JP3880251B2 - Backwash method for submerged membrane separator - Google Patents

Backwash method for submerged membrane separator Download PDF

Info

Publication number
JP3880251B2
JP3880251B2 JP21444799A JP21444799A JP3880251B2 JP 3880251 B2 JP3880251 B2 JP 3880251B2 JP 21444799 A JP21444799 A JP 21444799A JP 21444799 A JP21444799 A JP 21444799A JP 3880251 B2 JP3880251 B2 JP 3880251B2
Authority
JP
Japan
Prior art keywords
membrane
chemical solution
cleaning
cleaning chemical
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21444799A
Other languages
Japanese (ja)
Other versions
JP2001038163A (en
Inventor
善久 鳴上
俊也 尾崎
健 吉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21444799A priority Critical patent/JP3880251B2/en
Publication of JP2001038163A publication Critical patent/JP2001038163A/en
Application granted granted Critical
Publication of JP3880251B2 publication Critical patent/JP3880251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、浄水、下水、し尿、産業廃水等を処理する水処理などにおいて浸漬型膜分離装置を使用する技術に係り、浸漬型膜分離装置の逆洗方法に関する。
【0002】
【従来の技術】
従来、浄水、下水、し尿、産業廃水等を処理する水処理装置として、反応槽内に浸漬型膜分離装置を配置し、槽内の被処理水を濾過するものがある。このような膜分離装置の一例として、複数本の管状セラミック分離膜(膜エレメント)を平行に配置して膜モジュールを構成し、この膜モジュールを複数段積層するものがある。この浸漬型膜分離装置においては、セラミック分離膜の内側の通路に連通して透過液吸引管を設け、透過液吸引管に接続した吸引手段によって吸引負圧を与えることにより、セラミック分離膜に膜間差圧を発生させて槽内の被処理水を濾過している。
【0003】
運転時には膜モジュールの下方から空気を散気し、この空気のエアリフト作用によって生起する気液混合流によって槽内に循環流を発生させ、この気液混合流の上向流が各セラミック分離膜の膜面に掃流として作用することにより、膜面に対するケーキ層の付着を抑制している。
【0004】
【発明が解決しようとする課題】
上記した構成において、セラミック分離膜は目詰まりの防止や汚染物の除去を目的として定期的な逆洗を行なっている。この逆洗は、透過液吸引管を通してセラミック分離膜の内側の流路に洗浄水を供給し、膜の内から外へ洗浄水を通水することで膜面に付着したケーキ層を除去するものであり、あるいは洗浄薬液をセラミック分離膜に通液することで洗浄を行なっている。
【0005】
しかし、薬液の反応には対象物との接触および反応時間を要するので、供給した薬液の全てが洗浄に寄与することはなく、一部は未反応のままに反応槽内へ流れ出ることになる。このために、目標とする洗浄効果を得るためには、計算上において必要とされる以上の薬液を無駄に消費し、あるいは洗浄効果を高める目的で使用する次亜塩素酸ナトリウムなどの酸化剤を過剰に添加する傾向にある。
【0006】
本発明は上記課題を解決するものであり、必要最小限の薬液量で十分な洗浄効果を得ることができる浸漬型膜分離装置の逆洗方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記した課題を解決するために、本発明の浸漬型膜分離装置の逆洗方法は、反応槽内に浸漬して使用する浸漬型膜分離装置の濾過膜を洗浄薬液で洗浄するものであって、浸漬型膜分離装置の膜透過液流路に洗浄薬液をパルス状に断続して供給し、濾過膜中において洗浄薬液の静止状態と流動状態とを反復的に形成し、洗浄薬液が振動を伴って濾過膜中を蠕動することを特徴とする。
【0008】
上記した構成により、洗浄薬液は振動を伴って膜透過液流路および濾過膜中を移動し、濾過膜中において洗浄薬液が蠕動する。このことにより、洗浄薬液が全体的に濾過膜および膜透過液の洗浄対象部位に接触し、かつ洗浄に必要な反応時間を確保できるので、未反応のままに反応槽内に流れ出る洗浄薬液量を抑制しながら十分な洗浄効果を得ることができる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1において、原水1は、浄水処理における河川水、湖沼水、地下水、海水などであり、あるいは活性汚泥処理における下水、し尿、産業廃水などである。
反応槽2には原水1を供給する原水供給管3が連通しており、槽内に浸漬して膜分離装置4を設けている。膜分離装置4は、管状セラミック分離膜からなる複数の膜エレメントを平行に配置して膜モジュールを構成し、複数の膜モジュールを積層したものである。膜分離装置4には膜モジュールの膜透過液流路に連通する透過液吸引管5を接続しており、透過液吸引管5は吸引ポンプ6を介して処理水槽7に連通している。
【0010】
膜分離装置4の下方には散気装置8を配置しており、散気装置8に接続してブロワ9を設けている。反応槽2の底部には汚泥ポンプ10を介して汚泥引抜管11を接続している。
処理水槽7には逆洗ポンプ12を介して逆洗管13を接続しており、逆洗管13は吸引ポンプ6の上流側において透過液吸引管5に連通している。逆洗管13の途中には上流側から順次に第1バルブ14、第2バルブ15、第3バルブ16を設けており、第1バルブ14と第2バルブ15の間において薬注管17が透過液吸引管5に接続し、第2バルブ15と第3バルブ16の間においてアキュームレータ18が透過液吸引管5に接続している。薬注管17は薬注ポンプ19を介して薬液タンク20に連通している。薬剤としては、次亜塩素酸ナトリウム溶液、塩素水、二酸化塩素水などの酸化剤、あるいは塩酸、硫酸、硝酸、シュウ酸、クエン酸または水酸化ナトリウムなどの酸塩基を用いることができる。
【0011】
以下、上記した構成における作用を説明する。運転時には吸引ポンプ6を駆動し、透過液吸引管5を通して吸引負圧を膜分離装置4に作用させ、膜分離装置4の各セラミック分離膜に膜間差圧を発生させて槽内の被処理水を濾過し、膜分離装置4を透過した処理水を処理水槽7へ供給する。一方、ブロア9によって供給する空気を散気装置8から槽内液中に散気し、この空気のエアリフト作用によって生起する気液混合流により上向流を発生させ、この上向流が各セラミック分離膜の膜面に掃流として作用することにより、膜面に対するケーキ層の付着を抑制する。
【0012】
膜分離装置4の洗浄時には、吸引ポンプ6を停止し、第1バルブ14、第2バルブ15、第3バルブ16を開放する状態で、逆洗ポンプ12を駆動して処理水槽7の処理水を逆洗管13を通して膜分離装置4の膜透過液流路に圧送し、膜モジュールの各セラミック分離膜を逆洗する。
薬液洗浄する場合には、第1バルブ14、第3バルブ16を閉栓し、第2バルブ15を開放する状態で、薬注ポンプ19を駆動して薬液タンク20の洗浄薬液をアキュームレータ18に供給し、アキュームレータ18に必要量の洗浄薬液を所定の圧力下に貯留する。第2バルブ15を閉栓する状態で、第3バルブ16を断続的に開閉操作し、アキュームレータ18の洗浄薬液を膜分離装置4の膜透過液流路にパルス状に断続して供給し、濾過膜中において洗浄薬液の静止状態と流動状態とを反復的に形成する。
【0013】
この操作により、洗浄薬液は振動を伴って膜透過液流路および濾過膜中を移動し、濾過膜中において洗浄薬液が蠕動する。このことにより、洗浄薬液が全体的に濾過膜および膜透過液の洗浄対象部位に接触し、かつ洗浄に必要な反応時間を確保できるので、未反応のままに反応槽内に流れ出る洗浄薬液量を抑制しながら十分な洗浄効果を得ることができる。
【0014】
【発明の効果】
以上のように本発明によれば、膜透過液流路にパルス状に断続して洗浄薬液を供給し、洗浄薬液が振動を伴って膜透過液流路および濾過膜中を移動し、濾過膜中において洗浄薬液が蠕動することにより、洗浄薬液の全体的を濾過膜および膜透過液の洗浄対象部位に接触させることができ、かつ洗浄に必要な反応時間を確保できるので、未反応のままに反応槽内に流れ出る洗浄薬液量を抑制しながら十分な洗浄効果を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における水処理装置の全体構成を示す模式図である。
【符号の説明】
1 原水
2 反応槽
4 膜分離装置
5 透過液吸引管
6 吸引ポンプ
8 散気装置
12 逆洗ポンプ
13 逆洗管
14 第1バルブ
15 第2バルブ
16 第3バルブ
17 薬注管
18 アキュームレータ
19 薬注ポンプ
20 薬液タンク
[0001]
[Technical field to which the invention belongs]
The present invention relates to a technique for using a submerged membrane separation apparatus in water treatment for treating purified water, sewage, human waste, industrial wastewater, and the like, and relates to a backwashing method for the submerged membrane separation apparatus.
[0002]
[Prior art]
Conventionally, as a water treatment apparatus for treating purified water, sewage, human waste, industrial waste water, etc., there is an apparatus in which a submerged membrane separation apparatus is disposed in a reaction tank and water to be treated in the tank is filtered. As an example of such a membrane separation apparatus, there is one in which a plurality of tubular ceramic separation membranes (membrane elements) are arranged in parallel to constitute a membrane module, and the membrane modules are laminated in a plurality of stages. In this submerged membrane separation apparatus, a permeate suction tube is provided in communication with the passage inside the ceramic separation membrane, and a suction negative pressure is applied by suction means connected to the permeate suction tube, whereby the membrane is applied to the ceramic separation membrane. The water to be treated in the tank is filtered by generating a differential pressure.
[0003]
During operation, air is diffused from below the membrane module, and a circulating flow is generated in the tank by the gas-liquid mixed flow generated by the air lift action of this air, and the upward flow of this gas-liquid mixed flow is caused by each ceramic separation membrane. By acting as a sweep on the film surface, adhesion of the cake layer to the film surface is suppressed.
[0004]
[Problems to be solved by the invention]
In the above configuration, the ceramic separation membrane is regularly backwashed for the purpose of preventing clogging and removing contaminants. This backwashing removes the cake layer adhering to the membrane surface by supplying washing water to the flow path inside the ceramic separation membrane through the permeate suction tube and passing the washing water from the inside of the membrane to the outside. Alternatively, cleaning is performed by passing a cleaning chemical solution through the ceramic separation membrane.
[0005]
However, since the reaction of the chemical solution requires contact with the object and the reaction time, all of the supplied chemical solution does not contribute to the cleaning, and part of the chemical solution flows out into the reaction tank without being reacted. For this reason, in order to obtain a target cleaning effect, an oxidizing agent such as sodium hypochlorite used for the purpose of wastefully consuming more chemicals than necessary for calculation or enhancing the cleaning effect is used. It tends to be added excessively.
[0006]
The present invention solves the above-described problems, and an object of the present invention is to provide a backwashing method for a submerged membrane separation apparatus that can obtain a sufficient cleaning effect with a minimum amount of chemical solution.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the backwashing method of the submerged membrane separator of the present invention is to wash the filtration membrane of the submerged membrane separator used by being immersed in a reaction tank with a cleaning chemical solution. The cleaning chemical solution is intermittently supplied to the membrane permeate flow path of the submerged membrane separation device in a pulsed manner, repeatedly forming a stationary state and a flowing state of the cleaning chemical solution in the filtration membrane, and the cleaning chemical solution vibrates. Along with this, the filter membrane is peristalized .
[0008]
With the configuration described above, the cleaning chemical solution moves in the membrane permeate flow path and the filtration membrane with vibration, and the cleaning chemical solution is oscillated in the filtration membrane. As a result, the cleaning chemical solution can contact the filtration membrane and the membrane permeate to be cleaned, and the reaction time required for cleaning can be secured. A sufficient cleaning effect can be obtained while suppressing.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, raw water 1 is river water, lake water, ground water, seawater, etc. in water purification treatment, or sewage, human waste, industrial wastewater, etc. in activated sludge treatment.
A raw water supply pipe 3 for supplying the raw water 1 communicates with the reaction tank 2, and a membrane separation device 4 is provided so as to be immersed in the tank. The membrane separation device 4 is configured by arranging a plurality of membrane elements made of a tubular ceramic separation membrane in parallel to constitute a membrane module, and laminating the plurality of membrane modules. The membrane separator 4 is connected to a permeate suction pipe 5 that communicates with the membrane permeate flow path of the membrane module. The permeate suction pipe 5 communicates with the treated water tank 7 via a suction pump 6.
[0010]
A diffuser 8 is disposed below the membrane separator 4, and a blower 9 is connected to the diffuser 8. A sludge extraction pipe 11 is connected to the bottom of the reaction tank 2 via a sludge pump 10.
A backwash pipe 13 is connected to the treated water tank 7 via a backwash pump 12, and the backwash pipe 13 communicates with the permeate suction pipe 5 on the upstream side of the suction pump 6. A first valve 14, a second valve 15, and a third valve 16 are sequentially provided in the middle of the backwash pipe 13 from the upstream side, and the drug injection pipe 17 passes between the first valve 14 and the second valve 15. An accumulator 18 is connected to the permeate suction pipe 5 between the second valve 15 and the third valve 16. The medicinal injection pipe 17 communicates with the medicinal solution tank 20 via the medicinal injection pump 19. As a chemical | medical agent, acid bases, such as oxidizing agents, such as a sodium hypochlorite solution, chlorine water, and chlorine dioxide water, or hydrochloric acid, a sulfuric acid, nitric acid, an oxalic acid, a citric acid, or sodium hydroxide can be used.
[0011]
Hereinafter, the operation of the above-described configuration will be described. During operation, the suction pump 6 is driven, a negative suction pressure is applied to the membrane separation device 4 through the permeate suction pipe 5, and a transmembrane differential pressure is generated in each ceramic separation membrane of the membrane separation device 4 to be processed in the tank. Water is filtered and treated water that has passed through the membrane separation device 4 is supplied to the treated water tank 7. On the other hand, air supplied by the blower 9 is diffused from the diffuser 8 into the liquid in the tank, and an upward flow is generated by the gas-liquid mixed flow generated by the air lift action of the air. By acting as a sweep on the membrane surface of the separation membrane, adhesion of the cake layer to the membrane surface is suppressed.
[0012]
At the time of cleaning the membrane separation device 4, the suction pump 6 is stopped, and the backwash pump 12 is driven with the first valve 14, the second valve 15, and the third valve 16 opened, and the treated water in the treated water tank 7 is discharged. The ceramic separation membrane of the membrane module is backwashed by pumping it through the backwash tube 13 to the membrane permeate flow path of the membrane separation device 4.
In the case of chemical cleaning, the first valve 14 and the third valve 16 are closed and the second valve 15 is opened, and the chemical injection pump 19 is driven to supply the cleaning chemical in the chemical tank 20 to the accumulator 18. The accumulator 18 stores a required amount of cleaning chemical under a predetermined pressure. With the second valve 15 closed, the third valve 16 is intermittently opened and closed, and the cleaning chemical solution of the accumulator 18 is intermittently supplied to the membrane permeate flow path of the membrane separation device 4 in a pulsed manner. A stationary state and a flowing state of the cleaning chemical solution are repeatedly formed therein.
[0013]
By this operation, the cleaning chemical solution moves in the membrane permeate flow path and the filtration membrane with vibration, and the cleaning chemical solution swings in the filtration membrane. As a result, the cleaning chemical solution can contact the filtration membrane and the membrane permeate to be cleaned, and the reaction time required for cleaning can be secured. A sufficient cleaning effect can be obtained while suppressing.
[0014]
【The invention's effect】
As described above, according to the present invention, a cleaning chemical solution is supplied intermittently to the membrane permeate flow channel, and the cleaning chemical solution moves through the membrane permeate flow channel and the filtration membrane with vibration, and the filtration membrane. Since the cleaning chemical solution can be swung inside, the entire cleaning chemical solution can be brought into contact with the site to be cleaned of the filtration membrane and the membrane permeate, and the reaction time required for cleaning can be secured, so that it remains unreacted. A sufficient cleaning effect can be obtained while suppressing the amount of the cleaning chemical flowing out into the reaction tank.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of a water treatment apparatus according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Raw water 2 Reaction tank 4 Membrane separator 5 Permeate suction pipe 6 Suction pump 8 Air diffuser 12 Backwash pump 13 Backwash pipe 14 First valve 15 Second valve 16 Third valve 17 Chemical injection pipe 18 Accumulator 19 Chemical injection Pump 20 chemical tank

Claims (1)

反応槽内に浸漬して使用する浸漬型膜分離装置の濾過膜を洗浄薬液で洗浄するものであって、浸漬型膜分離装置の膜透過液流路に洗浄薬液をパルス状に断続して供給し、濾過膜中において洗浄薬液の静止状態と流動状態とを反復的に形成し、洗浄薬液が振動を伴って濾過膜中を蠕動することを特徴とする浸漬型膜分離装置の逆洗方法。The membrane of the submerged membrane separator that is immersed in the reaction vessel is washed with a cleaning chemical solution. The cleaning chemical solution is intermittently supplied to the membrane permeate flow path of the submerged membrane separator. A backwashing method for a submerged membrane separation apparatus, wherein a stationary state and a flow state of the cleaning chemical solution are repeatedly formed in the filtration membrane, and the cleaning chemical solution is oscillated in the filtration membrane with vibration .
JP21444799A 1999-07-29 1999-07-29 Backwash method for submerged membrane separator Expired - Fee Related JP3880251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21444799A JP3880251B2 (en) 1999-07-29 1999-07-29 Backwash method for submerged membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21444799A JP3880251B2 (en) 1999-07-29 1999-07-29 Backwash method for submerged membrane separator

Publications (2)

Publication Number Publication Date
JP2001038163A JP2001038163A (en) 2001-02-13
JP3880251B2 true JP3880251B2 (en) 2007-02-14

Family

ID=16655926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21444799A Expired - Fee Related JP3880251B2 (en) 1999-07-29 1999-07-29 Backwash method for submerged membrane separator

Country Status (1)

Country Link
JP (1) JP3880251B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4683400B2 (en) * 2001-02-21 2011-05-18 アサヒ飲料株式会社 Water treatment apparatus and water treatment method using the same
JP5011654B2 (en) * 2005-05-16 2012-08-29 富士電機株式会社 Filtration membrane cleaning method
JP4984460B2 (en) * 2005-08-30 2012-07-25 東レ株式会社 Separation membrane cleaning method and organic sewage treatment apparatus

Also Published As

Publication number Publication date
JP2001038163A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
JPH07313850A (en) Method for backward washing immersion-type ceramic membrane separator
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
JPH09313902A (en) Chemical cleaning method for immersion type ceramic membrane separation device
JP2782566B2 (en) Membrane filtration device
JPH05305221A (en) Membrane separation water treatment apparatus
JPH09122460A (en) Cleaning method for membrane module
JP3380114B2 (en) Backwashing method for membrane separation equipment
JP2002361054A (en) Method for washing membrane filtration apparatus
JP3880251B2 (en) Backwash method for submerged membrane separator
JP5017922B2 (en) Water treatment method
JP3194679B2 (en) Cleaning method for filtration membrane module
JPH06238136A (en) Method for washing filter membrane module
JP2001187324A (en) Washing method of membrane filter device, and water treating device
JP2011041907A (en) Water treatment system
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP3856376B2 (en) Water treatment device and its operation method
JP2009039677A (en) Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus
JP3264794B2 (en) Solid-liquid separation device and its cleaning method
JP3986370B2 (en) Cleaning method for membrane filter module
JP2013034938A (en) Method for washing membrane module
JP2002113336A (en) Method of cleaning membrane filtration device and water treatment apparatus
JP2017176951A (en) Method for cleaning separation membrane module
JP4304803B2 (en) Water treatment apparatus cleaning method and water treatment apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees