JP2004073950A - Membrane washing method - Google Patents

Membrane washing method Download PDF

Info

Publication number
JP2004073950A
JP2004073950A JP2002235486A JP2002235486A JP2004073950A JP 2004073950 A JP2004073950 A JP 2004073950A JP 2002235486 A JP2002235486 A JP 2002235486A JP 2002235486 A JP2002235486 A JP 2002235486A JP 2004073950 A JP2004073950 A JP 2004073950A
Authority
JP
Japan
Prior art keywords
membrane
water
backwash
filtration
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002235486A
Other languages
Japanese (ja)
Inventor
Tomotaka Hashimoto
Yoshihiko Mori
森 吉彦
橋本 知孝
Original Assignee
Asahi Kasei Chemicals Corp
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, 旭化成ケミカルズ株式会社 filed Critical Asahi Kasei Chemicals Corp
Priority to JP2002235486A priority Critical patent/JP2004073950A/en
Publication of JP2004073950A publication Critical patent/JP2004073950A/en
Application status is Pending legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To maintain a high filtration speed by washing a membrane filter effectively when raw water such as river water, lake water, ground water, stored water, sewage secondary treatment water, industrial wastewater, sewage, or the like is filtered with the membrane filter, when valuables are separated, or when filtration is done by the membrane filter for concentration.
SOLUTION: A method of washing the membrane filter, in which a membrane penetration pressure is applied to a backwashing medium by a pressure generating device to supply it to the filtrate side of the membrane filter, is characterized in that, in backwashing for removing substances adherent to the membrane filter by ejecting the backwashing medium which passed through the membrane to the raw water side of the membrane filter, a membrane penetration pressure is applied pulsewise to the backwashing medium.
COPYRIGHT: (C)2004,JPO

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
本発明は、上水道や工業用水、その水源の河川水、湖沼水、地下水、貯水の濾過処理、下水二次処理水の濾過処理、下水、排水の濾過処理、あるいは有価物の分離または濃縮に用いられる濾過膜の洗浄方法に関するものである。 The present invention, water supply, industrial water, using river water for the water source, lake water, ground water, filtration of the water, filtration of sewage secondary treatment water, sewage, the separation or concentration of the filtration process, or valuable materials drainage it is to a method of cleaning a filtration membrane.
【0002】 [0002]
【従来の技術】 BACKGROUND OF THE INVENTION
種々の原水の濾過に用いられる濾過膜は、濾過精度に優れること、設置スペースが少なくて済むこと、運転管理が容易であることなどの理由から、各種の濾過装置に用いられている。 Various filtration membranes used in the filtration of raw water, the better the filtration accuracy, it requires less installation space, because such that it is easy to operation management, are used in a variety of filtration apparatus. しかし、濾過の継続に伴い原水中の除去対象物質が膜表面に付着し、孔を閉塞するため徐々に濾過性能が低下し、ついには濾過できなくなってしまう。 However, removal target substances in raw water with the continuation of the filtration is attached to the membrane surface and decreases gradually filtration performance for closing the hole, finally becomes impossible filtered. そこで、濾過性能を維持するために、濾過方向とは逆方向に濾水側から濾水あるいは清澄水等の逆洗媒体を噴出させて膜の濾過面の付着物を除去する逆流洗浄(逆洗)が一般的に行われている。 Therefore, filtration performance in order to maintain the backwash medium is ejected membrane backwash (backwash to remove deposits of filtering surface of such drainage or clarified water from the drainage side in a direction opposite to the filtration direction ) it is generally performed.
【0003】 [0003]
また逆洗効果を高めるため、逆洗媒体に酸化作用のある次亜塩素酸ソーダを添加したり、特開平4−310220号公報に示されているように、オゾン水を用いて逆洗する方法や特開昭60−58222号公報に開示されているオゾン化加圧空気で逆洗する方法が知られている。 Further to enhance the backwash effect, or the addition of sodium hypochlorite having an oxidizing effect backwashing medium, as shown in JP-A-4-310220, a method of backwashing with ozone water how to backwashed with ozonated pressurized air disclosed in and JP 60-58222 JP are known. さらには空気を濾過膜の原水側に気泡として導入する方法や、特開昭63−42703号公報に開示されているように、オゾン化空気を濾過膜の原水側に気泡として注入する方法が知られている。 Furthermore a method for introducing a bubble of air to the raw water side of the membrane, as disclosed in JP-A-63-42703, a method of injecting the bubble ozonized air to the raw water side of the membrane is known It is.
【0004】 [0004]
【発明が解決しようとする課題】 [Problems that the Invention is to Solve
前述した次亜塩素酸ソーダを添加した逆洗水やオゾン水などの酸化剤を用いた逆洗方法、空気やオゾン化空気を濾過膜の原水側に気泡として導入する方法等は逆洗効果を高める上で有効であるが、原水の濁質等の条件によっては必ずしも十分安定な濾過流束が得られない。 Backwash method using an oxidizing agent such as backwash water or ozone water with the addition of sodium hypochlorite as described above, and a method of introducing a bubble of air or ozonated air raw water side of the filter membrane is a backwash effect it is effective in improving but not necessarily sufficiently stable filtration flux can be obtained depending on the conditions of the suspended solid or the like of the raw water.
膜表面の付着物を除去し高い濾過流束を維持するためには、逆洗時の圧力を高くしたり、逆洗時間を長くすることが有効である。 To maintain a high filtration flux to remove deposits of membrane surface, or by increasing the pressure during backwashing, be made longer backwash time is effective. しかし、これらは濾水あるいは清澄水を多く使用することになり、得られる濾水量の低下や高価な清澄水を使用することから、逆洗に要するコストを増加させることになる。 However, they will be using more drainage or clarified water, from the use of reduced or expensive refining water resulting filtered water volume, will increase the cost of backwashing. また逆洗圧力を高くすると濾過膜やモジュール、配管に負荷を掛け、濾過寿命が短くなるだけでなくこれらの破裂、漏液をもたらす恐れがある。 The filtration membrane or module to increase the backwash pressure, applying a load to the pipe, these burst well filtration life is short, which may result in leakage.
【0005】 [0005]
【課題を解決するための手段】 In order to solve the problems]
本発明者らは、濾過膜の洗浄方法について鋭意検討した結果、以下の発明を完成するに至った。 The present inventors have intensively studied the results for method for cleaning a filtration membrane, and have completed the following invention. すなわち本発明は、 That is, the present invention is,
(1)圧力発生装置により逆洗媒体に膜透過圧力を与えて濾過膜の濾液側に供給し、濾過膜の原水側に膜透過した逆洗媒体を噴出させて濾過膜の付着物を除去する濾過膜の逆洗方法において、逆洗媒体に与える膜透過圧力をパルス状に与えて逆洗を行うことを特徴とする膜洗浄方法、(2)逆洗媒体が1種類以上の酸化剤を含む液体または気体であることを特徴とする(1)記載の膜洗浄方法、(3)濾過膜の原水側に気泡を導入して濾過膜を揺動させつつ行なうことを特徴とする(1)記載の膜洗浄方法である。 (1) supplying giving transmembrane pressure to the filtrate side of the filtration membrane backwashing medium by the pressure generator, to remove deposits is allowed by the filtration membrane ejecting a backwash medium membrane permeation raw water side of the filter membrane including the backwash process of the membrane, membrane cleaning method and performing the backwash giving transmembrane pressure applied to the backwash medium in pulses, one or more oxidizing agents (2) backwashing medium the method of membrane cleaning constitution (1), wherein it is a liquid or gas, and performing (3) while swinging the filtration membrane by introducing air bubbles into the raw water side of the filter membrane (1), wherein it is a method of membrane cleaning.
【0006】 [0006]
以下に本発明の詳細を述べる。 Describe the details of the present invention are described below.
本発明の対象となる原水は、河川水、湖沼水、地下水、貯水、下水二次処理水、工場排水、あるいは下水などである。 Subject to raw water of the present invention, river water, lake water, ground water, water, sewage secondary treatment water, industrial wastewater, or sewage and the like. 従来、上記の様な原水を膜で濾過すると、該原水中に含まれる懸濁物質や使用する膜の孔径以上の大きさの物質は膜で阻止され、いわゆる濃度分極やケーク層を形成すると同時に、膜を目詰まりさせたり、あるいは膜内部の網状組織に吸着される。 Conventionally, when filtering the raw water, such as described above with a film, the size of the material on the pore diameter or the membranes suspended matter and use contained in the raw water is blocked by the membrane, to form a so-called concentration polarization or cake layer at the same time , or clog the membrane, or is adsorbed to the membrane inside the network. その結果、原水を濾過した際の膜の濾過流束は、清澄水を濾過した際のそれに比べて数分の1から数十分の1にまで低下してしまい、また濾過の継続に従って濾過流束は徐々に低下していく。 As a result, the filtration flux of the membrane at the time of filtering the raw water, will be reduced from a fraction of than that at the time of filtering the clarified water to several tenths and filtered flow in accordance continuation of filtration the bundle is gradually reduced.
