JP4698274B2 - Filtration membrane cleaning method - Google Patents

Filtration membrane cleaning method Download PDF

Info

Publication number
JP4698274B2
JP4698274B2 JP2005107664A JP2005107664A JP4698274B2 JP 4698274 B2 JP4698274 B2 JP 4698274B2 JP 2005107664 A JP2005107664 A JP 2005107664A JP 2005107664 A JP2005107664 A JP 2005107664A JP 4698274 B2 JP4698274 B2 JP 4698274B2
Authority
JP
Japan
Prior art keywords
membrane
filtration
water
treated
filtration membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005107664A
Other languages
Japanese (ja)
Other versions
JP2006281163A (en
Inventor
隆史 塚原
吉彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005107664A priority Critical patent/JP4698274B2/en
Priority to TW95135399A priority patent/TWI308504B/en
Publication of JP2006281163A publication Critical patent/JP2006281163A/en
Application granted granted Critical
Publication of JP4698274B2 publication Critical patent/JP4698274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、上水道や工業用水、その水源の河川水、湖沼水、地下水、貯水の濾過処理、下水二次処理水の濾過処理、下水、排水の濾過処理、あるいは有価物の分離または濃縮に用いられる濾過膜の洗浄方法に関するものである。   The present invention is used for water treatment, industrial water, river water, lake water, ground water, stored water filtration, sewage secondary treatment water filtration, sewage, wastewater filtration, or separation or concentration of valuable materials. The present invention relates to a method for cleaning a filtration membrane.

種々の被処理水の濾過に用いられる膜分離法は、濾過精度に優れること、設置スペースが少なくて済むこと、運転管理が容易であることなどの理由から、各種の濾過装置に用いられている。しかし、濾過の継続に伴い被処理水中の懸濁物質が膜表面に付着し、孔を閉塞するため徐々に濾過性能が低下し、ついには濾過できなくなってしまう。そこで、濾過性能を維持するために、空気等の気体を濾過膜の被処理水側に気泡として導入する気体洗浄(以後、空洗と呼ぶ)や濾過方向とは逆方向に濾液側から濾水あるいは清澄水等の逆洗媒体を噴出させて濾過膜表面に堆積した懸濁物質を除去する逆圧水洗浄(以後、逆洗と呼ぶ)が一般的に行われている。   Membrane separation methods used for the filtration of various types of water to be treated are used in various types of filtration devices because of their excellent filtration accuracy, small installation space, and easy operation management. . However, with the continuation of filtration, suspended substances in the water to be treated adhere to the membrane surface and block the pores, so that the filtration performance gradually deteriorates and finally filtration becomes impossible. Therefore, in order to maintain the filtration performance, gas such as air is introduced into the treated water side of the filtration membrane as air bubbles (hereinafter referred to as “air washing”), and the filtrate is filtered from the filtrate side in the direction opposite to the filtration direction. Alternatively, back-pressure water cleaning (hereinafter referred to as back-washing) is generally performed in which a backwash medium such as clarified water is ejected to remove suspended substances deposited on the surface of the filtration membrane.

空洗の洗浄効果を高めるため、膜モジュールの下方より気泡を噴出させつつ、濾過膜の被処理水側液面を低下させる方法(例えば、特許文献1および2参照)やオゾン化空気を濾過膜の被処理水側に気泡として注入する方法(例えば、特許文献3参照)が知られている。さらに、膜モジュール周囲に洗浄用の浮遊性固体を存在させ、空洗により前記浮遊性固体を膜と接触させることにより気体洗浄の洗浄効果を高める方法(例えば、特許文献4および5参照)が知られている。さらには、膜モジュールに洗浄用気泡を均一に供給し、隣り合う膜同士を積極的に接触させることにより空洗の洗浄効果を高める方法(例えば、特許文献6参照)が知られている。また、逆洗媒体に酸化作用のある次亜塩素酸ソーダを添加する方法、オゾン水を用いて逆洗する方法(例えば、特許文献7参照)やオゾン化加圧空気で逆洗する方法(例えば、特許文献8参照)が知られている。   In order to enhance the washing effect of air washing, a method of lowering the water level on the treated membrane side of the filtration membrane while jetting bubbles from below the membrane module (see, for example, Patent Documents 1 and 2) or ozonated air is used as a filtration membrane. There is known a method of injecting bubbles into the water to be treated (for example, see Patent Document 3). Furthermore, there is known a method for enhancing the cleaning effect of gas cleaning by allowing a floating solid for cleaning to exist around the membrane module and bringing the floating solid into contact with the membrane by air washing (for example, see Patent Documents 4 and 5). It has been. Furthermore, a method (for example, see Patent Document 6) is known in which cleaning bubbles are uniformly supplied to the membrane module and the adjacent membranes are positively brought into contact with each other to enhance the cleaning effect of the air washing. Further, a method of adding sodium hypochlorite having an oxidizing action to the backwash medium, a method of backwashing using ozone water (for example, refer to Patent Document 7), and a method of backwashing with ozonized pressurized air (for example, Patent Document 8) is known.

前述した次亜塩素酸ソーダやオゾン水などの酸化剤を用いた逆洗方法、空気やオゾン化空気を濾過膜の被処理水側に気泡として導入する空洗方法等は洗浄効果を高める上で有効であるが、被処理水の濁質等の条件によっては必ずしも十分安定な膜濾過流束が得られない。膜表面の懸濁物質を除去し高い膜濾過流束を維持するためには、空洗時の気体流量を多くしたり、空洗時間を長くすることが有効である。しかし、これらは空洗時における濾過膜の振動を増加させることになり、濾過膜に過剰な負荷を掛けるため濾過膜の寿命が短くなる。   The above-described backwashing method using an oxidizing agent such as sodium hypochlorite and ozone water, the air washing method of introducing air or ozonized air as bubbles to the treated water side of the filtration membrane, etc., increase the cleaning effect. Although effective, depending on conditions such as turbidity of the water to be treated, a sufficiently stable membrane filtration flux cannot always be obtained. In order to remove suspended substances on the membrane surface and maintain a high membrane filtration flux, it is effective to increase the gas flow rate at the time of air washing or lengthen the air washing time. However, these increase the vibration of the filtration membrane at the time of air washing, and an excessive load is applied to the filtration membrane, so that the life of the filtration membrane is shortened.

また、特許文献1および2に示した空洗方法は、気液界面における気泡の消失効果や気泡の破裂による液面の大きな揺れを利用する方法は洗浄効果を高める上で有効であるが、気泡の上昇に伴うクロスフロー流による洗浄効果や気泡体積分の排除効果に伴う濾過膜の振動による洗浄効果が半減してしまう問題がある。さらに、液面を低下させることにより濾過膜周囲の水が無くなるため、気泡の揺れにより濾過膜同士が直に接触し、擦れ合うことにより濾過膜が損傷、破断する恐れがある。さらに、空洗により一旦膜表面より剥離した懸濁物質は液面が下がる際に再度膜表面に付着してしまうため、濃縮された懸濁物質を完全に系外へ排出することができず洗浄効果が半減するといった問題がある。   In addition, the air washing methods shown in Patent Documents 1 and 2 are effective in enhancing the washing effect, while the method of using the bubble disappearance effect at the gas-liquid interface and the large fluctuation of the liquid level due to the bursting of the bubbles are effective. There is a problem that the cleaning effect due to the vibration of the filtration membrane due to the cleaning effect due to the cross flow flow accompanying the rise of the bubble and the elimination effect of the bubble volume is halved. Furthermore, since the water around the filtration membrane is eliminated by lowering the liquid level, the filtration membranes are in direct contact with each other due to the shaking of the bubbles, and the filtration membranes may be damaged or broken by rubbing against each other. In addition, suspended substances once separated from the membrane surface by air washing will adhere to the membrane surface again when the liquid level drops, so the concentrated suspended substance cannot be completely discharged out of the system. There is a problem that the effect is halved.

さらに、膜モジュールの処理水取水口近傍の濾過膜は、取水口までの距離が短く、濾過膜処理水側の流体(処理水)の圧力損失が小さいため、濾過膜の被処理水側と処理水側の圧力差、すなわち、膜差圧が大きくなるため、前述の部位の濾過膜は他の部位の濾過膜に比べて多量の被処理水を濾過することになり、膜汚染が急速に進行し濾過性能が低下する。つまり、濾過膜は長手方向に対して汚染斑が発生するため、可能な限り濾過膜全体を、特に前述の部位の濾過膜の洗浄を十分に行う必要があるが、当該空洗方法では、濾過膜の大部分は気泡と接触する時間が極めて短いため十分な洗浄効果が得られない。   Furthermore, the filtration membrane near the treated water intake of the membrane module has a short distance to the intake, and the pressure loss of the fluid (treated water) on the filtered membrane treated water side is small. Since the pressure difference on the water side, that is, the membrane differential pressure, becomes larger, the filtration membrane at the aforementioned site will filter a larger amount of treated water than the filtration membranes at other sites, and membrane contamination will proceed rapidly. The filtration performance is reduced. In other words, since the filter membrane is contaminated with respect to the longitudinal direction, it is necessary to sufficiently clean the entire filter membrane as much as possible, in particular, the filtration membrane of the aforementioned portion. Since most of the membrane is in contact with bubbles for a very short time, a sufficient cleaning effect cannot be obtained.

また、特許文献4および5に示した空洗方法は、浮遊性固体を使用するため、該浮遊性固体が膜モジュール内の膜束中に閉塞する、浮遊性固体が濾過膜と直に接触し、擦れ合うことにより濾過膜が損傷、破断する、空洗により剥離した懸濁物質を系外へ排出すると浮遊性固体も共に流出してしまうため、それを回収するための設備が過剰になってしまう、といった問題がある。
特公平6−71540号公報 特許3351037号公報 特開昭63−42703号公報 特開2001−190937号公報 特開平4−126528号公報 特表2001−510396号公報 特開平4−310220号公報 特開昭60−58222号公報
In addition, since the air washing methods shown in Patent Documents 4 and 5 use a floating solid, the floating solid is blocked in the membrane bundle in the membrane module, and the floating solid is in direct contact with the filtration membrane. The filter membrane is damaged or broken by rubbing, and the suspended solids separated by the air washing are discharged out of the system. As a result, floating solids also flow out, and the equipment for recovering them becomes excessive. There is a problem such as.
Japanese Patent Publication No. 6-71540 Japanese Patent No. 3351037 JP-A-63-42703 JP 2001-190937 A Japanese Patent Laid-Open No. 4-126528 JP-T-2001-510396 JP-A-4-310220 Japanese Unexamined Patent Publication No. 60-58222

本発明は、濾過膜の負荷を小さくしつつ効果的に洗浄を行う事を目的とする。   It is an object of the present invention to perform cleaning effectively while reducing the load on the filtration membrane.

本発明者らは、濾過膜の洗浄方法について鋭意検討した結果、以下の発明を完成するに至った。
すなわち、本発明は、下記の通りである。
(1)多数本の濾過膜で構成される膜モジュールの洗浄工程において、前記膜モジュールを構成している濾過膜の被処理水側に気体洗浄媒体を噴出させ、濾過膜全体に接触させることにより、濾過膜から懸濁物質を除去する気体洗浄工程Aと、前記膜モジュール内の被処理水を濾過や排出により一旦液面を低下させ、濾過膜周囲の被処理水液面を下げた後、逆洗媒体を濾過膜の処理水側から供給し、濾過膜の被処理水側に膜透過した逆洗媒体を噴出させる逆圧水洗浄により膜モジュール内の被処理水側液面を濾過膜の下方から上方へ上昇させつつ気体洗浄を行い、濾過膜より懸濁物質を除去する気体洗浄工程Bを組み合わせて洗浄することを特徴とする濾過膜の洗浄方法。
As a result of intensive studies on the filtration membrane cleaning method, the present inventors have completed the following invention.
That is, the present invention is as follows.
(1) In a cleaning step of a membrane module composed of a large number of filtration membranes, by blowing a gas cleaning medium to the treated water side of the filtration membrane constituting the membrane module and bringing it into contact with the entire filtration membrane After the gas cleaning step A for removing suspended substances from the filtration membrane, the liquid level of the treated water in the membrane module is once lowered by filtration or discharge, and the treated water liquid level around the filtration membrane is lowered, The backwash medium is supplied from the treated water side of the filtration membrane, and the treated water side liquid level in the membrane module is removed from the filtration membrane by back pressure water washing that ejects the backwash medium that has passed through the membrane to the treated water side of the filtration membrane. A method for cleaning a filtration membrane, wherein the cleaning is performed by combining gas cleaning step B for removing suspended substances from the filtration membrane by performing gas cleaning while raising from below to above.

