JP2006198462A - Washing method of flat membrane element - Google Patents

Washing method of flat membrane element Download PDF

Info

Publication number
JP2006198462A
JP2006198462A JP2005010144A JP2005010144A JP2006198462A JP 2006198462 A JP2006198462 A JP 2006198462A JP 2005010144 A JP2005010144 A JP 2005010144A JP 2005010144 A JP2005010144 A JP 2005010144A JP 2006198462 A JP2006198462 A JP 2006198462A
Authority
JP
Japan
Prior art keywords
flat membrane
membrane element
chemical
chemical solution
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005010144A
Other languages
Japanese (ja)
Inventor
Kenji Sakai
憲司 酒井
Hirobumi Morikawa
博文 森川
Nobuyuki Matsuka
伸行 松家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005010144A priority Critical patent/JP2006198462A/en
Publication of JP2006198462A publication Critical patent/JP2006198462A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a washing method enabling washing safely and efficiently a flat membrane element having a nozzle for injection of a chemical and a nozzle for discharge of the chemical in its upper part. <P>SOLUTION: The washing method is for washing a flat membrane element in which both sides of a substrate are covered, in order, with a flow passage material and a flat membrane and which has at least a nozzle for injection of a chemical and a nozzle for discharge of the chemical, both communicating with a filtration chamber provided with a flow passage material, in the upper part of the substrate. The chemical is injected on the basis of the difference of the water head, and the mixed solution of the chemical and the treating water stored in the filtration chamber is circulated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、下水・廃水処理などに利用する膜式処理装置の平膜エレメントの洗浄方法に関する。   The present invention relates to a method for cleaning a flat membrane element of a membrane processing apparatus used for sewage / waste water treatment.

廃水処理では、活性汚泥と呼ばれる微生物により、廃水中の有機物を分解した後に、フロック化した汚泥と処理水を分離する活性汚泥処理プロセスが広く用いられている。   In wastewater treatment, an activated sludge treatment process is widely used in which organic matter in wastewater is decomposed by microorganisms called activated sludge and then flocified sludge and treated water are separated.

活性汚泥処理プロセスでは、処理効率を上げるために、活性汚泥を高濃度化すると分解処理が進む一方で、後段の沈殿池において汚泥の沈降性不良を生じる場合があり、水質の悪化を防止するための管理作業が煩雑という問題がある。   In the activated sludge treatment process, in order to increase the treatment efficiency, if the activated sludge is concentrated, the decomposition process proceeds. On the other hand, the sludge sedimentation failure may occur in the subsequent sedimentation basin, and the deterioration of water quality is prevented. There is a problem that the management work is complicated.

近年、この汚泥と処理水との固液分離に膜分離技術の適用が進められている。これは、活性汚泥槽内にろ過膜エレメントを浸漬して、この処理水側をポンプで吸引、あるいはサイホンなどのように水頭差を利用して活性汚泥中から処理水を得るものであり、通常、散気により活性汚泥槽内に形成される旋回流を利用して、膜面に堆積する汚泥をかきとりながら運転するものである。近年では、旋回流を効果的に使用するためにろ過膜エレメントの大型化(垂直方向への長尺化)が進んでいる。   In recent years, membrane separation technology has been applied to the solid-liquid separation of sludge and treated water. This is to immerse the filter membrane element in the activated sludge tank and suck the treated water side with a pump, or to obtain treated water from the activated sludge using a water head difference like a siphon. By using the swirl flow formed in the activated sludge tank by aeration, the sludge accumulated on the membrane surface is scraped off. In recent years, in order to use a swirl flow effectively, the filtration membrane element has been increased in size (lengthened in the vertical direction).

運転は連続的に行われるが、一定期間運転すると旋回流では除去できない汚れが膜面に堆積するため、定期的に運転を停止して薬液洗浄を行う方法が取られる。平膜を使用した平膜エレメントの場合、活性汚泥槽内に浸漬したまま平膜エレメントの内部に薬液が注入される。しかし、平膜エレメント内部には予め処理水が貯留されている状態であるため、薬液が内部全体に均一に行き渡りにくいといった課題がある。この課題を解決するためにこれまで様々な検討が行われている。   Although the operation is continuously performed, dirt that cannot be removed by the swirl flow is accumulated on the film surface when the operation is performed for a certain period. Therefore, the operation is periodically stopped and the chemical solution cleaning is performed. In the case of a flat membrane element using a flat membrane, a chemical solution is injected into the flat membrane element while being immersed in the activated sludge tank. However, since the treated water is stored in advance in the flat membrane element, there is a problem that it is difficult for the chemical solution to spread uniformly throughout the interior. Various studies have been conducted so far to solve this problem.

特許文献1では、平膜エレメントに複数のノズルを設置し、内部の処理水を抜出して排水する一方で薬液を注入することで両液体の置換を行っている。また、特許文献2では、薬液を加圧循環することによって薬液の分散性向上を図るとともに薬液を処理水側から汚泥側へ透過させる方法を提案している。特許文献3では、平膜エレメントに2つのノズルを設置するとともに、両ノズル間に仕切を設けることで、薬液の流路を限定する方法が示されている。   In Patent Document 1, a plurality of nozzles are installed on a flat membrane element, and both liquids are replaced by injecting chemical liquid while extracting and draining the internal treated water. Patent Document 2 proposes a method of improving the dispersibility of the chemical liquid by pressurizing and circulating the chemical liquid and allowing the chemical liquid to permeate from the treated water side to the sludge side. Patent Document 3 discloses a method of limiting the flow path of a chemical solution by installing two nozzles in a flat membrane element and providing a partition between both nozzles.

近年、平膜エレメントが大型化する傾向にある中、上述した従来技術では、カバーできない問題が出てきている。大型化した平膜エレメントを安全かつ効率・効果的に薬液洗浄を行うためには、(1)平膜エレメント内部を過剰に加圧しないこと、(2)薬液量が少ないこと、(3)平膜エレメント構造が複雑すぎないこと、が必要である。   In recent years, while flat membrane elements tend to increase in size, there are problems that cannot be covered by the above-described conventional technology. In order to safely, efficiently and effectively perform chemical cleaning of a large flat membrane element, (1) the inside of the flat membrane element should not be pressurized excessively, (2) the amount of chemical solution should be small, (3) flat It is necessary that the membrane element structure is not too complex.

