JP5473897B2 - Membrane module cleaning method and apparatus - Google Patents

Membrane module cleaning method and apparatus Download PDF

Info

Publication number
JP5473897B2
JP5473897B2 JP2010505040A JP2010505040A JP5473897B2 JP 5473897 B2 JP5473897 B2 JP 5473897B2 JP 2010505040 A JP2010505040 A JP 2010505040A JP 2010505040 A JP2010505040 A JP 2010505040A JP 5473897 B2 JP5473897 B2 JP 5473897B2
Authority
JP
Japan
Prior art keywords
membrane
cleaning
state
chemical solution
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010505040A
Other languages
Japanese (ja)
Other versions
JPWO2009122460A1 (en
Inventor
智一 北野
一生 南里
康信 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Publication of JPWO2009122460A1 publication Critical patent/JPWO2009122460A1/en
Application granted granted Critical
Publication of JP5473897B2 publication Critical patent/JP5473897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/082Flat membrane modules comprising a stack of flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/042Adhesives or glues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/14Specific spacers
    • B01D2313/146Specific spacers on the permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、上水や廃水などの一般水処理においてろ過または濃縮に用いられる膜モジュールに関し、その洗浄方法および装置に係るものである。   The present invention relates to a membrane module used for filtration or concentration in general water treatment such as clean water and wastewater, and relates to a cleaning method and apparatus thereof.

従来の膜分離装置としては、例えば複数の膜エレメントを適当な間隔で平行に配置した浸漬型膜装置が知られている。膜エレメントは、膜支持体である矩形の平板状のろ板に、その表面を覆って有機膜からなるろ過膜を配置し、ろ過膜をその周縁部においてろ板に接合したものである。膜支持体には、樹脂製のろ板、不織布、ネット等がある。   As a conventional membrane separation apparatus, for example, an immersion type membrane apparatus in which a plurality of membrane elements are arranged in parallel at appropriate intervals is known. The membrane element is a filter plate made of an organic membrane covering a surface of a rectangular flat filter plate as a membrane support, and the filtration membrane is joined to the filter plate at the peripheral edge. Examples of the membrane support include a resin filter plate, a nonwoven fabric, and a net.

膜エレメントは、駆動圧力を受けてろ過膜で被処理水をろ過するものであり、槽内の水頭圧を駆動圧力とする重力ろ過、あるいはろ過膜の内側に負圧を駆動圧力として与える吸引ろ過に用いる。   The membrane element receives the driving pressure and filters the water to be treated with a filtration membrane. Gravity filtration uses the head pressure in the tank as the driving pressure, or suction filtration gives negative pressure as the driving pressure inside the filtration membrane. Used for.

ところで、膜エレメントにファウリングが生じた場合には、ファウリングを除去するための薬液洗浄が必要となる。この薬液洗浄はろ板とろ過膜との間の透過液流路に薬液を供給して行なう。   By the way, when fouling occurs in the membrane element, chemical cleaning for removing the fouling is necessary. This chemical cleaning is performed by supplying the chemical to the permeate flow path between the filter plate and the filtration membrane.

この洗浄方法には、例えば日本国特許公報(特開平8−281082号)に記載するものがある。この洗浄方法では、膜エレメントの透過液流路内に薬液を低圧で注入し、その状態を適当時間にわたって保持し、次いで透過液流路内に清水を注入することで薬液を被処理液側へ浸出させ、透過液流路内に清水を充満させる。   As this cleaning method, for example, there is a method described in Japanese Patent Publication (Japanese Patent Laid-Open No. 8-281082). In this cleaning method, a chemical solution is injected into the permeate flow channel of the membrane element at a low pressure, the state is maintained for an appropriate time, and then the clean solution is injected into the permeate flow channel to bring the chemical solution to the liquid to be treated. Leach and fill the permeate channel with fresh water.

また、日本国特許公報(特開平8−290045号)に記載するものがある。この洗浄方法では、膜エレメントの透過液流路内に薬液を低圧で注入し、その状態を適当時間にわたって保持し、その後に膜エレメントの下方より空気を曝気することで膜面の付着物を剥離させる。   Further, there is one described in Japanese Patent Gazette (JP-A-8-290045). In this cleaning method, a chemical solution is injected into the permeate flow path of the membrane element at a low pressure, the state is maintained for an appropriate period of time, and then air is aerated from below the membrane element to peel off deposits on the membrane surface. Let

ところで、上述した従来の洗浄方法において、薬液は膜エレメントの透過液流路からろ過膜を通して被処理液側へ浸出し、ろ過膜と薬液とが一過的に接触するので、未反応のままで被処理液側へ流れ出るものがあり、薬液の使用効率が低かった。   By the way, in the conventional cleaning method described above, the chemical solution is leached from the permeate flow path of the membrane element to the liquid to be treated through the filtration membrane, and the filtration membrane and the chemical solution are in temporary contact with each other. Some of the liquid flowed out to the liquid to be treated, and the chemical use efficiency was low.

また、膜エレメントの透過液流路内において、薬液はろ過膜の内側の膜面上に均一に行き渡らずに、薬液が流入する入口周辺に集中するので、ろ過膜の全体を十分に洗浄することができず、薬液の洗浄効率が低かった。   Also, in the permeate flow path of the membrane element, the chemical solution does not spread uniformly on the inner membrane surface of the filtration membrane, but concentrates around the inlet where the chemical solution flows, so the entire filtration membrane must be thoroughly washed The cleaning efficiency of the chemical solution was low.

また、被処理液の性状変化や散気装置のトラブルなどに起因して膜エレメントの相互間に汚泥が堆積し、十分なろ過が行えなくなった場合に、堆積した汚泥を除去する方法としては、手作業によるもの以外には有効な除去方法がなかった。   In addition, when sludge accumulates between the membrane elements due to changes in the properties of the liquid to be treated or troubles in the air diffuser and sufficient filtration cannot be performed, as a method of removing the accumulated sludge, There was no effective removal method other than by manual work.

本発明は上記した課題を解決するものであり、膜エレメントの透過液流路中に薬液が流れ続ける状態を継続し、さらには薬液を循環させてろ過膜と薬液とを繰り返し接触させることで薬液の使用効率を高め、かつ薬液をろ過膜の全体に均一に行き渡らせることで薬液の洗浄効率を高めることができ、さらにろ過膜が「膨らんだ状態」と「萎んだ状態」を繰り返すことで、ろ過膜の表面に付着もしくは堆積したファウリング物質を剥離させることができる膜モジュールの洗浄方法および装置を提供することを目的とする。   The present invention solves the above-described problem, and continues the state in which the chemical solution continues to flow in the permeate flow path of the membrane element, and further circulates the chemical solution to repeatedly contact the filtration membrane and the chemical solution. In addition, the cleaning efficiency of the chemical solution can be increased by spreading the chemical solution uniformly throughout the filtration membrane, and by further repeating the `` swollen state '' and `` deflated state '' of the filtration membrane, It is an object of the present invention to provide a method and apparatus for cleaning a membrane module capable of peeling a fouling substance attached or deposited on the surface of a filtration membrane.

上記課題を解決するために、本発明の膜モジュールの洗浄方法は、透過液流路が一方の集水部と他方の集水部とに連通するとともに、膜支持体の主面上に平膜からなるろ過膜を配置してなる少なくとも一つの膜エレメントを備えた膜モジュールにおいて、一方の集水部から膜エレメントの透過液流路へ洗浄薬液を供給するとともに、前記透過液流路から他方の集水部へ洗浄薬液を排出して洗浄薬液が膜エレメントの透過液流路を流れる状態を継続し、膜エレメントへ流入する流入液量と膜エレメントから流れ出る流出液量との差分液量を増減調整して、ろ過膜が膜支持体の主面から離間して膨らんだ状態となる差分液量の流入超過状態と、ろ過膜が膜支持体の主面に近接して萎んだ状態となる差分流量の流出超過状態を繰り返し生じさせることを特徴とする。 In order to solve the above-described problems, the membrane module cleaning method of the present invention is characterized in that the permeate flow path communicates with one water collection portion and the other water collection portion, and a flat membrane is formed on the main surface of the membrane support. In the membrane module comprising at least one membrane element formed by arranging a filtration membrane comprising: a cleaning chemical solution is supplied from one water collecting portion to the permeate passage of the membrane element, and the other permeate passage from the permeate passage. The cleaning chemical solution is discharged to the water collection section and the cleaning chemical solution continues to flow through the permeate flow path of the membrane element, increasing or decreasing the difference between the inflowing amount flowing into the membrane element and the outflowing amount flowing out from the membrane element. Adjust the difference between the excess flow amount of the differential liquid that causes the filtration membrane to swell away from the main surface of the membrane support, and the difference that the filtration membrane becomes deflated near the main surface of the membrane support this giving repeatedly caused the outflow exceeded state of flow rate The features.

また、本発明の膜モジュールの洗浄方法において、ろ過膜の膨らんだ状態と萎んだ状態とを繰り返すことにより、ろ過膜の表面に付着したファウリング物質の剥離を促進させることを特徴とする。   The membrane module cleaning method of the present invention is characterized in that the fouling substance adhering to the surface of the filtration membrane is promoted by repeating the swelled state and the deflated state of the filtration membrane.

また、本発明の膜モジュールの洗浄方法において、ろ過膜の膨らんだ状態と萎んだ状態とを繰り返すことにより、膜エレメントの相互間に堆積したファウリング物質を解砕して、ろ過膜の表面に付着したファウリング物質の剥離を促進させることを特徴とする。   Further, in the membrane module cleaning method of the present invention, the fouling material deposited between the membrane elements is crushed by repeating the swollen state and the deflated state of the filter membrane, and the filter membrane surface It is characterized by promoting the peeling of the attached fouling substance.

また、本発明の膜モジュールの洗浄方法において、他方の集水部から循環系を通して一方の集水部へ洗浄薬液を循環供給することを特徴とする。   In the membrane module cleaning method of the present invention, the cleaning chemical solution is circulated and supplied from the other water collecting section to the one water collecting section through the circulation system.

本発明の膜モジュールの洗浄装置は、透過液流路が一方の集水部と他方の集水部とに連通するとともに、膜支持体の主面上に平膜からなるろ過膜を配置してなる少なくとも一つの膜エレメントを備えた膜モジュールと、一方の集水部を通して膜エレメントの透過液流路へ洗浄薬液を供給する薬液供給手段と、他方の集水部を通して膜エレメントの透過液流路から洗浄薬液を排出する薬液排出手段と、膜エレメントへ流入する流入液量と膜エレメントから流れ出る流出液量との差分液量を増減調整して、ろ過膜が膜支持体の主面から離間して膨らんだ状態となる差分液量の流入超過状態と、ろ過膜が膜支持体の主面に近接して萎んだ状態となる差分流量の流出超過状態を繰り返し生じさせることが可能な流量調整手段を有することを特徴とする。 In the membrane module cleaning apparatus of the present invention, the permeate flow path communicates with one water collection section and the other water collection section, and a filtration membrane made of a flat membrane is disposed on the main surface of the membrane support. At least one of the membrane module having a membrane element, and one of the chemical liquid supply means for supplying a wash liquor through the water collecting portion to the permeate flow path of the membrane element, permeate flow path of the membrane element through the other water collecting portion comprising The filtration membrane is separated from the main surface of the membrane support by adjusting the difference between the amount of influent flowing into the membrane element and the amount of influent flowing out of the membrane element. Flow rate adjustment means capable of repeatedly generating an excessive flow-in state of the differential liquid amount that becomes a swollen state and an excessive flow-out state of the differential flow rate in which the filtration membrane is in a deflated state close to the main surface of the membrane support It is characterized by having

また、本発明の膜モジュールの洗浄装置において、薬液供給手段が一方の集水部に連通して供給ポンプを有する供給管路部からなり、薬液排出手段が他方の集水部に連通して排出ポンプを有する排出管路部からなり、流量調整手段が供給ポンプの吐出側において供給管路部から分岐して洗浄薬液を分流し、かつ流量調整バルブを有する分流管路部からなることを特徴とする。   Further, in the membrane module cleaning apparatus of the present invention, the chemical solution supply means is composed of a supply line portion having a supply pump in communication with one water collecting portion, and the chemical solution discharge means is discharged in communication with the other water collection portion. Characterized in that it comprises a discharge pipe section having a pump, and the flow rate adjusting means is branched from the supply pipe section on the discharge side of the supply pump to divert cleaning chemicals and has a flow dividing pipe section having a flow rate adjusting valve. To do.

また、本発明の膜モジュールの洗浄装置において、他方の集水部から一方の集水部へ洗浄薬液を循環供給する循環系を有し、循環系が薬液供給手段と薬液排出手段と流量調整手段と薬液槽を有し、薬液供給手段が薬液槽と一方の集水部に連通して供給ポンプを有する供給管路部からなり、薬液排出手段が他方の集水部と薬液槽に連通して排出ポンプを有する排出管路部からなり、流量調整手段が供給ポンプの吐出側において供給管路部から分岐して排出ポンプの吸引側において排出管路部に連通し、流量調整バルブを有する分流管路部からなるか、もしくは流量調整手段が供給ポンプの吐出側において供給管路部から分岐して薬液槽に連通し、流量調整バルブをする分流管路部からなることを特徴とする。   Further, the membrane module cleaning apparatus of the present invention has a circulation system that circulates and supplies the cleaning chemical solution from the other water collection unit to the one water collection unit, and the circulation system is a chemical solution supply unit, a chemical solution discharge unit, and a flow rate adjustment unit. And a chemical solution tank, a chemical solution supply means is connected to the chemical solution tank and one water collecting part, and a supply pipe part having a supply pump is provided, and a chemical solution discharge means is connected to the other water collection part and the chemical solution tank. A shunt pipe having a flow control valve, comprising a discharge pipe section having a discharge pump, the flow rate adjusting means branching from the supply pipe section on the discharge side of the supply pump and communicating with the discharge pipe section on the suction side of the discharge pump It is characterized in that it comprises a passage part, or a flow rate adjusting means which consists of a branching line part which branches from the supply pipe part on the discharge side of the supply pump and communicates with the chemical solution tank and serves as a flow rate adjusting valve.

以上のように本発明は、膜エレメントの透過液流路における洗浄薬液の差分液量を増減調整して差分液量の流入超過状態と流出超過状態を繰り返し生じさせるので、ろ過膜の表面に付着したファウリング物質、あるいは膜エレメント間に堆積したファウリング物質をろ過膜から剥離させることができる。   As described above, the present invention repeatedly adjusts the difference liquid amount of the cleaning chemical solution in the permeate flow path of the membrane element to repeatedly generate the inflow excess state and the outflow state of the difference liquid amount, so that it adheres to the surface of the filtration membrane. The fouling material or the fouling material deposited between the membrane elements can be peeled off from the filtration membrane.

また、洗浄薬液が膜エレメントの透過液流路を流れる状態を継続し、さらには洗浄薬液を循環させて洗浄薬液とろ過膜とを繰り返し接触させることで洗浄薬液の使用効率を高めることができ、かつ洗浄薬液をろ過膜の全体に均一に行き渡らせることで洗浄薬液の洗浄効率を高めることができる。   In addition, the state in which the cleaning chemical solution flows through the permeate flow path of the membrane element can be further increased, and the cleaning chemical solution can be circulated to repeatedly contact the cleaning chemical solution and the filtration membrane, thereby increasing the usage efficiency of the cleaning chemical solution. In addition, the cleaning chemical solution can be efficiently distributed over the entire filtration membrane, thereby increasing the cleaning efficiency of the cleaning chemical solution.

本発明の実施の形態における膜モジュールの洗浄装置を示す模式図The schematic diagram which shows the washing | cleaning apparatus of the membrane module in embodiment of this invention 本発明の他の実施の形態における膜モジュールの洗浄装置を示す模式図The schematic diagram which shows the washing | cleaning apparatus of the membrane module in other embodiment of this invention 本発明の他の実施の形態における膜モジュールの洗浄装置を示す模式図The schematic diagram which shows the washing | cleaning apparatus of the membrane module in other embodiment of this invention 本発明の他の実施の形態における膜モジュールの洗浄装置を示す模式図The schematic diagram which shows the washing | cleaning apparatus of the membrane module in other embodiment of this invention 本発明における膜モジュールの要部を示す断面図Sectional drawing which shows the principal part of the membrane module in this invention 本発明における膜モジュールの膜エレメントを示す斜視図The perspective view which shows the membrane element of the membrane module in this invention 同膜エレメントを示す正面図Front view showing the membrane element 本発明における膜モジュールの作用を示す模式図Schematic diagram showing the action of the membrane module in the present invention 本発明における膜エレメントの他の構成を示す分解斜視図The disassembled perspective view which shows the other structure of the membrane element in this invention 本発明における膜エレメントの他の構成を示す斜視図The perspective view which shows the other structure of the membrane element in this invention 本発明における膜エレメントのさらに他の構成を示す分解斜視図The disassembled perspective view which shows other structure of the membrane element in this invention 本発明における膜エレメントのさらに他の構成を示す正面図The front view which shows other structure of the membrane element in this invention

(実施の形態1)
以下、本発明の実施の形態を図面に基づいて説明する。図1において、膜分離装置をなす膜モジュール11は処理槽12の被処理液に浸漬して設置している。膜モジュール11は、その複数を上下に積み重ねて膜カセットを構成することも可能である。膜モジュール11の下方位置に散気装置(図示省略)が配置してある。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, a membrane module 11 constituting a membrane separation apparatus is installed by being immersed in a liquid to be treated in a treatment tank 12. A plurality of membrane modules 11 can be stacked up and down to form a membrane cassette. A diffuser (not shown) is disposed below the membrane module 11.

以下においては、本発明に係る洗浄装置の構成のみを図示するが、膜モジュール11は、その使用時には集水系を接続し、散気装置(図示省略)から散気する気体によって処理槽12の内部に上向きの気液混相流を形成する状態で運転し、気液混相流で膜面を洗浄しながら被処理液の膜分離を行う。   In the following, although only the configuration of the cleaning device according to the present invention is illustrated, the membrane module 11 is connected to a water collection system when used, and the inside of the treatment tank 12 is diffused by a gas diffused from an air diffuser (not shown). The liquid to be processed is separated while the membrane surface is washed with the gas-liquid mixed phase flow.

膜モジュール11は複数の膜エレメント13を所定間隔で並列に配置し、各膜エレメント13の横方向の両側をそれぞれ集水部14、15に水密に封止し、膜エレメント13の相互間に縦方向の流路を形成している。各集水部14、15は中空状をなして内部に集水空間を有しており、四角形状の箱体をなすが、その形状は四角形状以外のものとすることも可能である。膜エレメント13は内部の透過液流路が双方の集水部14、15の集水空間に連通する。   In the membrane module 11, a plurality of membrane elements 13 are arranged in parallel at predetermined intervals, and both lateral sides of each membrane element 13 are sealed in water-tight portions 14 and 15, respectively, and vertically between the membrane elements 13. Directional flow paths are formed. Each of the water collecting portions 14 and 15 has a hollow shape and has a water collecting space inside, and forms a rectangular box, but the shape thereof may be other than the rectangular shape. In the membrane element 13, the internal permeate flow path communicates with the water collection spaces of both water collection units 14 and 15.

本実施の形態では、膜エレメント13を上下方向に配置する構成を示している。しかしながら、膜エレメント13の配置方向は上下方向に限るものではなく、被処理液の流れ方向に沿って配置するものであれば良い。よって、後述するように、水平方向に配置することも可能であり、あるいは斜めに配置することも可能である。   In the present embodiment, a configuration in which the membrane element 13 is arranged in the vertical direction is shown. However, the arrangement direction of the membrane element 13 is not limited to the vertical direction, and any arrangement is possible as long as it is arranged along the flow direction of the liquid to be processed. Therefore, as will be described later, it can be arranged in the horizontal direction or can be arranged obliquely.

膜モジュール11は一方の集水部14の下部に連通する一方の連結部16および他方の集水部15の上部に連通する他方の連結部17を有し、一方の連結部16および他方の連結部17には循環系18が連通している。   The membrane module 11 has one connecting portion 16 that communicates with the lower portion of one water collecting portion 14 and the other connecting portion 17 that communicates with the upper portion of the other water collecting portion 15, and the one connecting portion 16 and the other connecting portion. A circulation system 18 communicates with the part 17.

一方の連結部16および他方の連結部17は、図示する形態に限らず、集水部14、15の任意の位置に設けることが可能である。   The one connecting part 16 and the other connecting part 17 are not limited to the illustrated form, and can be provided at any position of the water collecting parts 14 and 15.

本実施の形態では、本発明に係る洗浄装置の構成のみを図示するが、膜モジュール11の使用時には一方の連結部16および他方の連結部17に集水系を接続して使用する。   In the present embodiment, only the configuration of the cleaning device according to the present invention is illustrated, but when the membrane module 11 is used, a water collecting system is connected to the one connecting portion 16 and the other connecting portion 17 for use.

循環系18は、洗浄薬液を貯溜する薬液槽19と、薬液槽19と一方の集水部14に連通する供給管路部20と、他方の集水部15と薬液槽19に連通する排出管路部30と、供給管路部20から分岐して薬液槽19に連通する分流管路部40とを備えている。   The circulation system 18 includes a chemical tank 19 for storing cleaning chemical liquid, a supply pipe section 20 that communicates with the chemical tank 19 and one of the water collection sections 14, and a discharge pipe that communicates with the other water collection section 15 and the chemical liquid tank 19. A passage part 30 and a branch pipe part 40 branched from the supply pipe part 20 and communicating with the chemical tank 19 are provided.

供給管路部20は薬液供給手段をなし、一方の集水部14を通して膜エレメント13の透過液流路へ洗浄薬液を供給する。供給管路部20は、薬液を供給する供給ポンプ21、絞りバルブ22、流量調整バルブ23、流量計24、圧力計25を有し、絞りバルブ22と流量調整バルブ23とで流量制御部26を構成する。   The supply pipe section 20 serves as a chemical liquid supply means, and supplies the cleaning chemical liquid to the permeate flow path of the membrane element 13 through one water collecting section 14. The supply line section 20 includes a supply pump 21 for supplying a chemical solution, a throttle valve 22, a flow rate adjustment valve 23, a flow meter 24, and a pressure gauge 25, and the flow rate control unit 26 is configured by the throttle valve 22 and the flow rate adjustment valve 23. Configure.

排出管路部30は薬液排出手段をなし、他方の集水部15を通して膜エレメント13の透過液流路から洗浄薬液を排出する。   The discharge pipe section 30 serves as a chemical liquid discharge means, and discharges the cleaning chemical liquid from the permeate flow path of the membrane element 13 through the other water collection section 15.

排出管路部30は、薬液を排出する排出ポンプ31、絞りバルブ32、流量調整バルブ33、流量計34、圧力計35を有し、絞りバルブ32と流量調整バルブ33とで流量制御部36を構成する。   The discharge line section 30 includes a discharge pump 31 for discharging a chemical solution, a throttle valve 32, a flow rate adjustment valve 33, a flow meter 34, and a pressure gauge 35. The flow rate control unit 36 is configured by the throttle valve 32 and the flow rate adjustment valve 33. Configure.

分流管路部40は流量調整手段をなし、膜エレメント13へ流入する流入液量と膜エレメント13から流れ出る流出液量との差分液量を増減調整する。分流管路部40は、絞りバルブ42、流量調整バルブ43を有し、絞りバルブ42と流量調整バルブ43とで流量制御部46を構成し、上流側が供給管路部20の供給ポンプ21の吐出側から分岐している。   The diversion pipe section 40 constitutes a flow rate adjusting means, and increases or decreases the difference liquid amount between the inflowing liquid amount flowing into the membrane element 13 and the outflowing liquid amount flowing out from the membrane element 13. The diversion pipe section 40 includes a throttle valve 42 and a flow rate adjustment valve 43, and the throttle valve 42 and the flow rate adjustment valve 43 constitute a flow rate control section 46, and the upstream side discharges the supply pump 21 of the supply pipe line section 20. Branch from the side.

他の構成として、図2に示すように、分流管路部40は供給管路部20の供給ポンプ21の吐出側から分岐して排出管路部30の排出ポンプ31の吸引側に接続することも可能である。   As another configuration, as shown in FIG. 2, the diversion pipe section 40 is branched from the discharge side of the supply pump 21 of the supply pipe section 20 and connected to the suction side of the discharge pump 31 of the discharge pipe section 30. Is also possible.

他の構成として、図3に示すように、分流管路部40をなくすことも可能である。   As another configuration, as shown in FIG. 3, it is possible to eliminate the branch pipe section 40.

他の構成として、図4に示すように、分流管路部40をなくすとともに、二つの薬液槽19a、19bを設け、供給管路部20の上流側が一方の薬液槽19aに連通し、排出管路部30の下流側が他方の薬液槽19bに連通する構成とすることも可能である。   As another configuration, as shown in FIG. 4, the branch pipe section 40 is eliminated, two chemical liquid tanks 19 a and 19 b are provided, the upstream side of the supply pipe section 20 communicates with one chemical liquid tank 19 a, and the discharge pipe It is also possible to adopt a configuration in which the downstream side of the passage portion 30 communicates with the other chemical tank 19b.

図5に示すように、各集水部14、15は開口部51にポッティングした封止材(樹脂等)52を介して複数の膜エレメント13を水密に保持している。しかしながら、図3に示した構成に限らず、集水部14、15に膜エレメント13を水密に接合する構造には種々のものがある。例えば、集水部14、15の開口部51を単一の開口とせずに、複数のスリットに形成し、各スリットに膜エレメント13を挿入し、スリットに樹脂等の封止材52をポッティングすることも可能である。あるいは、膜エレメント13の周囲にゴム等のシール材を配置することも可能である。
(膜エレメントの実施例1)
図6〜図8に示すように、膜エレメント13は膜支持体をなす樹脂製のろ板61と、ろ板61の表裏の主面を覆って配置する平膜(有機膜)からなるろ過膜62を有しており、各膜エレメント13はろ板61の表裏の主面とろ過膜62との間に形成した透過液流路63が集水ケース14、15の集水空間に連通している。本実施の形態では、膜支持体として樹脂製のろ板1を例示するが、膜支持体としては不織布やネット等のフレキシブルな材質のものを使用する場合もある。
As shown in FIG. 5, each of the water collecting portions 14 and 15 holds the plurality of membrane elements 13 in a watertight manner via a sealing material (resin or the like) 52 potted in the opening 51. However, the configuration is not limited to the configuration shown in FIG. 3, and there are various structures in which the membrane element 13 is joined to the water collecting portions 14 and 15 in a watertight manner. For example, the openings 51 of the water collecting portions 14 and 15 are not formed as a single opening but are formed in a plurality of slits, the membrane element 13 is inserted into each slit, and a sealing material 52 such as resin is potted in the slits. It is also possible. Alternatively, a sealing material such as rubber can be disposed around the membrane element 13.
(Example 1 of membrane element)
As shown in FIGS. 6 to 8, the membrane element 13 is a filtration membrane comprising a resin filter plate 61 that forms a membrane support, and a flat membrane (organic membrane) that is disposed so as to cover the front and back main surfaces of the filter plate 61. 62, and each membrane element 13 communicates with the water collection space of the water collection cases 14, 15 through a permeate flow path 63 formed between the front and back main surfaces of the filter plate 61 and the filtration membrane 62. . In the present embodiment, the resin filter plate 1 is exemplified as the membrane support, but a flexible material such as a nonwoven fabric or a net may be used as the membrane support.

膜エレメント13は、上端側が被処理液の流れ方向において下流側に位置し、下端側が被処理液の流れ方向において上流側に位置している。ろ過膜62は上流側の縁辺部64および下流側の縁辺部65をろ板61の主面上の端部に接合して接合部66を形成している。ろ過膜62は端縁を折り曲げてろ板61の端面に接合することも可能である。   The upper end side of the membrane element 13 is positioned on the downstream side in the flow direction of the liquid to be processed, and the lower end side is positioned on the upstream side in the flow direction of the liquid to be processed. The filtration membrane 62 joins the upstream edge 64 and the downstream edge 65 to the end on the main surface of the filter plate 61 to form a joint 66. The filter membrane 62 can also be joined to the end surface of the filter plate 61 by bending the edge.

本実施の形態において接合部66は、ろ過膜62の上から超音波振動を与え、摩擦熱によりろ板61とろ過膜62とを溶着してなる。しかしながら、接着剤によってろ板61とろ過膜62とを接合しても良い。   In the present embodiment, the joining portion 66 is formed by applying ultrasonic vibration from above the filtration membrane 62 and welding the filter plate 61 and the filtration membrane 62 by frictional heat. However, the filter plate 61 and the filtration membrane 62 may be joined with an adhesive.

この構造の膜エレメント13を所定間隔で並列に配置し、複数の膜エレメント13をその相互間に配置する封止材52で水密に固定し、被処理液の流れ方向に沿ったろ板61の両側部においてろ過膜62の縁辺部を封止材52でろ板61上に保持する。   The membrane elements 13 having this structure are arranged in parallel at a predetermined interval, and a plurality of membrane elements 13 are fixed in a watertight manner with a sealing material 52 arranged between them, and both sides of the filter plate 61 along the flow direction of the liquid to be treated. The edge of the filtration membrane 62 is held on the filter plate 61 by the sealing material 52 at the part.

しかしながら、図7に示すように、封止材52は個々の膜エレメント13ごとに形成することも可能であり、各膜エレメント13ごとに被処理液の流れ方向に沿ったろ板61の両側部においてろ過膜62の縁辺部を封止材52でろ板61上に保持する。その後に、この構造の膜エレメント13を所定間隔で並列に配置し、複数の膜エレメント13をその相互間に配置する封止材(樹脂等)52で結束することも可能である。さらに、上述したように、ろ過膜62の上にゴム材等のシール材を配置してろ過膜62をろ板61に接合することも可能である。
(膜エレメントの実施例2)
膜エレメント13は、図9〜図10に示すような構成とすることもできる。この構成では、ろ過膜62はろ板61の下流側の端部61aを含んで折り返した反転部62aを形成しており、上流側の縁辺部64をろ板61の主面上で上流側の端部に接合して接合部66を形成している。この構造の膜エレメント13を所定間隔で並列に配置して、上述したものと同様にして膜モジュール11を構成する。
However, as shown in FIG. 7, the sealing material 52 can also be formed for each individual membrane element 13, and on each side of the filter plate 61 along the flow direction of the liquid to be treated for each membrane element 13. The edge of the filtration membrane 62 is held on the filter plate 61 by the sealing material 52. Thereafter, the membrane elements 13 having this structure can be arranged in parallel at a predetermined interval, and a plurality of membrane elements 13 can be bound by a sealing material (resin or the like) 52 arranged between them. Further, as described above, a sealing material such as a rubber material may be disposed on the filtration membrane 62 and the filtration membrane 62 may be joined to the filter plate 61.
(Example 2 of membrane element)
The membrane element 13 can also be configured as shown in FIGS. In this configuration, the filtration membrane 62 forms a reversing portion 62 a that includes the downstream end portion 61 a of the filter plate 61, and the upstream edge 64 is connected to the upstream end on the main surface of the filter plate 61. Bonding portions 66 are formed by bonding to the portions. Membrane module 11 is configured in the same manner as described above by arranging membrane elements 13 having this structure in parallel at predetermined intervals.

この膜モジュール11は、膜エレメント13に洗浄薬液を供給する場合や、上述した散気装置(図示省略)を運転する状態でろ過運転を停止する場合において、反転部62aを形成したろ板61の下流側端部61aの側でろ過膜62が剥離したり、破断したりすることを防止できる。
(膜エレメントの実施例3)
膜エレメント13は、図11〜図12に示すような構成とすることもできる。この構成では、ろ過膜62はろ板61の下流側の端部61aを含んで折り返した下流側反転部62aと上流側の端部61bを含んで折り返した上流側反転部62bとを有している。そして、ろ過膜62の端部どうしがろ板61の主面上もしくは端面上において相互に重なり、一方の端部における表面上に他方の端部における裏面を接合し、かつ下流側に向けた他方の端部を外側に位置させて接合部66を形成している。
When the membrane module 11 supplies the cleaning chemical solution to the membrane element 13 or when the filtration operation is stopped in the state where the above-described diffuser (not shown) is operated, the membrane module 11 It is possible to prevent the filtration membrane 62 from peeling or breaking on the downstream end 61a side.
(Example 3 of membrane element)
The membrane element 13 can also be configured as shown in FIGS. In this configuration, the filtration membrane 62 has a downstream inversion portion 62a that is folded back including the downstream end portion 61a of the filter plate 61, and an upstream inversion portion 62b that is folded back including the upstream end portion 61b. . And the end portions of the filtration membrane 62 overlap each other on the main surface or the end surface of the filter plate 61, the back surface at the other end portion is joined to the front surface at one end portion, and the other toward the downstream side. The joint portion 66 is formed with the end portion of the joint portion positioned outside.

ろ過膜62は1枚の膜シートをループ状に形成してもよく、複数枚の膜シートでループ状に形成することも可能であり、シームレスのループ状をなす膜シートで形成することも可能である。この構造の膜エレメント13を所定間隔で並列に配置して、上述したものと同様にして膜モジュール11を構成する。   The filtration membrane 62 may be formed of a single membrane sheet in a loop shape, or may be formed in a loop shape with a plurality of membrane sheets, or may be formed of a membrane sheet that forms a seamless loop shape. It is. Membrane module 11 is configured in the same manner as described above by arranging membrane elements 13 having this structure in parallel at predetermined intervals.

この膜モジュール11は、膜エレメント13に洗浄薬液を供給する場合に、ろ過膜62が膨れた状態となっても、その破断を抑制することができる。   The membrane module 11 can suppress breakage even when the filtration membrane 62 is swollen when the cleaning chemical solution is supplied to the membrane element 13.

上記した構成により、供給管路部20の供給ポンプ21を駆動して薬液槽19から洗浄薬液を一方の集水部14に供給する。   With the above-described configuration, the supply pump 21 of the supply pipe line section 20 is driven to supply the cleaning chemical liquid from the chemical liquid tank 19 to the one water collecting section 14.

そして、一方の集水部14から膜エレメント13の透過液流路63へ洗浄薬液を供給するとともに、透過液流路63から他方の集水部15へ洗浄薬液を排出する。   Then, the cleaning chemical solution is supplied from one water collecting section 14 to the permeate flow path 63 of the membrane element 13, and the cleaning chemical liquid is discharged from the permeate flow path 63 to the other water collection section 15.

排出管路部30の排出ポンプ31を駆動して他方の集水部15から薬液槽19へ洗浄薬液を排出する。上述したように、排出管路部30はサイホンに形成して洗浄薬液を薬液槽19へ排出することも可能である。   The discharge pump 31 of the discharge pipe section 30 is driven to discharge the cleaning chemical liquid from the other water collecting section 15 to the chemical tank 19. As described above, the discharge conduit portion 30 can be formed in a siphon to discharge the cleaning chemical liquid to the chemical tank 19.

そして、他方の集水部15から循環系18を通して一方の集水部14へ洗浄薬液を循環供給する間に、分流管路部40を通して洗浄薬液を洗浄薬液を薬液槽19へ分流させる。   Then, while the cleaning chemical liquid is circulated and supplied from the other water collecting section 15 to the one water collecting section 14 through the circulation system 18, the cleaning chemical liquid is divided into the chemical liquid tank 19 through the diversion pipe section 40.

そして、後述する操作により、膜エレメント13の透過液流路63を流れる洗浄薬液の差分液量を増減調整して、差分液量の流入超過状態と流出超過状態を繰り返し生じさせる。   Then, the differential liquid amount of the cleaning chemical liquid flowing through the permeate flow path 63 of the membrane element 13 is adjusted to be increased or decreased by an operation to be described later, so that an excessive inflow state and an excessive outflow state of the differential liquid amount are repeatedly generated.

つまり、図8(a)に示すように、膜エレメント13の透過液流路63における洗浄薬液の差分液量が流入超過状態、すなわち供給管路部20から膜エレメント13の透過液流路63へ流入する流入液量が膜エレメント13の透過液流路63から排出管路部30へ流出する流出液量より多い場合には、ろ過膜62がろ板61の主面から離間する膨らんだ状態となる。図8(b)に示すように、膜エレメント13の透過液流路63を流れる洗浄薬液の差分液量が流出超過状態、すなわち供給管路部20から膜エレメント13の透過液流路63へ流入する流入液量よりも膜エレメント13の透過液流路63から排出管路部30へ流出する流出液量が多い場合には、ろ過膜62がろ板61の主面に近接する萎んだ状態となる。このろ過膜62が膨らんだ状態と萎んだ状態を繰り返し生じさせる。   That is, as shown in FIG. 8A, the difference amount of the cleaning chemical in the permeate flow path 63 of the membrane element 13 is in an excessive inflow state, that is, from the supply conduit 20 to the permeate flow path 63 of the membrane element 13. When the amount of the inflowing liquid flowing in is larger than the amount of the outflowing liquid flowing out from the permeate flow path 63 of the membrane element 13 to the discharge pipe section 30, the swelled state where the filtration membrane 62 is separated from the main surface of the filter plate 61; Become. As shown in FIG. 8 (b), the difference amount of the cleaning chemical flowing through the permeate flow path 63 of the membrane element 13 is in an excessive outflow state, that is, flows into the permeate flow path 63 of the membrane element 13 from the supply conduit section 20. When the amount of the effluent flowing out from the permeate flow path 63 of the membrane element 13 to the discharge conduit portion 30 is larger than the amount of the inflowing liquid that flows, the filter membrane 62 is in a deflated state close to the main surface of the filter plate 61. Become. The filtration membrane 62 is repeatedly swelled and deflated.

ろ過膜62の表面に付着し、あるいは膜エレメント13の相互間に堆積したファウリング物質である汚泥71を、ろ過膜62の膨らんだ状態と萎んだ状態を繰り返すことにより、ろ過膜の表面における汚泥71の付着力を弱め、堆積した汚泥を解砕してろ過膜から剥離させる。   The sludge 71 attached to the surface of the filtration membrane 62 or deposited between the membrane elements 13 is repeatedly swollen and deflated with the sludge 71 on the filtration membrane surface. The adhesive force of 71 is weakened, and the accumulated sludge is crushed and separated from the filtration membrane.

つまり、このろ過膜62の膨らんだ状態と萎んだ状態を繰り返すことは、定期的な洗浄操作において洗浄効果を高めるだけでなく、膜エレメント13の相互間における汚泥の堆積や、閉塞状態を解除する操作としても有効である。   That is, repeating the swelled state and the deflated state of the filtration membrane 62 not only enhances the cleaning effect in the periodic cleaning operation, but also releases sludge accumulation and blockage between the membrane elements 13. It is also effective as an operation.

すなわち、
(操作例1)
定常状態
図1の構成において、供給ポンプ21および排出ポンプ31を定常運転し、供給管路部20、排出管路部30、分流管路部40における流量制御部26、36、46の開度を調整することにより、各流量制御部26、36、46を流れる流量の割合を調整する。
That is,
(Operation example 1)
Steady State In the configuration of FIG. 1, the supply pump 21 and the discharge pump 31 are operated in a steady state, and the opening degree of the flow rate control units 26, 36, and 46 in the supply pipe part 20, the discharge pipe part 30, and the diversion pipe part 40 By adjusting, the ratio of the flow volume which flows through each flow volume control part 26,36,46 is adjusted.

例えば、供給ポンプ21の全供給量100%のうちで所定の割合分、例えば70%の流量は、供給管路部20の流量制御部26を通って膜モジュール11に流入し、一方の集水部14から各膜エレメント13の透過液流路63を通って他方の集水部15へ流入する。そして、洗浄薬液は他方の集水部15から排出管路部30の流量制御部36を通って排出ポンプ31により薬液槽19へ戻る。   For example, a flow rate of a predetermined ratio, for example, 70%, out of the total supply amount 100% of the supply pump 21 flows into the membrane module 11 through the flow rate control unit 26 of the supply pipe line unit 20, and one water collection From the portion 14, it flows into the other water collecting portion 15 through the permeate flow path 63 of each membrane element 13. Then, the cleaning chemical liquid is returned from the other water collecting section 15 to the chemical liquid tank 19 by the discharge pump 31 through the flow rate control section 36 of the discharge pipe section 30.

一方、供給ポンプ21の全供給量100%のうちで残りの割合分である30%の流量は、分流管路部40の流量制御部46を通って薬液槽19に戻る。   On the other hand, the flow rate of 30%, which is the remaining proportion of the total supply amount 100% of the supply pump 21, returns to the chemical solution tank 19 through the flow rate control unit 46 of the branch pipe part 40.

この状態で、膜エレメント13の透過液流路63における洗浄薬液の差分液量がなくなり、すなわち供給管路部20から膜エレメント13の透過液流路63へ流入する流入液量と膜エレメント13の透過液流路63から排出管路部30へ流出する流出液量とが等量となり、ろ過膜62に負荷を与えることなく洗浄薬液が透過液流路63を流れる。   In this state, there is no difference in the amount of the cleaning chemical solution in the permeate flow path 63 of the membrane element 13, that is, the amount of inflow liquid flowing from the supply pipe section 20 into the permeate flow path 63 of the membrane element 13 and the membrane element 13. The amount of the effluent flowing out from the permeate flow path 63 to the discharge conduit portion 30 becomes equal, and the cleaning chemical flows through the permeate flow path 63 without applying a load to the filtration membrane 62.

このとき、一方の集水部14の一方の連結部16から流入した洗浄薬液が膜エレメント13の透過液流路63を通って他方の集水部15の他方の連結部17から流出することで、洗浄薬液がろ過膜62の全体に均一に流れるとともに、ろ過膜に常に新鮮な洗浄薬液が接触し、透過液側から被処理液側へ洗浄薬液が浸透することにより、洗浄効率が高まる。
また、ろ過膜62の内側の付着物を除去して系外へ排出することが可能である。
At this time, the cleaning chemical liquid flowing in from one connecting portion 16 of one water collecting portion 14 flows out from the other connecting portion 17 of the other water collecting portion 15 through the permeate flow path 63 of the membrane element 13. The cleaning chemical solution flows uniformly over the entire filtration membrane 62, the fresh cleaning chemical solution is always in contact with the filtration membrane, and the cleaning chemical solution permeates from the permeate side to the liquid to be treated, thereby increasing the cleaning efficiency.
Further, it is possible to remove the deposits inside the filtration membrane 62 and discharge it outside the system.

さらに、洗浄薬液が膜エレメント13と薬液槽19との間で循環し、膜エレメント13を通過した洗浄薬液が再び膜エレメント13の透過液流路を通過し、薬液槽19に貯溜した洗浄薬液が膜エレメント13の透過液流路を繰り返し通過することで、洗浄薬液とろ過膜62との接触機会が増加して使用効率が高まる。さらに、このようにろ過膜62に作用する負荷を抑制する状態においては、曝気を行なってもろ過膜62が破断することがなく、薬液洗浄において曝気を併用して洗浄効果を高めることができる。
膨らんだ状態
次に、分流管路部40の流量制御部46の開度を小さくし、分流管路部40を通って薬液槽19へ戻る洗浄薬液の流量を抑制し、例えば供給ポンプ21の全供給量100%のうちで所定の割合分、例えば10%の流量とする。一方、供給管路部20の流量制御部26の開度を大きくし、流量制御部26を通って膜モジュール11へ供給する流入液量を、供給ポンプ21の全供給量100%のうちの90%に増加させる。
Further, the cleaning chemical solution circulates between the membrane element 13 and the chemical solution tank 19, the cleaning chemical solution that has passed through the membrane element 13 passes again through the permeate flow path of the membrane element 13, and the cleaning chemical solution stored in the chemical solution tank 19 is recovered. By repeatedly passing through the permeate flow path of the membrane element 13, the chance of contact between the cleaning chemical and the filtration membrane 62 is increased, and the use efficiency is increased. Furthermore, in such a state in which the load acting on the filtration membrane 62 is suppressed, the filtration membrane 62 is not broken even if aeration is performed, and the cleaning effect can be enhanced by using aeration in chemical cleaning.
Inflated state Next, the opening of the flow rate control unit 46 of the diversion pipe part 40 is reduced, and the flow rate of the cleaning chemical liquid that returns to the chemical tank 19 through the diversion pipe part 40 is suppressed. The flow rate is set to a predetermined ratio, for example, 10% of the supply amount 100%. On the other hand, the opening degree of the flow rate control unit 26 of the supply pipeline unit 20 is increased, and the amount of inflow liquid supplied to the membrane module 11 through the flow rate control unit 26 is 90% of the total supply rate 100% of the supply pump 21. Increase to%.

この状態で、膜エレメント13における洗浄薬液の排出量(70%)に対して供給量(90%)が上回る。このため、図8(a)に示すように、洗浄薬液の差分液量が流入超過状態となって膜エレメント13の透過液流路63に滞留する液量が増加することにより、ろ過膜62がろ板61の主面から離間する膨らんだ状態となる。   In this state, the supply amount (90%) exceeds the discharge amount (70%) of the cleaning chemical solution in the membrane element 13. For this reason, as shown in FIG. 8 (a), the differential liquid amount of the cleaning chemical liquid is in an excessive inflow state, and the amount of liquid retained in the permeate flow path 63 of the membrane element 13 is increased. The swelled state is separated from the main surface of the filter plate 61.

ここで、膜エレメント13の相互間にファウリング物質、ここでは汚泥71が堆積している場合には、ろ過膜62が膨らんだ状態となることで、堆積した汚泥71を押圧して解砕する。
萎んだ状態
次に、分流管路部40の流量制御部46の開度を大きくし、分流管路部40を通って薬液槽19へ戻る洗浄薬液の流量を増大させ、例えば供給ポンプ21の全供給量100%のうちで所定の割合分、例えば50%の流量とする。一方、供給管路部20の流量制御部26の開度を小さくし、流量制御部26を通って膜モジュール11へ供給する流入液量を、供給ポンプ21の全供給量100%のうちの50%に減少させる。
Here, when the fouling substance, here sludge 71, is accumulated between the membrane elements 13, the filtration membrane 62 is swollen so that the accumulated sludge 71 is pressed and crushed. .
Next, the opening degree of the flow rate control unit 46 of the diversion pipe part 40 is increased, and the flow rate of the cleaning chemical liquid returning to the chemical liquid tank 19 through the diversion pipe part 40 is increased. The flow rate is set to a predetermined proportion of the supply amount 100%, for example, 50%. On the other hand, the opening amount of the flow rate control unit 26 of the supply pipeline unit 20 is reduced, and the amount of inflowing liquid supplied to the membrane module 11 through the flow rate control unit 26 is 50% of the total supply rate 100% of the supply pump 21. Reduce to%.

この状態で、膜エレメント13における洗浄薬液の排出量(70%)に対して供給量(50%)が下回る。このため、図8(b)に示すように、洗浄薬液の差分液量が流出超過状態となって膜エレメント13の透過液流路63に滞留する液量が減少することにより、ろ過膜62がろ板61の主面に近接する萎んだ状態となり、やがてろ過膜62がろ板61に密着する。   In this state, the supply amount (50%) is lower than the discharge amount (70%) of the cleaning chemical solution in the membrane element 13. For this reason, as shown in FIG. 8 (b), the differential liquid amount of the cleaning chemical solution is in an excessive outflow state, and the amount of liquid retained in the permeate flow path 63 of the membrane element 13 is reduced. The filter membrane 62 is in a deflated state close to the main surface of the filter plate 61, and the filter membrane 62 is brought into close contact with the filter plate 61 in due course.

ここで、膜エレメント13の相互間にファウリング物質、ここでは汚泥71が堆積している場合には、ろ過膜62が萎んだ状態となることで、先に膨らんだ状態において押圧したファウリング物質からろ過膜62が離間し、ろ過膜62の表面からファウリング物質を除去する。   Here, when a fouling substance, here sludge 71, is deposited between the membrane elements 13, the fouling substance pressed in the previously swollen state by the filtration membrane 62 becoming deflated. The filtration membrane 62 is separated from the surface, and the fouling substance is removed from the surface of the filtration membrane 62.

上述したように、膜エレメント13の透過液流路63における洗浄薬液の差分液量を増減調整し、流入超過状態での膨らんだ状態と流出超過状態での萎んだ状態とを繰り返し生じさせることで、ろ過膜62の表面に付着し、あるいは膜エレメント13の相互間に堆積したファウリング物質を、その付着力を弱めてろ過膜から剥離させることができる。
(操作例2)
図2の構成において、供給ポンプ21および排出ポンプ31を定常運転し、供給管路部20、排出管路部30、分流管路部40における流量制御部26、36、46の開度を調整することで、各流量制御部26、36、46を流れる流量の割合を調整する。
As described above, the difference amount of the cleaning chemical solution in the permeate channel 63 of the membrane element 13 is adjusted to increase / decrease, and the swollen state in the excessive flow state and the deflated state in the excessive flow state are repeatedly generated. The fouling material adhering to the surface of the filtration membrane 62 or deposited between the membrane elements 13 can be peeled off from the filtration membrane by weakening its adhesion.
(Operation example 2)
In the configuration of FIG. 2, the supply pump 21 and the discharge pump 31 are steadily operated to adjust the opening degree of the flow rate control units 26, 36, and 46 in the supply line unit 20, the discharge line unit 30, and the diversion line unit 40. Thus, the ratio of the flow rate flowing through each of the flow rate control units 26, 36, 46 is adjusted.

この定常状態で、膜エレメント13における洗浄薬液の供給量と排出量が等量となる。定常状態での作用効果は先の操作例1と同様である。   In this steady state, the supply amount and the discharge amount of the cleaning chemical solution in the membrane element 13 are equal. The effects in the steady state are the same as in the first operation example.

次に、供給ポンプ21の吐出量および排出ポンプ31の排出量を一定に維持する状態で、分流管路部40の流量制御部46の流量を増減調整する。分流管路部40の流量制御部46を流れる流量の減少により、供給管路部20の流量制御部26を通って膜モジュール11に流入する洗浄薬液の液量と、排出管路部30の流量制御部36を通って膜モジュール11から流出する洗浄薬液の液量が増加する。   Next, in a state where the discharge amount of the supply pump 21 and the discharge amount of the discharge pump 31 are kept constant, the flow rate of the flow rate control unit 46 of the shunt pipe line unit 40 is increased or decreased. Due to the decrease in the flow rate flowing through the flow rate control unit 46 of the diversion channel unit 40, the amount of the cleaning chemical liquid flowing into the membrane module 11 through the flow rate control unit 26 of the supply pipeline unit 20 and the flow rate of the discharge pipeline unit 30. The amount of the cleaning chemical solution flowing out from the membrane module 11 through the control unit 36 increases.

膜エレメント13は排出管路部30に比べて圧力損失が大きいので、洗浄薬液の液量の変化時における短時間の間において、膜エレメント13の透過液流路63に滞留する洗浄薬液の滞留液量が増加し、図8(a)に示すように、ろ過膜62がろ板61の主面から離間する膨らんだ状態となる。しかしながら、透過液流路63における洗浄薬液の滞留液量は経時的に漸次に減少し、滞留液量の減少により、図8(b)に示すように、ろ過膜62がろ板61の主面に近接する萎んだ状態となる。   Since the pressure loss of the membrane element 13 is larger than that of the discharge pipe section 30, the retained liquid of the cleaning chemical liquid that stays in the permeate flow path 63 of the membrane element 13 during a short time when the amount of the cleaning chemical liquid changes. The amount increases, and as shown in FIG. 8A, the filtration membrane 62 is in a swelled state away from the main surface of the filter plate 61. However, the retained liquid amount of the cleaning chemical liquid in the permeate channel 63 gradually decreases with time, and due to the decrease in the retained liquid amount, the filtration membrane 62 becomes the main surface of the filter plate 61 as shown in FIG. It becomes a deflated state close to.

この状態で、分流管路部40の分流管路部40の流量制御部46を流れる流量を増加させ、萎んだ状態を維持する。以上の繰り返しにより膨らんだ状態と萎んだ状態を繰り返す。   In this state, the flow rate flowing through the flow rate control unit 46 of the diversion pipe line part 40 of the diversion pipe line part 40 is increased, and the deflated state is maintained. By repeating the above, the swollen state and the deflated state are repeated.

図1および図2の構成では、循環系18を用いて洗浄薬液を膜モジュール11と薬液槽19との間で循環している。しかしながら、洗浄薬液は必ずしも循環使用する必要はなく、図4に示すように、一方の薬液槽19aから膜モジュール11へ供給した洗浄薬液を膜モジュール11から一方の薬液槽19bへ排出しても良い。   In the configuration of FIGS. 1 and 2, the cleaning chemical solution is circulated between the membrane module 11 and the chemical solution tank 19 using the circulation system 18. However, it is not always necessary to circulate the cleaning chemical solution, and as shown in FIG. 4, the cleaning chemical solution supplied from one chemical solution tank 19a to the membrane module 11 may be discharged from the membrane module 11 to one chemical solution tank 19b. .

上述したように、膜エレメント13の透過液流路を洗浄薬液が流れる状態を継続しながら、膨らんだ状態と萎んだ状態とを繰り返し生じさせることで、先の操作例1と同様に、ろ過膜62の表面に付着し、あるいは膜エレメント13の相互間に堆積したファウリング物質を、その付着力を弱めてろ過膜から剥離させることができる。   As described above, as in the previous operation example 1, the filtration membrane is generated by repeatedly generating the swollen state and the deflated state while continuing the state in which the cleaning chemical liquid flows through the permeate flow path of the membrane element 13. The fouling material adhering to the surface of 62 or deposited between the membrane elements 13 can be peeled off from the filtration membrane by weakening its adhesion.

図1および図2の構成では、分流管路部40を用いて膜エレメント13における差分流量を増減調整している。しかしながら、分流管路部40は必ずしも必要ではなく、図3および図4に示すように、分流管路部40を設けずに、供給管路部20と排出管路部30の流量制御部26、36のうちで少なくとも一方の開度を調整することで膜エレメント13における差分流量を増減調整することも可能である。また、供給管路部20と排出管路部30の供給ポンプ21もしくは排出ポンプ31のうちで少なくとも1つの出力調整をインバータ制御等で行うことにより膜エレメント13における差分流量を増減調整することも可能である。
(実施例1)
・実施方法
活性汚泥中に膜モジュール11を浸漬し、曝気を行なわずにろ過運転だけを行い、膜面に汚泥を付着させる。薬液洗浄前と薬液洗浄後とにおいてろ過運転開示時の膜間差圧を測定し、ろ過膜の膨らんだ状態と萎んだ状態とを繰り返す作用が及ぼす効果を求める。
・膜面付着汚泥
曝気を行なわずにろ過運転だけを行って、膜間差圧が約30kPaに達した時の汚泥である。各試験区において同様な汚泥状態とする。
・膜モジュール
膜エレメント:500×500×6mm
膜エレメント数:10枚
集水部:膜エレメントの両側に設ける。
・膜面の膨らみ、萎みの形成方法
図1において行なった操作例1、つまり排出ポンプ31と供給ポンプ21の流量を一定に維持する状態で、分流管路部40の流量を増減調整することで、膜エレメント13における差分液量を流入超過状態、もしくは流出超過状態とする。
・薬液
薬液:次亜塩素酸ナトリウム0.5%
薬液注入量:1分サイクルで2.5(L/分)と1.5(L/分)とに流量を増減させる。
In the configuration of FIGS. 1 and 2, the differential flow rate in the membrane element 13 is adjusted to increase or decrease using the diversion pipe section 40. However, the diversion pipe section 40 is not necessarily required. As shown in FIGS. 3 and 4, the flow control section 26 of the supply pipe section 20 and the discharge pipe section 30 without providing the diversion pipe section 40, It is also possible to increase / decrease the differential flow rate in the membrane element 13 by adjusting the opening degree of at least one of the 36. It is also possible to increase or decrease the differential flow rate in the membrane element 13 by adjusting the output of at least one of the supply pump 21 or the discharge pump 31 of the supply pipe section 20 and the discharge pipe section 30 by inverter control or the like. It is.
Example 1
-Implementation method The membrane module 11 is immersed in activated sludge, and only the filtration operation is performed without aeration, and the sludge is adhered to the membrane surface. The transmembrane pressure difference at the time of disclosure of the filtration operation is measured before and after the chemical cleaning, and the effect of the repeated action of the swelled state and the deflated state of the filtration membrane is determined.
・ Membrane surface adhering sludge This is the sludge when the transmembrane differential pressure reaches about 30 kPa by performing only the filtration operation without aeration. The same sludge state is assumed in each test section.
・ Membrane module Membrane element: 500 × 500 × 6mm
Number of membrane elements: 10 Water collecting part: Provided on both sides of the membrane element.
Forming method of swelling and deflation of the membrane surface In the operation example 1 performed in FIG. 1, that is, in a state where the flow rates of the discharge pump 31 and the supply pump 21 are kept constant, the flow rate of the diversion pipe section 40 is adjusted to increase or decrease Thus, the differential liquid amount in the membrane element 13 is set to the inflow excess state or the outflow excess state.
・ Chemical liquid Chemical liquid: Sodium hypochlorite 0.5%
Chemical injection amount: Increase / decrease the flow rate to 2.5 (L / min) and 1.5 (L / min) in 1 minute cycle.

薬液排水量:2.0(L/分)
薬液洗浄時間:30分間
・試験区分
1.膜面の膨らみ、萎みを生じさせないで薬液洗浄する。つまり薬液注入量と薬液排水量を2.0L/分と同等にする。
Chemical drainage: 2.0 (L / min)
Chemical cleaning time: 30 minutes / test category Wash with chemicals without causing swelling or deflation of the membrane surface. That is, the chemical solution injection amount and the chemical solution drainage amount are made equal to 2.0 L / min.

2.膜面の膨らみ、萎みを生じさせながら薬液洗浄する。
・結果
薬液洗浄後において膜間差圧を測定すると、試験区分1の膜面の膨張、収縮を伴わない薬液洗浄では、膜間差圧が9.6(kPa)までしか回復しなかった。試験区分2の膜面の膨張、収縮を行なう薬液洗浄では、膜間差圧が5.0(kPa)まで回復した。
2. Wash with chemicals while causing swelling and deflation of the membrane surface.
-Results When the transmembrane pressure difference was measured after the chemical solution cleaning, the transmembrane differential pressure recovered only to 9.6 (kPa) in the chemical solution cleaning without expansion and contraction of the membrane surface in Test Category 1. In the chemical cleaning that performs expansion and contraction of the membrane surface in Test Category 2, the transmembrane pressure difference recovered to 5.0 (kPa).

この結果から、薬液洗浄を行う場合には、膜エレメント13における差分液量を流入超過状態、もしくは流出超過状態として膜面の膨らみ、萎みを生じさせることで、膜面に付着した汚泥を剥がし易くなり、膜透過性を高めることができ、洗浄効果が高まることがわかる。
(実施例2)
先の実施例1における各項目、つまり膜面付着汚泥、膜モジュール、薬液、試験区分を同条件とし、膜面の膨張、収縮方法を図2において行なった操作例2とする。つまり供給ポンプ21の吐出量および排出ポンプ31の排出量を一定に維持する状態で、分流管路部40の流量制御部46の流量を増減調整し、薬液注入量を1分サイクルで2.5L/分と1.5L/分とに流量を増減させる。
・結果
薬液洗浄後において膜間差圧を測定すると、試験区分1の膜面の膨らみ、萎みを伴わない薬液洗浄では、膜間差圧が9.6(kPa)までしか回復しない。試験区分2の膜面の膨らみ、萎みを行なう薬液洗浄では、膜間差圧が6.8(kPa)にまで回復した。
From this result, when performing chemical cleaning, the sludge adhering to the membrane surface is peeled off by causing the membrane surface to swell and deflate when the differential liquid amount in the membrane element 13 is set to an excessive inflow state or an excessive outflow state. It becomes easy, membrane permeability can be improved, and it turns out that a cleaning effect increases.
(Example 2)
The items in the previous Example 1, that is, the membrane surface adhering sludge, the membrane module, the chemical solution, and the test category are the same conditions, and the membrane surface expansion / contraction method is the operation example 2 performed in FIG. That is, in a state where the discharge amount of the supply pump 21 and the discharge amount of the discharge pump 31 are kept constant, the flow rate of the flow rate control unit 46 of the diversion conduit unit 40 is adjusted to increase or decrease, and the chemical solution injection amount is 2.5 L in one minute cycle. Increase or decrease the flow rate to 1 / min and 1.5 L / min.
・ Results When the transmembrane pressure difference is measured after the chemical solution cleaning, the transmembrane differential pressure recovers only to 9.6 (kPa) in the chemical solution cleaning without swelling or deflation of the membrane surface in Test Category 1. In the chemical solution cleaning in which the membrane surface of Test Category 2 swells and wilts, the transmembrane pressure difference recovered to 6.8 (kPa).

この結果から、薬液洗浄を行う場合には、膜エレメント13における差分液量を流入超過状態、もしくは流出超過状態として膜面の膨らみ、萎みを生じさせることで、膜面に付着した汚泥を剥がし易くなり、膜透過性を高めることができ、洗浄効果が高まることがわかる。   From this result, when performing chemical cleaning, the sludge adhering to the membrane surface is peeled off by causing the membrane surface to swell and deflate when the differential liquid amount in the membrane element 13 is set to an excessive inflow state or an excessive outflow state. It becomes easy, membrane permeability can be improved, and it turns out that a cleaning effect increases.

Claims (7)

透過液流路が一方の集水部と他方の集水部とに連通するとともに、膜支持体の主面上に平膜からなるろ過膜を配置してなる少なくとも一つの膜エレメントを備えた膜モジュールにおいて、一方の集水部から膜エレメントの透過液流路へ洗浄薬液を供給するとともに、前記透過液流路から他方の集水部へ洗浄薬液を排出して洗浄薬液が膜エレメントの透過液流路を流れる状態を継続し、膜エレメントへ流入する流入液量と膜エレメントから流れ出る流出液量との差分液量を増減調整して、ろ過膜が膜支持体の主面から離間して膨らんだ状態となる差分液量の流入超過状態と、ろ過膜が膜支持体の主面に近接して萎んだ状態となる差分流量の流出超過状態を繰り返し生じさせることを特徴とする膜モジュールの洗浄方法。 A membrane comprising at least one membrane element in which a permeate flow channel communicates with one water collection portion and the other water collection portion, and a filtration membrane made of a flat membrane is disposed on the main surface of the membrane support. In the module, the cleaning chemical solution is supplied from one water collecting portion to the permeate flow passage of the membrane element, and the cleaning chemical solution is discharged from the permeate flow passage to the other water collecting portion so that the cleaning chemical solution is permeated through the membrane element. Continue to flow through the flow path and adjust the difference between the amount of inflow flowing into the membrane element and the amount of effluent flowing out of the membrane element to increase or decrease, and the filtration membrane swells away from the main surface of the membrane support The membrane module cleaning is characterized in that it repeatedly causes an inflow excess state of the differential liquid amount to be in a stagnation state and an excess outflow state of the differential flow rate in which the filtration membrane is in a state of being deflated close to the main surface of the membrane support. Method. ろ過膜の膨らんだ状態と萎んだ状態とを繰り返すことにより、ろ過膜の表面に付着したファウリング物質の剥離を促進させることを特徴とする請求項1に記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to claim 1, wherein peeling of the fouling substance adhering to the surface of the filtration membrane is promoted by repeating the swollen state and the deflated state of the filtration membrane. ろ過膜の膨らんだ状態と萎んだ状態とを繰り返すことにより、膜エレメントの相互間に堆積したファウリング物質を解砕して、ろ過膜の表面に付着したファウリング物質の剥離を促進させることを特徴とする請求項1に記載の膜モジュールの洗浄方法。 By repeating the swollen state and the deflated state of the filtration membrane, the fouling material deposited between the membrane elements can be crushed to promote the separation of the fouling material adhering to the surface of the filtration membrane. The method for cleaning a membrane module according to claim 1 . 他方の集水部から循環系を通して一方の集水部へ洗浄薬液を循環供給することを特徴とする請求項1〜3の何れか1項に記載の膜モジュールの洗浄方法。 The cleaning method for a membrane module according to any one of claims 1 to 3 , wherein the cleaning chemical solution is circulated and supplied from the other water collecting part to the one water collecting part through the circulation system. 透過液流路が一方の集水部と他方の集水部とに連通するとともに、膜支持体の主面上に平膜からなるろ過膜を配置してなる少なくとも一つの膜エレメントを備えた膜モジュールと、一方の集水部を通して膜エレメントの透過液流路へ洗浄薬液を供給する薬液供給手段と、他方の集水部を通して膜エレメントの透過液流路から洗浄薬液を排出する薬液排出手段と、膜エレメントへ流入する流入液量と膜エレメントから流れ出る流出液量との差分液量を増減調整して、ろ過膜が膜支持体の主面から離間して膨らんだ状態となる差分液量の流入超過状態と、ろ過膜が膜支持体の主面に近接して萎んだ状態となる差分流量の流出超過状態を繰り返し生じさせることが可能な流量調整手段を有することを特徴とする膜モジュールの洗浄装置。 A membrane comprising at least one membrane element in which a permeate flow channel communicates with one water collection portion and the other water collection portion, and a filtration membrane made of a flat membrane is disposed on the main surface of the membrane support. A chemical supply means for supplying a cleaning chemical solution to the permeate flow path of the membrane element through one water collection part; and a chemical solution discharge means for discharging the cleaning chemical liquid from the permeate flow path of the membrane element through the other water collection part. The amount of differential liquid between the amount of inflow flowing into the membrane element and the amount of effluent flowing out of the membrane element is adjusted to increase or decrease, so that the filtration membrane is in a state where it swells away from the main surface of the membrane support. A membrane module comprising a flow rate adjusting means capable of repeatedly causing an excess inflow state and an outflow excess state of a differential flow rate in which the filtration membrane is in a state of being deflated near the main surface of the membrane support . Cleaning device. 薬液供給手段が一方の集水部に連通して供給ポンプを有する供給管路部からなり、薬液排出手段が他方の集水部に連通して排出ポンプを有する排出管路部からなり、流量調整手段が供給ポンプの吐出側において供給管路部から分岐して洗浄薬液を分流し、かつ流量調整バルブを有する分流管路部からなることを特徴とする請求項5に記載の膜モジュールの洗浄装置。 The chemical solution supply means is connected to one water collecting section and is composed of a supply pipe section having a supply pump, and the chemical liquid discharge means is connected to the other water collection section and is composed of a discharge conduit section having a discharge pump, and the flow rate is adjusted. 6. The membrane module cleaning apparatus according to claim 5 , wherein the means comprises a branch pipe section that branches off from the supply pipe section on the discharge side of the supply pump and splits the cleaning chemical solution and has a flow rate adjusting valve. . 他方の集水部から一方の集水部へ洗浄薬液を循環供給する循環系を有し、循環系が薬液供給手段と薬液排出手段と流量調整手段と薬液槽を有し、薬液供給手段が薬液槽と一方の集水部に連通して供給ポンプを有する供給管路部からなり、薬液排出手段が他方の集水部と薬液槽に連通して排出ポンプを有する排出管路部からなり、流量調整手段が供給ポンプの吐出側において供給管路部から分岐して排出ポンプの吸引側において排出管路部に連通し、流量調整バルブを有する分流管路部からなるか、もしくは流量調整手段が供給ポンプの吐出側において供給管路部から分岐して薬液槽に連通し、流量調整バルブを有する分流管路部からなることを特徴とする請求項5に記載の膜モジュールの洗浄装置。 It has a circulation system that circulates and supplies cleaning chemical liquid from the other water collection section to one water collection section, the circulation system has chemical liquid supply means, chemical liquid discharge means, flow rate adjustment means, and chemical liquid tank, and the chemical liquid supply means is chemical liquid The tank is connected to one water collecting section and has a supply pipe section having a supply pump, and the chemical liquid discharging means is connected to the other water collecting section and the chemical liquid tank and has a discharge pipe section having a discharge pump. The adjusting means branches from the supply pipe section on the discharge side of the supply pump and communicates with the discharge pipe section on the suction side of the discharge pump, and consists of a shunt pipe section having a flow rate adjusting valve, or supplied by the flow control means 6. The membrane module cleaning apparatus according to claim 5 , comprising a branch pipe section having a flow rate adjusting valve which branches from a supply pipe section on the discharge side of the pump and communicates with a chemical tank.
JP2010505040A 2008-03-31 2008-03-31 Membrane module cleaning method and apparatus Active JP5473897B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/000829 WO2009122460A1 (en) 2008-03-31 2008-03-31 Method and apparatus for cleaning membrane module

Publications (2)

Publication Number Publication Date
JPWO2009122460A1 JPWO2009122460A1 (en) 2011-07-28
JP5473897B2 true JP5473897B2 (en) 2014-04-16

Family

ID=41134882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010505040A Active JP5473897B2 (en) 2008-03-31 2008-03-31 Membrane module cleaning method and apparatus

Country Status (2)

Country Link
JP (1) JP5473897B2 (en)
WO (1) WO2009122460A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608110B2 (en) 2011-01-18 2014-10-15 株式会社クボタ Membrane separator
CN102351307B (en) * 2011-09-07 2013-08-07 江苏蓝天沛尔膜业有限公司 Optimization pressure and on-line cleaning-membrane biological reactor (OPLC-MBR) dirt-resisting type plain membrane component system device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128701A (en) * 1997-10-30 1999-05-18 Nitto Denko Corp Immersion-type membrane separation apparatus and method for cleaning immersion-type membrane separation apparatus thereof
JP2000000441A (en) * 1998-06-16 2000-01-07 Suido Kiko Kaisha Ltd Flat-membrane filter and method
JP2001029757A (en) * 1999-07-26 2001-02-06 Daicel Chem Ind Ltd Separation membrane element and separation apparatus using the same
JP2003164738A (en) * 2001-11-29 2003-06-10 Kobe Steel Ltd Membrane separation activated sludge treatment method
JP2004073950A (en) * 2002-08-13 2004-03-11 Asahi Kasei Chemicals Corp Membrane washing method
JP2005224687A (en) * 2004-02-12 2005-08-25 Suido Kiko Kaisha Ltd Method and device for concentrating and separating solid component
JP2007167789A (en) * 2005-12-22 2007-07-05 Shinshu Univ Mud taking-out method and its taking-out apparatus
JP2007245059A (en) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd Backwashing method and apparatus of filtration membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11128701A (en) * 1997-10-30 1999-05-18 Nitto Denko Corp Immersion-type membrane separation apparatus and method for cleaning immersion-type membrane separation apparatus thereof
JP2000000441A (en) * 1998-06-16 2000-01-07 Suido Kiko Kaisha Ltd Flat-membrane filter and method
JP2001029757A (en) * 1999-07-26 2001-02-06 Daicel Chem Ind Ltd Separation membrane element and separation apparatus using the same
JP2003164738A (en) * 2001-11-29 2003-06-10 Kobe Steel Ltd Membrane separation activated sludge treatment method
JP2004073950A (en) * 2002-08-13 2004-03-11 Asahi Kasei Chemicals Corp Membrane washing method
JP2005224687A (en) * 2004-02-12 2005-08-25 Suido Kiko Kaisha Ltd Method and device for concentrating and separating solid component
JP2007167789A (en) * 2005-12-22 2007-07-05 Shinshu Univ Mud taking-out method and its taking-out apparatus
JP2007245059A (en) * 2006-03-17 2007-09-27 Fuji Electric Systems Co Ltd Backwashing method and apparatus of filtration membrane

Also Published As

Publication number Publication date
WO2009122460A1 (en) 2009-10-08
JPWO2009122460A1 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
TW200400082A (en) Membrane separation device and membrane separation method
JP5182413B2 (en) Immersion type membrane separator, method of cleaning a diffuser and membrane separation method
JP5067384B2 (en) Aeration device cleaning method and membrane separation method
JP3815645B2 (en) Immersion type flat membrane separator and control method thereof
JPH115023A (en) Hollow fiber membrane filter
JP5611032B2 (en) Immersion membrane separator
JP5232393B2 (en) Water purifier
JP7103728B2 (en) Operation method of membrane separation device and wastewater treatment equipment
JP2000343095A (en) Activated sludge treating device
JP5473897B2 (en) Membrane module cleaning method and apparatus
JP4303779B1 (en) Water circuit cleaning system
JP2006263716A (en) Dipping type membrane separation apparatus, washing method of air diffuser and membrane separation method
JP5280204B2 (en) Operation method of water purification equipment
JP3984145B2 (en) Cleaning method for solid-liquid separator
JP3554296B2 (en) Filtration device using filtration separation membrane cartridge
JP3488535B2 (en) Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device
JP2002028455A (en) Method for operating spiral membrane element and spiral membrane module and spiral membrane module
JP6411051B2 (en) Immersion membrane separator and method for operating the same
JP2004025111A (en) Pressurized immersion membrane filtering device
JP6664673B1 (en) Filtration system
JPH10118470A (en) Method of cleaning separation membrane module
JP4374260B2 (en) Immersion membrane filtration device
JP2005279495A (en) Immersed membrane separator, washing method for diffuser, and membrane separation method
JP3572267B2 (en) Tubular membrane separator
JP2000342935A (en) Filter apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150