)気体洗浄工程Bにおいて、膜モジュール内の被処理水側液面を下方から上方へ上昇させる手段として、被処理水を濾過膜の被処理水側に供給することにより膜モジュール内の被処理水液面を上昇させることを特徴とする(1)記載の濾過膜の洗浄方法。
)気体洗浄工程Bを気体洗浄工程Aの前に行うことを特徴とする(1)又は(2)に記載の濾過膜の洗浄方法。
( 2 ) In the gas cleaning step B, as a means for raising the treated water side liquid level in the membrane module from below to above, the treated water in the membrane module is supplied by supplying the treated water to the treated water side of the filtration membrane. The method for cleaning a filtration membrane according to (1), wherein the liquid level of the treated water is raised.
( 3 ) The method for cleaning a filtration membrane according to (1) or (2), wherein the gas cleaning step B is performed before the gas cleaning step A.

本発明によれば、濾過膜の負荷を小さくしつつ効果的に洗浄を行う事ができ、この結果、長期間に亘って高い膜濾過流束を維持することが可能である。   According to the present invention, it is possible to perform cleaning effectively while reducing the load on the filtration membrane. As a result, it is possible to maintain a high membrane filtration flux for a long period of time.

以下、本発明について、特にその好ましい形態につき、詳細に述べる。
本発明の対象となる被処理水は、河川水、湖沼水、地下水、貯水、下水二次処理水、工場排水、あるいは下水などである。上記の様な被処理水を膜で濾過すると、該被処理水中に含まれる懸濁物質や使用する膜の孔径以上の大きさの物質は膜で阻止され、いわゆる濃度分極やケーク層を形成すると同時に、膜を目詰まりさせたり、あるいは膜内部の網状組織に吸着される。その結果、被処理水を濾過した際の膜濾過流束は、清澄水を濾過した際のそれに比べて数分の1から数十分の1にまで低下してしまい、また濾過の継続に従って膜濾過流束は徐々に低下していく。
これを防止し、膜濾過流束を維持するために、空気等の気体を濾過膜の被処理水側に気泡として導入する空洗が一般に用いられる。しかし、前述したように空洗条件は濾過膜の耐久性の面からの制約で必ずしも十分な洗浄効果が得られていなかった。
In the following, the present invention will be described in detail with respect to preferred embodiments.
The water to be treated that is the subject of the present invention is river water, lake water, ground water, stored water, secondary sewage treated water, factory effluent, or sewage. When the water to be treated as described above is filtered through a membrane, suspended substances contained in the water to be treated and substances having a size larger than the pore size of the membrane to be used are blocked by the membrane, and so-called concentration polarization and a cake layer are formed. At the same time, the membrane is clogged or adsorbed by the network inside the membrane. As a result, the membrane filtration flux when the water to be treated is filtered is reduced from a fraction to a few tenths compared with that when the clarified water is filtered, and the membrane is continuously filtered. The filtration flux gradually decreases.
In order to prevent this and maintain the membrane filtration flux, air washing is generally used in which a gas such as air is introduced as bubbles on the treated water side of the filtration membrane. However, as described above, the air washing conditions are not always sufficient because of the limitation of the durability of the filtration membrane.

本発明の濾過膜の洗浄方法は、濾過膜の被処理水側に気体洗浄媒体を噴出させ、濾過膜全体に接触させることにより、濾過膜から懸濁物質を除去する気体洗浄工程Aと、膜モジュール内の被処理水を濾過や排出により一旦液面を低下させ、濾過膜周囲の被処理水液面を下げた後、被処理水側液面を下方から上方へ上昇させつつ濾過膜より懸濁物質を除去する気体洗浄工程Bを組み合わせて洗浄することにより、濾過膜全体に対して(a)気泡の上昇に伴うクロスフロー流による洗浄効果、(b)気泡体積分の液体排除効果に伴う濾過膜の振動による洗浄効果、(c)気液界面における気泡の消失効果や気泡の破裂による液面の大きな揺れによる洗浄効果を付与でき、かつ、(d)気体洗浄により一旦膜表面より剥離した懸濁物質が再度膜表面に付着しないため、濾過膜より剥離した懸濁物質を完全に系外へ排出することが可能となり、さらには、(e)膜モジュールの処理水取水口近傍の濾過膜が気泡と接触する時間を十分に確保できるため、従来の空洗方法に比べ効率よく懸濁物質を濾過膜表面より剥離させることができる。   The filtration membrane cleaning method of the present invention comprises a gas cleaning step A for removing suspended substances from a filtration membrane by ejecting a gas cleaning medium to the treated water side of the filtration membrane and bringing it into contact with the entire filtration membrane, and a membrane The treated water in the module is temporarily lowered by filtering or discharging, and then the treated water liquid level around the filtration membrane is lowered, and then the treated water side liquid level is raised from below to lift from the filtration membrane. By washing in combination with the gas washing step B for removing turbid substances, (a) the cleaning effect by the cross flow flow accompanying the rise of the bubbles, (b) the liquid removal effect for the volume of the bubbles The cleaning effect by vibration of the filtration membrane, (c) the disappearance effect of bubbles at the gas-liquid interface and the cleaning effect by the large fluctuation of the liquid level due to the bursting of bubbles, and (d) once delamination from the membrane surface by gas cleaning Suspended material again on membrane surface Since it does not adhere, it becomes possible to completely discharge the suspended substances separated from the filtration membrane, and (e) allow sufficient time for the filtration membrane near the treated water intake of the membrane module to contact the bubbles. Therefore, the suspended substance can be efficiently separated from the surface of the filtration membrane as compared with the conventional air washing method.

