JP2003305313A - Solid-liquid separation method and apparatus therefor - Google Patents

Solid-liquid separation method and apparatus therefor

Info

Publication number
JP2003305313A
JP2003305313A JP2002116164A JP2002116164A JP2003305313A JP 2003305313 A JP2003305313 A JP 2003305313A JP 2002116164 A JP2002116164 A JP 2002116164A JP 2002116164 A JP2002116164 A JP 2002116164A JP 2003305313 A JP2003305313 A JP 2003305313A
Authority
JP
Japan
Prior art keywords
filtration
sludge
solid
filtration module
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002116164A
Other languages
Japanese (ja)
Inventor
Yousei Katsura
甬生 葛
Satoshi Konishi
聡史 小西
Toshihiro Tanaka
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2002116164A priority Critical patent/JP2003305313A/en
Publication of JP2003305313A publication Critical patent/JP2003305313A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-liquid separation method for activated sludge treated water capable of ensuring and keeping high and uniform filter flux and low and uniform filtered water turbidity, and an apparatus therefor. <P>SOLUTION: Water to be treated is introduced into a biological reaction tank for activated sludge treatment and a sludge mixed liquid after activated sludge treatment is introduced into a filtering separation tank in which filter moduli each comprising a plurality of filter elements are immersed and arranged while filtered water is obtained from the filter moduli by head pressure and the sludge mixed liquid after filtering is returned to the biological reaction tank. In this treatment method, a partition wall is arranged between the filter moduli in the filtering separation tank and air diffusion pipes are respectively provided to the lower parts of the filter moduli and, when filtering and washing, air is alternately passed through two air diffusion pipes adjacent to each other through the partition wall. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、活性汚泥処理の固
液分離に関するもので、下水、有機性工業廃水や生活排
水等の活性汚泥処理における固液分離方法及び装置に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to solid-liquid separation in activated sludge treatment, and more particularly to a solid-liquid separation method and device in activated sludge treatment of sewage, organic industrial wastewater, domestic wastewater and the like.

【0002】[0002]

【従来の技術】従来、活性汚泥による水処理では、処理
水を得るためには活性汚泥の固液分離を行わなければな
らない。通常では、活性汚泥混合液を沈殿池に導入さ
せ、重力沈降によって、汚泥を沈降させ、上澄み液を処
理水として沈殿池から流出させる方法が用いられる。こ
の場合、活性汚泥を沈降させるためには十分な沈降面積
及び滞留時間を有する沈殿池が必要であり、処理装置の
大型化と設置容積の増大要因となっている。また、活性
汚泥がバルキング等、沈降性の悪化した場合、沈殿池よ
り汚泥が流出し、処理水の悪化を招く。
2. Description of the Related Art Conventionally, in water treatment using activated sludge, solid-liquid separation of activated sludge must be carried out in order to obtain treated water. Usually, a method is used in which the activated sludge mixed liquid is introduced into a sedimentation tank, the sludge is sedimented by gravity sedimentation, and the supernatant liquid is discharged as treated water from the sedimentation tank. In this case, in order to settle the activated sludge, a settling tank having a sufficient settling area and residence time is required, which is a factor of increasing the size of the processing apparatus and increasing the installation volume. In addition, when the activated sludge deteriorates in sedimentation due to bulking or the like, the sludge flows out of the settling basin, resulting in deterioration of the treated water.

【0003】一方、沈殿池に代わって膜分離による活性
汚泥の固液分離を行う手法は以前から用いられている。
この場合、固液分離用膜として、一般的に精密ろ過膜や
限外ろ過膜が用いられる。ろ過分離手段としてポンプに
よる吸引や加圧が必要であり、通常数十kPa〜数百k
Paの圧力で行うため、ポンプによる動力が大きく、ラ
ンニングコストの増大となっている。また、膜分離でS
Sの全くない清澄な処理水が得られる一方、透過フラッ
クスが低く、膜汚染を防止するため、定期的に薬洗する
必要がある。
On the other hand, a method of performing solid-liquid separation of activated sludge by membrane separation instead of a sedimentation tank has been used for a long time.
In this case, a microfiltration membrane or an ultrafiltration membrane is generally used as the solid-liquid separation membrane. Suction or pressurization with a pump is required as a filtration / separation means, and usually several tens kPa to several hundreds k
Since the pressure is Pa, the power of the pump is large and the running cost is increased. In addition, S for membrane separation
While clear treated water containing no S can be obtained, the permeation flux is low and it is necessary to regularly wash with chemicals in order to prevent membrane contamination.

【0004】最近、沈殿池に代わる活性汚泥の固液分離
法として、生物反応槽に不織布等のろ布からなるろ過体
を複数浸漬させ、ダイナミックろ過層によるろ過におい
て、間欠的にろ過体下部にガスを供給して洗浄する処理
法が開示されている。さらに、曝気槽とは別に、ろ過体
同士の間に仕切り壁を設けた複数ろ過体を浸漬する固液
分離槽に、曝気槽汚泥を導入して仕切り壁を挟んだ両側
のろ過体を、定期的にろ過及び散気を交互に行う処理方
法が開示されている。
Recently, as a solid-liquid separation method for activated sludge instead of a sedimentation basin, a plurality of filter bodies made of filter cloth such as non-woven fabric are soaked in a biological reaction tank, and in the filtration by a dynamic filter layer, the filter body is intermittently placed below A treatment method of supplying gas and cleaning is disclosed. Furthermore, apart from the aeration tank, the aeration tank sludge is introduced into the solid-liquid separation tank in which a plurality of filters with partition walls are placed between the filters, and the filter bodies on both sides with the partition walls are periodically removed. Disclosed is a treatment method in which filtration and aeration are alternately performed.