上述の特許文献1では、平膜エレメント内部の処理水と薬液とが置換するまで排水する構成である。発明者のこれまでの検討で、薬液注入用ノズルを平膜エレメントの下部に、排出用ノズルを上部に配置すると本発明の効果が高いが、両ノズルが平膜エレメントの上部にある場合には、比重の大きな薬液が平膜エレメント内部の下方に溜まろうとするため、完全に置換するまでにある程度の時間がかかり、(2)の条件で問題があることがわかった。また特許文献2は加圧循環を行う構成であるが、平膜エレメントでは過剰な加圧はエレメントの破損に繋がるため、(1)の条件を満たすことができない。特許文献3では、仕切を入れることにより膜面積が減少するといった問題と構造が複雑になるという点から(3)の条件を満足できない、という問題があることが分かった。   In the above-mentioned patent document 1, it is the structure drained until the treated water and chemical | medical solution inside a flat membrane element replace. According to the inventors' previous studies, it is highly effective to arrange the chemical injection nozzle at the lower part of the flat membrane element and the discharge nozzle at the upper part, but when both nozzles are at the upper part of the flat membrane element It was found that a chemical solution with a large specific gravity tends to accumulate below the inside of the flat membrane element, so that it took a certain amount of time to complete replacement, and there was a problem under the condition (2). Further, Patent Document 2 is configured to perform pressure circulation, but in a flat membrane element, excessive pressurization leads to damage of the element, and therefore the condition (1) cannot be satisfied. In Patent Document 3, it has been found that there is a problem that the condition (3) cannot be satisfied from the point that the film area is reduced by inserting a partition and the structure is complicated.

特許文献1に示されている従来技術の問題点を詳細に示す。図5は、平膜エレメント内部の薬液の流動状態を示した模式図であるが、平膜エレメント内に注入された薬液は、薬液の比重に関わるベクトル(図中33)と薬液の排出に伴うベクトル(図中34)の両方向に流れが分かれるため、せっかく注入した薬液の多くを排出して捨ててしまう形となり、予め平膜エレメント内に貯留されている処理水との置換に多くの時間を要するため、結果として大量の薬液の廃液を出すことになる。
特開平7−116482 号公報 特開平10−57780号公報 特開平9−117644号公報
The problems of the prior art disclosed in Patent Document 1 will be described in detail. FIG. 5 is a schematic diagram showing the flow state of the chemical solution inside the flat membrane element. The chemical solution injected into the flat membrane element is accompanied by a vector (33 in the figure) related to the specific gravity of the chemical solution and the discharge of the chemical solution. Since the flow is divided in both directions of the vector (34 in the figure), much of the injected chemical is drained and discarded. Therefore, as a result, a large amount of chemical liquid waste is discharged.
JP-A-7-116482 JP-A-10-57780 JP-A-9-117644

本発明の目的は、上部に薬液注入用および排出用の2つのノズルを有する平膜エレメントを安全かつ効率的に洗浄できる平膜エレメントの洗浄方法を提供することにある。   The objective of this invention is providing the washing | cleaning method of the flat membrane element which can wash | clean the flat membrane element which has two nozzles for chemical | medical solution injection | pouring and discharge | emission on the upper part safely and efficiently.

上記目的を達成するために本発明によれば、基板の両面が流路材、平膜の順で覆われ、流路材が配されたろ過室と連通する薬液注入用と薬液排出用の少なくとも2つのノズルを該基板の上部に有する平膜エレメントの洗浄方法であって、水頭差を用いて薬液を注入し、該薬液および該ろ過室に貯留していた処理水の混合液を循環させることを特徴とする平膜エレメントの洗浄方法が提供される。   In order to achieve the above object, according to the present invention, both sides of the substrate are covered in the order of the flow channel material and the flat membrane, and at least for chemical solution injection and chemical solution discharge communicating with the filtration chamber in which the flow channel material is arranged. A method of cleaning a flat membrane element having two nozzles at the top of the substrate, injecting a chemical solution using a water head difference, and circulating the mixed solution of the chemical solution and the treated water stored in the filtration chamber A method of cleaning a flat membrane element is provided.

また、本発明の平膜エレメントの洗浄方法は
1)一定時間循環させた後に、循環を停止して静置すること
2)注入される薬液と排出される薬液の濃度が略同一となった時点で静置すること
3)注入される薬液の比重が処理水より大きいこと
の方法を取ることにより、より好ましくなり、また
4)流路材中の処理水流路が斜向させた構成を有する平膜エレメント
に上記平膜エレメントの洗浄方法を適用させることで、さらに好ましいものとなる。
The flat membrane element cleaning method of the present invention is as follows: 1) After circulating for a certain period of time, stop the circulation and let it stand. 2) When the concentration of the injected chemical and the concentration of the discharged chemical are substantially the same. 3) It becomes more preferable by taking a method that the specific gravity of the injected chemical solution is larger than that of the treated water, and 4) a flat surface having a configuration in which the treated water flow path in the flow path material is inclined. By applying the above-described method for cleaning a flat membrane element to the membrane element, it becomes more preferable.

本発明によれば、以下に説明するとおり、(1)平膜エレメント内部を過剰に加圧しない、(2)薬液量が少ない、(3)平膜エレメント構造が複雑すぎない、といった安全かつ効率的な洗浄方法を得ることができる。   According to the present invention, as described below, (1) the inside of the flat membrane element is not excessively pressurized, (2) the amount of the chemical solution is small, and (3) the flat membrane element structure is not too complicated and safe and efficient. Cleaning method can be obtained.

本発明で使用される活性汚泥処理装置は、活性汚泥槽内に浸漬された上部に2つのノズルを有する平膜エレメント、平膜エレメントの薬液排出ノズルに接続される処理水ライン、平膜エレメントの薬液注入ノズルに接続される薬液注入ライン、および処理水ラインと薬液注入ラインを接続した循環ライン、により基本的に構成され、薬液の注入を水頭差で行うことができればよい。   The activated sludge treatment apparatus used in the present invention includes a flat membrane element having two nozzles immersed in the activated sludge tank, a treated water line connected to a chemical solution discharge nozzle of the flat membrane element, It is basically configured by a chemical solution injection line connected to the chemical solution injection nozzle and a circulation line connecting the treated water line and the chemical solution injection line, and it is only necessary that the chemical solution can be injected by a water head difference.

以下、本発明の最良の実施形態の例を、図面を参照しながら説明する。   Hereinafter, an example of the best mode of the present invention will be described with reference to the drawings.

図1は本発明の洗浄方法を説明するための活性汚泥処理装置の一例を示す概略構成図であり、図2は平膜エレメント1の一例を示す概略斜視図であり、図3は図2の平膜エレメント1を用いたモジュール2を示す概略斜視図である。   FIG. 1 is a schematic configuration diagram showing an example of an activated sludge treatment apparatus for explaining the cleaning method of the present invention, FIG. 2 is a schematic perspective view showing an example of a flat membrane element 1, and FIG. 1 is a schematic perspective view showing a module 2 using a flat membrane element 1. FIG.

本発明に使用される平膜エレメント1は、基本的に上部に薬液注入ノズル25、薬液排出ノズル24を有した基板21の両面に、処理水の通路となる流路材22、平膜23を固定した構造であり、流路材22が配されている空間が処理水を貯留するろ過室26となる。平膜23の外側から内側にろ過を行い、ろ過室26を介して、上部のノズルから処理水を取り出す構造である。   The flat membrane element 1 used in the present invention basically has a flow path material 22 and a flat membrane 23 that serve as a passage for treated water on both surfaces of a substrate 21 having a chemical solution injection nozzle 25 and a chemical solution discharge nozzle 24 at the top. The space in which the flow path material 22 is arranged is a filtration chamber 26 that stores treated water. In this structure, filtration is performed from the outside of the flat membrane 23 to the inside, and the treated water is taken out from the upper nozzle through the filtration chamber 26.

活性汚泥処理装置は、生物処理槽3と、生物処理槽3内の被処理水を固液分離した処理水を貯留する処理水槽4、および薬液を貯留する薬液槽5を持つ。生物処理槽3には、平膜エレメント1を複数枚装填したモジュール2が浸漬され、平膜エレメント1からの薬液排出ノズル24は処理水ライン7を介して処理水槽4に、薬液注入ノズル25は薬液注入ライン9を介して薬液槽5に接続され、またこの処理水ライン7と薬液注入ライン9が循環ライン8で接続されている。また、生物処理槽3にはブロア12と接続した散気装置15と原水流入ライン10が付設されている。   The activated sludge treatment apparatus has a biological treatment tank 3, a treated water tank 4 for storing treated water obtained by solid-liquid separation of water to be treated in the biological treatment tank 3, and a chemical solution tank 5 for storing a chemical solution. The biological treatment tank 3 is immersed with a module 2 in which a plurality of flat membrane elements 1 are loaded. The chemical solution discharge nozzle 24 from the flat membrane element 1 is connected to the treatment water tank 4 via the treatment water line 7 and the chemical solution injection nozzle 25 is The chemical solution tank 5 is connected to the chemical solution tank 5 through the chemical solution injection line 9, and the treated water line 7 and the chemical solution injection line 9 are connected to each other through the circulation line 8. The biological treatment tank 3 is provided with an air diffuser 15 connected to the blower 12 and a raw water inflow line 10.

通常のろ過運転では、原水供給ライン10から供給される廃水を生物処理槽3内で生物処理を行いながら、一方で散気装置15から供給されるエアーで平膜エレメント1の表面を洗浄しつつ平膜エレメント1の外から内側へ吸引ろ過を行い、流路材22が配されているろ過室26から処理水ライン7を通して処理水槽4に清澄な処理水を得る。吸引ろ過は、吸引ポンプ11の使用、または生物処理槽3と処理水槽4との水頭差を利用して行われる。   In normal filtration operation, while the wastewater supplied from the raw water supply line 10 is biologically treated in the biological treatment tank 3, the surface of the flat membrane element 1 is washed with air supplied from the air diffuser 15. By performing suction filtration from the outside to the inside of the flat membrane element 1, clear treated water is obtained in the treated water tank 4 through the treated water line 7 from the filtration chamber 26 in which the flow path material 22 is arranged. The suction filtration is performed using the suction pump 11 or using the water head difference between the biological treatment tank 3 and the treated water tank 4.

継続してろ過運転を行うと、平膜エレメント1の表面にエアーでは除去できない濁質分が付着するため、ろ過運転を停止して薬液洗浄を行う。   When the filtration operation is continuously performed, turbid components that cannot be removed by air adhere to the surface of the flat membrane element 1, so the filtration operation is stopped and chemical cleaning is performed.

本発明の薬液洗浄方法では、まず処理水ライン7のバルブ17を閉じ、次にバルブ16およびバルブ18を開けることによって、薬液槽5の薬液を薬液注入ライン9を介して水頭差により平膜エレメント1内のろ過室26に導入する。またこの時平膜エレメント1の薬液排出ノズル24から吸引ポンプ11でろ過室26内の薬液および洗浄前から溜まっている処理水の混合液を吸引し、循環ライン8を介して、薬液槽5に戻す。以上の方法により、(1)水頭差を利用することで平膜エレメント内部を過剰に加圧しない、(2)薬液槽5内の薬液を無駄に捨てることない、(3)平膜エレメントを複雑な構造としない、安全かつ効率的な洗浄を実施することができる。   In the chemical cleaning method of the present invention, first, the valve 17 of the treated water line 7 is closed, and then the valve 16 and the valve 18 are opened. 1 is introduced into the filtration chamber 26 in the inside. At this time, the chemical solution in the filtration chamber 26 and the mixed solution of the treated water collected before washing are sucked from the chemical solution discharge nozzle 24 of the flat membrane element 1 by the suction pump 11, and are supplied to the chemical solution tank 5 through the circulation line 8. return. By the above method, (1) the inside of the flat membrane element is not excessively pressurized by utilizing the water head difference, (2) the chemical solution in the chemical solution tank 5 is not wasted, (3) the flat membrane element is complicated Safe and efficient cleaning can be performed without using a simple structure.

循環にあたっては、平膜エレメント1への薬液注入量および排出量が同等、もしくは薬液注入の水頭差による圧力内で加圧状態となるようにバランスをとるのが好ましい。薬液洗浄を良好に行うためには、平膜エレメント1の内側から外側に薬液を通過させる必要があるが、ろ過室26が負圧状態になるとろ過が行われるため薬液の通過を阻害する。また、このろ過により混合液の量が増大し、薬液が必要以上に薄くなるといった問題も発生する。バランスを取る方法としては、薬液槽5にレベル計を設置しておき、レベルが所望のレベルまで下がった時点で吸引ポンプ11を運転する方法や、薬液注入ライン9に流量計を設置しておき、この流量に応じて吸引ポンプ11の吸引量を制御する方法が考えられる。   In circulation, it is preferable to balance so that the amount of chemical solution injected into the flat membrane element 1 and the amount of discharge are equal or within a pressure due to the water head difference of the chemical solution injection. In order to satisfactorily perform the chemical cleaning, it is necessary to pass the chemical from the inside of the flat membrane element 1 to the outside. However, when the filtration chamber 26 is in a negative pressure state, filtration is performed, and thus the passage of the chemical is inhibited. Moreover, the amount of liquid mixture increases by this filtration, and the problem that a chemical | medical solution becomes thinner more than needed also generate | occur | produces. As a method of balancing, a level meter is installed in the chemical tank 5, and the suction pump 11 is operated when the level drops to a desired level, or a flow meter is installed in the chemical injection line 9. A method of controlling the suction amount of the suction pump 11 in accordance with the flow rate can be considered.

薬液は水頭差で注入されるが、この水頭差の上限については使用する平膜エレメント1の機械的強度に合わせて適宜設定することができるが、好ましくは2m、さらに好ましくは1m以下の水頭差で設定することが好ましい。平膜エレメントの薬液洗浄では、ろ過室26内を数十kPa程度の加圧までに抑える必要があるが、ポンプを用いた加圧注入では圧力の制御が難しく、また想定した値以上に加圧される危険がある。   The chemical solution is injected with a water head difference, and the upper limit of the water head difference can be appropriately set according to the mechanical strength of the flat membrane element 1 to be used, but is preferably 2 m, more preferably 1 m or less. It is preferable to set by. In the chemical cleaning of flat membrane elements, it is necessary to keep the inside of the filtration chamber 26 to a pressure of about several tens of kPa, but it is difficult to control the pressure with a pressure injection using a pump, and the pressure is higher than expected. There is a risk of being.

薬液槽5内の薬液は、エレメント1内のろ過室26に予め貯留されている処理水の量を考慮し、最終的に混合液として所望の濃度となるように調整しておくことで、使用薬液量を必要最小限とすることができ好ましい。また、混合液をより効率的に使用するために、ある一定時間、例えば循環ライン8の混合液の濃度が薬液槽5内の混合液の濃度と略同一になった時点で吸引ポンプ11の運転を停止し、混合液の全量を水頭差で平膜エレメント1に供給する方法が好ましく用いられる。この時、混合液の濃度を確認する方法の一例として、薬液槽5および循環ライン8にそれぞれpH計13、14を設置する方法がある。なお、循環ライン8の混合液の濃度を薬液槽5内の混合液の濃度と完全に同じ値とすることは容易ではないため、本発明では、循環ライン8の混合液の濃度が薬液槽5内の混合液の濃度と略同一であるとは、薬液槽5内の混合液の濃度に対して循環ライン8の混合液が60%以上のある濃度、望ましくは80%以上のある濃度であることを指すものとし、この時点を以て循環を停止して静置する方法が好ましい。
この方法を用いれば、平膜エレメント内外で均一な濃度の混合液を供給できることになり、平膜エレメントの全部位で均一に混合液を膜の内側から外側に通過させることができる。
The chemical solution in the chemical solution tank 5 is used by adjusting the final concentration to a desired concentration as a mixed solution in consideration of the amount of treated water stored in the filtration chamber 26 in the element 1 in advance. This is preferable because the amount of the chemical solution can be minimized. In order to use the mixed liquid more efficiently, the suction pump 11 is operated for a certain period of time, for example, when the concentration of the mixed liquid in the circulation line 8 becomes substantially the same as the concentration of the mixed liquid in the chemical tank 5. Is preferably used, and the entire amount of the mixed solution is supplied to the flat membrane element 1 by a water head difference. At this time, as an example of a method of confirming the concentration of the mixed solution, there is a method of installing pH meters 13 and 14 in the chemical solution tank 5 and the circulation line 8, respectively. In addition, since it is not easy to make the concentration of the mixed solution in the circulation line 8 completely the same as the concentration of the mixed solution in the chemical solution tank 5, in the present invention, the concentration of the mixed solution in the circulation line 8 is The concentration of the mixed liquid in the circulation line 8 is substantially equal to the concentration of the mixed liquid in the chemical solution tank 5 at a certain concentration of 60% or more, desirably 80% or more. A method of stopping the circulation at this point and allowing to stand still is preferable.
If this method is used, a mixed solution having a uniform concentration can be supplied inside and outside the flat membrane element, and the mixed solution can be uniformly passed from the inside to the outside of the membrane at all sites of the flat membrane element.

前述したように、本発明の洗浄方法は、薬液の比重が処理水の比重より大きいときに大きな効果が得られる。廃液の量を増やさないように循環により混合液の量を保ちつつ、薬液(混合液)の比重による流れのベクトル33と薬液(混合液)の循環による流れのベクトル34の合力で薬液をろ過室26の全域に分散させることができる。なお、ベクトル33と34はろ過室26内での流れのベクトルを表している。   As described above, the cleaning method of the present invention is very effective when the specific gravity of the chemical solution is larger than the specific gravity of the treated water. While maintaining the amount of the liquid mixture by circulation so as not to increase the amount of waste liquid, the chemical liquid is filtered by the resultant force of the flow vector 33 by the specific gravity of the chemical liquid (mixed liquid) and the flow vector 34 by the circulation of the chemical liquid (mixed liquid). 26 can be dispersed throughout. The vectors 33 and 34 represent the flow vectors in the filtration chamber 26.

本発明で使用される薬液は、特に限定されるものではなくが、次亜塩素酸ナトリウム、過酸化水素、塩酸、硫酸、硝酸、シュウ酸、リンゴ酸、水酸化ナトリウム、その他の薬液を適宜選択して使用することができる。   The chemical solution used in the present invention is not particularly limited, but sodium hypochlorite, hydrogen peroxide, hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, malic acid, sodium hydroxide, and other chemical solutions are appropriately selected. Can be used.

本発明に使用される平膜エレメントは、前述したように、基本的に上部に薬液注入ノズル25、薬液排出ノズル24を有した基板21の両面に、処理水の通路となる流路材22、平膜23を固定した構造であるが、本発明の効果をより高めるために流路材の処理水通路を斜向させたものを用いるのが好ましい。斜向とは、平膜エレメント1を使用状態に配置した際、鉛直および水平方向以外の方向に通路を有しているものであり、総通路断面積の60%以上が斜向しているものを用いるのが好ましい。また、図4のように基板の表面を凹凸を持つ形状とすることで流路材22の機能を基板に持たせた基板61のような構造を用いてもよい。   As described above, the flat membrane element used in the present invention basically has a flow path material 22 serving as a passage for treated water on both surfaces of a substrate 21 having a chemical liquid injection nozzle 25 and a chemical liquid discharge nozzle 24 on the upper part. Although the structure is such that the flat membrane 23 is fixed, in order to further enhance the effect of the present invention, it is preferable to use one in which the treated water passage of the flow path material is inclined. The oblique direction means that when the flat membrane element 1 is placed in use, it has a passage in a direction other than the vertical and horizontal directions, and 60% or more of the total passage sectional area is inclined. Is preferably used. Further, as shown in FIG. 4, a structure like the substrate 61 in which the substrate has the function of the flow path material 22 by making the surface of the substrate have an uneven shape may be used.

基板21は略平板状のものであれば特に限定されず、材質としては、ASTM試験法のD638におけるヤング率が300MPa程度以上の剛性を持つ材質であれば特に限定されるものではないが、ステンレスなどの金属類、アクリロニトリルブタジエンスチレンゴム(ABS樹脂)、塩化ビニルなどの樹脂、繊維強化樹脂(FRP)などの複合材料、その他の材質などを適宜選択、使用することができる。   The substrate 21 is not particularly limited as long as it has a substantially flat plate shape, and the material is not particularly limited as long as the material has a rigidity with Young's modulus of about 300 MPa or more in D638 of the ASTM test method. Metals such as acrylonitrile butadiene styrene rubber (ABS resin), resins such as vinyl chloride, composite materials such as fiber reinforced resin (FRP), and other materials can be appropriately selected and used.

流路材22は、ろ過室26を形成できる厚みを持ち、また処理水の流路を確保できる形状であれば特に限定されるものではないが、一例として、空隙率が40%〜96%程度の、ネット、不織布、セラミック・金属等の多孔質材料、を好ましく用いることができる。   The flow path material 22 is not particularly limited as long as it has a thickness capable of forming the filtration chamber 26 and can secure the flow path of the treated water, but as an example, the porosity is about 40% to 96%. Of these, porous materials such as nets, nonwoven fabrics, ceramics and metals can be preferably used.

平膜23としては、特に限定されるものではなく、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリビニルアルコール、セルロースアセテート、ポリアクリロニトリル、塩素化ポリエチレン、ポリ弗化ビニリデン、ポリビニルフルオライド、その他の材質を適宜選択して使用することができる。連続で散気するような環境下で使用する場合には、耐久性の高いポリオレフィン系やフッ素系の材質を特に好ましく使用することができ、MLSS(Mixed Liquor and Suspended Solid)濃度が1000mg/リットル以下の比較的清澄な原水の場合には、ポリアクリロニトリルやセルロースアセテート、ポリスルホンなどを特に好ましく使用することができる。そして、平膜の孔径についても、多孔質であれば特に限定するものではないが、特に活性汚泥水の固液分離を行う場合にはその膜のろ過性能を決定する細孔の孔径が0.01〜20μm程度の範囲内にあるものが好ましい。   The flat membrane 23 is not particularly limited, and includes polyethylene, polypropylene, polysulfone, polyethersulfone, polyvinyl alcohol, cellulose acetate, polyacrylonitrile, chlorinated polyethylene, polyvinylidene fluoride, polyvinyl fluoride, and other materials. It can be appropriately selected and used. When used in an environment that continuously diffuses, highly durable polyolefin-based and fluorine-based materials can be particularly preferably used, and the MLSS (Mixed Liquor and Suspended Solid) concentration is 1000 mg / liter or less. In the case of relatively clear raw water, polyacrylonitrile, cellulose acetate, polysulfone and the like can be particularly preferably used. The pore size of the flat membrane is not particularly limited as long as it is porous, but when the activated sludge water is subjected to solid-liquid separation, the pore size of the pore that determines the filtration performance of the membrane is 0. What exists in the range of about 01-20 micrometers is preferable.

ハウジング41そのものの形状は、円筒形や直方体など種々の形状を選択することができるが、板状の平膜エレメント1を充填密度が高くするためには直方体にするのが好ましい。また、本平膜モジュールを生物処理槽内に設けて使用する場合には、散気による旋回流がハウジング41内を通過し、平膜エレメント間の流路6を通過するように上下端部を開放することが好ましい。また、各平膜エレメント1の薬液注入ノズル25と薬液排出ノズル24をチューブ44を介してそれぞれ接続できる集合管43を付設している構造も好ましく使用することができる。材質は特に限定されず、形状の保持が可能な種々の材質を適宜選択して使用することができる。   Various shapes such as a cylindrical shape and a rectangular parallelepiped can be selected as the shape of the housing 41 itself. However, the plate-like flat membrane element 1 is preferably a rectangular parallelepiped in order to increase the packing density. Further, when the present flat membrane module is used in a biological treatment tank, the upper and lower end portions are arranged so that a swirling flow caused by aeration passes through the housing 41 and passes through the flow path 6 between the flat membrane elements. Opening is preferred. Moreover, the structure which attached the collecting pipe 43 which can each connect the chemical | medical solution injection | pouring nozzle 25 and the chemical | medical solution discharge nozzle 24 of each flat membrane element 1 via the tube 44 can also be used preferably. The material is not particularly limited, and various materials that can retain the shape can be appropriately selected and used.

(実施例1)
上部両端からそれぞれ50mmの位置に薬液注入ノズル25と薬液排出ノズル24を有したABS樹脂製の基板21(サイズ、500mm幅×1500mm長×6mm厚み)の両面にポリ弗化ビニリデン製の平膜23を貼り付けた図4に示す膜面積1.4mの平膜エレメント1を製作した。この基板の表面には、深さ0.5mm、幅2mmで平膜エレメント1の上下方向に対して15°斜向した溝が有り、流路材22と同様に処理水の流路となる。
Example 1
Flat film 23 made of polyvinylidene fluoride on both surfaces of an ABS resin substrate 21 (size, 500 mm width × 1500 mm length × 6 mm thickness) having a chemical solution injection nozzle 25 and a chemical solution discharge nozzle 24 at positions 50 mm from the upper ends, respectively. A flat membrane element 1 having a membrane area of 1.4 m 2 shown in FIG. On the surface of this substrate, there is a groove having a depth of 0.5 mm and a width of 2 mm and inclined by 15 ° with respect to the vertical direction of the flat membrane element 1.

この平膜エレメント1を図1の活性汚泥処理装置に取付けた。生物処理槽3は透明なアクリル製であり、中にRO水を充填することでエレメント表面が水槽の側面から観察できるようにした。   This flat membrane element 1 was attached to the activated sludge treatment apparatus of FIG. The biological treatment tank 3 is made of transparent acrylic, and the element surface can be observed from the side surface of the water tank by filling the inside with RO water.

薬液として5000ppmの次亜塩素酸ナトリウムを想定し、これと同じ比重(1.012)となるように、RO水に塩化ナトリウムおよび薬液の分散状況を目視確認できるようメチルバイオレットを添加した5リットルの薬液模擬水を用意した。   Assuming 5000 ppm sodium hypochlorite as a chemical solution, 5 liters of methyl violet added so that the dispersion state of sodium chloride and the chemical solution can be visually confirmed in RO water so as to have the same specific gravity (1.012) as this. Chemical solution simulated water was prepared.

この薬液模擬水を薬液槽5に入れ、バルブ17以外を開けることで薬液模擬水を薬液注入ライン9を通して平膜エレメント内に導入し、吸引ポンプで循環ライン8から薬液槽5に戻す循環運転を行った。この時、薬液注入の水頭差は0.5mであり、また薬液を排出する吸引ポンプの圧力は−5kPaであった。   This chemical solution simulated water is put into the chemical solution tank 5 and the operation other than the valve 17 is opened to introduce the chemical solution simulated water into the flat membrane element through the chemical solution injection line 9 and return to the chemical solution tank 5 from the circulation line 8 by the suction pump. went. At this time, the water head difference in the chemical liquid injection was 0.5 m, and the pressure of the suction pump for discharging the chemical liquid was −5 kPa.

薬液の注入開始から、生物処理槽の側面から平膜の表面を観測し、平膜表面の色、および平膜裏側のろ過室の色(影)がメチルバイオレッドで変化する様子を観察し、平膜エレメント1内での薬液模擬水の分散状況を確認した。その結果、約30秒で平膜エレメント1全体が着色した。   From the start of chemical injection, observe the surface of the flat membrane from the side of the biological treatment tank, observe the color of the flat membrane surface, and the color (shadow) of the filtration chamber on the back of the flat membrane change with methyl bio red, The dispersion state of the chemical simulation water in the flat membrane element 1 was confirmed. As a result, the entire flat membrane element 1 was colored in about 30 seconds.

(実施例2)
上部両端からそれぞれ50mmの位置に薬液注入ノズル25と薬液排出ノズル24、また下部に薬液排出ノズル35を有したABS樹脂製の基板121(サイズ、500mm幅×1500mm長×6mm厚み)の両面に図4と同様にポリ弗化ビニリデン製の平膜23を貼り付けた膜面積1.4mの図6に示す平膜エレメント101を製作した。この基板の表面には、深さ0.5mm、幅2mmで平膜エレメント1の上下方向に対して15°斜向した溝が有り、流路材22と同様に処理水の流路となる。
(Example 2)
Figures are shown on both sides of an ABS resin substrate 121 (size, 500 mm width × 1500 mm length × 6 mm thickness) having a chemical solution injection nozzle 25 and a chemical solution discharge nozzle 24 at positions 50 mm from both ends of the upper part, and a chemical solution discharge nozzle 35 at the lower part. The flat membrane element 101 shown in FIG. 6 having a membrane area of 1.4 m 2 on which a flat membrane 23 made of polyvinylidene fluoride was attached was manufactured in the same manner as in FIG. On the surface of this substrate, there is a groove having a depth of 0.5 mm and a width of 2 mm and inclined by 15 ° with respect to the vertical direction of the flat membrane element 1.

この平膜エレメント101を図8の活性汚泥処理装置に取付た。生物処理槽3は透明なアクリル製であり、中にRO水を充填することでエレメント表面が水槽の側面から観察できるようにした。   This flat membrane element 101 was attached to the activated sludge treatment apparatus of FIG. The biological treatment tank 3 is made of transparent acrylic, and the element surface can be observed from the side surface of the water tank by filling the inside with RO water.

薬液として5000ppmの次亜塩素酸ナトリウムを想定し、これと同じ比重(1.012)となるように、RO水に塩化ナトリウムおよび薬液の分散状況を目視確認できるようメチルバイオレットを添加した5リットルの薬液模擬水を用意した。   Assuming 5000 ppm sodium hypochlorite as a chemical solution, 5 liters of methyl violet added so that the dispersion of sodium chloride and the chemical solution can be visually confirmed in RO water so as to have the same specific gravity (1.012) as this. Chemical solution simulated water was prepared.

この薬液模擬水を薬液槽5に入れ、バルブ17以外を開けることで薬液模擬水を薬液注入ライン9を通して平膜エレメント内に導入し、吸引ポンプで循環ライン8から薬液槽5に戻す循環運転を行った。この時、薬液注入の水頭差は0.5mであり、また薬液を排出する吸引ポンプの圧力は−4kPaであった。   This chemical solution simulated water is put into the chemical solution tank 5 and the operation other than the valve 17 is opened to introduce the chemical solution simulated water into the flat membrane element through the chemical solution injection line 9 and return to the chemical solution tank 5 from the circulation line 8 by the suction pump. went. At this time, the water head difference in the chemical liquid injection was 0.5 m, and the pressure of the suction pump for discharging the chemical liquid was −4 kPa.

薬液の注入開始から、生物処理槽の側面から平膜の表面を観測し、平膜表面の色、および平膜裏側のろ過室の色(影)がメチルバイオレッドで変化する様子を観察し、平膜エレメント1内での薬液模擬水の分散状況を確認した。その結果、薬液排出ノズル35から薬液模擬水を抜出すことでさらに分散を加速させる効果が得られ、約20秒で平膜エレメント101全体が着色した。   From the start of chemical injection, observe the surface of the flat membrane from the side of the biological treatment tank, observe the color of the flat membrane surface, and the color (shadow) of the filtration chamber on the back of the flat membrane change with methyl bio red, The dispersion state of the chemical simulation water in the flat membrane element 1 was confirmed. As a result, the effect of further accelerating dispersion was obtained by extracting the chemical solution simulated water from the chemical solution discharge nozzle 35, and the entire flat membrane element 101 was colored in about 20 seconds.

(比較例1)
上部の片端から50mmの位置に設けたノズル51を薬液注入用に、下部の他端側から50mmの位置に設けたノズル52を薬液排出用に設置したABS樹脂製の基板221(サイズ、500mm幅×1500mm長×6mm厚み)の両面にポリ弗化ビニリデン製の平膜23を貼り付けた図7に示す膜面積1.4mの平膜エレメント201を製作した。この基板の表面には、深さ0.5mm、幅2mmで平膜エレメント1の上下方向に対して15°斜向した溝が有り、流路材22と同様に処理水の流路となる。
(Comparative Example 1)
An ABS resin substrate 221 (size, width of 500 mm) provided with a nozzle 51 provided at a position 50 mm from one upper end for injecting a chemical solution and a nozzle 52 provided at a position 50 mm from the other end of the lower end for discharging a chemical solution. A flat membrane element 201 having a membrane area of 1.4 m 2 shown in FIG. 7 was prepared by attaching a flat membrane 23 made of polyvinylidene fluoride on both sides (× 1500 mm length × 6 mm thickness). On the surface of this substrate, there is a groove having a depth of 0.5 mm and a width of 2 mm and inclined by 15 ° with respect to the vertical direction of the flat membrane element 1.

この平膜エレメント201を図1の活性汚泥処理装置に取付た。生物処理槽3は透明なアクリル製であり、中にRO水を充填することでエレメント表面が水槽の側面から観察できるようにした。   This flat membrane element 201 was attached to the activated sludge treatment apparatus of FIG. The biological treatment tank 3 is made of transparent acrylic, and the element surface can be observed from the side surface of the water tank by filling the inside with RO water.

薬液として5000ppmの次亜塩素酸ナトリウムを想定し、これと同じ比重(1.012)となるように、RO水に塩化ナトリウムおよび薬液の分散状況を目視確認できるようメチルバイオレットを添加した5リットルの薬液模擬水を用意した。   Assuming 5000 ppm sodium hypochlorite as a chemical solution, 5 liters of methyl violet added so that the dispersion of sodium chloride and the chemical solution can be visually confirmed in RO water so as to have the same specific gravity (1.012) as this. Chemical solution simulated water was prepared.

この薬液模擬水を薬液槽5に入れ、バルブ17以外を開けることで薬液模擬水を薬液注入ライン9を通して平膜エレメント内に導入し、吸引ポンプで循環ライン8から薬液槽5に戻す循環運転を行った。この時、薬液注入の水頭差は0.5mであり、また薬液を排出する吸引ポンプの圧力は−5kPaであった。   This chemical solution simulated water is put into the chemical solution tank 5 and the operation other than the valve 17 is opened to introduce the chemical solution simulated water into the flat membrane element through the chemical solution injection line 9 and return to the chemical solution tank 5 from the circulation line 8 by the suction pump. went. At this time, the water head difference in the chemical liquid injection was 0.5 m, and the pressure of the suction pump for discharging the chemical liquid was −5 kPa.

薬液の注入開始から、生物処理槽の側面から平膜の表面を観測し、平膜表面の色、および平膜裏側のろ過室の色(影)がメチルバイオレッドで変化する様子を観察し、平膜エレメント1内での薬液模擬水の分散状況を確認した。その結果、平膜エレメント201のエッジ部54以外のエリアは約40秒で着色したが、エッジ部54のエリアは15分後にも着色していなかった。   From the start of chemical injection, observe the surface of the flat membrane from the side of the biological treatment tank, observe the color of the flat membrane surface, and the color (shadow) of the filtration chamber on the back of the flat membrane change with methyl bio red, The dispersion state of the chemical simulation water in the flat membrane element 1 was confirmed. As a result, the area other than the edge portion 54 of the flat membrane element 201 was colored in about 40 seconds, but the area of the edge portion 54 was not colored even after 15 minutes.

本発明は、下水・廃水処理に用いられる平膜エレメントの洗浄方法に限らず、上水処理で用いられる平膜エレメントなどにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied not only to cleaning methods for flat membrane elements used for sewage / wastewater treatment, but also to flat membrane elements used for water treatment, etc., but the scope of application is limited to these. is not.

本発明に用いられる活性汚泥処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the activated sludge processing apparatus used for this invention. 本発明に用いられる平膜エレメントの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the flat membrane element used for this invention. 本発明に用いられるモジュールの一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the module used for this invention. 本発明に用いられる基板の他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of the board | substrate used for this invention. 図2の平膜エレメントのろ過室内での混合液の流れを示した模式図である。It is the schematic diagram which showed the flow of the liquid mixture in the filtration chamber of the flat membrane element of FIG. 本発明に用いられる平膜エレメントの他の例でのろ過室内での混合液の流れを示した模式図である。。It is the schematic diagram which showed the flow of the liquid mixture in the filtration chamber in the other example of the flat membrane element used for this invention. . 従来の平膜エレメントの一例およびろ過室内での混合液の流れを示したを示す模式図である。It is the schematic diagram which showed an example of the conventional flat membrane element and the flow of the liquid mixture in the filtration chamber. 図6の平膜エレメントを用いた活性汚泥処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the activated sludge processing apparatus using the flat membrane element of FIG. 図2のA−A断面を表した模式図である。It is the schematic diagram showing the AA cross section of FIG.

符号の説明Explanation of symbols

1 平膜エレメント
2 モジュール
3 生物処理槽
4 処理水槽
5 薬液槽
6 流路
7 処理水ライン
8 循環ライン
9 薬液注入ライン
10 原水供給ライン
11 吸引ポンプ
12 ブロア
13 pH計
14 pH計
15 散気装置
16 バルブ
17 バルブ
18 バルブ
21 基板
22 流路材
23 平膜
24 薬液排出ノズル
25 薬液注入ノズル
26 ろ過室
31 薬液(混合液)
32 薬液(混合液)
33 薬液(混合液)の比重による流れのベクトル
34 薬液(混合液)の循環による流れのベクトル
35 薬液排出ノズル
41 ハウジング
42 集水管
43 集水管
44 チューブ
51 薬液注入ノズル
52 薬液排出ノズル
53 薬液(混合液)の流れ
54 エッジ部
61 基板
101 平膜エレメント
121 基板
201 平膜エレメント
221 基板
DESCRIPTION OF SYMBOLS 1 Flat membrane element 2 Module 3 Biological treatment tank 4 Treated water tank 5 Chemical solution tank 6 Flow path 7 Treated water line 8 Circulation line 9 Chemical solution injection line 10 Raw water supply line 11 Suction pump 12 Blower 13 pH meter 14 pH meter 15 Air diffuser 16 Valve 17 Valve 18 Valve 21 Substrate 22 Channel material 23 Flat membrane 24 Chemical liquid discharge nozzle 25 Chemical liquid injection nozzle 26 Filtration chamber 31 Chemical liquid (mixed liquid)
32 Chemical liquid (mixed liquid)
33 Vector of flow due to specific gravity of chemical liquid (mixed liquid) 34 Vector of flow due to circulation of chemical liquid (mixed liquid) 35 Chemical liquid discharge nozzle 41 Housing 42 Water collection pipe 43 Water collection pipe 44 Tube 51 Chemical liquid injection nozzle 52 Chemical liquid discharge nozzle 53 Chemical liquid (mixing) Liquid) 54 Edge 61 Substrate 101 Flat membrane element 121 Substrate 201 Flat membrane element 221 Substrate

Claims (5)

基板の両面が流路材、平膜の順で覆われ、流路材が配されたろ過室と連通する薬液注入用と薬液排出用の少なくとも2つのノズルを該基板の上部に有する平膜エレメントの洗浄方法であって、水頭差を用いて薬液を注入し、該薬液および該ろ過室に貯留していた処理水の混合液を循環させることを特徴とする平膜エレメントの洗浄方法。 A flat membrane element having at least two nozzles for injecting chemicals and discharging chemicals at the upper part of the substrate, in which both sides of the substrate are covered in order of a channel material and a flat membrane, and communicate with a filtration chamber in which the channel material is arranged A cleaning method for a flat membrane element, wherein a chemical solution is injected using a water head difference, and a mixed solution of the chemical solution and treated water stored in the filtration chamber is circulated. 一定時間循環させた後に、循環を停止して静置することを特徴とする請求項1に記載の平膜エレメントの洗浄方法。 The method for washing a flat membrane element according to claim 1, wherein after the circulation for a certain period of time, the circulation is stopped and left standing. 注入される薬液と排出される薬液の濃度が略同一となった時点で静置することを特徴とする請求項2に記載の平膜エレメントの洗浄方法。 3. The flat membrane element cleaning method according to claim 2, wherein the cleaning is performed when the concentration of the injected chemical and the concentration of the discharged chemical are substantially the same. 注入される薬液の比重が処理水より大きいことを特徴とする請求項1〜3のいずれかに記載の平膜エレメントの洗浄方法。 The method for cleaning a flat membrane element according to any one of claims 1 to 3, wherein the specific gravity of the injected chemical solution is greater than that of the treated water. 前記平膜エレメントが流路材中の処理水流路が斜向させた構造を有する請求項1〜4のいずれかに記載の平膜エレメントの洗浄方法。 The flat membrane element cleaning method according to any one of claims 1 to 4, wherein the flat membrane element has a structure in which a treated water flow path in the flow path material is inclined.
JP2005010144A 2005-01-18 2005-01-18 Washing method of flat membrane element Pending JP2006198462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005010144A JP2006198462A (en) 2005-01-18 2005-01-18 Washing method of flat membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005010144A JP2006198462A (en) 2005-01-18 2005-01-18 Washing method of flat membrane element

Publications (1)

Publication Number Publication Date
JP2006198462A true JP2006198462A (en) 2006-08-03

Family

ID=36956924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005010144A Pending JP2006198462A (en) 2005-01-18 2005-01-18 Washing method of flat membrane element

Country Status (1)

Country Link
JP (1) JP2006198462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039677A (en) * 2007-08-10 2009-02-26 Toray Ind Inc Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus
CN102351307A (en) * 2011-09-07 2012-02-15 江苏蓝天沛尔膜业有限公司 Optimization pressure and on-line cleaning-membrane biological reactor (OPLC-MBR) dirt-resisting type plain membrane component system device
JP2015192937A (en) * 2014-03-31 2015-11-05 三機工業株式会社 Immersion type membrane separation unit and operational method thereof
CN112426886A (en) * 2020-11-23 2021-03-02 西安西热水务环保有限公司 Low-consumption high-efficiency flat ceramic membrane microfiltration system based on gas-liquid two-phase flow

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009039677A (en) * 2007-08-10 2009-02-26 Toray Ind Inc Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus
CN102351307A (en) * 2011-09-07 2012-02-15 江苏蓝天沛尔膜业有限公司 Optimization pressure and on-line cleaning-membrane biological reactor (OPLC-MBR) dirt-resisting type plain membrane component system device
CN102351307B (en) * 2011-09-07 2013-08-07 江苏蓝天沛尔膜业有限公司 Optimization pressure and on-line cleaning-membrane biological reactor (OPLC-MBR) dirt-resisting type plain membrane component system device
JP2015192937A (en) * 2014-03-31 2015-11-05 三機工業株式会社 Immersion type membrane separation unit and operational method thereof
CN112426886A (en) * 2020-11-23 2021-03-02 西安西热水务环保有限公司 Low-consumption high-efficiency flat ceramic membrane microfiltration system based on gas-liquid two-phase flow

Similar Documents

Publication Publication Date Title
WO2017086313A1 (en) Hollow fiber membrane module and method of cleaning same
DE60032142T2 (en) SYSTEM AND METHOD FOR PERMEATING BY FILTER AND FOR IN-SITU FILTER CLEANING
KR101363015B1 (en) Membrane unit and membrane separation device
JP2007505727A (en) Improved cleaning method for membrane modules
KR20080005993A (en) Chemical clean for membrane filter
KR20060080584A (en) Backwash
JP2018079442A (en) Siphon type diffuser pipe, membrane separation activated sludge device, and water treatment method
KR20090121833A (en) Hollow fiber membrane frame construction and hollow fiber membrane unit using the same
JP4867180B2 (en) Immersion membrane separator and chemical cleaning method therefor
JP2018167162A (en) Cleaning method of hollow fiber membrane module
JP2000343095A (en) Activated sludge treating device
JP4698274B2 (en) Filtration membrane cleaning method
JP2006198462A (en) Washing method of flat membrane element
JP5648387B2 (en) Aeration device and method of operating membrane separation device
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JP5743095B2 (en) Membrane separation activated sludge equipment
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JP4188226B2 (en) Filtration device and filtration method using the filtration device
JP5423184B2 (en) Filtration membrane module cleaning method and cleaning apparatus
JP6411051B2 (en) Immersion membrane separator and method for operating the same
WO2013047466A1 (en) Membrane module cleaning method
KR101927778B1 (en) Method for backwashing of ceramic membrane using a blower
JP2007209948A (en) Air diffuser cleaning method when collecting liquid filtrate of solid-liquid mixed treatment liquid
JP2003024752A (en) Filtering and separating membrane cartridge and filer device using the same
JP2006263584A (en) Method for cleaning membrane filtration apparatus