気体洗浄工程Bにおいて、膜モジュール内の被処理水を濾過や排出により一旦液面を低下させた時の被処理水液面の水位は濾過膜の鉛直方向のいずれの水位でも良いが、前述に示した5つの洗浄効果を濾過膜全体に付与するために、濾過膜の鉛直方向の最下端部まで低下させることが好ましい。また、気体洗浄工程Bにおいて、濾過膜周囲の被処理水液面を下方から上方へ上昇させる方法として、逆洗を行いつつ濾過膜周囲の被処理水液面を上げる方法や被処理水を供給しつつ濾過膜周囲の被処理水液面を上げる方法があるが、逆洗により濾過膜周囲の被処理水液面を上げる方法が好ましい。なお、逆洗は(1)常に本発明の空洗と同時に行うと洗浄効果が高いが、(2)逆洗の導入に先立ち本発明の空洗のみを行っても良い。あるいは(3)逆洗の導入を行った後本発明の空洗のみを行っても良い。さらに、(4)被処理水を導入しながら逆洗を導入し同時に本発明の空洗を行っても良いし、さらには、(1)〜(4)を交互に組み合わせても良い。   In the gas cleaning step B, the water level of the water surface to be treated when the water level in the membrane module is once lowered by filtration or discharge may be any water level in the vertical direction of the filtration membrane. In order to impart the five cleaning effects shown to the entire filtration membrane, it is preferable to lower it to the lowest end in the vertical direction of the filtration membrane. Further, in the gas cleaning step B, as a method of raising the treated water level around the filtration membrane from below to above, a method of raising the treated water level around the filtration membrane while performing backwashing or supplying treated water While there is a method of raising the surface of the water to be treated around the filtration membrane, a method of raising the surface of the water to be treated around the filtration membrane by backwashing is preferred. In addition, although backwashing (1) always performs simultaneously with the empty washing of the present invention, the cleaning effect is high, but (2) prior to the introduction of the backwashing, only the empty washing of the present invention may be performed. Or (3) You may perform only the air washing of this invention after introducing backwashing. Furthermore, (4) The backwashing may be introduced while introducing the water to be treated, and at the same time the air washing of the present invention may be performed, and furthermore, (1) to (4) may be combined alternately.

ここで、濾過膜の洗浄工程において、洗浄工程時間中における気体洗浄工程Aと気体洗浄工程Bの各々の工程時間の比率は任意であるが、1:10〜10:1の比率の範囲で行うのが好ましい。
さらに、液面を上昇させつつ空洗を行う場合は、濾過膜周囲に水が無い状態は短時間となり、濾過膜同士が直に接触し、擦れ合うことによる濾過膜の損傷、破断や膜の乾燥を防止できる。しかも、従来の空洗方法に比べて効果的な洗浄効果が得られるため、使用する気体洗浄媒体の量を低減することも可能であり、もって、濾過膜、膜モジュールの耐久性、またはエネルギー効率の面でも有効である。
Here, in the cleaning process of the filtration membrane, the ratio of the process time of each of the gas cleaning process A and the gas cleaning process B during the cleaning process time is arbitrary, but is performed in the range of the ratio of 1:10 to 10: 1. Is preferred.
Furthermore, when performing washing while raising the liquid level, the state where there is no water around the filtration membrane is a short time, the filtration membranes are in direct contact with each other, and the filtration membranes are damaged, broken or dried. Can be prevented. Moreover, since an effective cleaning effect can be obtained compared to the conventional air cleaning method, it is possible to reduce the amount of gas cleaning medium to be used, so that the durability of the filtration membrane, membrane module, or energy efficiency can be reduced. This is also effective.

また、本発明の濾過膜の被処理水側液面を下方から上方へ上昇させつつ濾過膜の被処理水側に気体洗浄媒体を気泡状に噴出させて空洗を行う際に、気体洗浄媒体として塩素、二酸化塩素、過酸化水素、オゾンガスなどの酸化剤を少なくとも1つ以上を含む気体を用いる、あるいは、前述の酸化剤を少なくとも1つ以上含む逆洗を併用すると一層の洗浄効果を得ることができる。空洗時間は、濾過圧力の回復性と濾過設備の時間稼働率を勘案して適宜決めればよい。   The gas cleaning medium is used when air cleaning is performed by blowing the gas cleaning medium in the form of bubbles to the water to be treated of the filtration membrane while raising the liquid surface to be treated of the filtration membrane of the present invention from below to above. Using a gas containing at least one or more oxidizing agents such as chlorine, chlorine dioxide, hydrogen peroxide, ozone gas, etc., or using backwashing containing at least one or more of the above oxidizing agents together, a further cleaning effect can be obtained. Can do. The washing time may be appropriately determined in consideration of the recovery performance of the filtration pressure and the time availability of the filtration equipment.

本発明の濾過膜は特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン;テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(EPE)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン−エチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂;ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド等のスーパーエンジニアリングプラスチック;酢酸セルロース、エチルセルロース等のセルロース類;ポリアクリロニトリル;ポリビニルアルコールの単独及びこれらの混合物が挙げられる。   The filtration membrane of the present invention is not particularly limited. For example, polyolefins such as polyethylene, polypropylene, and polybutene; tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP) Tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene-ethylene copolymer Fluorine resins such as (ECTFE) and polyvinylidene fluoride (PVDF); polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, polyphenylenesulfur Super engineering plastics such as I de; cellulose acetate, cellulose such as ethyl cellulose; polyacrylonitrile; alone and mixtures of these polyvinyl alcohol.

さらに、オゾン等の強力な酸化剤を併用する場合は、セラミック等の無機膜、ポリフッ化ビニリデン(PVDF)膜、ポリ4フッ化エチレン(PTFE)膜、エチレン−テトラフルオロエチレン共重合体(ETFE)膜、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)膜等のフッ素系樹脂膜等の有機膜を適用することが出来る。
このような濾過膜のうち、その孔径領域がナノ濾過(NF)膜から精密濾過(MF)膜であるものが使用し得る。特に分画分子量が100程度のNFから平均孔径が10μm以下のMFが好ましい。
Furthermore, when a strong oxidizing agent such as ozone is used in combination, an inorganic film such as ceramic, a polyvinylidene fluoride (PVDF) film, a polytetrafluoroethylene (PTFE) film, an ethylene-tetrafluoroethylene copolymer (ETFE) An organic film such as a fluororesin film such as a film or a tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) film can be used.
Among such filtration membranes, those having a pore size region from a nanofiltration (NF) membrane to a microfiltration (MF) membrane can be used. In particular, MF having a fractional molecular weight of about 100 to MF having an average pore size of 10 μm or less is preferable.

濾過膜の形状としては、中空糸状、ウェーブをつけた中空糸状、平膜状、プリーツ状、スパイラル状、チューブラー状など任意の形状を用いることができるが、単位体積当たりの膜面積が大きくとれる中空糸状がより好ましい。本発明に用いる膜モジュールとしては、多数本の濾過膜からなる膜束の上下端部が接着固定され、どちらか一方、もしくは両方の端部が開口されたものであり、接着固定される端部の断面形状としては、円形の他、三角形、四角形、六角形、楕円形等であってもよいが、特に、端部の断面形状が円形であり、上端部に膜の開口部を有し、下端部に気体を濾過膜表面に導入する気体導入孔を有する膜モジュールが好ましい。   As the shape of the filtration membrane, any shape such as hollow fiber shape, waved hollow fiber shape, flat membrane shape, pleated shape, spiral shape, tubular shape, etc. can be used, but the membrane area per unit volume can be increased. A hollow fiber shape is more preferable. As the membrane module used in the present invention, the upper and lower ends of a membrane bundle composed of a large number of filtration membranes are bonded and fixed, and one or both ends are opened, and the ends to be bonded and fixed The cross-sectional shape may be a circle, a triangle, a quadrangle, a hexagon, an ellipse, etc., in particular, the cross-sectional shape of the end portion is circular, and the upper end portion has a membrane opening, A membrane module having a gas introduction hole for introducing gas to the surface of the filtration membrane at the lower end is preferred.

さらに、膜モジュールの設置方法は、地面に対して垂直方向、水平方向のいずれでもよいが、特に垂直方向の設置が好ましい。濾過方式としては、全量濾過方式でもクロスフロー濾過方式でもよい。濾過圧力の付与方法としては、加圧濾過方式、吸引濾過方式あるいは水頭差方式でもよい。また中空糸状膜の場合、内圧濾過、外圧濾過のどちらでもよい。
本発明は、上述のごとく構成したので、長期間にわたって高い膜濾過流束を維持することができる。
Furthermore, the installation method of the membrane module may be either a vertical direction or a horizontal direction with respect to the ground, but installation in the vertical direction is particularly preferable. The filtration method may be a whole amount filtration method or a cross flow filtration method. As a method for applying the filtration pressure, a pressure filtration method, a suction filtration method, or a water head difference method may be used. In the case of a hollow fiber membrane, either internal pressure filtration or external pressure filtration may be used.
Since the present invention is configured as described above, a high membrane filtration flux can be maintained over a long period of time.

以下に、多数本の濾過膜で構成される膜モジュールとして、(1)多数本の濾過膜をケース内に収納しているケーシング収納型膜モジュールおよび(2)多数本の濾過膜を直接被処理水中に浸漬する浸漬型膜モジュールの各々について、本発明の実施例を示す。   In the following, as membrane modules composed of a large number of filtration membranes, (1) a casing storage type membrane module in which a large number of filtration membranes are housed in a case and (2) a large number of filtration membranes are directly treated. Examples of the present invention are shown for each of the submerged membrane modules immersed in water.

図1にケーシング収納型膜モジュールを用いた例を示す。被処理水1として、濁度が5〜20度の河川表流水を用いた。被処理水1は循環タンク2を経て原水供給ポンプ3により膜モジュール4へ圧送され、得られた濾水は逆洗タンクを兼用する濾水タンク5に貯められる。逆洗時に、濾水タンク5中の濾水は逆洗ポンプ6により膜モジュール4へ送られ逆洗が行われるが、ここで逆洗ポンプ6から膜モジュール4へ至る配管の途中に酸化剤タンク7の酸化剤を、酸化剤送液ポンプ8により逆洗水に添加することができる。
また、膜モジュール4に空気を導入する空洗は、コンプレッサー9で圧縮した空気を、膜モジュール4の被処理水側へ供給して行われる。
FIG. 1 shows an example using a casing storage type membrane module. As the treated water 1, river surface water having a turbidity of 5 to 20 degrees was used. The treated water 1 is pumped to the membrane module 4 by the raw water supply pump 3 through the circulation tank 2, and the obtained filtrate is stored in a filtrate tank 5 that also serves as a backwash tank. At the time of backwashing, the filtrate in the drainage tank 5 is sent to the membrane module 4 by the backwashing pump 6 and backwashing is performed. Here, the oxidant tank is placed in the middle of the piping from the backwashing pump 6 to the membrane module 4. 7 oxidant can be added to the backwash water by the oxidant feed pump 8.
Further, the air washing for introducing air into the membrane module 4 is performed by supplying the air compressed by the compressor 9 to the treated water side of the membrane module 4.

被処理水の液面を下げる方法としては、気体洗浄工程Bを実施する直前に、膜モジュール4の下方より被処理水を排出する方法、もしくは、原水供給ポンプ3による原水供給を停止した状態で、コンプレッサー9の圧縮空気を用いて膜モジュール内部の被処理水を濾過し、被処理水を排出する方法、などである。これらの手段により被処理水の液面を下げた後、原水供給ポンプ3により膜モジュール4へ原水供給をしつつ空洗を行う、もしくは、逆洗をしつつ空洗を行うことにより、本発明の気体洗浄効果を得ることができる。   As a method of lowering the level of the water to be treated, immediately before the gas cleaning step B is performed, the water to be treated is discharged from the lower side of the membrane module 4 or the raw water supply by the raw water supply pump 3 is stopped. And a method of filtering the water to be treated inside the membrane module using the compressed air of the compressor 9 and discharging the water to be treated. After lowering the level of the water to be treated by these means, the raw water supply pump 3 performs raw washing while supplying the raw water to the membrane module 4, or by performing washing with backwashing and performing air washing. The gas cleaning effect can be obtained.

本実施例における運転は、(1)濾過、(2)本発明の空洗および逆洗を同時に実施、(3)剥離した懸濁物質を排出、の工程で行う。ただし、ここで示した運転工程は本発明の使用方法の一例であり、運転工程の順序はこれに限定されるものではない。
膜モジュール4は、内径が0.7mmφ、外径が1.3mmφ、平均孔径0.1μmのPVDF(ポリフッ化ビニリデン)製中空糸状精密濾過(MF)膜を3インチ径のPVC(ポリ塩化ビニル)ケーシングに納めた外圧加圧濾過式ケーシング収納型膜モジュールである。当該膜モジュールの膜面積は7m2である。
The operation in this example is performed in the steps of (1) filtration, (2) empty washing and backwashing of the present invention at the same time, and (3) discharging the suspended suspended matter. However, the operation process shown here is an example of the usage method of this invention, and the order of an operation process is not limited to this.
The membrane module 4 is made of a PVDF (polyvinylidene fluoride) hollow fiber microfiltration (MF) membrane having an inner diameter of 0.7 mmφ, an outer diameter of 1.3 mmφ, and an average pore size of 0.1 μm. It is an external pressure press filtration type casing housing type membrane module housed in a casing. The membrane area of the membrane module is 7 m 2 .

図2に浸漬型膜モジュールを用いた例を示す。被処理水1として、濁度が5〜20度の河川表流水を用いた。被処理水1は原水供給ポンプ3により浸漬型膜モジュールが設置された浸漬槽11へ送水され、吸引ポンプ12により得られた濾水は逆洗タンクを兼用する濾水タンク5に貯められる。逆洗時に、濾水タンク5中の濾水は逆洗ポンプ6により浸漬型膜モジュールへ送られ逆洗が行われるが、ここで逆洗ポンプ6から浸漬型膜モジュールへ至る配管の途中に酸化剤タンク7の酸化剤を、酸化剤送液ポンプ8により逆洗水に添加することができる。   FIG. 2 shows an example using an immersion membrane module. As the treated water 1, river surface water having a turbidity of 5 to 20 degrees was used. The treated water 1 is fed by the raw water supply pump 3 to the immersion tank 11 in which the immersion membrane module is installed, and the filtrate obtained by the suction pump 12 is stored in the filtrate tank 5 that also serves as a backwash tank. At the time of backwashing, the filtrate in the drainage tank 5 is sent to the submerged membrane module by the backwashing pump 6 and backwashing is performed. Here, oxidation is performed in the middle of the piping from the backwashing pump 6 to the submerged membrane module. The oxidant in the oxidant tank 7 can be added to the backwash water by the oxidant feed pump 8.

また、浸漬型膜モジュールに空気を導入する空洗は、コンプレッサー9で圧縮した空気を、浸漬型膜モジュールの被処理水側へ供給して行われる。被処理水の液面を下げる方法としては、気体洗浄工程Bを実施する直前に、浸漬槽11の下方より被処理水を排出する方法、もしくは、原水供給ポンプ3による送水を停止した状態で、吸引ポンプ12を用いて浸漬槽11の被処理水を濾過することで被処理水を排出する方法、などである。これらの手段により被処理水の液面を下げた後、原水供給ポンプ3により浸漬槽11へ原水供給をしつつ空洗を行う、もしくは、逆洗をしつつ空洗を行うことにより、本発明の気体洗浄効果を得ることができる。   In addition, air washing for introducing air into the submerged membrane module is performed by supplying the air compressed by the compressor 9 to the treated water side of the submerged membrane module. As a method of lowering the liquid level of the water to be treated, immediately before performing the gas cleaning step B, in a method of discharging the water to be treated from below the immersion tank 11, or in a state where water supply by the raw water supply pump 3 is stopped, For example, the water to be treated is discharged by filtering the water to be treated in the immersion tank 11 using the suction pump 12. After lowering the liquid level of the water to be treated by these means, the raw water supply pump 3 is used to wash the raw water while supplying the raw water to the immersion tank 11, or by performing the air washing while backwashing. The gas cleaning effect can be obtained.

本実施例における運転は、(1)濾過、(2)本発明の空洗および逆洗を同時に実施、(3)剥離した懸濁物質を排出、の工程で行う。ただし、ここで示した運転工程は本発明の使用方法の一例であり、運転工程の順序はこれに限定されるものではない。
前記浸漬型膜モジュールは、内径が0.7mmφ、外径が1.3mmφ、平均孔径0.1μmのPVDF(ポリフッ化ビニリデン)製中空糸状精密濾過(MF)膜を6インチ径相当に束ねた外圧吸引濾過式浸漬型モジュールである。当該膜モジュールの膜面積は50m2である。
The operation in this example is performed in the steps of (1) filtration, (2) empty washing and backwashing of the present invention at the same time, and (3) discharging the suspended suspended matter. However, the operation process shown here is an example of the usage method of this invention, and the order of an operation process is not limited to this.
The submerged membrane module has an external pressure in which a PVDF (polyvinylidene fluoride) hollow fiber microfiltration (MF) membrane having an inner diameter of 0.7 mmφ, an outer diameter of 1.3 mmφ, and an average pore size of 0.1 μm is bundled in a 6-inch diameter equivalent. It is a suction filtration type immersion module. The membrane area of the membrane module is 50 m 2 .

本発明を実施例に基づいて説明する。実施例2および比較例2の運転状況を図3に示す。   The present invention will be described based on examples. The operating conditions of Example 2 and Comparative Example 2 are shown in FIG.

[実施例1]
膜モジュールとして前記ケーシング収納型膜モジュールを用いた。濾過は膜モジュール4へ被処理水1を一定流量(膜濾過流束3m/m/日、1日で膜面積1mあたり3mの濾水が得られる流量)で供給する定流量濾過とし、また、膜濾過水量と循環水量の比を5対1としたクロスフロー方式で行った。運転条件は、濾過を29分、空洗(同時に逆洗を実施)を60秒、排出30秒の繰り返しで行った。空洗用の気体はコンプレッサーにより圧縮した空気を用いた。また、気体洗浄工程Bの直前に被処理水を膜モジュールより排出し被処理水液面を下げた。ここで、被処理水液面は逆洗水の流入により徐々に上昇するが、空洗洗浄60秒間の内、最初の30秒で被処理水液面を逆洗水により徐々に上昇させつつ空洗(気体洗浄工程B)を実施し、残りの30秒は濾過膜全体に被処理水が接触した状態で空洗(気体洗浄工程A)を行った。空洗に用いた空気流量は2Nm/hrであった。この時の濾水回収率(得られた濾水量/使用した被処理水量)は93.7%であった。上記運転条件で約1ヶ月間運転した後の膜供給圧力は、150kPaであった。
[Example 1]
The casing housing type membrane module was used as the membrane module. Filtration is a constant flow filtration that supplies the treated water 1 to the membrane module 4 at a constant flow rate (a flow rate that provides 3 m 3 of filtrate per 1 m 2 of membrane area in a day with a membrane filtration flux of 3 m 3 / m 2 / day). In addition, the cross-flow method was performed in which the ratio of the membrane filtered water amount and the circulating water amount was 5: 1. The operating conditions were as follows: filtration for 29 minutes, air washing (at the same time back washing) for 60 seconds, and discharge for 30 seconds. As the air washing gas, air compressed by a compressor was used. Further, immediately before the gas cleaning step B, the water to be treated was discharged from the membrane module and the liquid level of the water to be treated was lowered. Here, the surface of the water to be treated gradually rises due to the inflow of the backwash water. However, the surface of the water to be treated is gradually raised by the backwash water in the first 30 seconds within the 60 seconds of the air washing. Washing (gas washing step B) was carried out, and the remaining 30 seconds were subjected to air washing (gas washing step A) with the water to be treated in contact with the entire filtration membrane. The air flow rate used for air washing was 2 Nm 3 / hr. The filtrate recovery rate (the amount of filtrate obtained / the amount of treated water used) at this time was 93.7%. The membrane supply pressure after operating for about one month under the above operating conditions was 150 kPa.

[比較例1]
実施例1において、気体洗浄工程Bを行わず実施例1と同じ流量で、同量の空気を使って空洗(気体洗浄工程A)を行った(空洗時間は60秒)。それ以外は実施例1と同様に膜濾過運転を実施した。この時の濾水回収率は実施例1と同じく93.7%であった。約1ヶ月間運転した後の膜供給圧力は、300kPaに到達した。
[Comparative Example 1]
In Example 1, the gas washing step B was not performed, and the air washes (gas washing step A) was performed using the same amount of air at the same flow rate as in Example 1 (the air washing time was 60 seconds). Otherwise, the membrane filtration operation was carried out in the same manner as in Example 1. The filtrate recovery rate at this time was 93.7% as in Example 1. The membrane supply pressure after operating for about one month reached 300 kPa.

[実施例2]
膜モジュールとして前記浸漬型膜モジュールを用いた。濾過は浸漬槽11へ被処理水1を供給し、吸引ポンプ12により一定流量(膜濾過流束2.0m/m/日、1日で膜面積1mあたり2mの濾水が得られる流量)で濾過する定流量濾過とした。運転条件は、濾過を29分、空洗(同時に逆洗を実施)を60秒、排出30秒の繰り返しで行った。気体洗浄用の気体はコンプレッサーにより圧縮した空気を用いた。また、気体洗浄工程Bの直前に被処理水を浸漬槽より排出し、被処理水液面を下げた。ここで、被処理水液面は逆洗水の流入により徐々に上昇するが、空洗60秒間の内、最初の30秒で被処理水液面を逆洗水により徐々に上昇させつつ空洗(気体洗浄工程B)を実施し、残りの30秒は濾過膜全体に被処理水が接触した状態で空洗(気体洗浄工程A)を行った。
[Example 2]
The immersion type membrane module was used as the membrane module. Filtration supplies the water to be treated 1 to the immersion tank 11, and a filtered flow of 2 m 3 per 1 m 2 of membrane area is obtained per day with a constant flow rate (membrane filtration flux 2.0 m 3 / m 2 / day) by a suction pump 12. Constant flow rate filtration). The operating conditions were as follows: filtration for 29 minutes, air washing (at the same time back washing) for 60 seconds, and discharge for 30 seconds. As the gas for gas cleaning, air compressed by a compressor was used. Moreover, the to-be-processed water was discharged | emitted from the immersion tank immediately before the gas washing process B, and the to-be-processed water liquid level was lowered | hung. Here, the surface of the water to be treated rises gradually due to the inflow of the backwash water, but in the 60 seconds of the air washing, the surface of the water to be treated is gradually raised by the backwash water in the first 30 seconds. (Gas washing process B) was performed, and the remaining 30 seconds were subjected to air washing (gas washing process A) in a state where the water to be treated was in contact with the entire filtration membrane.

空洗に用いた空気流量は4Nm/hrであった。この時の濾水回収率(得られた濾水量/使用した被処理水量)は95.6%であった。図3(縦軸は膜間差圧、横軸は運転時間を表す)に示すように、膜間差圧の単位時間あたりの上昇速度(実施例2の運転中に上昇した膜間差圧kPaをその間の運転時間hrで除した値)は各々0.027kPa/hr(図3中の運転時間950〜1000hr)と0.0092kPa/hr(図3中の運転時間1050〜1075hr)であり、安定した濾過運転が可能であった。 The air flow rate used for air washing was 4 Nm 3 / hr. The filtrate recovery rate (the amount of filtrate obtained / the amount of treated water used) at this time was 95.6%. As shown in FIG. 3 (the vertical axis represents the transmembrane pressure difference and the horizontal axis represents the operation time), the rate of increase of the transmembrane pressure difference per unit time (the transmembrane pressure difference kPa increased during the operation of Example 2). Are divided by the operation time hr during the period) and are 0.027 kPa / hr (operation time 950 to 1000 hr in FIG. 3) and 0.0092 kPa / hr (operation time 1050 to 1075 hr in FIG. 3), respectively. Filtration operation was possible.

[比較例2]
実施例2の連続運転の途中の一部で、気体洗浄工程Bを行わず実施例2と同じ流量で、同量の空気を使って空洗(気体洗浄工程A)を行った(空洗時間は60秒)。それ以外は実施例2と同様に膜濾過運転を実施した。この時の濾水回収率は実施例2と同じく95.6%であった。図3に示すように、膜間差圧の単位時間あたりの上昇速度(比較例2の運転中に上昇した膜間差圧kPaをその間の運転時間hrで除した値)は0.135kPa/hr(図3中の運転時間1000〜1050hr)であり、実施例2に対して膜間差圧の上昇速度は5〜14倍程度高くなり、安定した濾過運転ができないことがわかった。
[Comparative Example 2]
In part of the continuous operation of Example 2, the gas cleaning step B was not performed, and the air washes (gas cleaning step A) was performed using the same amount of air at the same flow rate as in Example 2 (air cleaning time) Is 60 seconds). Otherwise, the membrane filtration operation was performed in the same manner as in Example 2. The filtrate recovery rate at this time was 95.6% as in Example 2. As shown in FIG. 3, the rate of increase of the transmembrane pressure difference per unit time (the value obtained by dividing the transmembrane pressure difference kPa increased during the operation of Comparative Example 2 by the operation time hr during the operation) is 0.135 kPa / hr. (The operation time is 1000 to 1050 hr in FIG. 3), and the increase rate of the transmembrane pressure difference is about 5 to 14 times higher than that of Example 2, indicating that stable filtration operation cannot be performed.

河川水、湖沼水、地下水、貯水、下水二次処理水、工場排水、下水等を被処理水として濾過膜を適用する、または有価物の分離、或いは濃縮のために濾過膜を適用する分野で好適に利用できる。   In fields where river membranes, lake water, groundwater, stored water, secondary treated water from sewage, industrial effluent, sewage, etc. are used as treated water, or filter membranes are used for separation or concentration of valuable materials It can be suitably used.

本発明の膜の洗浄方法を組み込んだ処理フローの一例を示したフロー図。The flowchart which showed an example of the processing flow incorporating the cleaning method of the film | membrane of this invention. 本発明の膜の洗浄方法を組み込んだ処理フローの一例を示したフロー図。The flowchart which showed an example of the processing flow incorporating the cleaning method of the film | membrane of this invention. 実施例2と比較例2の洗浄効果を比較したグラフ。The graph which compared the cleaning effect of Example 2 and Comparative Example 2.

Claims (3)

多数本の濾過膜で構成される膜モジュールの洗浄工程において、前記膜モジュールを構成している濾過膜の被処理水側に気体洗浄媒体を噴出させ、濾過膜全体に接触させることにより、濾過膜から懸濁物質を除去する気体洗浄工程Aと、前記膜モジュール内の被処理水を濾過や排出により一旦液面を低下させ、濾過膜周囲の被処理水液面を下げた後、逆洗媒体を濾過膜の処理水側から供給し、濾過膜の被処理水側に膜透過した逆洗媒体を噴出させる逆圧水洗浄により膜モジュール内の被処理水側液面を濾過膜の下方から上方へ上昇させつつ気体洗浄を行い、濾過膜より懸濁物質を除去する気体洗浄工程Bを組み合わせて洗浄することを特徴とする濾過膜の洗浄方法。 In the washing step of the membrane module composed of a large number of filtration membranes, a gas washing medium is ejected to the treated water side of the filtration membrane constituting the membrane module, and the membrane is brought into contact with the entire filtration membrane. A gas washing step A for removing suspended substances from the membrane, and once the water level in the membrane module is lowered by filtration or discharge, the liquid level around the filtration membrane is lowered, and then the backwash medium Is supplied from the treated water side of the filtration membrane, and the treated water side liquid level in the membrane module is raised from the lower side of the filtration membrane by back pressure water washing that ejects the backwash medium that has passed through the membrane to the treated water side of the filtration membrane. A method for cleaning a filtration membrane, comprising cleaning in combination with a gas cleaning step B for removing suspended substances from the filtration membrane by performing gas cleaning while being raised to a flow rate. 気体洗浄工程Bにおいて、膜モジュール内の被処理水側液面を下方から上方へ上昇させる手段として、被処理水を濾過膜の被処理水側に供給することにより膜モジュール内の被処理水液面を上昇させることを特徴とする請求項1記載の濾過膜の洗浄方法。   In the gas cleaning step B, the water to be treated in the membrane module is supplied by supplying the water to be treated to the treated water side of the filtration membrane as means for raising the liquid surface to be treated in the membrane module from below to above. 2. The filtration membrane cleaning method according to claim 1, wherein the surface is raised. 気体洗浄工程Bを気体洗浄工程Aの前に行うことを特徴とする請求項1又は2に記載の濾過膜の洗浄方法。 The method of cleaning a filtration membrane according to claim 1 or 2 , wherein the gas cleaning step B is performed before the gas cleaning step A.
JP2005107664A 2005-04-04 2005-04-04 Filtration membrane cleaning method Active JP4698274B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005107664A JP4698274B2 (en) 2005-04-04 2005-04-04 Filtration membrane cleaning method
TW95135399A TWI308504B (en) 2005-04-04 2006-09-25 Method of operating membrane filtration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005107664A JP4698274B2 (en) 2005-04-04 2005-04-04 Filtration membrane cleaning method

Publications (2)

Publication Number Publication Date
JP2006281163A JP2006281163A (en) 2006-10-19
JP4698274B2 true JP4698274B2 (en) 2011-06-08

Family

ID=37403615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005107664A Active JP4698274B2 (en) 2005-04-04 2005-04-04 Filtration membrane cleaning method

Country Status (1)

Country Link
JP (1) JP4698274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4969580B2 (en) * 2006-10-03 2012-07-04 旭化成ケミカルズ株式会社 Operation method of membrane separator
JP5181987B2 (en) * 2007-10-05 2013-04-10 東レ株式会社 Cleaning method for submerged membrane module
KR102118384B1 (en) 2013-03-25 2020-06-03 도레이 카부시키가이샤 Method for cleaning hollow fiber membrane module
EP3441130A1 (en) * 2017-08-09 2019-02-13 Bio-Aqua A/S Method and device for cleaning a membrane using ozone gas
CN113735357B (en) * 2021-09-23 2023-03-24 济南上华科技有限公司 Interlocking control cleaning water tank for treating high-salinity wastewater in coal chemical industry

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190937A (en) * 2000-01-06 2001-07-17 Sumitomo Heavy Ind Ltd Water purification equipment and method of cleaning membrane element
JP2003053160A (en) * 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd Cleaning method for separating membrane and membrane filtrater
WO2005021140A1 (en) * 2003-08-29 2005-03-10 U.S. Filter Wastewater Group, Inc. Backwash

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226625A (en) * 1988-07-14 1990-01-29 Toshiba Corp Back washing method of hollow fiber membrane filter
JPH1085566A (en) * 1996-09-11 1998-04-07 Hitachi Ltd Pleated type filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001190937A (en) * 2000-01-06 2001-07-17 Sumitomo Heavy Ind Ltd Water purification equipment and method of cleaning membrane element
JP2003053160A (en) * 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd Cleaning method for separating membrane and membrane filtrater
WO2005021140A1 (en) * 2003-08-29 2005-03-10 U.S. Filter Wastewater Group, Inc. Backwash

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device
USD779632S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Bundle body

Also Published As

Publication number Publication date
JP2006281163A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4969580B2 (en) Operation method of membrane separator
JP2004073950A (en) Membrane washing method
JP2001079366A (en) Method for washing membrane
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
WO2017086313A1 (en) Hollow fiber membrane module and method of cleaning same
JP4698274B2 (en) Filtration membrane cleaning method
WO2013111826A1 (en) Desalination method and desalination device
WO2013176145A1 (en) Cleaning method for separation membrane module
JP6492658B2 (en) Cleaning method for hollow fiber membrane module
JP2006247540A (en) Hollow fiber membrane module and its operation method
JP2012086182A (en) Water treatment method and water treatment device
JP2006081979A (en) Membrane washing method
JP4943662B2 (en) Operation method of membrane separator
JP2009214062A (en) Operation method of immersion type membrane module
JP2001070763A (en) Membrane washing method
JP5874866B1 (en) Operation method of turbidity removal membrane module
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP2004130307A (en) Method for filtration of hollow fiber membrane
JP5251472B2 (en) Membrane module cleaning method
WO2023145082A1 (en) Filtration membrane cleaning apparatus, water treatment apparatus, and filtration membrane cleaning method
JP7067678B1 (en) Filtration membrane cleaning equipment, water treatment equipment and filtration membrane cleaning method
TWI308504B (en) Method of operating membrane filtration apparatus
JP2006239609A (en) Operation method of hollow fiber membrane module
JP2001079365A (en) Washing method
JP2017023969A (en) Water treatment system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350