これを防止し、膜濾過流束を維持するために、膜の濾過方向とは逆方向から濾水あるいは清澄水を噴出させて膜の濾過面の付着物を除去する逆洗が一般に用いられる。 To prevent this, in order to maintain the membrane filtration flux, the filtration direction of the membrane backwash which is ejected drainage or clarified water from the opposite direction to remove the filtering surface of the membrane fouling is generally used. しかし、前述したように逆洗条件は濾過膜、モジュール、配管の耐久圧力、または濾水回収率の面からの制約で必ずしも十分な効果が得られていなかった。 However, backwashing conditions as described above filtration membrane, modules, did not always provide a sufficient effect in constraints in terms of durability pressure or drainage recovery, the piping.
【0007】 [0007]
本発明は濾過膜の洗浄方法として逆洗媒体に与える膜透過圧力をパルス状に与えて逆洗を行う方法である。 The present invention is a method of performing backwash giving transmembrane pressure applied to the backwash medium as a method for cleaning a filtration membrane in a pulsed manner. 膜透過圧力をパルス状に与えると濾過膜表面に堆積した付着物層に逆洗媒体を噴出させる事で歪み応力を繰り返し与えることができ、連続した一定の圧力を与える従来の場合に比べ効率よく付着物層を膜表面より剥離させることができる。 Transmembrane pressure can give repeated distortion stress that jetting backwash medium to filtration membrane fouling deposited on the surface layer to give a pulse shape and efficiently compared with the conventional case of providing the constant pressure continuous the deposit layer can be peeled from the membrane surface. しかも使用する逆洗媒体の量は連続的な一定の圧力を与える場合に比べ少なくて済むため濾液回収率の面でも有効である。 Moreover the amount of backwash medium to be used is also effective in terms of the filtrate recovery requires less compared with the case of providing a continuous constant pressure.
【0008】 [0008]
また本発明の逆洗媒体にパルス状に膜透過圧力を与えて逆洗を行う際に、逆洗媒体として次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン含有水、オゾンガスなどの酸化剤を少なくとも1つ以上を含む液体或いは気体を用いる方法、あるいは濾過膜の原水側から空気、オゾンガス等の気泡を導入して膜を揺動させる方法を併用すると一層の逆洗効果を得ることができる。 Also when performing backwashing giving transmembrane pressure to pulsed backflushing medium of the present invention, sodium hypochlorite as the backwash medium, chlorine dioxide, hydrogen peroxide, ozone-containing water, oxidants, such as ozone gas can be obtained at least one method using a liquid or gas containing more than, or air from the raw water side of the membrane, the more backwashing effect when introducing bubbles together methods for swinging the film ozone gas or the like . 酸化剤を添加した逆洗媒体による逆洗の効果が高い理由は酸化剤が逆洗中のパルス状の急激な圧力変化によって付着物の内部まで入れ換わり易くなり洗浄効果が高くなるものと考えられる。 Is is highly effective reason backwash by back washing medium with the addition of oxidizing agent believed to oxidant internal to put Kawari tends cleaning effect of the deposit is increased by the pulse-shaped sharp pressure changes during backwash . また本発明の逆洗中に原水側から空気、オゾンガス等の気泡を導入して膜を揺動させると逆洗効果が高い理由としては逆洗中のパルス状の急激な圧力変化のため濾過膜モジュールの2次側(濾過側)容積や気泡径が変化することにより大きな膜の振動を得ることができるためと考える。 The reverse air in the washing from the raw water side, the filtration membrane because of rapid pressure changes in the shape pulse in backwash reason is swung a film by introducing a backwash effect is high bubble ozone gas of the present invention I think it is possible that the secondary side (filtered side) volume and bubble size of the module to obtain a vibration of large membrane by changing.
【0009】 [0009]
以上のように、逆洗を行う際に逆洗媒体にパルス状にの圧力を与える方法、更には逆洗媒体として酸化剤を少なくとも1種類以上を含む液体または気体を用いる方法、あるいは同時に原水側から気泡を導入して膜を揺動させる、または両方を行う方法により効果的に膜付着物を効果的に除去することができる。 As described above, a method of providing a pressure of the pulsed backwash medium when performing backwashing, even a method using a liquid or gas containing at least one or more oxidizing agent as backwash medium or simultaneously raw water side, it can be from swinging the film by introducing air bubbles, or effectively removes effectively membrane fouling by the method of performing both. これにより、濾過流束を高い状態に維持でき、ランニングコストを低減することができる。 This can maintain the filtration flux at a high level, it is possible to reduce the running cost.
【0010】 [0010]
本発明の逆洗媒体にパルス状に膜透過圧力を与えるとは図1または図2のごとく、逆洗工程中に逆洗媒体に、高い膜透過圧力をかけた状態(A)と、これより低い膜透過圧力もしくは膜透過圧力をかけない状態(B)を複数回繰り返すことを意味する。 The gives the transmembrane pressure to pulsed backflushing medium of the present invention as in FIG. 1 or FIG. 2, the backwashing medium during the backwash step, a state of applying a high transmembrane pressure (A), from which It means that a plurality of times state (B) not to apply low transmembrane pressure or transmembrane pressure. (A)の最高膜透過圧力は(B)の最低膜透過圧力の2倍以上が好ましく、さらに3倍以上がより好ましい。 Maximum transmembrane pressure of (A) the minimum film is preferably at least twice the transmission pressure, further 3 times or more and more preferably of (B). また、(A)の最高膜透過圧力は濾過膜が著しい変形や破断に至らないように、膜破裂圧力より低いことが好ましい。 The maximum transmembrane pressure of (A) so as not to reach the filtration membranes significant deformation or breakage, it is preferably lower than the membrane rupture pressure.
【0011】 [0011]
複数回繰り返す際の隣り合う(A)と(A)のずれ時間は0.1秒以上、30秒以下、同じく隣り合う(B)と(B)のずれの時間は0.1秒以上、30秒以下が好ましい。 Adjacent when repeated several times (A) and (A) deviation time is 0.1 seconds or more, 30 seconds or less, also adjacent (B) and (B) lag time 0.1 seconds or more, 30 sec or less is preferable. この時間内であれば(A)、(B)各々の圧力は時間と共に変化してもよい。 Within this time (A), the pressure of each (B) may vary with time. また複数回繰り返す(A)、(B)ともに毎回同じ時間、同じ圧力である必要はない。 The repeated a plurality of times (A), (B) together each time the same time, need not be the same pressure.
また、逆洗媒体に圧力を与える際には図1のごとく、瞬時に昇圧して与える方が洗浄効果が高いのでより望ましいが、図2のごとく与えても構わない。 Further, in providing the pressure in the backwash medium as in FIG. 1, but more desirable because higher cleaning effect towards providing boosts instantaneously, may be given as in FIG.
【0012】 [0012]
逆洗工程の時間は、濾過流束の回復性と濾過水の回収率を勘案して適宜決めれよい。 The time backwash step may be properly determined in consideration of the recovery and recovery of filtered water filtration flux. 逆洗媒体は液体、気体いずれも用いることができるが、酸化剤を広範囲に添加できる点で液体の方が好ましい。 Although backwashing medium can be used liquids, both gaseous, who liquids are preferred in that it can add an oxidizing agent extensively.
逆洗媒体に膜透過圧力を加えるための圧力発生装置としてはポンプ、コンプレッサーあるいは加圧気体容器等があり、パルス状の圧力を逆洗媒体に与える方法としては例えばポンプ、コンプレッサー等を断続的に動かす事が挙げられる。 The pump as a pressure generator for applying a transmembrane pressure in the backwash medium, there is a compressor or pressurized gas container or the like, as a method for providing a pulsed pressure backwash medium such as pumps, intermittently compressors etc. it is like to move. もしくは逆洗媒体を送液するポンプあるいは加圧気体を逆洗媒体に連続的に作用させておき、原水側もしくは濾水側の配管に設けた弁を断続的に開閉することで与えることができる。 Or keep the pump or pressurized gas to feed the backwash medium is continuously applied to the backwash medium, it can be given by intermittently opening and closing a valve provided in the piping of the raw water side or drainage side .
【0013】 [0013]
本発明の濾過膜は特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン;テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(EPE)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン−エチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂;ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンスル Although the filtration membrane of the present invention is not particularly limited, for example, polyethylene, polypropylene, polyolefins polybutene; tetrafluoroethylene - perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene - hexafluoropropylene copolymer (FEP) , tetrafluoroethylene - hexafluoropropylene - perfluoroalkyl vinyl ether copolymer (EPE), tetrafluoroethylene - ethylene copolymer (ETFE), poly polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene - ethylene copolymer (ECTFE), fluorinated resin such as polyvinylidene fluoride (PVDF); polysulfone, polyether sulfone, polyether ketone, polyether ether ketone, polyphenylene ィド等のスーパーエンジニアリングプラスチック;酢酸セルロース、エチルセルロース等のセルロース類;ポリアクリロニトリル;ポリビニルアルコールの単独及びこれらの混合物が挙げられる。 Super engineering plastics such as I de; cellulose acetate, cellulose such as ethyl cellulose; polyacrylonitrile; alone and mixtures of these polyvinyl alcohol.
【0014】 [0014]
さらにオゾン等の強力な酸化剤を併用する場合は、セラミック等の無機膜、ポリフッ化ビニリデン(PVDF)膜、ポリ4フッ化エチレン(PTFE)膜、エチレン−テトラフルオロエチレン共重合体(ETFE)膜、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)膜等のフッ素系樹脂膜等の有機膜を適用することが出来る。 When further used in combination a strong oxidizing agent such as ozone, inorganic membranes such as ceramics, polyvinylidene fluoride (PVDF) film, polytetrafluoroethylene (PTFE) membrane, an ethylene - tetrafluoroethylene copolymer (ETFE) film , tetrafluoroethylene - perfluoroalkyl vinyl ether copolymer (PFA) film and a fluorine-based resin film such as an organic film can be applied in the. 特にポリフッ化ビニリデン(PVDF)膜を使用すれば好ましい。 Particularly preferred With polyvinylidene fluoride (PVDF) membrane. このような濾過膜のうち、その孔径領域がナノ濾過(NF)膜から精密濾過(MF)膜であるものが使用し得る。 Such out of the membrane, the pore diameter region may be used those which are microfiltration (MF) membrane from the nanofiltration (NF) membranes. 特に分画分子量が100程度のNF膜から平均孔径が10μm以下のMF膜が好ましい。 In particular fractional molecular weight is preferably less MF membrane 10μm average pore diameter from 100 about NF membrane.
【0015】 [0015]
濾過膜の形状としては、中空糸状、ウェーブをつけた中空糸状、平膜状、プリーツ状、スパイラル状、チューブラー状など任意の形状を用いることができるが、単位体積当たりの膜面積が大きくとれる中空糸状がより好ましい。 The shape of the filtration membrane, hollow fiber, hollow fiber wearing a wave, flat film, pleated, spiral, but may be any shape such as tubular-shaped, made large membrane area per unit volume hollow fiber is more preferable. 一般に、濾過は膜を収納したモジュールを用いて行われる。 Generally, the filtration is performed using a module which houses the membrane. 濾過方式としては、全量濾過方式でもクロスフロー濾過方式でもよい。 The filtration method may be a cross-flow filtration in dead end filtration mode. 加圧濾過方式あるいは陰圧濾過方式でもよい。 It may be pressure filtration method or anionic filter press over method. また中空糸状膜の場合内圧濾過、外圧濾過のどちらでもよい。 In the case the internal pressure filtration hollow fiber membranes may be either external pressure filtration.
【0016】 [0016]
逆洗媒体に含まれる酸化剤は、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾンが挙げられ、少なくともこれらを1種類以上逆洗媒体に含有させて逆洗を行う。 Oxidants contained in the backwash medium, sodium hypochlorite, chlorine dioxide, hydrogen peroxide, ozone and the like, perform backwash be contained in the backwash medium at least these one or more. 逆洗媒体に含有させる酸化剤の濃度は次亜塩素酸ソーダ、二酸化塩素、過酸化水素は 0.05mg/リットル以上50重量%以下の濃度が好ましく、さらには0.1mg/リットル以上20重量%以下が好ましく、さらには10重量%以下が好ましい。 The concentration of the oxidizing agent to be contained in the backwash medium soda hypochlorite, chlorine dioxide, hydrogen peroxide is 50 wt% or less of the concentration of more than 0.05 mg / liter preferred, and 0.1mg / l or more 20 wt% or less, more preferably 10 wt% or less. これ以下では、有機物の溶解が十分に進まないため、洗浄効果が十分に得られず、濃度が高すぎると洗浄効果は十分に得られるが、薬品代が高くなり経済的でない。 In this following, the solubility of the organic matter does not proceed sufficiently, without washing effect is obtained sufficiently, the concentration cleaning effect is too high can be sufficiently obtained, not economical, the higher the drug cost. 逆洗媒体へのこれらの添加方法は、濾水タンクなどに直接投入しても良いし、あるいは水溶液として、濾水タンクから濾過膜に至る配管の途中でラインミキサーを用いて添加しても良い。 These addition methods to backwash medium may be introduced directly, such as in drainage tank, or as an aqueous solution, may be added using the middle line mixer pipe extending from the drainage tank to the filtration membrane .
【0017】 [0017]
逆洗媒体が水の場合、逆洗水に含有させるオゾン濃度は0.05mg/リットル以上、50mg/リットル以下が好ましい。 When backwashing medium is water, the ozone concentration to be contained in the backwash water 0.05 mg / l or more, preferably not more than 50 mg / liter. さらに好ましくは、0.1mg/リットル以上、10mg/リットル以下が好ましい。 More preferably, 0.1 mg / l or more, preferably not more than 10mg / l. オゾン濃度がこの範囲内であるとオゾンによる酸化が十分に進むため、洗浄効果が高い。 Since the ozone concentration of oxidation by ozone to be within this range, the flow proceeds sufficiently high cleaning effect. また、オゾン濃度を過度に高くすることは、オゾン発生に関わる費用が上がり現実的ではない。 Also, be excessively high ozone concentration is not realistic it raises the costs associated with ozone generation. 逆洗水に添加するオゾンは、オゾン単体でもオゾン化空気でも良い。 Ozone to be added to the backwash water may be ozonized air at an ozone alone. 逆洗水へのオゾンの導入は、逆洗タンクの適宜位置に設けた散気管等を介して行えば良い。 Introduction of ozone into the backwash water may be performed through the diffusion pipe or the like provided at an appropriate position of the backwash tank. あるいは濾水タンクから濾過膜に到る配管の途中でエジェクター及びラインミキサーを用いて添加してもよいし、あるいはUチューブ方式を用いることもできる。 Alternatively it may be added by using an ejector and line mixer in the middle of leading to a filtration membrane tubing from drainage tank, or can also be used U tube method.
【0018】 [0018]
オゾン発生方法として放電によるオゾン発生を行う場合、原料は空気でもよく、あるいは酸素でも良い。 When performing ozone generation by electric discharge as an ozone generating method, the raw material may be air, or may be oxygen. また、水の電気分解によってオゾンを発生する方法を用いてもよい。 Further, a method may be used for generating ozone by electrolysis of water.
濾過膜の原水側に気泡を導入する方法は(a)常に本発明の逆洗と同時に行うと洗浄効果が高いが、(b)気泡の導入(同時に逆洗)に先立ち本発明の逆洗のみを行っても良い。 Method of introducing air bubbles into the raw water side of the membrane is higher cleaning effect and at the same time as backwash always present invention (a), only the backwash of the present invention prior to (b) the introduction of air bubbles (simultaneously backwash) it may be carried out. あるいは(c)気泡の導入(同時に逆洗)を行った後本発明の逆洗のみを行っても良い。 Or (c) backwash only may be performed of the present invention after the introduction of air bubbles (simultaneously backwash). さらに、(d)原水を導入しながら気泡を導入し同時に本発明の逆洗を行っても良いし、さらには、(a)〜(d)を交互に組み合わせても良い。 Additionally, the backwash may be performed of the introduced simultaneously present invention bubbles while introducing (d) is the raw water, and further, may be combined alternately (a) ~ (d).
【0019】 [0019]
気泡の種類としては、空気またはオゾンガスが望ましい。 The types of foam, air or ozone is desirable. 気泡の導入量は、単位時間当たりの濾過流量の0.5〜20倍の体積流量を供給するのが好ましく、1〜10倍の体積流量であることがより好ましい。 The introduction of air bubbles, it is preferable to provide a 0.5 to 20 times the volume flow rate of the filtration flow rate per unit time, and more preferably from 1 to 10 times the volumetric flow rate. 本発明は、上述のごとく構成したので、長期間にわたって高い膜濾過流束を維持することができる。 The present invention, since the above structure, it is possible to maintain a high membrane filtration flux over a long period of time.
【0020】 [0020]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
以下に、本発明の実施例を示す。 Hereinafter, an embodiment of the present invention.
原水1として、濁度が5〜20度、水温が18〜25℃の河川表流水を用いた。 As the raw water 1, turbidity 5-20 degrees, the water temperature was used river surface water of 18 to 25 ° C.. 図3に示すように、原水1は循環タンク2を経て原水供給ポンプ3により膜モジュール4へ圧送され、得られた濾過水は逆洗タンクを兼用する濾水タンク5に貯められる。 As shown in FIG. 3, the raw water 1 is pumped into the membrane module 4 by the raw water feed pump 3 through the circulation tank 2, filtered water obtained is accumulated in the drainage tank 5 also serves as a backwash tank. 逆洗時に、濾水タンク5中の濾過水は逆洗ポンプ6により膜モジュール4へ送られ逆洗が行われるが、ここで逆洗ポンプ6から膜モジュール4へ至る配管の途中に酸化剤タンク7の酸化剤を、酸化剤送液ポンプ8により逆洗水に添加することができる。 During backwashing, filtered water in drainage tank 5 is backwashed sent by backwash pump 6 to the membrane module 4 is carried out, the way the oxidizer tank of the pipe extending here to backwash pump 6 Karamaku module 4 7 of the oxidizing agent can be added to the backwash water by an oxidizing agent feeding pump 8. また、膜モジュール4に気泡を導入するエアーバブリングは、コンプレッサー11で圧縮した空気を、膜モジュール4の原水側へ供給して行われる。 Further, air bubbling to introduce bubbles into the membrane module 4, the air compressed by the compressor 11 is performed by supplying to the raw water side of the membrane module 4. パルス状の膜透過の圧力はタイマーより開閉する電磁弁10を短時間に開閉を繰り返すことで逆洗媒体に与えることができる。 Pressure pulsed membrane permeability can be given to the backwash medium by repeatedly opening and closing in a short period of time the solenoid valve 10 for opening and closing from the timer.
【0021】 [0021]
膜モジュール4は、特開平3−215535号公報に基づいて作製した内径が1.0mmφ、外径が1.9mmφ、平均孔径0.6μmのPVDF(ポリフッ化ビニリデン)製中空糸状精密濾過(MF)膜を1m長、3インチ径のPVC(ポリ塩化ビニル)ケーシングに納めた外圧式モジュールである。 Membrane module 4, an inner diameter which is manufactured based on the Japanese Patent Laid-Open No. 3-215535 is 1.0 mm, an outer diameter of 1.9Mmfai, average pore size 0.6μm of PVDF (poly (vinylidene fluoride)) manufactured by a hollow fiber microfiltration (MF) membrane 1m length, external pressure type module housed in three inch diameter PVC (polyvinyl chloride) casing. 当該モジュールの膜面積は4.7m 、モジュール濾過圧が50kPaの時の清澄水濾過流束は毎時5.0m である。 Membrane area of the module is 4.7 m 2, clarified water filtration flux when the module filtration pressure 50kPa is hour 5.0 m 3.
【0022】 [0022]
【実施例1】 [Example 1]
濾過は膜モジュール4へ原水1を一定圧力で供給する定圧濾過とし、また、膜濾過水量と循環水量の比を5対1としたクロスフロー方式で行った。 Filtration of raw water 1 to the membrane module 4 and the constant pressure filtration supplies constant pressure and were performed in a cross flow method and 5 to 1 ratio of the circulating water and the membrane filtration water. 運転条件は、濾過を20分間行った後、逆洗を30秒間の繰り返しでを行った。 Operating conditions, after the filtration 20 minutes for the repetition of the backwash for 30 seconds. この逆洗の際に電磁弁10を1秒間開き、4秒間閉じる周期を6回繰り返してパルス状の膜透過圧力を逆洗水に与えた。 The solenoid valve 10 opened for one second during the backwash, gave pulsed transmembrane pressure in the backwash water repeatedly for 4 seconds Close cycle 6 times. 電磁弁が開いた際の濾過膜側の最高膜透過圧力は110KPa、電磁弁が閉じた状態では0KPaであった。 Maximum transmembrane pressure of the filtration membrane side when the solenoid valve is open 110 kPa, was 0KPa in a state where the solenoid valve is closed. この時の濾水回収率(得られた慮水量/濾過した原水量)は98%であった。 Drainage recovery at this time (obtained taking into water / filtered raw water amount) was 98%. 上記運転条件で3ヶ月間運転した後の膜濾過流量は、3.1m /m /日であった。 Membrane filtration flow rate after 3 months operation by the operating conditions, was at 3.1m 3 / m 2 / day.
【0023】 [0023]
【比較例1】 [Comparative Example 1]
実施例1において、逆洗の際に電磁弁10を常時開とし、一定の圧力で実施例1と同量の逆洗水を使って逆洗を行った以外は実施例1と同様に膜濾過運転を実施した。 In Example 1, the solenoid valve 10 is normally open and during backwashing, except for performing backwashing with the same amount of backwash water as in Example 1 at a constant pressure as well membrane filtration as in Example 1 It was carried out the operation. この時の濾水回収率は実施例1と同じく98%であった。 Drainage recovery at this time was also 98% as in Example 1. 3ヶ月後の膜濾過流量は1.1m /m /日であった。 Membrane filtration flow rate after three months was at 1.1m 3 / m 2 / day.
【0024】 [0024]
【実施例2】 [Example 2]
実施例1において、逆洗を30秒間の繰り返しでを行う際に電磁弁10を2.5秒間開き、12.5秒間閉じる周期を2回繰り返してパルス状の膜透過圧力変化を逆洗水に与えた。 In Example 1, opens the solenoid valve 10 for 2.5 seconds when performing a repetition of the backwash for 30 seconds, 12.5 seconds closing cycle pulsed transmembrane pressure varies repeated twice backwash water Gave. 電磁弁が開いた際の濾過膜側の最高膜透過圧力は120KPa、電磁弁が閉じた状態では0KPaであった。 Maximum transmembrane pressure of the filtration membrane side when the solenoid valve is open 120 kPa, was 0KPa in a state where the solenoid valve is closed. この時の濾水回収率は実施例1と同じく98%であった。 Drainage recovery at this time was also 98% as in Example 1. 上記運転条件で3ヶ月間運転した後の膜濾過流量は、3.0m /m /日であった。 Membrane filtration flow rate after 3 months operation by the operating conditions, was at 3.0 m 3 / m 2 / day.
【0025】 [0025]
【実施例3】 [Example 3]
実施例1において、逆洗を30秒間の繰り返しで行う際に電磁弁10を0.5秒間開き、2秒間閉じる周期を12回繰り返してパルス状の膜透過圧力を逆洗水に与えた。 In Example 1, it opens the solenoid valve 10 for 0.5 seconds when performing backwashing with repetition of 30 seconds, to give a pulsed transmembrane pressure in the backwash water Repeat 2 seconds closed cycle 12 times. 電磁弁が開いた際の濾過膜側の最高膜透過圧力は100KPa、電磁弁が閉じた状態では0KPaであった。 Maximum transmembrane pressure of the filtration membrane side when the solenoid valve is open 100 KPa, was 0KPa in a state where the solenoid valve is closed. この時の濾水回収率は実施例1と同じく98%であった。 Drainage recovery at this time was also 98% as in Example 1. 上記運転条件で3ヶ月間運転した後の膜濾過流量は、3.2m /m /日であった。 Membrane filtration flow rate after 3 months operation by the operating conditions, was at 3.2 m 3 / m 2 / day.
【0026】 [0026]
【実施例4】 [Example 4]
実施例1において、濾過を60分間行った後、逆洗を120秒間の繰り返しを行った。 In Example 1, after having been filtered for 60 minutes, the backwash was repeated for 120 seconds. この逆洗の際に電磁弁10を20秒間開き、20秒間閉じる周期を3回繰り返してパルス状の膜透過圧力を逆洗水に与えた。 The solenoid valve 10 opens 20 seconds during the backwash, gave pulsed transmembrane pressure was repeated three times for 20 seconds closing period backwash water. 電磁弁が開いた際の濾過膜側の最高膜透過圧力は90KPa、電磁弁が閉じた状態では0KPaであった。 Maximum transmembrane pressure of the filtration membrane side when the solenoid valve is opened 90 KPa, was 0KPa in a state where the solenoid valve is closed. この時の濾水回収率(得られた慮水量/濾過した原水量)は96%であった。 Drainage recovery at this time (obtained taking into water / filtered raw water amount) was 96%. 上記運転条件で3ヶ月間運転した後の膜濾過流量は、2.8m /m /日であった。 Membrane filtration flow rate after 3 months operation by the operating conditions, was at 2.8 m 3 / m 2 / day.
【0027】 [0027]
【比較例2】 [Comparative Example 2]
実施例4において、逆洗の際に電磁弁10を常時開とし、一定の圧力で実施例4と同量の逆洗水を使って逆洗を行った以外は実施例4と同様に膜濾過運転を実施した。 In Example 4, the solenoid valve 10 is normally open and during backwashing, except for performing backwashing with backwashing water as in Example 4 the same amount at a constant pressure as well membrane filtration as in Example 4 It was carried out the operation. この時の濾水回収率は実施例1と同じく96%であった。 Drainage recovery at this time was also 96% as in Example 1. 3ヶ月後の膜濾過流量は0.9m /m /日であった。 Membrane filtration flow rate after three months was at 0.9m 3 / m 2 / day.
【0028】 [0028]
【実施例5】 [Example 5]
実施例1において、逆洗水が5mg/リットル濃度の次亜塩素酸ソーダ水になるよう酸化剤送液ポンプ8より次亜塩素酸ソーダを注入した以外は実施例1と同様に膜濾過運転を実施した。 In Example 1, a similarly membrane filtration operation except that backwash water is injected sodium hypochlorite from oxidant liquid feed pump 8 so that the sodium hypochlorite solution of 5mg / l concentration as in Example 1 Carried out. この時の濾水回収率は実施例1と同じく98%であった。 Drainage recovery at this time was also 98% as in Example 1. 3ヶ月後の膜濾過流量は3.6m /m /日であった。 Membrane filtration flow rate after three months was at 3.6m 3 / m 2 / day.
【0029】 [0029]
【実施例6】 [Example 6]
実施例1において、濾過を20分間行った後、電磁弁10を1秒間開き、4秒間閉じる周期を6回繰り返してパルス状の膜透過圧力を逆洗水に与える逆洗と同時にモジュール下部から毎時2Nm の空気を濾過膜の原水側に導入してエアーバブリングを30秒間行うという操作を繰り返した。 In Example 1, after having been filtered for 20 minutes, open the solenoid valve 10 for one second, every hour from time module lower the backwash provide a pulsed transmembrane pressure repeatedly for 4 seconds Close cycle 6 times backwash water repeating an operation of performing air bubbling for 30 seconds air 2 nm 3 is introduced into the raw water side of the membrane. 3ヶ月後の膜濾過流量は3.5m /m /日であった。 Membrane filtration flow rate after three months was at 3.5m 3 / m 2 / day.
【0030】 [0030]
【実施例7】 [Example 7]
実施例1において、濾過を20分間行った後、電磁弁10を1秒間開き、4秒間閉じる周期を6回繰り返してパルス状の膜透過圧力を逆洗水に与える逆洗の際に逆洗水が5mg/リットル濃度の次亜塩素酸ソーダ水になるよう酸化剤送液ポンプ8より次亜塩素酸ソーダを注入し、さらにモジュール下部から毎時2Nm の空気を濾過膜の原水側に導入してエアーバブリングを30秒間行うという操作を繰り返した。 In Example 1, after having been filtered for 20 minutes, open the solenoid valve 10 for one second, backwash water during backwashing giving pulsed transmembrane pressure repeatedly for 4 seconds Close cycle 6 times backwash water was introduced but injecting sodium hypochlorite from oxidant liquid feed pump 8 so that the sodium hypochlorite solution of 5mg / l concentration, the more the lower module per hour 2 Nm 3 air raw water side of the filter membrane It was repeated operation of performing the air bubbling for 30 seconds. 3ヶ月後の膜濾過流量は4.5m /m /日であった。 Membrane filtration flow rate after three months was at 4.5m 3 / m 2 / day.
【0031】 [0031]
【実施例8】 [Example 8]
実施例6において、コンプレッサー9を空気源を用いたオゾン発生機につなぎ変えて実施例3の空気をオゾンガスに変えた以外は実施例3と同条件で膜濾過装置の運転を行った。 In Example 6, the compressor 9 was operated membrane filtration system instead connecting the ozone generator air Example 3 except for changing the ozone gas in Example 3 the same conditions using air source. この時のオゾンガス濃度は、20g/m であった。 Ozone gas concentration at this time was 20 g / m 3. 3ヶ月後の膜濾過流量は4.3m /m /日であった。 Membrane filtration flow rate after three months was at 4.3m 3 / m 2 / day.
【0032】 [0032]
【発明の効果】 【Effect of the invention】
本発明によれば、効果的に洗浄を行う事ができ、この結果、長期間に亘って高い膜濾過流束を維持することが可能である。 According to the present invention, it is possible to perform effective cleaning, this result, it is possible to maintain a high membrane filtration flux over a long period of time.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】本発明での逆洗媒体に与えるパルス状の膜透過圧力の一例を示す模式図。 Schematic diagram showing an example of a pulse-like transmembrane pressure applied to the backwash medium in the present invention; FIG.
【図2】本発明での逆洗媒体に与えるパルス状の膜透過圧力の別の例を示す模式図。 Schematic diagram showing another example of the pulse-like transmembrane pressure applied to the backwash medium in the present invention; FIG.
【図3】本発明の膜の洗浄方法を組み込んだ処理フローの一例を示したものである。 [3] illustrates an example of a process flow incorporating the cleaning method of the film of the present invention.

Claims (3)

  1. 圧力発生装置により逆洗媒体に膜透過圧力を与えて濾過膜の濾液側に供給し、濾過膜の原水側に膜透過した逆洗媒体を噴出させて濾過膜の付着物を除去する濾過膜の逆洗方法において、逆洗媒体に与える膜透過圧力をパルス状に与えて逆洗を行うことを特徴とする膜洗浄方法。 Supplying giving transmembrane pressure to the filtrate side of the filtration membrane backwashing medium by the pressure generator, the filtration membrane to remove by ejecting a backwash medium membrane permeation raw water side fouling of the filtration membrane of the filtration membrane in backwash method, membrane cleaning method and performing the backwash giving transmembrane pressure applied to the backwash medium in pulses.
  2. 逆洗媒体が1種類以上の酸化剤を含む液体または気体であることを特徴とする請求項1記載の膜洗浄方法。 Membrane cleaning method of claim 1, wherein the backwashing medium is a liquid or a gas containing one or more oxidizing agents.
  3. 濾過膜の原水側に気泡を導入して濾過膜を揺動させつつ行なうことを特徴とする請求項1記載の膜洗浄方法。 Membrane cleaning method of claim 1, wherein the performing by introducing bubbles into the raw water side of the filter membrane while swinging the filtration membrane.
JP2002235486A 2002-08-13 2002-08-13 Membrane washing method Pending JP2004073950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235486A JP2004073950A (en) 2002-08-13 2002-08-13 Membrane washing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235486A JP2004073950A (en) 2002-08-13 2002-08-13 Membrane washing method

Publications (1)

Publication Number Publication Date
JP2004073950A true JP2004073950A (en) 2004-03-11

Family

ID=32019964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235486A Pending JP2004073950A (en) 2002-08-13 2002-08-13 Membrane washing method

Country Status (1)

Country Link
JP (1) JP2004073950A (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222740A (en) * 2006-02-22 2007-09-06 Daicen Membrane Systems Ltd Cleaning method of vertical separation membrane module
JP2007528290A (en) * 2004-03-10 2007-10-11 デグレマンDegremont Apparatus for carrying out the membrane filter cleaning method and the method
JP2008289959A (en) * 2007-05-22 2008-12-04 Toshiba Corp Membrane filtration system
JP2008289958A (en) * 2007-05-22 2008-12-04 Toshiba Corp Membrane filtration system
WO2009122460A1 (en) * 2008-03-31 2009-10-08 株式会社クボタ Method and apparatus for cleaning membrane module
JP2010501340A (en) * 2006-08-31 2010-01-21 シーメンス・ウォーター・テクノロジーズ・コーポレーション Low pressure backwash
WO2010103679A1 (en) * 2009-03-11 2010-09-16 三菱重工業株式会社 Water desalination equipment and cleaning method for water desalination equipment
JP2011031245A (en) * 2010-11-15 2011-02-17 Toshiba Corp Membrane filtration system
JP2012500117A (en) * 2008-08-20 2012-01-05 シーメンス ウォーター テクノロジース コーポレイション Improved backwash energy efficiency of the membrane filtration system
KR20120036651A (en) * 2010-10-08 2012-04-18 엘지전자 주식회사 Membrane filtration equipment for using pulse of cross-flow water
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
CN103501879A (en) * 2011-04-25 2014-01-08 日本碍子株式会社 Method for washing ceramic filter
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
WO2015156242A1 (en) * 2014-04-10 2015-10-15 三菱電機株式会社 Water treatment method and water treatment apparatus each using membrane
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
JP2007528290A (en) * 2004-03-10 2007-10-11 デグレマンDegremont Apparatus for carrying out the membrane filter cleaning method and the method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
JP2007222740A (en) * 2006-02-22 2007-09-06 Daicen Membrane Systems Ltd Cleaning method of vertical separation membrane module
JP2010501340A (en) * 2006-08-31 2010-01-21 シーメンス・ウォーター・テクノロジーズ・コーポレーション Low pressure backwash
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
JP2008289959A (en) * 2007-05-22 2008-12-04 Toshiba Corp Membrane filtration system
JP2008289958A (en) * 2007-05-22 2008-12-04 Toshiba Corp Membrane filtration system
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
WO2009122460A1 (en) * 2008-03-31 2009-10-08 株式会社クボタ Method and apparatus for cleaning membrane module
JP5473897B2 (en) * 2008-03-31 2014-04-16 株式会社クボタ Cleaning method and device of the membrane module
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
JP2012500117A (en) * 2008-08-20 2012-01-05 シーメンス ウォーター テクノロジース コーポレイション Improved backwash energy efficiency of the membrane filtration system
WO2010103679A1 (en) * 2009-03-11 2010-09-16 三菱重工業株式会社 Water desalination equipment and cleaning method for water desalination equipment
JP2010207748A (en) * 2009-03-11 2010-09-24 Mitsubishi Heavy Ind Ltd Desalination apparatus and method of washing the same
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
KR20120036651A (en) * 2010-10-08 2012-04-18 엘지전자 주식회사 Membrane filtration equipment for using pulse of cross-flow water
KR101715944B1 (en) * 2010-10-08 2017-03-14 엘지전자 주식회사 Membrane filtration equipment for using pulse of cross-flow water
JP2011031245A (en) * 2010-11-15 2011-02-17 Toshiba Corp Membrane filtration system
CN103501879A (en) * 2011-04-25 2014-01-08 日本碍子株式会社 Method for washing ceramic filter
US10166512B2 (en) 2011-04-25 2019-01-01 Ngk Insulators, Ltd. Method for cleaning ceramic filter
CN103501879B (en) * 2011-04-25 2016-12-07 日本碍子株式会社 The method of cleaning the ceramic filter
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
WO2015156242A1 (en) * 2014-04-10 2015-10-15 三菱電機株式会社 Water treatment method and water treatment apparatus each using membrane
CN106132518A (en) * 2014-04-10 2016-11-16 三菱电机株式会社 Water treatment method and water treatment apparatus each using membrane
JP5908186B2 (en) * 2014-04-10 2016-04-26 三菱電機株式会社 Water treatment method and a water treatment apparatus using the membrane
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system

Similar Documents

Publication Publication Date Title
JP5869038B2 (en) Degassing the liquid by membrane contactor
US7531042B2 (en) Methods for cleaning and maintaining membrane surface during filtration
US6733675B2 (en) Spiral wound membrane element, spiral wound membrane module and treatment system employing the same as well as running method and washing method therefor
CA2281889C (en) Portable reverse osmosis unit for producing drinking water
JP3755912B2 (en) Device that allows drinking water filtration membranes submerged
US6899812B2 (en) Water filtration using immersed membranes
US6814861B2 (en) Ultrafiltration and microfiltration module and system
KR100909528B1 (en) Membrane The method of producing a separation membrane element, the separation membrane module, a wastewater treatment device and a separator
US8758622B2 (en) Simple gas scouring method and apparatus
AU2004273534B2 (en) Improved methods of cleaning membrane modules
US20080203017A1 (en) Chemical Clean For Membrane Filter
JP3704544B2 (en) Washing of the hollow fiber membrane
US5403479A (en) In situ cleaning system for fouled membranes
US20040007527A1 (en) Membrane filtration device and process
US6402956B1 (en) Treatment system and treatment method employing spiral wound type membrane module
JP4626301B2 (en) Composite separator and a method of manufacturing the same
JP4896025B2 (en) Method and apparatus for removing solids from the membrane module
US5132015A (en) Flow control for ultra filtration systems
CN1135206C (en) Water treating method
AU700335B2 (en) Method for desalinating salts-containing water and apparatus therefor
US20060065596A1 (en) Membrane filter cleansing process
EP0335647A2 (en) Multiple membrane separation systems
US7585411B2 (en) Low pressure filtration
US6432310B1 (en) Methods of running and washing spiral wound membrane module
JP5366316B2 (en) The hollow fiber membrane module and a method of purifying suspended water using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Effective date: 20070412

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Effective date: 20080331

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080331

A131 Notification of reasons for refusal

Effective date: 20080513

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A02 Decision of refusal

Effective date: 20090407

Free format text: JAPANESE INTERMEDIATE CODE: A02