【0005】[0005]

【発明が解決しようとする課題】間欠的にろ過体下部に
ガスを供給して洗浄する処理法では、生物反応槽に浸漬
するろ過体表面の流れは仕切り壁を挟んだ生物反応槽散
気管からの曝気により形成されており、各ろ過体の表面
流れは不均一である。いずれのろ過体においても下降流
となっている。一方、ろ過体洗浄用の通気管はろ過体下
部にあり、ガス供給による洗浄時、ろ過体表面の流れは
上向流となり、下降流の汚泥流れの影響で、高い上昇速
度或いは均一な上昇速度が得られないことがある。この
場合、汚泥付着層の剥離効果が低下し、高いろ過フラッ
クスの維持が困難となる。
In the treatment method in which gas is intermittently supplied to the lower part of the filter body for cleaning, the flow on the surface of the filter body immersed in the biological reaction tank is from the diffusion tube of the biological reaction tank sandwiching the partition wall. It is formed by aeration of, and the surface flow of each filter is non-uniform. The flow is downflow in all the filters. On the other hand, the ventilation pipe for cleaning the filter is located at the bottom of the filter, and when cleaning by gas supply, the flow on the surface of the filter becomes an upward flow, and due to the sludge flow in the downward flow, a high rising speed or a uniform rising speed. May not be obtained. In this case, the peeling effect of the sludge adhering layer is reduced, and it becomes difficult to maintain a high filtration flux.

【0006】曝気槽とは別に、ろ過体同士の間に仕切り
壁を設けた複数ろ過体を浸漬する固液分離槽に、曝気槽
汚泥を導入して仕切り壁を挟んだ両側のろ過体を、定期
的にろ過及び散気を交互に行う処理方法では、固液分離
槽内のろ過体の半分が常時ろ過操作を停止していること
から、有効なろ過水量を得ることができず、ろ過体の有
効利用ができないという問題点がある。また、ろ過体表
面の汚泥流れは、仕切り壁を挟んだ反対側通気管散気に
よる循環流−すなわち、通気管散気中のろ過体では上昇
流、ろ過中のろ過体では下降流となっているため、ろ過
中のろ過体で均一な流速が得られず、洗浄までの連続ろ
過時間が長いと、流速の遅いろ過体表面に汚泥付着層が
過度に成長し、汚泥流路の抵抗を増加させ、流れの停滞
を起こすことがある。このことはろ過フラックスの低下
を招く要因となる。本発明は、従来の欠点を解消し、固
液分離槽内のろ過体の有効に使用され、かつ高いろ過フ
ラックスが得られる固液分離方法及び装置を提供するこ
とを目的とするものである。
Separately from the aeration tank, the aeration tank sludge is introduced into the solid-liquid separation tank in which a plurality of filter bodies having partition walls are immersed between the filter bodies, and the filter bodies on both sides sandwiching the partition wall, In the treatment method in which filtration and aeration are alternately performed on a regular basis, since half of the filter bodies in the solid-liquid separation tank are constantly stopping the filtration operation, an effective amount of filtered water cannot be obtained, and the filter body cannot be obtained. There is a problem that it cannot be effectively used. Further, the sludge flow on the surface of the filter body is a circulation flow due to air diffusion on the opposite side across the partition wall-that is, it is an upward flow for the filter body during aeration of the ventilation pipe and a downward flow for the filter body during filtration. Therefore, if the filter body during filtration cannot obtain a uniform flow rate and the continuous filtration time before cleaning is long, the sludge adhesion layer grows excessively on the surface of the filter body with a slow flow rate, increasing the resistance of the sludge flow path. May cause stagnation of flow. This causes a decrease in filtration flux. It is an object of the present invention to provide a solid-liquid separation method and apparatus which eliminates the conventional drawbacks, can be effectively used for a filter in a solid-liquid separation tank, and can obtain a high filtration flux.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するために、下記の構成からなるものである。 (1)被処理水を活性汚泥処理の生物反応槽に導入し、
活性汚泥処理後の汚泥混合液をろ過体からなるろ過モジ
ュールを複数浸漬設置するろ過分離槽に導入し、水頭圧
で該ろ過モジュールからろ過水を得て、ろ過後の汚泥混
合液を生物反応槽に返送する処理法において、該ろ過分
離槽内の各ろ過モジュール間に仕切り壁を設置し、各ろ
過モジュール下部にそれぞれの散気管を有し、ろ過及び
洗浄時、仕切り壁を介して隣合った散気管中の一方のみ
の通気を交互に行うことを特徴とする固液分離方法。
The present invention has the following constitution in order to solve the above problems. (1) Introduce the water to be treated into the biological reaction tank for activated sludge treatment,
The sludge mixture after the activated sludge treatment is introduced into a filtration separation tank in which a plurality of filtration modules consisting of a filter are immersed, and filtered water is obtained from the filtration module by head pressure, and the sludge mixture after the filtration is used as a biological reaction tank. In the processing method of returning to the above, a partition wall is installed between each filtration module in the filtration separation tank, and each diffusion module has an air diffuser at the bottom of each filtration module, and adjacent to each other via the partition wall during filtration and washing. A solid-liquid separation method characterized in that only one side of the air diffuser is aerated alternately.

【0008】(2)前記ろ過モジュール下部の散気管へ
の通気をろ過停止時は連続して行い、ろ過継続時は間欠
的或いは連続に行うことを特徴とする前記(1)記載の
固液分離方法。 (3)ろ過継続時の通気において、ろ過水濁度が所定値
以上となった場合、通気量を減少或いは停止し、ろ過水
濁度が所定値以下となった場合、通気量を増加或いは再
開することを特徴とする前記(1)又は(2)記載の固
液分離方法。 (4)前記ろ過モジュール下部の散気管への通気量は洗
浄時で2.5m3/m2流路/min以上、ろ過時で1.
0m3/m2流路/min以下であることを特徴とするぜ
んき(1)〜(3)のいずれかに記載の固液分離方法。
(2) The solid-liquid separation according to the above (1), characterized in that the aeration pipe under the filtration module is continuously aerated when the filtration is stopped and intermittently or continuously when the filtration is continued. Method. (3) When the filtration water turbidity is above a specified value during ventilation, the flow rate is reduced or stopped, and when the filtration water turbidity is below a specified value, the flow rate is increased or restarted. The solid-liquid separation method according to (1) or (2) above. (4) The air flow rate to the air diffuser under the filtration module is 2.5 m 3 / m 2 flow path / min or more during washing, and 1.
The solid-liquid separation method according to any one of (1) to (3), which has a flow rate of 0 m 3 / m 2 or less.

【0009】(5)槽内に仕切り壁を有し、該仕切り壁
の両側に配設された複数のろ過体からなる表面にダイナ
ミックろ過層が形成されるろ過モジュールと、前記ろ過
モジュールに付設されたろ過水排出配管と、前記ろ過モ
ジュールの下方に配設された散気管と、前記散気管への
通気をろ過及び洗浄時に交互に切り換える通気弁と、生
物反応槽からの生物処理水の供給管と、返送汚泥用返送
配管とを設けたろ過分離槽を有することを特徴とする生
物処理水の固液分離装置。
(5) A filtration module having a partition wall in the tank, and a dynamic filtration layer is formed on the surface of a plurality of filter bodies arranged on both sides of the partition wall; and a filtration module attached to the filtration module. A filtered water discharge pipe, an air diffusing pipe disposed below the filtration module, a ventilation valve that alternately switches ventilation to the diffusing pipe at the time of filtration and washing, and a pipe for supplying biological treated water from a biological reaction tank. A solid-liquid separation apparatus for biologically treated water, comprising a filtration separation tank provided with a return sludge return pipe.

【0010】[0010]

【発明の実施の形態】以下に、本発明の実施の形態を説
明する。本発明によれば、生物反応槽から汚泥混合液を
ろ過分離槽に供給して、ろ過モジュールによるダイナミ
ックろ過において、ろ過分離槽内に浸漬設置する複数の
ろ過モジュールに対し、隣接同士のろ過モジュール間に
仕切り壁を設け、この仕切り壁をその上端が液面より下
にあるようにし、且つ下端が槽底より上にあるようにし
て、仕切り壁の上下で液が連通することができるよう
し、ろ過モジュール下部にそれぞれ、散気管を設置する
ことで、空洗時仕切り壁を挟んだろ過モジュール同士の
いずれかの散気管に対して通気すれば、通気側ろ過モジ
ュール流路の気液混合汚泥流れは比較的均等な上向流と
なり、反対側ろ過モジュール流路は下降流の汚泥流れを
形成できる。これを交互に行えば、ろ過モジュール流路
に対し、確実に流速の速い同一方向の流れを形成でき
る。このため、ろ過モジュール表面に過成長した汚泥ケ
ーキ層を確実に剥離することができ、高い洗浄効果が得
られる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. According to the present invention, the sludge mixed liquid is supplied from the biological reaction tank to the filtration separation tank, and in the dynamic filtration by the filtration module, between the plurality of filtration modules immersed in the filtration separation tank, between the adjacent filtration modules. A partition wall is provided on the partition wall so that the upper end of the partition wall is below the liquid level and the lower end is above the tank bottom so that the liquid can communicate with the upper and lower sides of the partition wall. By installing air diffusers at the bottom of the filtration module, if air is vented to any air diffuser of the filtration modules that sandwich the partition wall during air washing, the gas-liquid mixed sludge flow in the air passage side filtration module flow path Results in a relatively uniform upward flow and the opposite filtration module flow path can form a downward sludge flow. By alternately performing this, it is possible to reliably form a flow having a high flow velocity in the same direction with respect to the flow path of the filtration module. Therefore, the sludge cake layer overgrown on the surface of the filtration module can be reliably peeled off, and a high cleaning effect can be obtained.

【0011】同様に、ろ過時は空洗時より少ない散気量
で仕切り壁を挟んだ両ろ過モジュールの一方に対し、散
気管からの通気を行うことによりろ過モジュール流路内
の汚泥混合液を確実に流動させるとともに、ろ過体表面
汚泥層の成長を抑制でき、高いろ過フラックスを維持す
ることができる。また、仕切り壁反対側のろ過モジュー
ル流路において、確実に下降流となる汚泥流れが形成で
き、流動停滞に伴う汚泥ケーキ層過成長に起因する汚泥
ブリッジを解消できる。ろ過時の通気はろ過モジュール
に対して交互に行うことにより、いずれのモジュールも
同時にろ過を行なうことができ、かつ常時高いろ過フラ
ックスが得られる。
Similarly, at the time of filtration, the sludge mixed solution in the flow path of the filtration module is removed by ventilating from one of the two filtration modules sandwiching the partition wall with an air diffusion amount smaller than that at the time of air washing, from the air diffusion pipe. It is possible to reliably flow, suppress the growth of the filter surface sludge layer, and maintain a high filtration flux. Further, in the filtration module flow path on the opposite side of the partition wall, a sludge flow that surely becomes a downward flow can be formed, and the sludge bridge caused by the overgrowth of the sludge cake layer due to the flow stagnation can be eliminated. Aeration during filtration is alternately performed on the filtration modules, so that any module can perform filtration at the same time and a high filtration flux can be obtained at all times.

【0012】ろ過進行時の散気管として、空洗用散気管
を兼用してもよいが、汚泥性状、濃度に対応し、汚泥流
れを確実に同一方向とし、各流路に均一な流れを形成す
るために別途通気管を設けても良い。ろ過進行時の通気
管としては孔径の小さい多孔管、孔径が好ましくは1m
m〜3mm程度の多孔管、デフューザー等のいずれを用
いてもよい。なお、通気を受けるろ過モジュールでは、
汚泥濃度及び性状により、ろ過水濁度の上昇が予想され
る。また、水頭圧の変化によりろ過水フラックスの低下
もある。このため、通気量の大きさ及び散気管への通気
の切替えの頻度はろ過水量及びろ過水濁度に応じて適宜
に調整し、間欠的に行うことも可能である。
The air diffusing tube for air washing may also be used as the air diffusing tube when the filtration is in progress. However, depending on the sludge properties and concentration, the sludge flow should be surely in the same direction to form a uniform flow in each flow path. To do so, a ventilation pipe may be provided separately. As a ventilation pipe during the progress of filtration, a perforated pipe having a small pore size, preferably a pore size of 1 m
Any of a perforated tube of about m to 3 mm and a diffuser may be used. In addition, in the filtration module that receives ventilation,
Increase in turbidity of filtered water is expected due to sludge concentration and properties. In addition, there is also a decrease in the filtrate flux due to changes in head pressure. Therefore, the size of the ventilation amount and the frequency of switching the ventilation to the air diffuser can be adjusted intermittently by appropriately adjusting the amount of filtered water and the turbidity of filtered water.

【0013】ろ過モジュールは複数のろ過体から構成さ
れる。ろ過体形状としては平面型が中心であるが、円筒
型、中空型を用いることも可能である。ろ過モジュール
当たりのろ過体枚数は通常2〜100枚程度であるが、
ろ過モジュール流路内の汚泥流れを比較的均等にし、各
ろ過体に対し均一な洗浄効果を得るためには、5〜20
枚を1個のろ過モジュールとするのが好ましい。
The filtration module is composed of a plurality of filtration bodies. The shape of the filter body is mainly a plane type, but a cylindrical type or a hollow type can also be used. The number of filters per filter module is usually about 2 to 100,
In order to make the sludge flow in the filtration module flow path relatively uniform and to obtain a uniform cleaning effect for each filter,
It is preferable that one filter module is used.

【0014】[0014]

【実施例】以下に、本発明を実施態様の一例を示す図面
を用いて詳細に説明する。ただし、本発明はこの実施例
のみに限定されるものではない。
The present invention will be described in detail below with reference to the drawings showing an example of an embodiment. However, the present invention is not limited to this embodiment.

【0015】実施例1 図1に飲料廃水に対する本発明による処理の一例をフロ
ーシートで示す。図1に示す如く、流入原水1が生物反
応槽2に流入し、活性汚泥処理を行う。活性汚泥処理後
の汚泥混合液は、汚泥供給ポンプ3よりろ過分離槽4の
底部に送られる。ろ過分離槽4には、ろ過モジュールA
の7とろ過モジュールBの8が、仕切り壁18を挟んで
設置されている。ろ過モジュールA及びろ過モジュール
Bの下部には、それぞれ散気管Aの9と散気管Bの10
が配置されている。散気管A、Bへの通気は、ブロワー
11よりそれぞれ通気弁Aの5、Bの6を通じて行われ
る。なお、散気時は通気弁A及びBのいずれか一方のみ
開放して行う。散気管AとB間の通気切り替えは、通気
弁A、Bの切り替えにより行い、その間通気ブロワー1
1は連続運転となる。
Example 1 FIG. 1 is a flow sheet showing an example of treatment of beverage wastewater according to the present invention. As shown in FIG. 1, inflow raw water 1 flows into a biological reaction tank 2 to perform activated sludge treatment. The sludge mixture after the activated sludge treatment is sent from the sludge supply pump 3 to the bottom of the filtration separation tank 4. The filtration separation tank 4 has a filtration module A.
7 and 8 of the filtration module B are installed with the partition wall 18 interposed therebetween. In the lower part of the filtration module A and the filtration module B, 9 of the air diffuser A and 10 of the air diffuser B are respectively provided.
Are arranged. Aeration of air diffusers A and B is performed by blower 11 through aeration valves A 5 and B 6, respectively. During aeration, only one of the ventilation valves A and B is opened. The ventilation switching between the air diffusers A and B is performed by switching the ventilation valves A and B, while the ventilation blower 1
1 is a continuous operation.

【0016】ろ過は、両ろ過モジュールを用いて同時に
行われる。ろ過モジュールからのろ過水14は処理水槽
12に流入し、処理水17として排出される。なお、水
逆洗の場合、水逆洗ポンプ13は処理水槽12のろ過水
14を用い、ろ過モジュール内部に供給する方式で水逆
洗を行う。水逆洗時は、ろ過モジュール底部からモジュ
ール内部侵入汚泥を排出汚泥16として生物反応槽2に
戻す。また、ろ過水14を得たあとのろ過分離槽4内の
汚泥混合液は返送汚泥15として生物反応槽2に返送さ
れる。第1表に本実施例でのろ過分離槽の処理条件を示
す。
Filtration is performed simultaneously using both filtration modules. The filtered water 14 from the filtration module flows into the treated water tank 12 and is discharged as treated water 17. In the case of backwashing with water, the water backwashing pump 13 uses the filtered water 14 in the treated water tank 12 to carry out backwashing with water by supplying it to the inside of the filtration module. At the time of backwashing with water, the sludge invading the inside of the module is returned to the biological reaction tank 2 as the discharged sludge 16 from the bottom of the filtration module. Further, the sludge mixed solution in the filtration separation tank 4 after obtaining the filtered water 14 is returned to the biological reaction tank 2 as return sludge 15. Table 1 shows the processing conditions of the filtration separation tank in this example.

【0017】[0017]

【表1】 [Table 1]

【0018】本実施例では、ろ過分離槽4に、有効ろ過
面積0.7m2/枚の平面型通水性ろ過体3枚の7、8
をろ過体モジュールとして、A、Bの2ろ過モジュール
を浸漬設置した。A及びBろ過モジュール間に厚み20
mmの仕切り壁18を設けた。なお、仕切り壁18は図
に示すように上下が液で連通しているものである。ろ過
モジュールの通水性ろ過体として、厚み約0.1mm、
孔径114μmのポリエステル織布を用いた。ろ過時の
水頭圧を約10cmとし、ろ過分離槽4に供給する汚泥
混合液の流量は30m3/dとし、ろ過体表面の汚泥流
速を平均0.01m/sとした。
In this embodiment, the filtration and separation tank 4 has three and seven flat water-permeable filters having an effective filtration area of 0.7 m 2 / sheet.
Was used as the filter body module, and two filtration modules A and B were dipped and installed. Thickness 20 between A and B filtration modules
A mm partition wall 18 was provided. The partition wall 18 communicates with the upper and lower parts as shown in the figure. As a water-permeable filter of the filtration module, a thickness of about 0.1 mm,
A polyester woven fabric having a pore size of 114 μm was used. The head pressure during filtration was set to about 10 cm, the flow rate of the sludge mixed solution supplied to the filtration separation tank 4 was set to 30 m 3 / d, and the sludge flow velocity on the surface of the filter was set to 0.01 m / s on average.

【0019】ろ過工程は、1サイクル120分として行
った。この1サイクル120分ろ過において、通気弁A
(5)かB(6)を通じて通気サイクルは5分ON、1
0分OFFの間欠通気を行う。通気は通気管A或いはB
の何れかに対して行うため、通気管A及びBからの通気
はそれぞれ5分通気、25分停止となる。なお、ろ過時
の通気量は0.2m3/m2/minとした。通気弁A
(5)からの散気時にはろ過モジュールAに対しては、
液は上昇流、ろ過モジュールBに対しては、液は下降流
となり、通気弁B(6)からの散気時にはろ過モジュー
ルA、Bに対する液の流れは逆になる。そして、通気管
A及びBからの通気が停止している時でも、通気時に与
えられた液に対する駆動力が残っており、汚泥流路の流
れ抵抗がほとんどなく、液の各ろ過面に対する流速を維
持することができる。
The filtration process was carried out for 120 minutes per cycle. In this cycle of 120 minutes filtration, ventilation valve A
Aeration cycle is ON for 5 minutes through (5) or B (6), 1
Perform intermittent ventilation for 0 minutes OFF. Venting is vent pipe A or B
Since it is performed for either of the above, the ventilation from the ventilation pipes A and B is a ventilation for 5 minutes and a stop for 25 minutes, respectively. The air flow rate during filtration was 0.2 m 3 / m 2 / min. Vent valve A
At the time of air diffusion from (5), for the filtration module A,
The liquid is an upward flow, and the liquid is a downward flow for the filtration module B, and the flow of the liquid to the filtration modules A and B is reversed when air is diffused from the ventilation valve B (6). Then, even when the ventilation from the ventilation pipes A and B is stopped, the driving force for the liquid given at the time of ventilation remains, there is almost no flow resistance in the sludge passage, and the flow velocity of the liquid to each filtration surface is Can be maintained.

【0020】ろ過工程がある時間経過すると、ろ過抵抗
が増大するので、外部空洗を行うが、ろ過モジュールに
対する外部空洗方法として、ろ過120分毎に通気ブロ
ワー11を起動させ、連続6分間の空洗を行う。その
間、通気弁Aからろ過モジュールAへの空洗及び通気弁
Bからろ過モジュールBへの空洗時間はそれぞれ3分間
とした。通気弁Aの5を開放し、ろ過モジュールA下部
の散気管Aの9へ通気する時、通気弁Bの6を閉として
通気を行うが、その際汚泥混合液はろ過モジュールA表
面を上向流で通過し、その後汚泥混合液は仕切り壁18
の上端を通じて、ろ過モジュールBの側に入り、ろ過モ
ジュールB表面を下降流で通過する。同様にBモジュー
ル下部の通気管Bの10へ通気する時、A、Bモジュー
ル表面の汚泥流れは逆に下降流と上向流となる。
Since the filtration resistance increases after a certain time has passed in the filtration step, external air washing is carried out. As an external air washing method for the filtration module, the aeration blower 11 is activated every 120 minutes of filtration, and continuous ventilation for 6 minutes is performed. Wash with air. During that time, the air-washing time from the ventilation valve A to the filtration module A and the air-washing time from the ventilation valve B to the filtration module B were each set to 3 minutes. When 5 of the aeration valve A is opened and aeration pipe 9 at the bottom of the filtration module A is aerated, ventilation is performed by closing 6 of the aeration valve B. At this time, the sludge mixed liquid is directed upward on the surface of the filtration module A. Flow and then the sludge mixture is separated by the partition wall 18
Enters the side of the filtration module B through the upper end of and passes through the surface of the filtration module B in a descending flow. Similarly, when ventilating to the vent pipe B 10 at the bottom of the B module, the sludge flow on the surfaces of the A and B modules becomes a downward flow and an upward flow.

【0021】水逆洗は処理水槽12のろ過水14を用
い、ろ過モジュール内部に供給して行う。水逆洗量は、
ろ過面積あたり40m/dとし、本実施例では117リ
ットル/minとし、30秒間行った。水逆洗と同時
に、ろ過モジュール内部より浸入汚泥を排出する排泥操
作を行い、水逆洗後さらに1分間排泥を続ける。
The backwashing with water is performed by using the filtered water 14 in the treated water tank 12 and supplying it to the inside of the filtration module. The amount of water backwash is
The filtration area was set to 40 m / d, and in this example, it was set to 117 liter / min, and the operation was performed for 30 seconds. Simultaneously with the backwashing with water, the sludge is discharged from the inside of the filtration module, and the sludge is continued for another minute after backwashing with water.

【0022】図2に実施例における全ろ過モジュールの
ろ過フラックス経過を示す。実施時のMLSSは約60
00mg/リットルである。処理開始から2ヶ月の運転
において、ろ過フラックスがほぼ2〜2.5m/d前後
であり、安定した処理が得られた。図3にろ過水濁度の
経過を示す。約2ヶ月の連続運転において、ろ過水濁度
はほぼ10度以下であり、良好なろ過性能を示し、清澄
なろ過水を安定して得られた。
FIG. 2 shows the course of filtration flux of all the filtration modules in the example. MLSS at the time of implementation is about 60
It is 00 mg / liter. In the operation for 2 months from the start of the treatment, the filtration flux was about 2 to 2.5 m / d, and the stable treatment was obtained. FIG. 3 shows the course of filtered water turbidity. In continuous operation for about 2 months, the turbidity of the filtered water was about 10 degrees or less, showing good filtering performance, and clear filtered water was stably obtained.

【0023】[0023]

【発明の効果】本発明によれば、生物反応槽から汚泥混
合液をろ過分離槽に供給して、ろ過モジュールによるダ
イナミックろ過において、ろ過分離槽内に浸漬設置する
複数のろ過モジュールに対し、隣接同士のろ過モジュー
ル間に仕切り壁を設け、ろ過モジュール下部にそれぞ
れ、散気管を設置し、空洗時仕切り壁を挟んだろ過モジ
ュール同士のいずれかの散気管に対して通気すれば、通
気側モジュール流路の気液混合汚泥流れは比較的均等な
上向流となり、反対側のモジュール流路は下降流の汚泥
流れを形成できる。これを交互に行えば、モジュール流
路に対し、確実に流速の速い同一方向の流れを形成でき
る。このため、ろ過モジュール表面に過成長した汚泥ケ
ーキ層を確実に剥離することができ、高い洗浄効果が得
られる。
According to the present invention, the sludge mixture is supplied from the biological reaction tank to the filtration separation tank, and in the dynamic filtration by the filtration module, adjacent to the plurality of filtration modules immersed in the filtration separation tank. If a partition wall is provided between the filtration modules of the two filters, air diffusers are installed at the bottoms of the filtration modules, and air is vented to any air diffuser of the filtration modules that sandwich the partition wall during washing, the ventilation side module The gas-liquid mixed sludge flow in the channel becomes a relatively uniform upward flow, and the module channel on the opposite side can form a downward sludge flow. By alternately performing this, it is possible to reliably form a flow having a high flow velocity in the same direction with respect to the module flow path. Therefore, the sludge cake layer overgrown on the surface of the filtration module can be reliably peeled off, and a high cleaning effect can be obtained.

【0024】同様にろ過時において、空洗時より少ない
散気量で仕切り壁を挟んだ両モジュールの一方に対し、
散気管からの通気によりろ過モジュール流路内の汚泥混
合液を確実に流動化するとともに、ろ過体表面汚泥層の
成長を抑制でき、高いろ過フラックスを維持できる。ま
た、仕切り壁反対側のろ過モジュール流路において、確
実に下降流となる汚泥流れが形成でき、流動停滞に伴う
汚泥ケーキ層過成長に起因する汚泥プリッジを解消する
ことができる。ろ過時の通気はろ過モジュールに対して
交互に行うことにより、いずれのろ過モジュールも常時
高いろ過フラックスが得られる。
Similarly, at the time of filtration, one of both modules sandwiching the partition wall with a smaller amount of air diffused than during air washing,
Ventilation from the air diffuser can reliably fluidize the sludge mixed solution in the filtration module flow path, suppress the growth of the sludge layer on the surface of the filter body, and maintain a high filtration flux. Further, in the filtration module flow path on the opposite side of the partition wall, a sludge flow that is surely a downward flow can be formed, and the sludge pledge caused by the overgrowth of the sludge cake layer due to the stagnant flow can be eliminated. Aeration at the time of filtration is alternately performed to the filtration modules, so that a high filtration flux is always obtained in any of the filtration modules.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の活性汚泥処理の固液分離を実施する装
置の概略説明図である。
FIG. 1 is a schematic explanatory diagram of an apparatus for performing solid-liquid separation in activated sludge treatment of the present invention.

【図2】本発明の実施例のろ過水フラックスの経時変化
を示すグラフである。
FIG. 2 is a graph showing changes over time in the filtered water flux of the examples of the present invention.

【図3】本発明の実施例のろ過水濁度の経時変化を示す
グラフである。
FIG. 3 is a graph showing changes with time in turbidity of filtered water according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 流入原水 2 生物反応槽 3 汚泥供給ポンプ 4 ろ過分離槽 5 通気弁A 6 通気弁B 7 ろ過モジュールA 8 ろ過モジュールB 9 散気管A 10 散気管B 11 通気ブロワー 12 処理水槽 13 水逆洗ポンプ 14 ろ過水 15 返送汚泥 16 排出汚泥 17 処理水 18 仕切り壁 1 Inflow raw water 2 Biological reaction tank 3 Sludge supply pump 4 Filtration separation tank 5 Vent valve A 6 Vent valve B 7 Filtration module A 8 Filtration module B 9 Air diffuser A 10 Air diffuser B 11 ventilation blower 12 treated water tank 13 Water backwash pump 14 filtered water 15 Return sludge 16 Discharged sludge 17 Treated water 18 partition walls

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 俊博 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 Fターム(参考) 4D006 GA02 HA93 KA01 KA43 KB22 KC03 KC14 KE24Q PB20 PC62 4D028 AB00 BC01 BC17 BD17 4D066 BA01 BB01 DA03 FA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshihiro Tanaka             11-1 Haneda Asahi-cho, Ota-ku, Tokyo Co., Ltd.             Inside the EBARA CORPORATION F-term (reference) 4D006 GA02 HA93 KA01 KA43 KB22                       KC03 KC14 KE24Q PB20                       PC62                 4D028 AB00 BC01 BC17 BD17                 4D066 BA01 BB01 DA03 FA02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被処理水を活性汚泥処理用の生物反応槽
に導入し、活性汚泥処理後の汚泥混合液を複数のろ過体
からなるろ過モジュールを浸漬設置するろ過分離槽に導
入し、水頭圧で該ろ過モジュールからろ過水を得て、ろ
過後の汚泥混合液を生物反応槽に返送する処理法におい
て、該ろ過分離槽内ろ過モジュール間に仕切り壁を設置
し、各ろ過モジュール下部にそれぞれの散気管を設け、
ろ過及び洗浄時に、仕切り壁を介して隣合った散気管中
の一方のみの通気を交互に行うことを特徴とする固液分
離方法。
1. The water to be treated is introduced into a biological reaction tank for treatment of activated sludge, and the sludge mixed solution after the treatment of activated sludge is introduced into a filtration separation tank in which a filtration module consisting of a plurality of filter bodies is submerged and installed. In the treatment method of obtaining filtered water from the filtration module by pressure and returning the sludge mixed solution after filtration to the biological reaction tank, a partition wall is installed between the filtration modules in the filtration separation tank, and each filtration module has a lower part at the bottom. With an air diffuser
A solid-liquid separation method, characterized in that during filtration and washing, aeration of only one of the adjacent air diffusers through the partition wall is performed alternately.
【請求項2】 前記ろ過モジュール下部の散気管への通
気をろ過停止時は連続して行い、ろ過継続時は間欠的或
いは連続に行うことを特徴とする請求項1記載の固液分
離方法。
2. The solid-liquid separation method according to claim 1, wherein aeration of the air diffusing pipe below the filtration module is continuously performed when filtration is stopped and intermittently or continuously when filtration is continued.
【請求項3】 ろ過継続時の通気において、ろ過水濁度
が所定値以上となった場合、通気量を減少或いは停止
し、ろ過水濁度が所定値以下となった場合、通気量を増
加或いは再開することを特徴とする請求項1又は請求項
2記載の固液分離方法。
3. When ventilation of filtration is continued, when the turbidity of filtered water exceeds a predetermined value, the flow rate is reduced or stopped, and when turbidity of filtered water is below a predetermined value, the flow rate is increased. Alternatively, the solid-liquid separation method according to claim 1 or 2, which is restarted.
【請求項4】 前記ろ過モジュール下部の散気管への通
気量は洗浄時で2.5m3/m2流路/min以上、ろ過
時で1.0m3/m2流路/min以下であることを特徴
とする請求項1〜3のいずれかに記載の固液分離方法。
4. The air flow rate to the air diffuser under the filtration module is 2.5 m 3 / m 2 flow passages / min or more during washing and 1.0 m 3 / m 2 passages / min or less during filtration. The solid-liquid separation method according to any one of claims 1 to 3, characterized in that.
【請求項5】 槽内に仕切り壁を有し、該仕切り壁の両
側に配設された複数のろ過体からなる表面にダイナミッ
クろ過層が形成されるろ過モジュールと、前記ろ過モジ
ュールに付設されたろ過水排出配管と、前記ろ過モジュ
ールの下方に配設された散気管と、前記散気管への通気
をろ過及び洗浄時に交互に切り換える通気弁と、生物反
応槽からの生物処理水の供給管と、返送汚泥用返送配管
とを設けたろ過分離槽を有することを特徴とする生物処
理水の固液分離装置。
5. A filtration module having a partition wall in a tank, wherein a dynamic filtration layer is formed on the surface of a plurality of filter bodies arranged on both sides of the partition wall, and a filtration module attached to the filtration module. A filtered water discharge pipe, an air diffusing pipe arranged below the filtration module, a ventilation valve that alternately switches ventilation to the diffusing pipe during filtration and washing, and a feed pipe for biologically treated water from a biological reaction tank. A solid-liquid separation apparatus for biologically treated water, comprising a filtration separation tank provided with a return sludge return pipe.
JP2002116164A 2002-04-18 2002-04-18 Solid-liquid separation method and apparatus therefor Withdrawn JP2003305313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116164A JP2003305313A (en) 2002-04-18 2002-04-18 Solid-liquid separation method and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116164A JP2003305313A (en) 2002-04-18 2002-04-18 Solid-liquid separation method and apparatus therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006214524A Division JP2006289370A (en) 2006-08-07 2006-08-07 Solid-liquid separation method and apparatus

Publications (1)

Publication Number Publication Date
JP2003305313A true JP2003305313A (en) 2003-10-28

Family

ID=29397089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116164A Withdrawn JP2003305313A (en) 2002-04-18 2002-04-18 Solid-liquid separation method and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2003305313A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021075A (en) * 2004-07-06 2006-01-26 Yoshiaki Kiso Weight reduction method for organic surplus sludge and its device
KR100753673B1 (en) 2005-04-22 2007-09-03 김용선 system for purifying waste water and method thereof
JPWO2009047970A1 (en) * 2007-10-10 2011-02-17 東レ株式会社 Fine bubble diffuser, fine bubble diffuser, and submerged membrane separator
WO2011114897A1 (en) * 2010-03-15 2011-09-22 三菱レイヨン株式会社 Method for filtering water to be treated
JP2014000572A (en) * 2013-08-26 2014-01-09 Mitsubishi Rayon Co Ltd Operation method of diffuser

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021075A (en) * 2004-07-06 2006-01-26 Yoshiaki Kiso Weight reduction method for organic surplus sludge and its device
KR100753673B1 (en) 2005-04-22 2007-09-03 김용선 system for purifying waste water and method thereof
JPWO2009047970A1 (en) * 2007-10-10 2011-02-17 東レ株式会社 Fine bubble diffuser, fine bubble diffuser, and submerged membrane separator
WO2011114897A1 (en) * 2010-03-15 2011-09-22 三菱レイヨン株式会社 Method for filtering water to be treated
CN102791364A (en) * 2010-03-15 2012-11-21 三菱丽阳株式会社 Method for filtering water to be treated
US20130020261A1 (en) * 2010-03-15 2013-01-24 Mitsubishi Rayon Co., Ltd. Filtering method of water to be treated
JP5733206B2 (en) * 2010-03-15 2015-06-10 三菱レイヨン株式会社 Processed water filtration method
TWI498151B (en) * 2010-03-15 2015-09-01 Mitsubishi Rayon Co Filtering method of water to be treated
JP2014000572A (en) * 2013-08-26 2014-01-09 Mitsubishi Rayon Co Ltd Operation method of diffuser

Similar Documents

Publication Publication Date Title
JP3853657B2 (en) Wastewater treatment method and apparatus
CA2425167A1 (en) System and method for withdrawing permeate through a filter and for cleaning the filter in situ
JP2008264772A (en) Membrane separation activated sludge apparatus and treatment method of organic substance-containing water
JPH08323161A (en) Immersion type membrane separator and membrane separation using the same
KR100645952B1 (en) Hollow-fibre membrane filtration device for purifying waste water, filtration module and a method for traeting water or waste water using thereof
JPH0665371B2 (en) Organic wastewater biological treatment equipment
JPH07155758A (en) Waste water treating device
JPH10109095A (en) Water purifying treatment device
JP2010089079A (en) Method for operating immersed membrane separator and immersed membrane separator
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JP3700932B2 (en) Method and apparatus for cleaning filter using ozone
JP3659833B2 (en) Operation method of multi-stage submerged membrane separator
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP4046445B2 (en) Wastewater treatment method
JP3773360B2 (en) Septic tank with membrane separation
JPH10118684A (en) Immersion type membrane separation and activated sludge apparatus
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JP3883358B2 (en) Filtration separation method and apparatus for sewage treatment
JPH09141291A (en) Water treating device
JP3721092B2 (en) Solid-liquid separation method and apparatus for activated sludge
JP2006289370A (en) Solid-liquid separation method and apparatus
JP2006043706A (en) Method and apparatus for treating waste water
JP2002177982A (en) Cleaning method and equipment for filter element
JPH11128929A (en) Solid-liquid separator for sludge mixed liquid
JP2004330076A (en) Method and apparatus for solid-liquid separation of activated sludge mixture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060315

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060607

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060815