012510 hollow fiber Substances 0.000 description 5
- 238000000967 suction filtration Methods 0.000 description 5
- 238000001471 micro-filtration Methods 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 229910019093 NaOCl Inorganic materials 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000005514 two-phase flow Effects 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011086 high cleaning Methods 0.000 description 2
- 239000008155 medical solution Substances 0.000 description 2
- 239000008239 natural water Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000010802 sludge Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009285 membrane fouling Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
本発明は、各種水処理、特に活性汚泥の分離や、河川水等の天然水の膜濾過に用いられる浸漬型膜分離装置と、この浸漬型膜分離装置の薬品洗浄方法に関する。 The present invention relates to an immersion type membrane separation apparatus used for various water treatments, particularly separation of activated sludge and membrane filtration of natural water such as river water, and a chemical cleaning method for the immersion type membrane separation apparatus.
膜モジュールを水槽内に配置し、水槽内の被処理水を膜濾過する浸漬型膜分離装置は、活性汚泥の分離や河川水等の天然水の膜濾過等、各種の水処理分野において広く実用化されている。このような浸漬型膜分離装置において、膜濾過を行う駆動圧に関しては、多くは吸引ポンプで負圧にすることにより発生させているが、水槽の水位を利用して重力差を用いる方法も実用化されている。膜モジュールの形状に関しては、平膜や中空糸膜を各種の形態で水槽内に配置する方式が採用されている。また、膜については、基本的に固液分離操作であるから、分離対象とする粒子を分離できる孔径のものが使用されており、精密濾過(MF)膜、限外濾過(UF)膜、ナノ濾過(NF)膜などが分離対象に応じて使い分けられている。 The submerged membrane separation device that places membrane modules in the water tank and filters the water to be treated in the water tank is widely used in various water treatment fields such as activated sludge separation and membrane water filtration of natural water such as river water. It has become. In such a submerged membrane separator, the driving pressure for membrane filtration is often generated by making negative pressure with a suction pump, but the method of using the difference in gravity by utilizing the water level of the water tank is also practical. It has become. Regarding the shape of the membrane module, a system in which a flat membrane or a hollow fiber membrane is arranged in the water tank in various forms is adopted. In addition, since the membrane is basically a solid-liquid separation operation, those having a pore size capable of separating the particles to be separated are used, such as microfiltration (MF) membrane, ultrafiltration (UF) membrane, nano A filtration (NF) membrane or the like is properly used according to the separation target.
また、膜ファウリングを抑制するために、膜モジュールの下方から気泡を散気させて気液二相流下に膜モジュールを連続的又は間欠的に浸漬状態にする操作も実用化されている。 In addition, in order to suppress membrane fouling, an operation in which bubbles are diffused from below the membrane module and the membrane module is immersed continuously or intermittently under a gas-liquid two-phase flow has been put into practical use.
しかし、このような気液二相流を適用しても膜ファウリングを回復し得ない状況になった場合には、膜の薬品洗浄が必要となる。 However, if the film fouling cannot be recovered even when such a gas-liquid two-phase flow is applied, chemical cleaning of the film is required.
従来、浸漬型膜分離装置の薬品洗浄方法としては、水槽内に膜モジュールを配置した状態で、この水槽内に洗浄薬品を添加して膜モジュールを浸漬した状態とする方法;水槽内に膜モジュールを浸漬配置した状態で、膜モジュールの二次側から洗浄薬品を一次側に逆流させる方法(特許第3488535号公報);或いは水槽外に膜モジュールを取り出して、別に設けた薬品洗浄槽に移送し、この槽内で薬品洗浄する方法などが採用されている。
しかしながら、水槽内に薬品を添加する方式では多量の薬品を必要とするだけでなく、洗浄廃液が大量に発生するという問題がある。また、膜モジュールの二次側から洗浄薬品を逆流させる方法では、水槽内に保存されている被処理水で薬品が希釈されてしまうために、十分な薬品洗浄効果が期待できないという問題がある。また、この方法でもやはり大量の洗浄廃液が発生する。また、別途、設けた薬品洗浄槽に移送する方式では、特別の洗浄設備を必要とする他、膜モジュールを移送する工程と手段を必要とし、大規模な設備には適さないという問題がある。 However, the method of adding chemicals into the water tank not only requires a large amount of chemicals, but also has a problem that a large amount of cleaning waste liquid is generated. Further, in the method in which the cleaning chemical is caused to flow backward from the secondary side of the membrane module, there is a problem that a sufficient chemical cleaning effect cannot be expected because the chemical is diluted with the water to be treated stored in the water tank. This method also generates a large amount of cleaning waste liquid. In addition, the method of transferring to a separately provided chemical cleaning tank requires a special cleaning facility and also requires a process and means for transferring the membrane module, and is not suitable for a large-scale facility.
本発明は上記従来の問題点を解決し、特別な設備や作業を要することなく、簡易な方法で、膜モジュールを効率的に薬品洗浄することができ、洗浄廃液量の低減も可能な技術を提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and can perform a chemical cleaning of a membrane module efficiently and with a simple method without requiring special equipment or work, and can reduce the amount of cleaning waste liquid. The purpose is to provide.
本発明(請求項1)の浸漬型膜分離装置は、膜モジュールを水槽内に配置し、該水槽内の被処理水を吸引圧及び/又は重力差で膜濾過する浸漬型膜分離装置において、該膜の二次側に洗浄薬品を注入して一次側に浸出させる洗浄薬品注入手段と、該水槽内の被処理水を槽外へ排出する被処理水排出手段とを備え、該被処理水排出手段により被処理水をほぼ完全に槽外へ排出する際に、該水槽内の被処理水面が下降し、前記膜モジュールの膜の上部が水面上に表出したときに、前記洗浄薬品注入手段により洗浄薬品の注入を開始して一次側に浸出させ、一次側に浸出した洗浄薬品が膜面を流下する際、水槽内の被処理水面が下降し、水槽内の被処理水がほぼ完全に排出され、一次側に浸出した洗浄薬品が膜面を流下する状態で洗浄薬品の注入を停止するように構成されている浸漬型膜分離装置であって、前記水槽内の膜モジュールの下部に散気手段が設けられており、前記被処理水排出手段による被処理水の排出と共に該散気手段による散気で膜面に気泡流を供給するように構成されていることを特徴とする。 The submerged membrane separator of the present invention (Claim 1) is a submerged membrane separator in which a membrane module is disposed in a water tank, and the water to be treated in the water tank is subjected to membrane filtration with a suction pressure and / or gravity difference. A cleaning chemical injection means for injecting a cleaning chemical into the secondary side of the membrane and leaching out to the primary side, and a treated water discharge means for discharging the treated water in the water tank to the outside of the tank, the treated water when discharged to almost completely outside of the tank water to be treated by the discharge means, the treated water in the water tank is lowered and when the upper portion of the membrane of the membrane module is exposed on the water surface, the cleaning agent When the injection of cleaning chemical is started by the injection means and leached to the primary side, and the cleaning chemical leached to the primary side flows down the membrane surface, the water surface to be treated in the water tank descends, and the water to be treated in the water tank is almost Inject the cleaning chemical with the cleaning chemical completely discharged and leached to the primary side flowing down the membrane surface. Abolish a submerged membrane separator that is configured to so that the air diffuser means provided in the lower part of the membrane module in the water tank, said with the discharge of the water to be treated by the treatment water discharge means The present invention is characterized in that the bubble flow is supplied to the film surface by the air diffused by the air diffuser .
請求項2の浸漬型膜分離装置は、請求項1において、前記膜モジュールは、膜面が略鉛直方向となるように配置されていることを特徴とする。 Submerged membrane separator in 請 Motomeko 2 Oite to claim 1, wherein the membrane module is characterized in that the film surface is arranged to be substantially the vertical direction.
請求項3の浸漬型膜分離装置は、請求項1又は2において、前記洗浄薬品が、硫酸、塩酸、硝酸、シュウ酸、クエン酸、アスコルビン酸、水酸化ナトリウム、次亜塩素酸ナトリウム、過酸化水素、酵素、及び界面活性剤よりなる群から選ばれる1種又は2種以上を含むことを特徴とする。 The submerged membrane separator according to claim 3 is the submerged membrane separator according to claim 1 or 2 , wherein the cleaning chemical is sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, citric acid, ascorbic acid, sodium hydroxide, sodium hypochlorite, peroxidation. 1 type or 2 or more types chosen from the group which consists of hydrogen, an enzyme, and surfactant are characterized by the above-mentioned.
本発明(請求項4)の浸漬型膜分離装置の薬品洗浄方法は、膜モジュールを水槽内に配置し、該水槽内の被処理水を吸引圧及び/又は重力差で膜濾過する浸漬型膜分離装置の薬品洗浄方法において、該水槽内の被処理水をほぼ完全に槽外へ排出する際に、該水槽内の被処理水面が下降し、前記膜モジュールの膜の上部が水面上に表出したときに、該膜の二次側への洗浄薬品の注入を開始して一次側に浸出させ、一次側に浸出した洗浄薬品が膜面を流下する際、水槽内の被処理水面が下降し、水槽内の被処理水がほぼ完全に排出され、一次側に浸出した洗浄薬品が膜面を流下する状態で洗浄薬品の注入を停止する浸漬型膜分離装置の薬品洗浄方法であって、前記水槽内の膜モジュール下部に散気手段が設けられており、該水槽内の被処理水を槽外へ排出する間に、該散気装置から散気して膜面に気泡流を供給することを特徴とする。 The chemical cleaning method for the submerged membrane separation apparatus according to the present invention (Claim 4 ) is a submerged membrane in which a membrane module is placed in a water tank and the water to be treated in the water tank is subjected to membrane filtration with a suction pressure and / or a gravity difference. in chemical cleaning method of the separation apparatus, the treated water in the water tank when almost discharged completely outside the tank, the treated water in the water tank is lowered, on the upper part the water surface of the membrane of the membrane module When exposed, the injection of cleaning chemical to the secondary side of the membrane is started and leached to the primary side, and when the cleaning chemical leached to the primary side flows down the membrane surface, the water surface to be treated in the water tank It is a chemical cleaning method for a submerged membrane separator that descends, the treated water in the water tank is almost completely discharged, and the injection of the cleaning chemical is stopped while the cleaning chemical leached to the primary side flows down the membrane surface. Aeration means is provided at the lower part of the membrane module in the water tank, and the treated water in the water tank is stored in the tank. During the discharged outside, characterized that you feed the bubble flow to the film surface to air diffusion from the diverging air device.
請求項5の浸漬型膜分離装置の薬品洗浄方法は、請求項4において、前記膜モジュールは、膜面が略鉛直方向となるように配置されていることを特徴とする。
Chemical cleaning method of the submerged membrane separator in 請 Motomeko 5, in
請求項6の浸漬型膜分離装置の薬品洗浄方法は、請求項4又は5において、前記洗浄薬品が、硫酸、塩酸、硝酸、シュウ酸、クエン酸、アスコルビン酸、水酸化ナトリウム、次亜塩素酸ナトリウム、過酸化水素、酵素、及び界面活性剤よりなる群から選ばれる1種又は2種以上を含むことを特徴とする。
The chemical cleaning method for the submerged membrane separation apparatus according to claim 6 is the method according to
本発明の浸漬型膜分離装置及びその薬品洗浄方法によれば、特別な設備や作業を要することなく、簡易な方法で、膜モジュールを効率的に薬品洗浄することができ、しかも、洗浄廃液量も大幅に低減することができる。 According to the submerged membrane separation apparatus and the chemical cleaning method of the present invention, the membrane module can be efficiently cleaned with a simple method without requiring special equipment and work, and the amount of cleaning waste liquid Can also be greatly reduced.
即ち、本発明においては、水槽内の被処理水を水槽外へ排出し、膜モジュールの膜の一部が水面上に表出したときに膜の二次側への洗浄薬品の注入を開始して一次側に浸出させるため、膜の二次側から供給され一次側に浸出した洗浄薬品が水槽内の被処理水により希釈されることは殆どない。即ち、膜の二次側に注入された洗浄薬品は、水面上に表出した膜部分から優先的に膜の一次側に浸出するため、膜表面に浸出した薬品の殆どは被処理水と接触することなく膜面に保持され、その後流下する。このため、十分な濃度の洗浄薬品により、高い薬品洗浄効果を得ることができる。しかも、水槽から排出した被処理水は、薬品の混入が殆どないため、洗浄廃液とはならず、被処理水として再度処理することができ、また、水質によってはそのまま放流することも可能である。 That is, in the present invention, the water to be treated in the water tank is discharged to the outside of the water tank, and when a part of the membrane of the membrane module is exposed on the water surface, injection of the cleaning chemical into the secondary side of the membrane is started. Therefore, the cleaning chemical supplied from the secondary side of the membrane and leached to the primary side is hardly diluted with the water to be treated in the water tank. That is, cleaning chemicals injected into the secondary side of the membrane preferentially leached from the membrane portion exposed on the water surface to the primary side of the membrane, so that most of the chemical leached on the membrane surface is in contact with the water to be treated. It is held on the film surface without flowing, and then flows down. For this reason, a high chemical cleaning effect can be obtained with a cleaning chemical having a sufficient concentration. Moreover, since the water to be treated discharged from the water tank is hardly mixed with chemicals, it does not become a cleaning waste liquid and can be treated again as water to be treated, and can also be discharged as it is depending on the water quality. .
また、この薬品洗浄に際して、水槽内の被処理水が排出され、膜面を被処理水面が下降する際の物理的な作用が薬品を浸出している膜面に付与されることでも、膜面付着物が剥離され、良好な洗浄効果が得られる。 Further, when the chemical treatment is performed, the water to be treated in the water tank is discharged, and the physical action when the treated water surface descends from the membrane surface is given to the membrane surface leaching the chemical, the membrane surface Deposits are peeled off and a good cleaning effect is obtained.
なお、本発明において、水槽内の被処理水を排出し、膜の一部が水面上に表出したときに、洗浄薬品を膜の二次側に注入することを開始することは極めて重要であり、水槽内に被処理水を保持した状態で膜の二次側から洗浄薬品を注入する前述の特許文献1の方法では、一次側に浸出した薬品が被処理水により希釈されるために良好な薬品洗浄効果が得られず、また、大量の洗浄廃液が発生する。一方、膜の二次側に洗浄薬品を注入するに先立ち、水槽内の被処理水を排出させてしまい、膜モジュール全体を大気中に晒してしまうと、後述の比較例2の結果からも明らかなように、十分な洗浄効果が得られない。これは膜面に付着物が付着したままで、気相下で洗浄薬品を膜の二次側に注入しても、洗浄薬品が膜面全体に均等に浸出せず、膜のうち、洗浄薬品の浸出し易い部分のみから不均一に洗浄薬品が浸出するために、膜面全体にわたって十分な洗浄効果が得られないからである。 In the present invention, when the water to be treated in the water tank is discharged and a part of the membrane is exposed on the water surface, it is extremely important to start injecting the cleaning chemical into the secondary side of the membrane. In the method of Patent Document 1 described above, in which the cleaning chemical is injected from the secondary side of the membrane while the water to be treated is held in the water tank, the chemical leached to the primary side is diluted with the water to be treated, which is good. A chemical cleaning effect cannot be obtained, and a large amount of cleaning waste liquid is generated. On the other hand, prior to injecting the cleaning chemical into the secondary side of the membrane, if the water to be treated in the water tank is discharged and the entire membrane module is exposed to the atmosphere, it will be apparent from the results of Comparative Example 2 described later. As such, a sufficient cleaning effect cannot be obtained. This is because even if the deposit remains attached to the membrane surface, even if the cleaning chemical is injected into the secondary side of the membrane under the gas phase, the cleaning chemical does not leach evenly over the entire membrane surface. This is because the cleaning chemicals are leached non-uniformly only from the easily leaching part of the film, so that a sufficient cleaning effect cannot be obtained over the entire film surface.
なお、本発明において、水槽内の被処理水を排出し、膜の一部が水面上に表出したときに洗浄薬品の膜の二次側への注入を開始することは、例えば、後述の図1に示す浸漬型膜分離装置において、バルブV6を開とし、ポンプPを作動させて薬液貯槽5の薬液を膜モジュール2の二次側に注入する際に、予め、バルブV4を開として、水槽1内の被処理水を抜き出し、水槽1内の水面が膜モジュール2の膜上部に達したときに、ポンプPを作動させると共に、バルブV6を開とすることを指し、従って、膜の二次側に注入された薬液が膜の一次側に浸出するときには、当該浸出部分の膜面は被処理水面より上方にあることを指す。
In the present invention, the treatment water in the water tank is discharged, and when a part of the film is exposed on the water surface, the injection of the cleaning chemical into the secondary side of the film is, for example, described later. In the submerged membrane separation apparatus shown in FIG. 1, when the valve V 6 is opened and the pump P is operated to inject the chemical solution in the chemical
本発明において、水槽からの被処理水の排出に際しては、膜モジュール下方の散気手段から散気して、膜面に気泡流(気液二相流)を付与することにより、より一層良好な洗浄効果を得ることができる。 In the present invention, when discharging the water to be treated from the water tank, air is diffused from the air diffuser below the membrane module, and a bubble flow (gas-liquid two-phase flow) is imparted to the membrane surface. Ru it is possible to obtain a cleaning effect.
また、膜モジュールは、その膜面が略鉛直方向となるように配置することが好ましく、このようにすることで、膜面から浸出した洗浄薬品が膜面を流下する間に均等に膜に塗布され、高い洗浄効果が得られるようになる。また、散気手段からの散気下に被処理水を排出する場合においても、気泡流で波立った被処理水面が膜面を下降し、気液界面での気泡の破裂や気液界面の揺動により発生する剪断力が膜面に付与されることで、高い物理的洗浄効果が得られ、洗浄薬品の流下による化学的洗浄効果との相乗効果で膜面付着物が効率的に剥離されるようになる(請求項2,5)。 In addition, the membrane module is preferably arranged so that the membrane surface is in a substantially vertical direction, so that the cleaning chemical leached from the membrane surface is evenly applied to the membrane while flowing down the membrane surface. As a result, a high cleaning effect can be obtained. Also, when the water to be treated is discharged under the diffused air from the air diffuser, the surface of the water to be treated waved by the bubbling flow descends the film surface, and the bubble bursts at the gas-liquid interface or the gas-liquid interface. A high physical cleaning effect is obtained by applying a shearing force generated by rocking to the film surface, and the film surface deposit is efficiently peeled off by a synergistic effect with the chemical cleaning effect caused by the flow of cleaning chemicals. (Claims 2 and 5 ).
本発明において、洗浄に用いる薬品としては、硫酸、塩酸、硝酸、シュウ酸、クエン酸、アスコルビン酸、水酸化ナトリウム、次亜塩素酸ナトリウム、過酸化水素、酵素、界面活性剤等が好ましい(請求項3,6)。 In the present invention, the chemicals used for washing are preferably sulfuric acid, hydrochloric acid, nitric acid, oxalic acid, citric acid, ascorbic acid, sodium hydroxide, sodium hypochlorite, hydrogen peroxide, enzyme, surfactant, etc. Terms 3 and 6 ).
以下に図面を参照して本発明の浸漬型膜分離装置及びその薬品洗浄方法の実施の形態を詳細に説明する。 Embodiments of a submerged membrane separation apparatus and a chemical cleaning method thereof according to the present invention will be described below in detail with reference to the drawings.
図1は、本発明の浸漬型膜分離装置の実施の形態を示す系統図である。 FIG. 1 is a system diagram showing an embodiment of a submerged membrane separation apparatus according to the present invention.
1は被処理水が導入される水槽であり、槽内に膜モジュール2が浸漬されている。水槽1内の膜モジュール2の下方には散気管3が設けられている。4は濾過水(処理水)槽、5は薬液貯槽であり、11〜18の各符号は配管、Pはポンプ(吸引及び洗浄ポンプ)、V1,V2,V3,V4,V5,V6は開閉バルブを示す。
Reference numeral 1 denotes a water tank into which water to be treated is introduced, and the membrane module 2 is immersed in the tank. A diffuser tube 3 is provided below the membrane module 2 in the water tank 1. 4 filtered water (treated water) tank, 5 is a chemical storage tank, each
前述の如く、このような浸漬型膜分離装置において、膜濾過を行う駆動圧は、通常、図1に示す如く、吸引ポンプで負圧にすることにより発生させているが、水槽の水位を利用した重力差によるものとしても良い。また、両者の併用とすることもできる。 As described above, in such a submerged membrane separator, the driving pressure for membrane filtration is usually generated by making a negative pressure with a suction pump as shown in FIG. It may be due to the gravity difference. Moreover, it can also be set as both combined use.
膜モジュールの形状については、平膜や中空糸膜を各種の形状で水槽内に配置する方式であれば良いが、前述の如く、膜面を鉛直に設置する方式のものが好適である。膜の種類については、固液分離操作を行うために、分離対象とする粒子を分離できる孔径のものが使用されるが、MF膜、UF膜、NF膜などを分離対象に応じて使い分けることができる。 As for the shape of the membrane module, any method may be used as long as a flat membrane or a hollow fiber membrane is arranged in the water tank in various shapes. However, as described above, a method in which the membrane surface is installed vertically is preferable. Regarding the type of membrane, in order to perform the solid-liquid separation operation, those having a pore size capable of separating the particles to be separated are used, but MF membranes, UF membranes, NF membranes, etc. may be used properly according to the separation subject. it can.
以下に図1に示す浸漬型膜分離装置における膜濾過運転操作と薬品洗浄操作について説明する。 The membrane filtration operation and chemical cleaning operation in the submerged membrane separator shown in FIG. 1 will be described below.
〈膜濾過運転操作〉
バルブV1,V2,V3を開、バルブV4,V5,V6を閉として、ポンプPを作動させ、配管11から導入される水槽1内の被処理水を、吸引ポンプPによる駆動圧で膜モジュール2で膜濾過し、濾過水は配管12,13を経て濾過水槽4に貯留する。
<Membrane filtration operation>
The valves V 1 , V 2 , V 3 are opened, the valves V 4 , V 5 , V 6 are closed, the pump P is operated, and the water to be treated in the water tank 1 introduced from the
この膜濾過運転は、吸引ポンプPを間欠的に作動させることで所定の時間、例えば5〜120分膜濾過を行った後、所定の時間、例えば0.5〜10分膜濾過を停止する間欠運転としても良い。また、この膜濾過の停止期間中は、膜モジュール2下方の散気管3からの散気で、膜面に気泡流を接触させて膜面付着物を除去するようにしても良い。 This membrane filtration operation is an intermittent operation in which the membrane filtration is stopped for a predetermined time, for example, 0.5 to 10 minutes, after performing the membrane filtration for a predetermined time, for example, 5 to 120 minutes by intermittently operating the suction pump P. It is good as driving. Further, during the membrane filtration stop period, air bubbles from the air diffuser 3 below the membrane module 2 may be brought into contact with the bubble surface to remove the membrane surface deposits.
また、このような膜濾過運転を所定の時間、例えば0.5〜24時間行った後、ポンプPを停止し、バルブV1閉、バルブV4開として、水槽1内の被処理水を配管17より一旦排出し、その後、再びバルブV4閉、バルブV1開として水槽1内に被処理水を溜め、膜濾過運転を再開するようにしても良い。この被処理水の排出に際しては、散気管3からの散気を行って、膜面に気泡流を接触させることにより、良好な物理的洗浄効果を得ることができる。なお、水槽1から排出した被処理水は、再度水槽に戻して膜濾過処理しても良く、水質によってはそのまま放流しても良い。 Further, after such membrane filtration operation is performed for a predetermined time, for example, 0.5 to 24 hours, the pump P is stopped, the valve V 1 is closed, and the valve V 4 is opened to pipe the water to be treated in the water tank 1. once discharged from 17, then again the valve V 4 is closed, the reservoir water to be treated in the water tank 1 is opened valves V 1, may be resumed membrane filtration operation. When discharging the water to be treated, a good physical cleaning effect can be obtained by performing air diffusion from the air diffusion tube 3 and bringing a bubble flow into contact with the membrane surface. In addition, the to-be-processed water discharged | emitted from the water tank 1 may return to a water tank again, and may be membrane-filtered, and may be discharged as it is depending on the water quality.
〈薬品洗浄操作〉
上述のような膜濾過運転を所定期間行った後、或いは、膜濾過運転を継続することにより吸引圧力が所定の圧力よりも高くなった場合には、以下の操作で薬品洗浄を行う。
<Chemical cleaning operation>
After the membrane filtration operation as described above is performed for a predetermined period or when the suction pressure becomes higher than the predetermined pressure by continuing the membrane filtration operation, chemical cleaning is performed by the following operation.
まず、バルブV1,V3,V5を閉、バルブV4を開とすると共に散気管3からの散気を開始し、水槽1内の被処理水を散気管3からの曝気下に配管17より槽外へ排出させる。この排出させた被処理水は、前述の如く、再度膜濾過に供しても良く、放流しても良い。そして、水槽1内の被処理水面が下降し、膜モジュール2の膜の一部(上部)が水面上に表出した時点で、バルブV2,V6を開とし、ポンプPを作動させて、薬液貯槽5内の薬液を配管14,15,16,12を経て膜モジュール2の二次側に注入して一次側に浸出させる。
First, the valves V 1 , V 3 , V 5 are closed, the valve V 4 is opened, and the aeration from the aeration pipe 3 is started, and the water to be treated in the water tank 1 is piped under the aeration from the aeration pipe 3 It is made to discharge outside the tank from 17. The discharged water to be treated may be subjected to membrane filtration again or discharged as described above. And when the to-be-processed water surface in the water tank 1 falls and a part (upper part) of the membrane of the membrane module 2 is exposed on the water surface, the valves V 2 and V 6 are opened and the pump P is operated. causes output immersed in the primary side of the chemical liquid in the chemical
このように膜モジュール2の下方からの散気下に、被処理水を排出することによって、鉛直に配置した膜面において、その気液界面での気泡の破裂や気液界面の揺動することによって発生する剪断力によって、膜面に付着した汚染物を剥離させつつ、水槽1内の被処理水面が降下する。その後、膜モジュール2の下端以下まで被処理水を排出する操作により、水槽1内の保有水量を減少させる。 By discharging the water to be treated under the air diffused from below the membrane module 2 in this way, bubbles are ruptured at the gas-liquid interface or rocked at the gas-liquid interface on the vertically arranged membrane surface. The water surface to be treated in the water tank 1 is lowered while the contaminants attached to the film surface are peeled off by the shearing force generated by the above. Thereafter, the retained water amount in the water tank 1 is decreased by discharging the water to be treated to the lower end of the membrane module 2 or less.
一方、膜モジュール2の二次側に注入された薬液は膜内部を満たすと共に、膜の一次側に浸出し、一次側に浸出した薬液は、略鉛直方向に配置された膜面を流下する。 On the other hand, the chemical solution injected to the secondary side of the membrane module 2 fills the inside of the membrane and leaches to the primary side of the membrane, and the chemical solution leached to the primary side flows down the membrane surface arranged in a substantially vertical direction.
このように膜を略鉛直方向に配置しておくと、膜の一次側に浸出した薬液が膜面を流下することによって、膜面を均等に濡らし、あたかも薬液を膜面に塗布したかのような状態となって、膜面全体を薬液に接触させることができるようになる。 When the membrane is arranged in a substantially vertical direction in this way, the chemical liquid that has leached to the primary side of the membrane flows down the membrane surface, so that the membrane surface is evenly wetted, as if the chemical solution was applied to the membrane surface. Thus, the entire film surface can be brought into contact with the chemical solution.
このように、薬液が膜面を流下する際、水槽内の被処理水面が下降しているため、薬液が被処理水によって希釈されることはなく、薬液が浸出して満遍なく薬液が塗布された膜の一次側は、薬液本来の洗浄効果で十分に洗浄される。また、膜面を流下した薬液が更に水槽底部に至った際には、水槽内の被処理水は完全に排出されているか、或いは膜モジュール下部にわずかに残るだけであるので、薬液が被処理水に混入した洗浄廃液は全く発生しないか或いは発生してもごくわずかである。 Thus, when the chemical solution flows down the membrane surface, the treated water surface in the water tank is lowered, so the chemical solution is not diluted by the treated water, and the chemical solution is leached and applied evenly. The primary side of the film is sufficiently cleaned by the original cleaning effect of the chemical solution. In addition, when the chemical solution that has flowed down the membrane surface reaches the bottom of the water tank, the water to be treated in the water tank is completely discharged or only a small amount remains at the bottom of the membrane module. There is little or no cleaning waste liquid mixed in the water.
このように、水槽1内の被処理水をほぼ完全に排出し、膜モジュール2の膜内部に薬品を保持すると共に、一次側に薬品が浸出し膜面を流下する状態で、バルブV6を閉としてポンプPを停止して、所定時間、例えば1分〜1時間保持することにより、薬品による洗浄効果で膜面の汚染物質が非常に剥離し易い状態となる。 In this way, the water to be treated in the water tank 1 is almost completely discharged, the chemical is held inside the membrane of the membrane module 2, and the valve V 6 is turned on while the chemical is leached to the primary side and flows down the membrane surface. By closing the pump P and holding it for a predetermined time, for example, 1 minute to 1 hour, the contaminants on the film surface are very easily peeled off due to the cleaning effect of the chemicals.
その後は、バルブV5を開としてポンプPを作動させ、濾過水槽4内の濾過水を、配管17,15,16,12を経て膜モジュール2の二次側から一次側に逆流させることにより、膜内の薬液を押し出し、押し出した薬液を配管17から排出することにより、膜モジュール2内及び水槽1内に薬液を残留させることなく、薬品洗浄を終了する。なお、この薬液の押し出し洗浄は濾過水に限らず、他系統の清水を用いて行っても良く、また、水質によっては被処理水を用いて行うこともできる。
Thereafter, by operating the pump P and the valve V 5 is opened, the filtered water in the filtered
このような薬品洗浄後は、再度バルブV1,V2,V3開、バルブV4,V5,V6閉としてポンプPを作動させ、前述の膜濾過運転を再開する。 After such chemical cleaning, the valves V 1 , V 2 , V 3 are opened again, the valves V 4 , V 5 , V 6 are closed, the pump P is operated, and the above membrane filtration operation is resumed.
なお、この薬品洗浄操作は、2種以上の薬液を用い、同様の操作を2回以上繰り返し行っても良く、薬品洗浄毎に異なる薬液を用い、例えば酸による薬品洗浄とアルカリによる薬品洗浄とを交互に行うようにしても良い。 In this chemical cleaning operation, two or more chemical solutions may be used, and the same operation may be repeated twice or more. Different chemical solutions are used for each chemical cleaning, for example, chemical cleaning with acid and chemical cleaning with alkali. You may make it carry out alternately.
本発明において、洗浄に用いる薬品には特に制限はなく、被処理水の性状や浸漬型膜分離装置の運転条件、膜の汚染状況に応じて適宜選択されるが、通常の場合、硫酸、塩酸、硝酸、シュウ酸、クエン酸、アスコルビン酸、水酸化ナトリウム、次亜塩素酸ナトリウム、過酸化水素、酵素、界面活性剤等の1種又は2種を用いて薬液が調製される。薬液の薬品濃度についても用いる薬品の種類と被処理水の性状や浸漬型膜分離装置の運転条件、膜の汚染状況に応じて適宜選択される。なお、異なる薬品を用いて2種以上の薬液を調製し、薬品洗浄を多段階で行うこともできる。 In the present invention, the chemicals used for cleaning are not particularly limited, and are appropriately selected according to the properties of the water to be treated, the operating conditions of the submerged membrane separator, and the contamination status of the membrane. In normal cases, sulfuric acid, hydrochloric acid , Nitric acid, oxalic acid, citric acid, ascorbic acid, sodium hydroxide, sodium hypochlorite, hydrogen peroxide, enzyme, surfactant, etc. are used to prepare a chemical solution. The chemical concentration of the chemical solution is also appropriately selected according to the type of chemical used and the properties of the water to be treated, the operating conditions of the submerged membrane separation apparatus, and the contamination status of the membrane. Two or more kinds of chemical solutions can be prepared using different chemicals, and chemical cleaning can be performed in multiple stages.
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
〈浸漬型膜分離装置構成及び運転条件〉
以下の実施例及び比較例で用いた浸漬型膜分離装置は、図1に示す如く、三菱レイヨン製のポリエチレン0.1μm精密濾過中空糸膜よりなるスクリーン状の膜モジュールを、中空糸膜の膜面が鉛直方向(中空糸が鉛直方向)になるように水槽内に配置し、この膜モジュールの下方に散気管を配置したものである。
<Immersion membrane separator configuration and operating conditions>
As shown in FIG. 1, the submerged membrane separation apparatus used in the following examples and comparative examples is composed of a screen-like membrane module made of polyethylene 0.1 μm microfiltration hollow fiber membrane manufactured by Mitsubishi Rayon, and a hollow fiber membrane membrane. It arrange | positions in a water tank so that a surface may become a perpendicular direction (a hollow fiber is a perpendicular direction), and the diffuser tube is arrange | positioned under this membrane module.
膜濾過水の吸引には自給式の渦巻きポンプを用いて、間欠的に膜濾過流束2.0m/dの速度で吸引濾過(27分濾過・3分停止)した。この濾過停止期間においては、膜モジュール下方に配置した散気管から膜モジュールに気泡を放出させて暴露させた。また、24時間の濾過運転を継続した後、膜モジュール下方に配置した散気管から膜モジュールに気泡を暴露させながら、水槽内の被処理水を水槽から排出した。排出した被処理水は系外へ排出した。 For suction of the membrane filtrate, suction filtration (27 minutes filtration, 3 minutes stop) was performed intermittently at a rate of 2.0 m / d membrane filtration flux using a self-contained centrifugal pump. During the filtration stop period, bubbles were released from the diffuser tube arranged below the membrane module to expose the membrane module. Moreover, after continuing the filtration operation for 24 hours, the to-be-processed water in a water tank was discharged | emitted from the water tank, exposing a bubble to the membrane module from the diffuser pipe arrange | positioned under the membrane module. The discharged treated water was discharged out of the system.
この濾過運転と被処理水の排出とを繰り返して、一定の期間膜濾過に要する吸引圧力を記録し、吸引圧力が50kPaに達した時点で濾過運転を停止し、各々薬品洗浄を行った。 The filtration operation and the discharge of the water to be treated were repeated, and the suction pressure required for membrane filtration was recorded for a certain period. When the suction pressure reached 50 kPa, the filtration operation was stopped and each chemical was washed.
〈被処理水〉
以下の実施例及び比較例においては、比較的有機物の濃度の高いA河川水を処理対象とし、5月に入り、晴天、降雨で水質変動が生じた時期(表1に示す如く、UV260nmの吸光度(セル厚さ50mm)が0.06から0.09に変動した時期)に、それぞれ吸引圧力が50kPaに達するまで1週間程度の通水を行った。
<Treatment water>
In the following examples and comparative examples, river water A with a relatively high concentration of organic matter is treated, and when the water quality changes due to fine weather and rain in May (absorbance at UV 260 nm as shown in Table 1) Water was passed for about one week until the suction pressure reached 50 kPa at the time (cell thickness 50 mm) changed from 0.06 to 0.09).
実施例及び比較例の濾過運転期間と被処理水の水質は表1に示す通りであった。 Table 1 shows the filtration operation period and the quality of the water to be treated in Examples and Comparative Examples.
なお、実施例2の運転期間と比較例1の運転期間との間で、膜モジュールを新品に交換した。 The membrane module was replaced with a new one between the operation period of Example 2 and the operation period of Comparative Example 1.
〈実施例1〉
前述の運転操作で吸引圧力が50kPaに達した時点で濾過を停止した後、被処理水の排出を開始した。水槽内の被処理水面は徐々に下降し、7秒後には被処理水面は膜モジュールの膜面上部より下方となり、膜の一部が表出した。この時点で薬液の注入を開始した。即ち、膜の二次側から、NaOH:5,000mg/LとNaOCl:500mg−Cl2/Lを含む混合薬液を、濾過水ポンプ配管を変更することにより膜面に対して1.0m/dなるように逆流させた。これにより、被処理水面上に表出した膜面から薬液が浸出するのが観察された。
<Example 1>
The filtration was stopped when the suction pressure reached 50 kPa in the above operation, and then the water to be treated was discharged. The surface of the water to be treated in the water tank gradually descended, and after 7 seconds, the surface of the water to be treated became lower than the upper part of the membrane surface of the membrane module, and a part of the membrane was exposed. At this time, injection of the chemical solution was started. That is, from the secondary side of the membrane, a mixed chemical solution containing NaOH: 5,000 mg / L and NaOCl: 500 mg-Cl 2 / L is 1.0 m / d with respect to the membrane surface by changing the filtered water pump piping. It was made to flow backwards. Thereby, it was observed that a chemical | medical solution leached from the film | membrane surface exposed on the to-be-processed water surface.
膜モジュールの膜が完全に表出した時点で薬液の注入を停止し、この状態で1時間保持した。この間に膜モジュールの表出した膜面からは、内部の薬液がわずかに浸出し、膜面を流下した。 When the membrane of the membrane module was completely exposed, the injection of the chemical solution was stopped and kept in this state for 1 hour. During this time, the internal chemical solution slightly leached from the membrane surface exposed by the membrane module, and flowed down the membrane surface.
その後、濾過水を膜の二次側から1分間1.0m/dで逆流させて洗浄し、膜内部に保持されている薬液を一次側へ排出させると共に、水槽内の洗浄排水を排出させて薬品洗浄を終了させた。 Thereafter, the filtered water is washed back by flowing at 1.0 m / d for 1 minute from the secondary side of the membrane, and the chemical solution retained in the membrane is discharged to the primary side, and the washing waste water in the water tank is discharged. The chemical cleaning was finished.
再度、被処理水を水槽内に導入し、前述の運転操作で吸引濾過を再開し、再開直後の吸引圧力を測定し、結果を表2に示した。 The water to be treated was again introduced into the water tank, the suction filtration was restarted by the above-described operation, the suction pressure immediately after the restart was measured, and the results are shown in Table 2.
なお、後述の比較例1の場合の薬品洗浄排水量(薬液注入量と水槽内の保有水量と薬液注入後の濾過水による逆洗水量との合計)を1とした場合の薬品洗浄排水量比を調べ、結果を表2に示した。 In addition, in the case of Comparative Example 1 which will be described later, the chemical cleaning drainage ratio is set to 1 when the chemical cleaning drainage amount (the sum of the chemical injection amount, the retained water amount in the water tank and the backwashing water amount by the filtered water after the chemical injection) is 1. The results are shown in Table 2.
〈実施例2〉
実施例1において、薬液の注入を開始すると共に水槽内の被処理水を排出する際に、膜モジュール下方の散気管から気泡を放出させて、膜モジュールの膜面に気泡を供給しながら被処理水を水槽外へ排出したこと以外は同様にして薬品洗浄を行い、その後同様に吸引濾過を再開して吸引圧力及び薬品洗浄排水量比を調べ、結果を表2に示した。
<Example 2>
In Example 1, when injecting the chemical solution and discharging the water to be treated in the water tank, the bubbles are discharged from the air diffuser below the membrane module, and the bubbles are supplied to the membrane surface of the membrane module while being treated. The chemical cleaning was performed in the same manner except that the water was discharged out of the water tank. Then, suction filtration was restarted in the same manner, and the suction pressure and the chemical cleaning waste water ratio were examined. The results are shown in Table 2.
〈比較例1〉
前述の運転操作で吸引圧力が50kPaに達した時点で濾過を停止した後、膜の二次側から、NaOH:5,000mg/LとNaOCl:500mg−Cl2/Lを含む混合薬液を、濾過水ポンプ配管を変更することにより膜面に対して1.0m/dなるように60秒間逆流させた。
<Comparative example 1>
After the suction pressure reached 50 kPa in the above operation, the filtration was stopped, and then the mixed chemical solution containing NaOH: 5,000 mg / L and NaOCl: 500 mg-Cl 2 / L was filtered from the secondary side of the membrane. By changing the water pump piping, it was made to flow backward for 60 seconds so that it might become 1.0 m / d with respect to the film surface.
その後、膜モジュール下方に配置した散気管から気泡を放出させて、膜モジュールの膜面に気泡を供給することにより、水槽内の被処理水を1時間気液混合した。 Thereafter, air bubbles were discharged from the air diffuser arranged below the membrane module, and the bubbles were supplied to the membrane surface of the membrane module, whereby the water to be treated in the water tank was gas-liquid mixed for 1 hour.
その後、濾過水を膜の二次側から1分間1.0m/dで逆流させて洗浄し、膜内部に保持されている薬液を一次側へ排出させると共に、水槽内の被処理水(薬品洗浄排水)を排出させて薬品洗浄を終了させた。 Thereafter, the filtered water is washed back by flowing at a rate of 1.0 m / d from the secondary side of the membrane for 1 minute to discharge the chemical solution held inside the membrane to the primary side, and the water to be treated in the water tank (chemical cleaning) The waste water was discharged to finish the chemical cleaning.
再度、被処理水を水槽内に導入し、前述の運転操作で吸引濾過を再開し、再開直後の吸引圧力を測定し、結果を表2に示した。また、薬品洗浄排水量を調べ、この排水量を1とした。 The water to be treated was again introduced into the water tank, the suction filtration was restarted by the above-described operation, the suction pressure immediately after the restart was measured, and the results are shown in Table 2. In addition, the amount of chemical cleaning wastewater was examined, and this wastewater amount was set to 1.
〈比較例2〉
前述の運転操作で吸引圧力が50kPaに達した時点で濾過を停止した後、一旦、水槽内の被処理水を全量排出し、膜モジュールを大気下に露出させた。その後、膜の二次側から、NaOH:5,000mg/LとNaOCl:500mg−Cl2/Lを含む混合薬液を、濾過水ポンプ配管を変更することにより膜面に対して1.0m/dなるように60秒間逆流させた後、薬液の注入を停止し、この状態で1時間保持させた。
<Comparative example 2>
When the suction pressure reached 50 kPa in the above operation, the filtration was stopped, and then the entire amount of water to be treated in the water tank was discharged to expose the membrane module to the atmosphere. Thereafter, from the secondary side of the membrane, a mixed chemical solution containing NaOH: 5,000 mg / L and NaOCl: 500 mg-Cl 2 / L is 1.0 m / d with respect to the membrane surface by changing the filtered water pump piping. After injecting back for 60 seconds, the injection of the chemical solution was stopped and kept in this state for 1 hour.
その後、濾過水を膜の二次側から1分間1.0m/dで逆流させて洗浄し、膜内部に保持されている薬液を一次側へ排出させると共に、水槽内の洗浄排水を排出させて薬品洗浄を終了させた。 Thereafter, the filtered water is washed back by flowing at 1.0 m / d for 1 minute from the secondary side of the membrane, and the chemical solution retained in the membrane is discharged to the primary side, and the washing waste water in the water tank is discharged. The chemical cleaning was finished.
その後、実施例1と同様に吸引濾過を再開して吸引圧力及び薬品洗浄排水量比を調べ、結果を表2に示した。 Thereafter, the suction filtration was resumed in the same manner as in Example 1 to examine the suction pressure and the chemical washing waste water ratio, and the results are shown in Table 2.
表2より次のことが明らかである。
・実施例1,2と比較例1では、吸引圧力の回復率に明らかな差があり、実施例1,2では薬品洗浄効果の大幅な向上効果と薬品洗浄排水量の大幅な削減効果が認められた。
・比較例2では比較例1よりも吸引圧力が低下したものの、実施例1,2には及ばなかった。
・散気管から曝気しながら水槽内の被処理水を排出すると同時に、薬液を二次側から一次側に浸出させた実施例2では、曝気をせずに薬液を浸出させた実施例1よりも、さらに吸引圧力が低減し、薬品洗浄効果が高いことが確認された。
From Table 2, the following is clear.
・ There is a clear difference in the recovery rate of the suction pressure between Examples 1 and 2 and Comparative Example 1. In Examples 1 and 2, a significant improvement in the chemical cleaning effect and a large reduction in the amount of chemical cleaning wastewater were observed. It was.
In Comparative Example 2, the suction pressure was lower than that in Comparative Example 1, but did not reach Examples 1 and 2.
In Example 2 in which the chemical solution was discharged from the secondary side to the primary side at the same time as the treated water in the water tank was discharged while aerated from the air diffuser, the chemical solution was leached without aeration. Further, it was confirmed that the suction pressure was further reduced and the chemical cleaning effect was high.
以上の結果から、本発明によれば、効率的な薬品洗浄を行って、高い洗浄効果を得ることができることが分かる。 From the above results, it can be seen that according to the present invention, efficient chemical cleaning can be performed to obtain a high cleaning effect.
1 水槽
2 膜モジュール
3 散気管
4 濾過水槽
5 薬液貯槽
DESCRIPTION OF SYMBOLS 1 Water tank 2 Membrane module 3
Claims (6)
該膜の二次側に洗浄薬品を注入して一次側に浸出させる洗浄薬品注入手段と、
該水槽内の被処理水を槽外へ排出する被処理水排出手段とを備え、
該被処理水排出手段により被処理水をほぼ完全に槽外へ排出する際に、該水槽内の被処理水面が下降し、前記膜モジュールの膜の上部が水面上に表出したときに、前記洗浄薬品注入手段により洗浄薬品の注入を開始して一次側に浸出させ、一次側に浸出した洗浄薬品が膜面を流下する際、水槽内の被処理水面が下降し、水槽内の被処理水がほぼ完全に排出され、一次側に浸出した洗浄薬品が膜面を流下する状態で洗浄薬品の注入を停止するように構成されている浸漬型膜分離装置であって、
前記水槽内の膜モジュールの下部に散気手段が設けられており、前記被処理水排出手段による被処理水の排出と共に該散気手段による散気で膜面に気泡流を供給するように構成されていることを特徴とする浸漬型膜分離装置。 In the submerged membrane separation apparatus in which the membrane module is arranged in a water tank, and the water to be treated in the water tank is subjected to membrane filtration with a suction pressure and / or a gravity difference.
Cleaning chemical injection means for injecting cleaning chemical into the secondary side of the membrane and leaching out to the primary side;
Treated water discharge means for discharging the treated water in the water tank to the outside of the tank,
When discharged to almost completely outside of the tank water to be treated by該被treated water discharging means, the treated water in the water tank is lowered and when the upper portion of the membrane of the membrane module is exposed on the water surface When the cleaning chemical injection means starts injecting the cleaning chemical and leaches to the primary side, and the cleaning chemical leached to the primary side flows down the membrane surface, the water surface to be treated in the water tank descends and the water in the water tank treated water is almost completely discharged, a submerged membrane separator in which cleaning chemicals leached to the primary side has been configured to stop the injection of cleaning agent in a state of flowing down the film surface,
An air diffuser is provided at the lower part of the membrane module in the water tank, and a bubble flow is supplied to the membrane surface by the air diffused by the air diffuser together with the discharge of the water to be treated by the water to be treated discharged. An immersion type membrane separator characterized by being made .
該水槽内の被処理水をほぼ完全に槽外へ排出する際に、該水槽内の被処理水面が下降し、前記膜モジュールの膜の上部が水面上に表出したときに、該膜の二次側への洗浄薬品の注入を開始して一次側に浸出させ、一次側に浸出した洗浄薬品が膜面を流下する際、水槽内の被処理水面が下降し、水槽内の被処理水がほぼ完全に排出され、一次側に浸出した洗浄薬品が膜面を流下する状態で洗浄薬品の注入を停止する浸漬型膜分離装置の薬品洗浄方法であって、
前記水槽内の膜モジュール下部に散気手段が設けられており、該水槽内の被処理水を槽外へ排出する間に、該散気装置から散気して膜面に気泡流を供給することを特徴とする浸漬型膜分離装置の薬品洗浄方法。 In the chemical cleaning method of the submerged membrane separation apparatus, in which the membrane module is disposed in the water tank, and the water to be treated in the water tank is subjected to membrane filtration by suction pressure and / or gravity difference
When discharged to almost completely outside of the tank water to be treated in the water tank, the treated water in the water tank is lowered and when the upper portion of the membrane of the membrane module is exposed on the water surface, the membrane Injecting cleaning chemical into the secondary side of the water and leaching it to the primary side, when the cleaning chemical leached to the primary side flows down the membrane surface, the water surface to be treated in the water tank descends and the water to be treated in the water tank A chemical cleaning method for a submerged membrane separation device in which injection of cleaning chemical is stopped in a state where water is almost completely discharged and cleaning chemical leached to the primary side flows down the membrane surface,
Air diffuser is provided at the lower part of the membrane module in the water tank, and the air flow is supplied from the air diffuser to the membrane surface while discharging the water to be treated in the water tank to the outside. A chemical cleaning method for a submerged membrane separator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005075361A JP4867180B2 (en) | 2005-03-16 | 2005-03-16 | Immersion membrane separator and chemical cleaning method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005075361A JP4867180B2 (en) | 2005-03-16 | 2005-03-16 | Immersion membrane separator and chemical cleaning method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006255567A JP2006255567A (en) | 2006-09-28 |
JP4867180B2 true JP4867180B2 (en) | 2012-02-01 |
Family
ID=37095356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005075361A Active JP4867180B2 (en) | 2005-03-16 | 2005-03-16 | Immersion membrane separator and chemical cleaning method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4867180B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9333464B1 (en) | 2014-10-22 | 2016-05-10 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
USD779631S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Gasification device |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5453711B2 (en) * | 2006-03-29 | 2014-03-26 | 東レ株式会社 | Cleaning method for external pressure hollow fiber membrane module |
JP5158620B2 (en) * | 2007-02-20 | 2013-03-06 | セイコーエプソン株式会社 | Integrated circuit device and electronic apparatus |
JP4840285B2 (en) * | 2007-08-10 | 2011-12-21 | 東レ株式会社 | Cleaning method for submerged membrane module |
JP2009247936A (en) * | 2008-04-02 | 2009-10-29 | Japan Organo Co Ltd | Method of inline-cleaning immersion type membrane-separation device |
WO2011158559A1 (en) * | 2010-06-14 | 2011-12-22 | 東レ株式会社 | Method for cleaning membrane modules |
JP5979367B2 (en) * | 2012-09-06 | 2016-08-24 | 三菱レイヨン株式会社 | Membrane module cleaning method |
JP2019188276A (en) * | 2018-04-19 | 2019-10-31 | 住友電気工業株式会社 | Washing method of filtration module, and filtration equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3494744B2 (en) * | 1995-03-17 | 2004-02-09 | 前澤工業株式会社 | Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device |
JP3583201B2 (en) * | 1995-09-14 | 2004-11-04 | 三菱レイヨン株式会社 | Cleaning method for separation membrane module |
FR2741280B1 (en) * | 1995-11-22 | 1997-12-19 | Omnium Traitement Valorisa | METHOD FOR CLEANING A FILTER SYSTEM OF THE SUBMERSIBLE MEMBRANE TYPE |
JPH11114385A (en) * | 1997-10-17 | 1999-04-27 | Toru Aoi | Cleaning method of dipping type membrane filter device |
JP3630152B2 (en) * | 2002-07-17 | 2005-03-16 | 栗田工業株式会社 | Operation method of membrane separator |
-
2005
- 2005-03-16 JP JP2005075361A patent/JP4867180B2/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9333464B1 (en) | 2014-10-22 | 2016-05-10 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
US9956530B2 (en) | 2014-10-22 | 2018-05-01 | Koch Membrane Systems, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
US10702831B2 (en) | 2014-10-22 | 2020-07-07 | Koch Separation Solutions, Inc. | Membrane module system with bundle enclosures and pulsed aeration and method of operation |
USD779631S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Gasification device |
USD779632S1 (en) | 2015-08-10 | 2017-02-21 | Koch Membrane Systems, Inc. | Bundle body |
Also Published As
Publication number | Publication date |
---|---|
JP2006255567A (en) | 2006-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4867180B2 (en) | Immersion membrane separator and chemical cleaning method therefor | |
JP5453711B2 (en) | Cleaning method for external pressure hollow fiber membrane module | |
JP6003646B2 (en) | Membrane module cleaning method | |
JP3198923B2 (en) | Cleaning method of membrane | |
JP2008539054A (en) | Chemical cleaning for membrane filters | |
CN115121124A (en) | Method and apparatus for cleaning filtration membrane, and water treatment system | |
JPH09313902A (en) | Chemical cleaning method for immersion type ceramic membrane separation device | |
JP2015155076A (en) | Separation film module cleaning method | |
JPWO2011158559A1 (en) | Membrane module cleaning method | |
JP5181987B2 (en) | Cleaning method for submerged membrane module | |
JP2012086182A (en) | Water treatment method and water treatment device | |
JP2002361054A (en) | Method for washing membrane filtration apparatus | |
JP5120106B2 (en) | Method and apparatus for treating organic alkaline wastewater | |
JP2006281022A (en) | Method and apparatus for cleaning of separation membrane module | |
JP2006263584A (en) | Method for cleaning membrane filtration apparatus | |
JP2004057883A (en) | Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor | |
JP2011041907A (en) | Water treatment system | |
JP2009039677A (en) | Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus | |
WO2011108589A1 (en) | Method for washing porous membrane module, and fresh water generator | |
JP2017176951A (en) | Method for cleaning separation membrane module | |
JP5251472B2 (en) | Membrane module cleaning method | |
JP2015020081A (en) | Membrane module cleaning method and membrane module cleaning apparatus | |
JP2002035750A (en) | Sewage filtering method | |
JP3866393B2 (en) | Cleaning method for hollow fiber membrane module | |
JP2019103960A (en) | Filtration membrane washing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080304 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110531 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111018 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111031 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4867180 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |