JP2003164738A - Membrane separation activated sludge treatment method - Google Patents

Membrane separation activated sludge treatment method

Info

Publication number
JP2003164738A
JP2003164738A JP2001364551A JP2001364551A JP2003164738A JP 2003164738 A JP2003164738 A JP 2003164738A JP 2001364551 A JP2001364551 A JP 2001364551A JP 2001364551 A JP2001364551 A JP 2001364551A JP 2003164738 A JP2003164738 A JP 2003164738A
Authority
JP
Japan
Prior art keywords
membrane
bag
shaped
pump
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001364551A
Other languages
Japanese (ja)
Other versions
JP4038367B2 (en
Inventor
Takeshi Oda
剛 織田
Toshiya Miyake
俊也 三宅
Hiroshi Uchida
浩 内田
Tadahiro Yoshida
忠広 吉田
Akira Saito
彰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001364551A priority Critical patent/JP4038367B2/en
Publication of JP2003164738A publication Critical patent/JP2003164738A/en
Application granted granted Critical
Publication of JP4038367B2 publication Critical patent/JP4038367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Details Of Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently remove a sludge layer adhering to the surface of the filter membrane body of a membrane module continuously with good removing efficiency over the whole of the filter membrane body without relying on the action of air diffused from an air diffuser arranged in a biological reaction tank. <P>SOLUTION: In a membrane separation activated sludge treatment method, a positive displacement pump 9 and bag-like membrane modules 2 having bag- like filter membrane bodies changed in volume in synchronous relation to the suction and discharge of the positive displacement pump 9 to be contracted and expanded are used and, when performing suction by using the positive displacement pump 9, the transmitted water from the bag-like membrane modules 2 is drawn in the positive displacement pump 9, and when discharging it by using the positive displacement pump 9, the transmitted water from the bag-like membrane modules 2 in the positive displacement pump 9 is taken out as treated water and a part of the transmitted water is returned to the bag-like membrane modulus 2. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、膜分離活性汚泥処
理方法に関し、生物反応槽内に設置された散気装置から
散気する空気の作用によることなく、膜モジュールの濾
過膜体の膜面に付着する汚泥層を連続的に濾過膜体全体
にわたって除去効率よく除去することができるようにし
た膜分離活性汚泥処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a membrane separation activated sludge treatment method, and relates to a membrane surface of a filtration membrane body of a membrane module without the action of air diffused from a diffuser installed in a biological reaction tank. The present invention relates to a membrane separation activated sludge treatment method capable of continuously removing the sludge layer adhering to the whole of the filtration membrane body with good removal efficiency.

【0002】[0002]

【従来の技術】周知のように、膜分離活性汚泥処理は、
活性汚泥中の好気性微生物によって被処理水の有機物を
分解する生物処理(活性汚泥処理)と、膜モジュールに
よる固液分離処理とを生物反応槽内にて行い、膜モジュ
ールを透過させた膜透過水を処理水として生物反応槽の
外部に設けたポンプにて吸引して取り出すようにしたも
のである。
2. Description of the Related Art As is well known, membrane separation activated sludge treatment is
Membrane permeation through the membrane module by performing biological treatment (active sludge treatment) that decomposes organic matter in the water to be treated by aerobic microorganisms in activated sludge and solid-liquid separation treatment by the membrane module in the biological reaction tank. The water is treated as treated water by suction with a pump provided outside the biological reaction tank.

【0003】図7は従来の膜分離活性汚泥処理装置の構
成説明図である。図7において、51は生物反応槽であ
り、生物反応槽51の内部には、被処理水(調整槽から
の原水と汚泥状反応物質との混合溶液であって、いわゆ
る活性汚泥のこと)が貯留されるとともに、所定間隔を
隔てて相対向して配列された複数個の平板状膜モジュー
ル52と、これらの平板状膜モジュール52の下方に位
置し、粗大気泡を噴出する散気孔を有する散気装置(散
気管)56とが浸漬設置されている。所定間隔を隔てて
互いに対向して配列された複数個の平板状膜モジュール
52により膜分離ユニット53が構成されている。散気
装置(散気管)56は生物反応槽51の外部にあるブロ
ア57に接続されている。
FIG. 7 is a diagram showing the construction of a conventional membrane separation activated sludge treatment device. In FIG. 7, reference numeral 51 denotes a biological reaction tank, and inside the biological reaction tank 51, treated water (a mixed solution of raw water from a conditioning tank and a sludge-like reaction substance, so-called activated sludge) is stored. A plurality of flat plate membrane modules 52 that are stored and arranged to face each other at a predetermined interval, and a diffuser that is located below these flat plate membrane modules 52 and that diffuses large bubbles. An air device (air diffuser) 56 is installed by immersion. A membrane separation unit 53 is composed of a plurality of flat plate-shaped membrane modules 52 arranged facing each other at a predetermined interval. The air diffuser (air diffuser) 56 is connected to a blower 57 outside the biological reaction tank 51.

【0004】平板状膜モジュール52は、例えば、その
模式的断面図の図8に示すように、板状の支持体52a
の両面に、膜透過水流路を確保するためのスペーサ52
b,52b(例えばハニカムネットスペーサ)を介して
不織布からなる略正方形の濾過膜体52c,52cを取
り付け、該濾過膜体52c,52cの周縁部を取付け枠
52d,52dで固定したものである。濾過膜体52
c,52cとしては、ポリエステル、ポリプロピレン等
の高分子材料よりなる不織布が用いられる。この平板状
膜モジュール52では、濾過膜体52c,52cを通過
した膜透過水は、処理水として平板状膜モジュール52
上端部に設けられたモジュール分岐管54を経て取り出
される。そして、生物反応槽51の外部には吸引ポンプ
58が設置されており、膜分離ユニット53を構成する
各平板状膜モジュール52のモジュール分岐管54は、
集合管55を介して、管路途中に前記吸引ポンプ58が
設けられている処理水取出し流路59に接続されてい
る。
The flat plate membrane module 52 is, for example, as shown in a schematic sectional view of FIG.
Spacers 52 for securing a membrane permeate flow channel on both sides of
Filter membranes 52c, 52c made of a non-woven fabric are attached through b, 52b (for example, honeycomb net spacers), and peripheral portions of the filter membranes 52c, 52c are fixed by attachment frames 52d, 52d. Filtration membrane 52
As the c and 52c, a nonwoven fabric made of a polymer material such as polyester or polypropylene is used. In the flat plate membrane module 52, the membrane permeated water that has passed through the filtration membrane bodies 52c and 52c is used as treated water in the flat plate membrane module 52.
It is taken out through the module branch pipe 54 provided at the upper end. Then, a suction pump 58 is installed outside the biological reaction tank 51, and the module branch pipe 54 of each flat plate membrane module 52 constituting the membrane separation unit 53 is
It is connected via a collecting pipe 55 to a treated water take-out passage 59 in which the suction pump 58 is provided in the middle of the pipe.

【0005】このように構成される膜分離活性汚泥処理
装置により、散気装置56から散気する空気によって好
気性微生物への酸素供給を行って被処理水を浄化しなが
ら、平板状膜モジュール52により被処理水を固液分離
して濾過し、該膜モジュール52を透過させた膜透過水
を処理水として吸引ポンプ58にて生物反応槽51外へ
導出する膜分離活性汚泥処理が行われている。
With the membrane-separated activated sludge treatment device constructed as described above, oxygen is supplied to aerobic microorganisms by the air diffused from the air diffuser 56 to purify the water to be treated, while the flat plate membrane module 52 is being treated. The water to be treated is subjected to solid-liquid separation by means of a filter, and the permeated water permeated through the membrane module 52 is treated as treated water to be discharged to the outside of the biological reaction tank 51 by the suction pump 58. There is.

【0006】そして、この従来の膜分離活性汚泥処理装
置では、好気性微生物の活動を促すために散気装置56
から散気する散気空気を利用して、濾過膜体52c,5
2cの膜面に付着する汚泥層(活性汚泥中の有機性高分
子物質や固形分)の除去を行っている。すなわち、平板
状膜モジュール52の下方に配置された散気装置56か
ら発散し、上昇する粗大気泡及びそれによって発生する
上昇流によって平板状膜モジュール52の濾過膜体52
c,52cの膜面に剪断力を与えて、濾過膜体52c,
52cの膜面に付着する汚泥層を除去するようにしてい
る。
In this conventional membrane-separated activated sludge treatment device, an air diffuser 56 is used to promote the activity of aerobic microorganisms.
By using diffused air diffused from the filter membranes 52c, 5
The sludge layer (organic polymer substances and solids in the activated sludge) attached to the membrane surface of 2c is removed. That is, the filtration membrane body 52 of the flat plate membrane module 52 is diverged from the air diffuser 56 arranged below the flat plate membrane module 52, and is caused by the rising coarse bubbles and the upward flow generated thereby.
A shearing force is applied to the membrane surfaces of c and 52c to filter the membrane bodies 52c and 52c.
The sludge layer adhering to the membrane surface of 52c is removed.

【0007】[0007]

【発明が解決しようとする課題】しかし前述した従来の
膜分離活性汚泥処理装置では、散気装置による空気の散
気を行うに際し、汚泥層除去効果を優先して粗大気泡を
発生させる散気装置を用いているので、酸素供給だけを
目的とする微細気泡用散気装置を備えたものと比較する
と、空気供給系設備が大型化し、大きな曝気動力が必要
となっている。
However, in the above-mentioned conventional membrane-separated activated sludge treatment device, when air is diffused by the diffuser, a diffuser for giving priority to the sludge layer removing effect to generate large bubbles. Therefore, as compared with a device provided with an air diffuser for fine bubbles for the purpose of only supplying oxygen, the air supply system equipment becomes large in size and a large aeration power is required.

【0008】また、濾過膜体膜面に付着する汚泥層の除
去に際し、上昇する気泡及びそれによって発生する水流
からなる気液二相流では、その気泡通過経路を平板状膜
モジュール間の全域にわたって均一に形成することが困
難である。さらに、従来の膜分離活性汚泥処理装置で
は、散気装置の散気による上昇流を生じさせるために
は、複数個の平板状の膜モジュールを収容した膜分離ユ
ニットの外側に下降流が流れる領域を十分に確保する必
要がある。生物反応槽の設置面積(底面面積)に占める
下降流が流れるのに必要な面積は、膜分離ユニットの設
置面積の約3倍にもなっている。このため、生物反応槽
の設置面積の25%程度の部分にしか膜分離ユニットを
設置することができず、生物反応槽の設置面積あたりの
活性汚泥処理能力が低いものであった。
Further, in removing the sludge layer adhering to the membrane surface of the filtration membrane, in the gas-liquid two-phase flow composed of the rising bubbles and the water flow generated by the rising bubbles, the bubble passing path is spread over the entire area between the flat plate membrane modules. It is difficult to form it uniformly. Further, in the conventional membrane separation activated sludge treatment device, in order to generate an upward flow due to air diffusion of the air diffuser, a region in which the downward flow flows outside the membrane separation unit containing a plurality of flat plate-shaped membrane modules. Must be sufficiently secured. The area required for the downward flow to occupy the installation area (bottom area) of the biological reaction tank is about three times the installation area of the membrane separation unit. For this reason, the membrane separation unit can be installed only in about 25% of the installation area of the biological reaction tank, and the activated sludge treatment capacity per installation area of the biological reaction tank is low.

【0009】本発明はこのような事情に鑑みてなされた
ものであって、本発明の目的は、生物反応槽内に設置さ
れた散気装置から散気する空気の作用によることなく、
膜モジュールの濾過膜体の膜面に付着する汚泥層を連続
的に濾過膜体全体にわたって除去効率よく除去すること
ができる膜分離活性汚泥処理方法を提供することにあ
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is not to rely on the action of air diffused from an air diffuser installed in a biological reaction tank.
It is an object of the present invention to provide a membrane separation activated sludge treatment method capable of continuously removing the sludge layer adhering to the membrane surface of the filtration membrane of the membrane module over the entire filtration membrane with good efficiency.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、生物反応槽内に浸漬設置された
膜モジュールの濾過膜体により被処理水を濾過し、該膜
モジュールを透過させた膜透過水を処理水として前記生
物反応槽の外部に設けたポンプにて取り出すようにした
膜分離活性汚泥処理方法において、前記膜モジュールと
してポンプの吸込み・吐出しに同期して容積変化して収
縮・膨張する袋状濾過膜体を有する袋状膜モジュールを
用い、ポンプによる吸込み時には、前記袋状膜モジュー
ルを透過させた膜透過水を該ポンプ内に引き入れ、ポン
プによる吐出し時には、該ポンプ内の膜透過水を処理水
として取り出すとともに、該膜透過水の一部を前記袋状
膜モジュールに戻すことを特徴とする膜分離活性汚泥処
理方法である。
In order to achieve the above-mentioned object, the invention of claim 1 filters the water to be treated by a filter membrane of a membrane module immersed in a biological reaction tank, In the membrane separation activated sludge treatment method in which the membrane-permeated water that has permeated the membrane is taken out as treated water by a pump provided outside the biological reaction tank, the capacity of the membrane module is synchronized with the suction and discharge of the pump. A bag-shaped membrane module having a bag-shaped filtration membrane body that changes and contracts / expands is used.At the time of suction by a pump, the membrane permeated water that has permeated the bag-shaped membrane module is drawn into the pump, and at the time of discharge by the pump. The membrane permeated water in the pump is taken out as treated water, and a part of the membrane permeated water is returned to the bag-shaped membrane module.

【0011】また、請求項2の発明は、前記請求項1記
載の膜分離活性汚泥処理方法において、前記生物反応槽
内に深さ方向において複数段に浸漬設置された前記袋状
膜モジュールについて、各段の袋状膜モジュールに対す
るポンプを位相をずらせて並行運転することを特徴とす
るものである。
Further, the invention of claim 2 is the method for treating membrane-separated activated sludge according to claim 1, wherein the bag-shaped membrane module is immersed and installed in the biological reaction tank in a plurality of stages in a depth direction, It is characterized in that the pumps for the bag-shaped membrane modules of each stage are operated in parallel by shifting the phases.

【0012】本発明による膜分離活性汚泥処理方法によ
れば、ポンプによる吸込み時には、袋状膜モジュールを
透過させた膜透過水を該ポンプ内に引き入れておき、ポ
ンプによる吐出し時には、ポンプ内の膜透過水のうち、
その一部の定められた量を処理水として取り出す一方、
それ以外の残りを袋状膜モジュールに戻すようにしたも
のであるから、袋状膜モジュールの袋状濾過膜体が、吸
込みと吐出しとを繰り返すポンプの該吸込み・吐出しに
同期して容積が変化して収縮・膨張する。本発明による
膜分離活性汚泥処理方法で用いる前記ポンプとしては、
レシプロ型クランク式ポンプなどの容積型ポンプが好適
である。
According to the method for treating membrane-separated activated sludge of the present invention, the membrane permeated water that has permeated the bag-shaped membrane module is drawn into the pump when sucking with the pump, and the inside the pump when discharging with the pump. Of the membrane permeated water,
While taking out a certain amount of it as treated water,
Since the rest of the bag-shaped membrane module is returned to the bag-shaped membrane module, the bag-shaped membrane filter of the bag-shaped membrane module has a capacity that is synchronized with the suction and discharge of a pump that repeats suction and discharge. Changes and contracts and expands. The pump used in the membrane separation activated sludge treatment method according to the present invention,
A positive displacement pump such as a reciprocating crank pump is suitable.

【0013】このような袋状濾過膜体の収縮・膨張に伴
なって、袋状濾過膜体の膜面には付着汚泥層を振り払っ
て除けようと慣性力が作用する。また、袋状濾過膜体の
収縮・膨張に伴なって、対向して隣合う袋状膜モジュー
ル間には被処理水の流れが生起され(図4参照)、袋状
濾過膜体の膜面にはこの生起された被処理水の流れによ
る剪断力が作用する。このように、ポンプの吸込み・吐
出しに同期して袋状膜モジュールの袋状濾過膜体が全体
にわたって収縮・膨張し、この袋状濾過膜体の収縮・膨
張に伴なう前記慣性力と前記生起された流れによる剪断
力とにより、散気装置から散気する空気の作用によるこ
となく、袋状濾過膜体の膜面に付着する汚泥層を連続的
に濾過膜体全体にわたって除去効率よく除去することが
できる。なお、容積型ポンプの吸込み・吐出しサイクル
(容積型ポンプの往復運動するピストンの周波数)は、
例えば0.25Hz程度に設定される。
As the bag-shaped filtration membrane is contracted and expanded, an inertial force acts on the film surface of the bag-shaped filtration membrane to shake off the adhered sludge layer. In addition, as the bag-shaped filtration membrane contracts and expands, a flow of water to be treated occurs between the bag-shaped membrane modules facing each other (see Fig. 4), and the membrane surface of the bag-shaped filtration membrane is Is subjected to a shearing force due to the generated flow of the water to be treated. In this way, the bag-shaped filtration membrane body of the bag-shaped membrane module contracts and expands over the entire area in synchronization with the suction and discharge of the pump, and the inertia force accompanying the contraction and expansion of the bag-shaped filtration membrane body Due to the shearing force due to the generated flow, the sludge layer adhering to the membrane surface of the bag-like filter membrane is continuously removed efficiently over the entire filter membrane without depending on the action of air diffused from the air diffuser. Can be removed. The suction and discharge cycle of the positive displacement pump (frequency of the reciprocating piston of the positive displacement pump) is
For example, it is set to about 0.25 Hz.

【0014】また、生物反応槽内に深さ方向において複
数段、例えば上段・中段・下段の3段に浸漬設置された
袋状膜モジュールについて、各段の袋状膜モジュールに
対するポンプを互いに位相を例えば120°ずらせて並
行運転することにより、下方の袋状膜モジュールから上
方の袋状膜モジュールへと順に上昇して行く流れを生起
させることができ(図6参照)、これによって微生物の
沈降を防ぎ、微生物による生物処理能力の低下を防ぐこ
とができる。
Further, regarding a bag-shaped membrane module immersed in a plurality of stages in the depth direction in the biological reaction tank, for example, three stages of an upper stage, a middle stage and a lower stage, the pumps for the respective bag-shaped membrane modules are placed in phase with each other. For example, by performing a parallel operation with a 120 ° shift, it is possible to generate a flow that sequentially rises from the lower bag-shaped membrane module to the upper bag-shaped membrane module (see FIG. 6), which causes the sedimentation of microorganisms. It is possible to prevent deterioration of biological treatment capacity by microorganisms.

【0015】[0015]

【発明の実施の形態】以下、図面を参照しながら本発明
の実施の形態について説明する。図1は本発明の一実施
形態による膜分離活性汚泥処理方法を実施するための装
置(膜分離活性汚泥処理装置)の一例を示す構成説明図
である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration explanatory view showing an example of an apparatus (membrane separation activated sludge treatment apparatus) for carrying out a membrane separation activated sludge treatment method according to an embodiment of the present invention.

【0016】図1において、1は生物反応槽であり、生
物反応槽1の内部には、被処理水(調整槽からの原水と
汚泥状反応物質との混合溶液)が貯留されるとともに、
所定間隔を隔てて相対向して配列された複数個の後述す
る袋状膜モジュール2と、これらの袋状膜モジュール2
の下方に位置し、微細気泡を噴出する散気孔を有する微
細気泡用散気装置(散気管)6とが浸漬設置されてい
る。前記複数個の袋状膜モジュール2により膜分離ユニ
ット3が構成されている。微細気泡用散気装置6は生物
反応槽1の外部にあるブロア7に接続されている。
In FIG. 1, reference numeral 1 denotes a biological reaction tank. Inside the biological reaction tank 1, water to be treated (a mixed solution of raw water from a conditioning tank and sludge-like reaction substance) is stored, and
A plurality of bag-shaped membrane modules 2 which will be described later and are arranged to face each other at a predetermined interval, and these bag-shaped membrane modules 2
And an air diffusing device (air diffusing pipe) 6 for fine air bubbles, which has an air diffusing hole for ejecting fine air bubbles, is installed by immersion. A membrane separation unit 3 is configured by the plurality of bag-shaped membrane modules 2. The air diffuser 6 for fine bubbles is connected to a blower 7 outside the biological reaction tank 1.

【0017】前記各袋状膜モジュール2に接続されてい
るモジュール分岐管4は、集合管5にそれぞれ接続され
ている。生物反応槽1の外部には、容積型ポンプのひと
つであるレシプロ型クランク式ポンプ(以下、単にレシ
プロ型ポンプという)9、逆止弁8、及び流量調整弁1
0が設置されており、集合管5から出発して途中にレシ
プロ型ポンプ9、逆止弁8、及び流量調整弁10をこの
順で設けた処理水取出し流路11が設けられている。ま
た、レシプロ型ポンプ9のポンプ吐出し口側から分岐し
て集合管5に戻るための膜透過水戻し用流路12が設け
られている。
The module branch pipes 4 connected to each of the bag-shaped membrane modules 2 are connected to a collecting pipe 5, respectively. Outside the biological reaction tank 1, a reciprocating crank pump (hereinafter simply referred to as a reciprocating pump) 9, which is one of positive displacement pumps, a check valve 8, and a flow rate adjusting valve 1.
0 is installed, and a treated water take-out flow passage 11 is provided in which a reciprocating pump 9, a check valve 8 and a flow rate adjusting valve 10 are provided in this order starting from the collecting pipe 5. Further, a membrane permeated water returning flow path 12 for branching from the pump discharge port side of the reciprocating pump 9 and returning to the collecting pipe 5 is provided.

【0018】図2は袋状膜モジュール2の一例を示す正
面図、図3は図2のA−A線に沿う断面を拡大して模式
的に示す図である。
FIG. 2 is a front view showing an example of the bag-shaped membrane module 2, and FIG. 3 is an enlarged schematic view of a cross section taken along the line AA of FIG.

【0019】袋状膜モジュール2は、略正方形の支持枠
21に袋状濾過膜体23を形成してなるものである。図
2及び図3に示すように、略正方形の支持枠21の両面
には、取付け用枠22,22にて変位可能な濾過膜体2
4,24が取り付けられている。各濾過膜体24,24
は、略正方形の線状枠(ワイヤフレーム)24c,24
cに不織布よりなる略正方形の濾過膜24a,24aを
ピンと張った状態で取り付け、さらに該線状枠24c,
24cにその周りに略正方形の広幅枠状をなす容積可変
用非透過性膜24b,24bを取り付けてなるものであ
る。この一対の変位可能な濾過膜体24,24を支持枠
21に取り付けることで袋状濾過膜体23が形成されて
いる。この場合、レシプロ型ポンプ9の吸込み・吐出し
に同期して袋状濾過膜体23が容積変化して収縮・膨張
すべく、袋状濾過膜体23の容積可変用非透過性膜24
b,24bが、たるみを持たせた状態で支持枠21に固
着されている。袋状濾過膜体23を通過した膜透過水
は、支持枠21の上部に設けられたモジュール分岐管4
を経て取り出されるようになっている。
The bag-shaped membrane module 2 comprises a substantially square support frame 21 and a bag-shaped filtration membrane 23 formed on the support frame 21. As shown in FIGS. 2 and 3, on both sides of the substantially square support frame 21, the filtration membrane body 2 which can be displaced by the attachment frames 22 and 22.
4, 24 are attached. Each filtration membrane 24, 24
Is a substantially square linear frame (wire frame) 24c, 24
The substantially square filtration membranes 24a, 24a made of non-woven fabric are attached to c in a tensioned state, and the linear frame 24c,
The variable capacity non-permeable membranes 24b and 24b having a substantially square wide frame shape are attached to the circumference of the 24c. The bag-shaped filtration membrane body 23 is formed by attaching the pair of displaceable filtration membrane bodies 24, 24 to the support frame 21. In this case, the non-permeable membrane 24 for changing the volume of the bag-shaped filtration membrane body 23 is used so that the bag-shaped filtration membrane body 23 changes in volume and contracts or expands in synchronization with the suction and discharge of the reciprocating pump 9.
b and 24b are fixed to the support frame 21 in a slackened state. The membrane permeated water that has passed through the bag-shaped filtration membrane body 23 is a module branch pipe 4 provided on the upper portion of the support frame 21.
It comes to be taken out through.

【0020】前記濾過膜24a,24aとしては、ポリ
エステル、ポリプロピレンなどの高分子材料よりなり、
0.1〜1μmの目開きを有する不織布が好適である。
また、前記容積可変用非透過性膜24b,24bとして
は、ポリエステル、ポリプロピレンなどの高分子材料よ
りなるものが好適であり、前記線状枠24c,24cと
しては、ステンレスからなるものが好適である。
The filtration membranes 24a, 24a are made of a polymer material such as polyester or polypropylene,
A nonwoven fabric having an opening of 0.1 to 1 μm is suitable.
Further, the volume-variable non-permeable membranes 24b, 24b are preferably made of a polymer material such as polyester or polypropylene, and the linear frames 24c, 24c are preferably made of stainless steel. .

【0021】次に、前記装置を用いて行う膜分離活性汚
泥処理方法について説明する。ここで、レシプロ型ポン
プ9の往復運動するピストンの周波数は、例えば0.2
5Hz(回転数:15rpm)に設定され、流量調整弁
10は、例えば、袋状膜モジュール2の濾過膜面積1m
2 当たり0.6m3 /m2 ・日の量の処理水を取り出す
ように設定されている。レシプロ型ポンプ9が運転され
ると、該ポンプ9による吸込み時には、各袋状膜モジュ
ール2の袋状濾過膜体23が容積変化して断面視凹レン
ズ状に収縮する(図1に想像線で示す)とともに、該各
袋状膜モジュール2を透過させた膜透過水がレシプロ型
ポンプ9内に引き入れられる。
Next, a method for treating membrane-separated activated sludge using the above apparatus will be described. Here, the frequency of the reciprocating piston of the reciprocating pump 9 is, for example, 0.2.
The flow rate adjusting valve 10 is set to 5 Hz (rotation speed: 15 rpm), and the filtration membrane area of the bag-shaped membrane module 2 is, for example, 1 m.
It is set to retrieve the amount of treated water per square 0.6 m 3 / m 2 · day. When the reciprocating pump 9 is operated, during suction by the pump 9, the bag-shaped filtration membrane member 23 of each bag-shaped membrane module 2 changes in volume and contracts into a concave lens shape in cross section (shown by an imaginary line in FIG. 1). ), The membrane permeated water that has permeated each bag-shaped membrane module 2 is drawn into the reciprocating pump 9.

【0022】次いで、レシプロ型ポンプ9による吐出し
時には、レシプロ型ポンプ9内の膜透過水のうち、その
一部が前記流量設定された流量調整弁10を介して処理
水として取り出される。一方、同時に、それ以外の残り
の大部分が膜透過水戻し用流路12を介して各袋状膜モ
ジュール2に戻されて、該各袋状膜モジュール2の袋状
濾過膜体23が容積変化して断面視凸レンズ状に膨張す
る(図1に実線で示す)。このように、定められた量の
処理水を取り出しながら、袋状膜モジュール2の袋状濾
過膜体23が、吸込みと吐出しとを繰り返すレシプロ型
ポンプ9の該吸込み・吐出しに同期して容積が変化して
収縮・膨張する。
Next, at the time of discharging by the reciprocating pump 9, a part of the permeated water in the reciprocating pump 9 is taken out as treated water through the flow rate adjusting valve 10 in which the flow rate is set. On the other hand, at the same time, most of the remaining portion is returned to each bag-shaped membrane module 2 through the membrane permeation water returning channel 12, and the bag-shaped filtration membrane body 23 of each bag-shaped membrane module 2 has a volume. It changes and expands like a convex lens in cross section (shown by the solid line in FIG. 1). In this way, the bag-shaped filtration membrane body 23 of the bag-shaped membrane module 2 is synchronized with the suction / discharge of the reciprocating pump 9 which repeats suction and discharge while taking out a predetermined amount of treated water. The volume changes and contracts and expands.

【0023】このことにより、図4に示すように、袋状
濾過膜体23(袋状膜モジュール2)の収縮・膨張に伴
なって、袋状濾過膜体23の膜面には付着汚泥層を振り
払って除けようと慣性力が作用する。また、隣合う袋状
膜モジュール2間には被処理水の流れが生起され、袋状
濾過膜体23の膜面にはこの生起された被処理水の流れ
による剪断力が作用する。すなわち、膨張状態から収縮
までの過程では袋状膜モジュール2間の中央部に向かう
下降流と上昇流が生起され、逆に収縮状態から膨張まで
の過程では袋状膜モジュール2間の中央部からの上昇流
と下降流が生起される。そして、前記慣性力は、袋状濾
過膜体23が最も膨張した時と最も収縮した時(レシプ
ロ型ポンプ9の往復運動の上死点と下死点)とにおいて
最大となる。一方、前記剪断力は、図4に示すように、
それより位相が90°ずれた時において最大となる。こ
の結果、レシプロ型ポンプ9の吸込み・吐出しのどの位
相においてもほぼ等しい汚泥層除去効果が得られる。こ
のように、レシプロ型ポンプ9の吸込み・吐出しに同期
して各袋状膜モジュール2の袋状濾過膜体23が全体に
わたって収縮・膨張し、これに伴なう前記慣性力と前記
生起された流れによる剪断力とにより、従来と違って散
気装置6から散気する空気の作用によることなく、袋状
濾過膜体23の膜面に付着する汚泥層を連続的に濾過膜
体全体にわたって除去効率よく除去することができる。
As a result, as shown in FIG. 4, as the bag-shaped filtration membrane 23 (bag-shaped membrane module 2) contracts and expands, the membrane surface of the bag-shaped filtration membrane 23 has an attached sludge layer. The inertial force acts to shake it away. Further, a flow of water to be treated is generated between the adjacent bag-shaped membrane modules 2, and a shearing force due to the generated flow of water to be treated acts on the membrane surface of the bag-shaped filtration membrane member 23. That is, in the process from the inflated state to the contraction, a downward flow and an upflow toward the central part between the bag-shaped membrane modules 2 are generated, and conversely, in the process from the contracted state to the expansion, the central part between the bag-shaped membrane modules 2 starts. The ascending and descending flows are generated. Then, the inertial force becomes maximum when the bag-shaped filter membrane body 23 is most expanded and contracted most (the top dead center and the bottom dead center of the reciprocating motion of the reciprocating pump 9). On the other hand, the shear force is, as shown in FIG.
It becomes maximum when the phase shifts by 90 °. As a result, substantially the same sludge layer removing effect can be obtained at any phase of suction and discharge of the reciprocating pump 9. In this way, the bag-shaped filtration membrane body 23 of each bag-shaped membrane module 2 contracts and expands in its entirety in synchronism with the suction and discharge of the reciprocating pump 9, and the inertial force and the accompanying force caused thereby are generated. Due to the shearing force of the flow, the sludge layer adhering to the membrane surface of the bag-shaped filtration membrane member 23 is continuously spread over the entire filtration membrane member without the action of the air diffused from the air diffuser 6 unlike the conventional case. It can be removed efficiently.

【0024】これにより、装置の運転を停止して膜面の
汚泥層を掻き落とすメンテナンス作業を従来に比べて減
らすことができる。また、生物反応槽1内に設置された
散気装置6から散気する空気の作用によって膜面の汚泥
層除去を行うものでないことから、微生物に対する酸素
供給のためにだけ散気を行えばよいので、従来に比べて
空気供給系設備を小型化して曝気動力を減らすことがで
きるとともに、従来と違って、散気による上昇流を生じ
させるために膜分離ユニットの外側に下降流が流れる領
域を十分に確保しなくてすむので、生物反応槽1の設置
面積のほぼ全域近くにわたって袋状膜モジュール2(膜
分離ユニット3)を設置することができて生物反応槽1
の設置面積当たりの活性汚泥処理量を高めることができ
る。
As a result, the maintenance work for stopping the operation of the apparatus and scraping off the sludge layer on the membrane surface can be reduced as compared with the conventional case. Further, since the sludge layer on the membrane surface is not removed by the action of the air diffused from the diffuser 6 installed in the biological reaction tank 1, it is sufficient to diffuse the air only for supplying oxygen to the microorganisms. Therefore, the air supply system equipment can be downsized to reduce the aeration power compared with the conventional one, and unlike the conventional one, the area where the downward flow flows outside the membrane separation unit to generate the upward flow due to diffusion Since it is not necessary to sufficiently secure the biological reaction tank 1, the bag-shaped membrane module 2 (membrane separation unit 3) can be installed over almost the entire installation area of the biological reaction tank 1.
It is possible to increase the amount of activated sludge treated per installation area.

【0025】図5は本発明の別の実施形態による膜分離
活性汚泥処理方法を実施するための装置(膜分離活性汚
泥処理装置)の一例を示す構成説明図である。前記図1
との相違点は、生物反応槽101内に深さ方向において
上段・中段・下段の3段にわたって、各々が複数の袋状
膜モジュールを有する膜分離ユニット103A〜103
Cを浸漬設置し、各膜分離ユニット103A〜103C
に対するレシプロ型ポンプ109A〜109Cを位相を
順次120°ずらせて並行運転するようにした点にあ
る。
FIG. 5 is a structural explanatory view showing an example of an apparatus (membrane separation activated sludge treatment apparatus) for carrying out the method for treating membrane separated activated sludge according to another embodiment of the present invention. FIG. 1
The difference is that the membrane separation units 103A to 103 each have a plurality of bag-shaped membrane modules in the biological reaction tank 101 in the depth direction over three stages of upper, middle, and lower stages.
C is immersed and installed, and each membrane separation unit 103A to 103C
The reciprocating pumps 109A to 109C are operated in parallel by sequentially shifting the phases by 120 °.

【0026】図5に示すように、被処理水が貯留される
生物反応槽101の内部には、微細気泡用散気装置(散
気管)106が浸漬設置されている。この微細気泡用散
気装置106は生物反応槽101の外部にあるブロア1
07に接続されている。また、生物反応槽101の上部
には上段の膜分離ユニット103Aを構成する複数の袋
状膜モジュール102Aが浸漬設置されている。袋状膜
モジュール102Aの構成は、前記図1の袋状膜モジュ
ール2と同一構成であり、その説明を省略する。各袋状
膜モジュール102Aに接続されているモジュール分岐
管104Aは集合管105Aにそれぞれ接続されてい
る。生物反応槽101の外部には、前記図1の装置と同
構成であり、集合管105Aから出発して途中にレシプ
ロ型ポンプ109A、逆止弁108A、及び流量調整弁
110Aをこの順で設けた処理水取出し流路111Aが
設けられている。また、レシプロ型ポンプ109Aのポ
ンプ吐出し口側から分岐して集合管105Aに戻るため
の膜透過水戻し用流路112Aが設けられている。
As shown in FIG. 5, an air diffusing device (air diffusing pipe) 106 for fine bubbles is immersed and installed inside the biological reaction tank 101 in which the water to be treated is stored. The fine air diffuser 106 is a blower 1 located outside the biological reaction tank 101.
It is connected to 07. Further, a plurality of bag-shaped membrane modules 102A constituting the upper membrane separation unit 103A are immersed and installed in the upper part of the biological reaction tank 101. The bag-shaped membrane module 102A has the same structure as that of the bag-shaped membrane module 2 shown in FIG. 1, and a description thereof will be omitted. The module branch pipe 104A connected to each bag-shaped membrane module 102A is connected to the collecting pipe 105A. Outside the biological reaction tank 101, the reciprocating pump 109A, the check valve 108A, and the flow rate adjusting valve 110A, which have the same configuration as the apparatus shown in FIG. 1 and are provided on the way from the collecting pipe 105A, are provided in this order. A treated water extraction channel 111A is provided. Further, a membrane permeated water returning passage 112A for branching from the pump discharge port side of the reciprocating pump 109A and returning to the collecting pipe 105A is provided.

【0027】また、前記上段の膜分離ユニット103A
の下方には、中段に位置する膜分離ユニット103Bを
構成する複数の袋状膜モジュール102Bが浸漬設置さ
れている。袋状膜モジュール102Bの構成は、前記図
1の袋状膜モジュール2と同一構成である。これらの袋
状膜モジュール102Bに対して、前記図1の装置と同
一構成であって、モジュール分岐管104B、集合管1
05B、レシプロ型ポンプ109B、逆止弁108B、
流量調整弁110B、処理水取出し流路111B、及び
膜透過水戻し用流路112Bが設けられている。
Further, the upper membrane separation unit 103A
A plurality of bag-shaped membrane modules 102B constituting the membrane separation unit 103B located in the middle stage are dipped and installed under the. The bag-shaped membrane module 102B has the same structure as the bag-shaped membrane module 2 shown in FIG. The bag-shaped membrane module 102B has the same structure as that of the apparatus shown in FIG. 1 and includes a module branch pipe 104B and a collecting pipe 1.
05B, reciprocating pump 109B, check valve 108B,
A flow rate adjusting valve 110B, a treated water extraction flow passage 111B, and a membrane permeated water return flow passage 112B are provided.

【0028】さらに、前記中段の膜分離ユニット103
Bの下方には、下段に位置する膜分離ユニット103C
を構成する複数の袋状膜モジュール102Cが浸漬設置
されている。袋状膜モジュール102Cの構成は、前記
図1の袋状膜モジュール2と同一構成である。これらの
袋状膜モジュール102Cに対して、前記図1の装置と
同一構成であって、モジュール分岐管104C、集合管
105C、レシプロ型ポンプ109C、逆止弁108
C、流量調整弁110C、処理水取出し流路111C、
及び膜透過水戻し用流路112Cが設けられている。
Further, the middle stage membrane separation unit 103
Below B, the membrane separation unit 103C located in the lower stage
The plurality of bag-shaped membrane modules 102C constituting the above are soaked and installed. The bag-shaped membrane module 102C has the same structure as the bag-shaped membrane module 2 shown in FIG. The bag-shaped membrane module 102C has the same configuration as that of the apparatus shown in FIG. 1, and includes a module branch pipe 104C, a collecting pipe 105C, a reciprocating pump 109C, and a check valve 108.
C, flow rate adjustment valve 110C, treated water extraction flow path 111C,
And a channel 112C for returning the membrane permeated water.

【0029】そして、前記レシプロ型ポンプ109A〜
109Cは、クランク角で120°の位相差で並行運転
されるようになされている。
The reciprocating pump 109A-
109C is designed to be operated in parallel with a phase difference of 120 ° in crank angle.

【0030】このような装置構成において、レシプロ型
ポンプ109A〜109Cが120°の位相差で並行運
転されると、各段の袋状膜モジュール102A〜102
Cにおいては、120°の位相差にて、定められた量の
処理水を取り出しながら、各袋状膜モジュール102A
〜102Cの袋状濾過膜体が、レシプロ型ポンプ109
A〜109Cの吸込み・吐出しに同期してその容積が変
化して収縮・膨張する。
In such an apparatus structure, when the reciprocating pumps 109A to 109C are operated in parallel with a phase difference of 120 °, the bag-shaped membrane modules 102A to 102 of each stage are operated.
In C, each bag-shaped membrane module 102A was taken out with a phase difference of 120 ° while taking out a predetermined amount of treated water.
The reciprocating pump 109 is a bag-shaped filter membrane body of 102C.
The volume changes and contracts / expands in synchronization with the suction / discharge of A to 109C.

【0031】よって、散気装置106から散気する空気
の作用によることなく、各袋状膜モジュール102A〜
102Cの袋状濾過膜体の膜面に付着する汚泥層を連続
的に濾過膜体全体にわたって除去効率よく除去すること
ができる。さらに、本実施形態では、3段をなす袋状膜
モジュール102A〜102Cに対する3つのレシプロ
型ポンプ109A〜109Cを位相を120°ずらせて
並行運転することにより、図6に示すように、3段をな
す袋状膜モジュール102A〜102Cに対して、位相
が120°進むにつれて下方の袋状膜モジュールから上
方の袋状膜モジュールへと順に上昇して行く流れを生起
させることができる。これによって微生物の沈降を防
ぎ、微生物による生物処理能力の低下を防ぐことができ
る。
Therefore, the bag-shaped membrane modules 102A to 102A are not affected by the air diffused from the air diffuser 106.
The sludge layer adhering to the membrane surface of the bag-shaped filtration membrane body of 102C can be continuously and efficiently removed over the entire filtration membrane body. Further, in this embodiment, the three reciprocating pumps 109A to 109C for the three stages of bag-shaped membrane modules 102A to 102C are operated in parallel by shifting the phases by 120 °, so that the three stages are operated as shown in FIG. With respect to the bag-shaped membrane modules 102A to 102C, it is possible to generate a flow that sequentially rises from the lower bag-shaped membrane module to the upper bag-shaped membrane module as the phase advances by 120 °. This can prevent sedimentation of microorganisms and prevent deterioration of biological treatment capacity by microorganisms.

【0032】[0032]

【発明の効果】以上述べたように、請求項1の発明によ
る膜分離活性汚泥処理方法によると、ポンプの吸込み・
吐出しに同期して容積変化して収縮・膨張する袋状濾過
膜体を有する袋状膜モジュールを用い、ポンプによる吸
込み時には、袋状膜モジュールを透過させた膜透過水を
該ポンプ内に引き入れ、ポンプによる吐出し時には、該
ポンプ内の膜透過水のうち、その一部を処理水として取
り出す一方、それ以外の残りを袋状膜モジュールに戻す
ようにしたものであるから、生物反応槽内に設置された
散気装置から散気する空気の作用によることなく、袋状
濾過膜体の膜面に付着する汚泥層を連続的に濾過膜体全
体にわたって除去効率よく除去することができる。これ
により、装置の運転を停止して膜面の汚泥層を掻き落と
すメンテナンス作業を従来に比べて減らすことができ
る。また、微生物に対する酸素供給のためにだけ散気を
行えばよいので、従来に比べて空気供給系設備を小型化
して曝気動力を減らすことができるとともに、従来と違
って、散気による上昇流を生じさせるために膜分離ユニ
ットの外側に下降流が流れる領域を十分に確保しなくて
すむので、生物反応槽の設置面積のほぼ全域近くにわた
って袋状膜モジュールを設置することができて生物反応
槽の設置面積当たりの活性汚泥処理量を高めることがで
きる。
As described above, according to the membrane separation activated sludge treatment method of the invention of claim 1, the suction / pump of the pump
Using a bag-shaped membrane module that has a bag-shaped filtration membrane that changes volume and contracts / expands in synchronization with discharge, and when the pump sucks in, the membrane permeated water that has permeated the bag-shaped membrane module is drawn into the pump. During discharge from the pump, a part of the permeated water in the pump is taken out as treated water, while the rest is returned to the bag-shaped membrane module. The sludge layer adhering to the membrane surface of the bag-shaped filtration membrane can be continuously and efficiently removed over the entire filtration membrane without depending on the action of the air diffused from the air diffuser installed in the. As a result, the maintenance work for stopping the operation of the device and scraping off the sludge layer on the membrane surface can be reduced as compared with the conventional case. Also, since it is only necessary to diffuse air for supplying oxygen to microorganisms, it is possible to reduce the aeration power by downsizing the air supply system equipment compared with the conventional one, and unlike the conventional one, the upflow due to the diffused air Since it is not necessary to secure a sufficient area in which the downward flow flows outside the membrane separation unit to generate it, the bag-like membrane module can be installed over almost the entire installation area of the biological reaction tank, and the biological reaction tank can be installed. It is possible to increase the amount of activated sludge treated per installation area.

【0033】また、請求項2の発明による膜分離活性汚
泥処理方法によると、前記効果に加え、生物反応槽内に
深さ方向において複数段に浸漬設置された袋状膜モジュ
ールについて、各段の袋状膜モジュールに対するポンプ
を位相をずらせて並行運転することにより、下方の袋状
膜モジュールから上方の袋状膜モジュールへと順に上昇
して行く流れを生起させることができるので、これによ
って微生物の沈降を防ぎ、微生物による生物処理能力の
低下を防ぐことができる。
According to the membrane-separated activated sludge treatment method of the second aspect of the present invention, in addition to the above-mentioned effects, the bag-shaped membrane module installed in the biological reaction tank in a plurality of stages in the depth direction is By operating the pumps for the bag-shaped membrane module in parallel by shifting the phases, it is possible to generate a flow that sequentially rises from the lower bag-shaped membrane module to the upper bag-shaped membrane module. It is possible to prevent sedimentation and prevent deterioration of biological treatment capacity by microorganisms.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態による膜分離活性汚泥処理
方法を実施するための装置の一例を示す構成説明図であ
る。
FIG. 1 is a structural explanatory view showing an example of an apparatus for carrying out a membrane separation activated sludge treatment method according to an embodiment of the present invention.

【図2】図1における袋状膜モジュールの一例を示す正
面図である。
FIG. 2 is a front view showing an example of the bag-shaped membrane module in FIG.

【図3】図2のA−A線に沿う断面を拡大して模式的に
示す図である。
3 is an enlarged schematic view of a cross section taken along line AA of FIG.

【図4】袋状濾過膜体(袋状膜モジュール)の収縮・膨
張に伴なう慣性力と、生起される被処理水の流れによる
剪断力とを説明するための図である。
FIG. 4 is a diagram for explaining the inertial force associated with the contraction / expansion of the bag-shaped filtration membrane (bag-shaped membrane module) and the shearing force caused by the flow of the water to be treated that is generated.

【図5】本発明の別の実施形態による膜分離活性汚泥処
理方法を実施するための装置の一例を示す構成説明図で
ある。
FIG. 5 is a structural explanatory view showing an example of an apparatus for carrying out the method for treating a membrane separation activated sludge according to another embodiment of the present invention.

【図6】図5の装置を用いて実施する本発明の膜分離活
性汚泥処理方法の作用を説明するための図である。
FIG. 6 is a view for explaining the action of the membrane separation activated sludge treatment method of the present invention which is carried out using the apparatus of FIG.

【図7】従来の膜分離活性汚泥処理装置の構成説明図で
ある。
FIG. 7 is an explanatory diagram of a configuration of a conventional membrane separation activated sludge treatment device.

【図8】図7における平板状膜モジュールの構成を示す
模式的断面図である。
FIG. 8 is a schematic cross-sectional view showing the configuration of the flat plate membrane module in FIG.

【符号の説明】[Explanation of symbols]

1,101…生物反応槽 2,102A〜102C…袋
状膜モジュール 21…支持枠 22…取付け用枠 2
3…袋状濾過膜体 24…濾過膜体 24a…濾過膜
24b…容積可変用非透過性膜 24c…線状枠 3,
103A〜103C…膜分離ユニット 4,104A〜
104C…モジュール分岐管 5,105A〜105C
…集合管 6,106…微細気泡用散気装置 7,10
7…ブロア 8,108A〜108C…逆止弁 9,1
09A〜109C…レシプロ型クランク式ポンプ 1
0,110A〜110C…流量調整弁 11,111A
〜111C…処理水取出し流路 12,112A〜11
2C…膜透過水戻し用流路
1, 101 ... Biological reaction tank 2, 102A-102C ... Bag-shaped membrane module 21 ... Support frame 22 ... Mounting frame 2
3 ... Bag-shaped filtration membrane 24 ... Filtration membrane 24a ... Filtration membrane
24b ... non-permeable membrane for variable volume 24c ... linear frame 3,
103A-103C ... Membrane separation unit 4,104A-
104C ... Module branch pipe 5,105A to 105C
… Collection pipe 6,106… Diffuser for fine bubbles 7,10
7 ... Blower 8,108A-108C ... Check valve 9,1
09A-109C ... Reciprocating crank pump 1
0,110A to 110C ... Flow rate adjusting valve 11,111A
-111C ... Treated water extraction flow path 12, 112A-11
2C ... Channel for returning water through membrane

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F04B 53/16 F04B 21/00 H 53/20 21/06 B (72)発明者 内田 浩 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 (72)発明者 吉田 忠広 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 (72)発明者 斎藤 彰 兵庫県神戸市中央区脇浜町1丁目3番18号 株式会社神戸製鋼所神戸本社内 Fターム(参考) 3H071 AA01 BB01 BB13 CC11 CC17 CC34 CC41 DD31 DD32 DD35 DD72 4D006 GA07 HA41 HA93 JA02C JA08C JA53A KA01 KA12 KA44 KA66 KB22 KC03 KC13 MA03 MC23 MC48 PA01 PB08 PC64 4D028 BC17 BD00 BD17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification symbol FI theme code (reference) F04B 53/16 F04B 21/00 H 53/20 21/06 B (72) Inventor Hiroshi Uchida Kobe City, Hyogo Prefecture 1-3-18 Wakihamacho, Chuo-ku Kobe Steel Works, Ltd. Kobe Head Office (72) Inventor Tadahiro Yoshida 1-3-18 Wakihama-cho, Chuo-ku, Kobe City, Hyogo Prefecture Kobe Steel Works, Kobe Headquarters (72) Inventor Akira Saito 1-3-18 Wakihama-cho, Chuo-ku, Hyogo Prefecture Kobe Steel Co., Ltd. Kobe Main Office F-term (reference) 3H071 AA01 BB01 BB13 CC11 CC17 CC34 CC41 DD31 DD32 DD35 DD72 4D006 GA07 HA41 HA93 JA02C JA08C JA53A KA01 KA12 KA44 KA66 KB22 KC03 KC13 MA03 MC23 MC48 PA01 PB08 PC64 4D028 BC17 BD00 BD17

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生物反応槽内に浸漬設置された膜モジュ
ールの濾過膜体により被処理水を濾過し、該膜モジュー
ルを透過させた膜透過水を処理水として前記生物反応槽
の外部に設けたポンプにて取り出すようにした膜分離活
性汚泥処理方法において、前記膜モジュールとしてポン
プの吸込み・吐出しに同期して容積変化して収縮・膨張
する袋状濾過膜体を有する袋状膜モジュールを用い、ポ
ンプによる吸込み時には、前記袋状膜モジュールを透過
させた膜透過水を該ポンプ内に引き入れ、ポンプによる
吐出し時には、該ポンプ内の膜透過水を処理水として取
り出すとともに、該膜透過水の一部を前記袋状膜モジュ
ールに戻すことを特徴とする膜分離活性汚泥処理方法。
1. Water to be treated is filtered by a filter membrane of a membrane module immersed in a biological reaction tank, and the permeated water that has permeated the membrane module is provided as treated water outside the biological reaction tank. In the method for treating membrane-separated activated sludge that is taken out by a pump, a bag-shaped membrane module having a bag-shaped filtration membrane body that contracts and expands in volume as the membrane module changes in volume in synchronization with suction and discharge of the pump. When sucking with a pump, the membrane permeated water that has permeated the bag-shaped membrane module is drawn into the pump, and when discharged with the pump, the membrane permeated water in the pump is taken out as treated water, and the membrane permeated water is A part of the above is returned to the bag-shaped membrane module, the method for treating activated membrane sludge.
【請求項2】 前記生物反応槽内に深さ方向において複
数段に浸漬設置された前記袋状膜モジュールについて、
各段の袋状膜モジュールに対するポンプを位相をずらせ
て並行運転することを特徴とする請求項1記載の膜分離
活性汚泥処理方法。
2. The bag-shaped membrane module, which is immersed and installed in a plurality of stages in the depth direction in the biological reaction tank,
2. The method for treating membrane-separated activated sludge according to claim 1, wherein the pumps for the bag-shaped membrane modules in each stage are operated in parallel by shifting the phases.
JP2001364551A 2001-11-29 2001-11-29 Membrane separation activated sludge treatment method Expired - Fee Related JP4038367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001364551A JP4038367B2 (en) 2001-11-29 2001-11-29 Membrane separation activated sludge treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001364551A JP4038367B2 (en) 2001-11-29 2001-11-29 Membrane separation activated sludge treatment method

Publications (2)

Publication Number Publication Date
JP2003164738A true JP2003164738A (en) 2003-06-10
JP4038367B2 JP4038367B2 (en) 2008-01-23

Family

ID=19174723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001364551A Expired - Fee Related JP4038367B2 (en) 2001-11-29 2001-11-29 Membrane separation activated sludge treatment method

Country Status (1)

Country Link
JP (1) JP4038367B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299806C (en) * 2004-07-16 2007-02-14 天津市海跃水处理高科技有限公司 Integration type negative pressure continuous film filtration system
JP2009226356A (en) * 2008-03-25 2009-10-08 Yuasa Membrane System:Kk Membrane separation apparatus and filtration membrane cleaning method of membrane separation apparatus
JP5473897B2 (en) * 2008-03-31 2014-04-16 株式会社クボタ Membrane module cleaning method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299806C (en) * 2004-07-16 2007-02-14 天津市海跃水处理高科技有限公司 Integration type negative pressure continuous film filtration system
JP2009226356A (en) * 2008-03-25 2009-10-08 Yuasa Membrane System:Kk Membrane separation apparatus and filtration membrane cleaning method of membrane separation apparatus
JP5473897B2 (en) * 2008-03-31 2014-04-16 株式会社クボタ Membrane module cleaning method and apparatus

Also Published As

Publication number Publication date
JP4038367B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
EP2018217A2 (en) Inverted aerated immersed screen, screen assembly and operating process
JP2003164738A (en) Membrane separation activated sludge treatment method
JPH01168304A (en) Solid/liquid separation and condensation apparatus
JPH11226317A (en) Apparatus and method for rotary disc type solid and liquid separation
JP7181731B2 (en) Wastewater treatment equipment
JP4268418B2 (en) Water treatment system and water treatment method using oxidation ditch method
JPH0747245A (en) Washing of membrane separation apparatus
JP7181732B2 (en) Wastewater treatment equipment and wastewater treatment method
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH05154354A (en) Membrane filtration apparatus
JP2004121943A (en) Membrane element and membrane unit using the same
JPH09136020A (en) Crossflow membrane filtration method in drainage treatment
JP2699108B2 (en) Sewage treatment method by hollow fiber membrane
JP2004174344A (en) Membrane separator
JP2004105800A (en) Membrane separation device, membrane-separation activated sludge treatment apparatus, and treatment method
JP2002316183A (en) Method and apparatus for treating sewage
JPH04222696A (en) Method and device for intermittently aerated biological treatment of organic waste liquid
JPH11128929A (en) Solid-liquid separator for sludge mixed liquid
JPH09201519A (en) Flat membrane separator
JP2646299B2 (en) Filtration and separation equipment
JP2004174303A (en) Method of operating immersion type membrane separator
JPH0985064A (en) Immersion type flat membrane separator
JPH02268892A (en) Sewage treating device using hollow-fiber-membrane module
JPH11300168A (en) Membrane treatment and membrane treating apparatus
JP2004358411A (en) Membrane separation unit for activated sludge treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Ref document number: 4038367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees