JP4046445B2 - Wastewater treatment method - Google Patents

Wastewater treatment method Download PDF

Info

Publication number
JP4046445B2
JP4046445B2 JP23903199A JP23903199A JP4046445B2 JP 4046445 B2 JP4046445 B2 JP 4046445B2 JP 23903199 A JP23903199 A JP 23903199A JP 23903199 A JP23903199 A JP 23903199A JP 4046445 B2 JP4046445 B2 JP 4046445B2
Authority
JP
Japan
Prior art keywords
sewage
air
tank
diffuser
membrane separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23903199A
Other languages
Japanese (ja)
Other versions
JP2001062480A (en
Inventor
清司 和泉
山田  豊
太一 上坂
達也 上島
進 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP23903199A priority Critical patent/JP4046445B2/en
Publication of JP2001062480A publication Critical patent/JP2001062480A/en
Application granted granted Critical
Publication of JP4046445B2 publication Critical patent/JP4046445B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚水の処理方法に関し、有機物、窒素濃度の高い有機性汚水を膜分離装置を使用して活性汚泥処理する膜分離活性汚泥処理技術に係るものである。
【0002】
【従来の技術】
従来、有機物、窒素濃度の高い有機性汚水を処理する方法として活性汚泥処理があり、膜分離装置を併用して槽内の活性汚泥濃度を高く維持する膜分離活性汚泥処理がある。
図5〜図6に示すように、膜分離装置21は、複数枚の平板状膜カートリッジ22と、その下方より膜面洗浄気体を噴出する散気管23とをケース24の内部に配置したものである。ケース24は、搬送やメンテナンスを容易にするために、膜ケース25と散気ケース26とに分割形成し、散気管23より噴出する膜面洗浄気体の全量が膜ケース25内に入り込むように形成している。
【0003】
膜カートリッジ22は、ABS樹脂製の濾板22Aの両表面に濾過膜22Bを配置し、濾板22Aと濾過膜22Bとの間、および濾板22Aの内部に透過液流路を形成し、透過液流路に連通する透過液取出口22Cを濾板22Aの上端縁に形成したものである。各膜カートリッジ22は、透過液取出口22Cに接続したチューブ27を介して集水管28に連通しており、集水管28は膜透過液を導出する透過液導出管29に連通している。膜ケース25の上部には膜カートリッジ22の浮上を防止する押さえ板30を設けている。
【0004】
この膜分離装置21を活性汚泥処理施設において使用する場合には、曝気槽内部の活性汚泥混合液中に膜分離装置21を浸漬し、散気管23より曝気空気を噴出させる状態において、原水中の有機物や窒素を活性汚泥により処理しており、活性汚泥混合液は、槽内での水頭を駆動圧として膜カートリッジ22により重力濾過し(透過液導出管29に吸引ポンプを介装することで吸引濾過も可能である)、膜カートリッジ22の膜面を透過した透過液を処理水として透過液導出管29を通じて槽外へ導出する。このとき、散気管23より噴出する曝気空気の気泡およびそれにより生起される上昇流によって膜カートリッジ22の膜面を洗浄し、分離機能の低下を抑制して膜分離装置21が機能不全に至ることを防止している。
【0005】
上述した膜を利用する水処理設備の一般的な構成は、図3〜図4に示すものである。図3〜図4において、流入汚水41は、前処理設備42において夾雑物を除去した後に流量調整槽43に貯留し、流量調整槽43から一定の流量で曝気槽(生物処理槽)44に供給する。曝気槽44では活性汚泥により汚水中の有機物質を分解除去し、曝気槽44に浸漬配置した膜分離装置21で固液を分離し、ろ液は減菌槽45を経て放流している。
【0006】
【発明が解決しようとする課題】
上述したような浸漬型膜分離装置を使用する膜分離活性汚泥処理では、図4に示すように、数台の膜分離装置21を曝気槽44に設置して使用するが、処理規模が大きくなると数台から十数台の膜分離装置21を一つの曝気槽44に設置する。このような曝気槽44においては、流入汚水に希釈されて汚水流入側の活性汚泥濃度は薄くなり、反対側の活性汚泥濃度は極めて濃くなる濃度分布が発生する。
【0007】
本発明は、浸漬型膜分離装置を使用する膜分離活性汚泥法において、曝気槽内の全領域において活性汚泥濃度を均一に維持することができる汚水の処理方法を提供することを目的とする。
【0008】
上記課題を解決するために、請求項1に係る本発明の汚水の処理方法は、反応槽内に複数の浸漬型膜分離装置を設置し、浸漬型膜分離装置に配置した散気管から曝気用空気を散気し、反応槽内に流入する汚水を活性汚泥で生物処理する膜分離活性汚泥法において、流入汚水を前処理して夾雑物をスクリーンで除去し、前処理により夾雑物を除去された汚水を浸漬型膜分離装置の散気管を通して内に供給するものである。
【0009】
請求項2に係る本発明の汚水の処理方法は、散気管を通して槽内に汚水を供給する時に曝気用空気の供給を停止するものである。
【0010】
上記した構成により、各浸漬型膜分離装置の各散気管を通して汚水を槽内に分散して供給することで、生物処理の負荷である有機物が槽内に分散し、反応槽内の全領域において活性汚泥濃度を均一に維持することができる。
流入汚水には、通常多量のSSや夾雑物が含まれているが、汚水を1mm程度のスクリーンに通すことにより、散気管の空気孔(10mm程度)に目詰まることはない。汚水を散気管へ注水することにより、散気管内で汚水中に高速度で酸素が溶解し、散気管の空気孔から槽内液中に放出する際には、汚水中の酸素濃度がほぼ飽和の状態となる。この酸素の溶解効率の高まりによって、散気管を通して槽内に供給する必要空気量を20〜30%低減でき、ブロアの出力を抑制して消費エネルギーを削減できる。
【0011】
散気管は長期間にわたって使用していると、活性汚泥濃度が高い場合(1〜2%程度)には、散気管の空気孔に侵入した汚泥が空気乾燥されて粒状または粘土状の固形物となり、空気孔を閉塞することがある。しかし、本発明のように汚水を散気管に注水することにより、散気管の空気孔の閉塞を防止できる。
散気管への汚水の注水は、散気管へ曝気用空気を供給するブロアを停止して行なっても良く、また散気しながら注水しても良い。また、汚水は全ての浸漬型膜分離装置の散気管へ同時に注水しても、順次に一定の時間毎、例えば1分毎に注水する散気管を代えても良い。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1〜図2において、反応槽1は、平面形状が長方形をなして、短辺と長辺との比が1:3以上の長い形状を有しており、汚水中の有機物質を槽内の活性汚泥により分解除去する生物処理を行なう。
【0013】
反応槽1の内部には、複数(数台から十数台)の浸漬型膜分離装置21が所定間隔で一列状に配置してある。この浸漬型膜分離装置21は、図5〜図6において説明したものと同様であるので、同一番号を付して詳しい説明を省略する。
各浸漬型膜分離装置21の各散気管23は口径10mm程度の複数の空気孔を有し、それぞれに空気供給系2が連通している。この空気供給系2は、曝気用空気を供給するブロア3と、ブロア3に連通する空気供給本管4と、空気供給本管4と各散気管23を連通する散気空気管5と、各散気空気管5に介装した空気用バルブ6とからなる。
【0014】
汚水供給系7は、汚水を供給する汚水ポンプ8と、汚水ポンプ8に連通する汚水供給本管9と、汚水供給本管9と各散気空気管5を連通する汚水管10と、各汚水管10に介装した汚水バルブ11とからなる。
図2に示すように、反応槽1の上流側には、流水する汚水41の夾雑物を目幅が1mm程度のスクリーンで除去する前処理設備42を配置しており、前処理設備42の下流には夾雑物を除去した汚水を貯留する流量調整槽43を設けている。反応槽1の下流側には減菌槽45を設けている。
【0015】
以下、上記した構成における作用を説明する。流入する汚水41は、通常多量のSSや夾雑物が含まれているので、前処理設備42において夾雑物を除去することで、下流の散気管23の空気孔(10mm程度)が目詰まることを防止する。この夾雑物を除去した汚水41を流量調整槽43に貯留し、汚水供給系7を通して各浸漬型膜分離装置21の各散気管23に定量供給する。一方、空気供給系2はブロア3で供給する曝気用空気を、空気供給本管4、空気用バルブ6、散気空気管5を通して各散気管23に供給する。
【0016】
汚水供給系7は、汚水ポンプ8によって供給する汚水41を、汚水供給本管9、汚水バルブ11、汚水管10を通して各散気空気管5に注入する。この散気空気管5へ注水した汚水41には、散気空気管5および散気管23を流れる間に、高速度で酸素が溶解する。汚水ポンプ8のサクション配管にはストレーナ等を設けることもある。
【0017】
このため、曝気用空気とともに散気管23の空気孔から槽内液中に放出する汚水41は、その酸素濃度がほぼ飽和の状態となる。この酸素の溶解効率の高まりによって、空気供給系2を通して槽内に供給する必要空気量を従来に比べて20〜30%低減でき、ブロア3の出力を抑制して消費エネルギーを削減できる。
このように、各浸漬型膜分離装置21の各散気管23を通して汚水41を槽内に分散して供給することで、生物処理の負荷である有機物が槽内に分散し、反応槽1の全領域において活性汚泥濃度を均一に維持することができる。
【0018】
また、汚水41を散気管23に注水することにより、散気管23の空気孔に侵入した汚泥が空気乾燥して空気孔を閉塞することがなくなり、活性汚泥濃度が高い場合(1〜2%程度)でも散気管23を長期間にわたって使用できる。
散気管23から噴出する汚水41は、曝気用空気の気泡およびそれにより生起される上昇流に乗って膜カートリッジ22の膜面に対してクロスフローで流れながらろ過される。このクロスフローは膜面にケーキ層が形成されることを抑制し、その流速は汚水41の噴出圧力、噴出流量を調整することにより、或いは曝気用空気の噴出圧力、噴出流量を調整することにより、あるいはそれらを組み合わせることにより制御することができる。
【0019】
散気管23への汚水41の供給は、各空気バルブ6を閉栓し、もしくはブロア3を停止して曝気用空気の供給を停止する状態において行なっても良い。また、各汚水バルブ11を適宜に開閉操作することにより、汚水41を供給する散気管23を所定時間毎(例えば1分間)に変更しながら、各浸漬型膜分離装置21の各散気管23へ順次に注水しても良い。さらに、反応槽1へ流入する汚水41の量が少ない場合には、汚水41の注水終了後に処理水もしくは清水を散気管23に注水することもできる。また、汚水41には油分が含まれることもあり、そのため通常1日に1回程度は、処理水か清水で散気管23を洗浄する。
【0020】
【発明の効果】
以上のように、本発明によれば、各浸漬型膜分離装置の各散気管を通して汚水を槽内に分散して供給することで、有機物を槽内に分散し、反応槽内の全領域において活性汚泥濃度を均一に維持することができる。散気管内で汚水中に高速度で酸素を溶解させることで、散気管を通して供給する必要空気量を低減して消費エネルギーを抑制できる。活性汚泥濃度が高い場合(1〜2%程度)にあっても、散気管の空気孔において汚泥を空気乾燥させず、散気管の空気孔の閉塞を防止できる。
【図面の簡単な説明】
【図1】本発明の実施の形態における反応槽の構成を示す模式図である。
【図2】同実施の形態における汚水の処理方法を示すフローシートである。
【図3】従来の汚水の処理方法を示すフローシートである。
【図4】従来の反応槽の構成を示す模式図である。
【図5】膜分離装置を示す横断面図である。
【図6】膜分離装置を示す縦断面図である。
【符号の説明】
1 反応槽
2 空気供給系
3 ブロア
4 空気供給本管
5 散気空気管
6 空気用バルブ
7 汚水供給系
8 汚水ポンプ
9 汚水供給本管
10 汚水管
11 汚水バルブ
21 浸漬型膜分離装置
23 散気管
41 汚水
42 前処理設備
43 流量調整槽
45 減菌槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating sewage, and relates to a membrane separation activated sludge treatment technique in which organic matter and organic sewage having a high nitrogen concentration are treated using a membrane separator.
[0002]
[Prior art]
Conventionally, there is an activated sludge treatment as a method for treating organic matter and organic sewage having a high nitrogen concentration, and there is a membrane separation activated sludge treatment in which the activated sludge concentration in the tank is kept high by using a membrane separation device in combination.
As shown in FIGS. 5 to 6, the membrane separation device 21 includes a plurality of flat plate membrane cartridges 22 and an air diffuser tube 23 that ejects a membrane surface cleaning gas from below the case 24. is there. The case 24 is divided into a membrane case 25 and an air diffuser case 26 to facilitate transport and maintenance, and is formed so that the entire amount of the film surface cleaning gas ejected from the air diffuser 23 enters the film case 25. is doing.
[0003]
The membrane cartridge 22 has filtration membranes 22B disposed on both surfaces of a filter plate 22A made of ABS resin, and a permeate flow path is formed between the filtration plate 22A and the filtration membrane 22B and inside the filtration plate 22A. A permeate outlet 22C communicating with the liquid flow path is formed at the upper edge of the filter plate 22A. Each membrane cartridge 22 communicates with a water collection pipe 28 via a tube 27 connected to the permeate outlet 22C, and the water collection pipe 28 communicates with a permeate discharge pipe 29 that extracts the membrane permeate. A pressing plate 30 for preventing the membrane cartridge 22 from floating is provided on the upper portion of the membrane case 25.
[0004]
When this membrane separation device 21 is used in an activated sludge treatment facility, the membrane separation device 21 is immersed in the activated sludge mixed solution inside the aeration tank, and aeration air is ejected from the aeration tube 23 in the raw water. Organic matter and nitrogen are treated with activated sludge, and the activated sludge mixed solution is gravity filtered through the membrane cartridge 22 with the water head in the tank as the driving pressure (by sucking the permeate outlet tube 29 through a suction pump) Filtration is also possible), and the permeate permeated through the membrane surface of the membrane cartridge 22 is led out of the tank through the permeate outlet tube 29 as treated water. At this time, the membrane surface of the membrane cartridge 22 is washed with the bubbles of aerated air ejected from the air diffuser 23 and the upward flow generated thereby, and the membrane separation device 21 becomes malfunctioning by suppressing the lowering of the separation function. Is preventing.
[0005]
The general structure of the water treatment facility using the membrane described above is shown in FIGS. 3 to 4, the inflow wastewater 41 is stored in the flow rate adjustment tank 43 after removing impurities in the pretreatment facility 42, and supplied from the flow rate adjustment tank 43 to the aeration tank (biological treatment tank) 44 at a constant flow rate. To do. In the aeration tank 44, organic substances in the sewage are decomposed and removed by activated sludge, the solid liquid is separated by the membrane separation device 21 arranged soaked in the aeration tank 44, and the filtrate is discharged through the sterilization tank 45.
[0006]
[Problems to be solved by the invention]
In the membrane separation activated sludge treatment using the submerged membrane separation device as described above, as shown in FIG. 4, several membrane separation devices 21 are installed and used in the aeration tank 44. However, when the treatment scale increases. Several to a dozen membrane separation devices 21 are installed in one aeration tank 44. In such an aeration tank 44, a concentration distribution is generated in which the activated sludge concentration on the sewage inflow side is diluted and diluted on the inflow sewage, and the activated sludge concentration on the opposite side becomes extremely high.
[0007]
An object of the present invention is to provide a method for treating sewage that can maintain the activated sludge concentration uniformly in the entire region in the aeration tank in the membrane separation activated sludge method using the submerged membrane separation apparatus.
[0008]
In order to solve the above-described problem, the wastewater treatment method of the present invention according to claim 1 is provided with a plurality of submerged membrane separators in a reaction tank and is used for aeration from an air diffuser arranged in the submerged membrane separator. and aeration air, the membrane bioreactor for biological treatment of sewage flowing into the reaction vessel in the activated sludge, impurities were removed in the screen the inflow wastewater preprocess is removed contaminants pretreatment The sewage is supplied into the tank through the diffuser of the submerged membrane separator.
[0009]
The sewage treatment method of the present invention according to claim 2 stops the supply of aeration air when supplying sewage into the tank through the air diffuser.
[0010]
With the configuration described above, by supplying the sewage dispersed in the tank through each diffusion tube of each submerged membrane separation device, the organic matter that is a biological treatment load is dispersed in the tank, and in all regions in the reaction tank The activated sludge concentration can be maintained uniformly.
The inflowing sewage usually contains a large amount of SS and impurities, but by passing the sewage through a screen of about 1 mm, the air holes (about 10 mm) of the air diffuser are not clogged. By pouring sewage into the diffuser, oxygen dissolves in the sewage at a high speed in the diffuser, and the oxygen concentration in the sewage is almost saturated when released from the air holes of the diffuser into the tank. It becomes the state of. This increase in oxygen dissolution efficiency can reduce the amount of air required to be supplied into the tank through the air diffuser by 20 to 30%, thereby reducing the blower output and reducing energy consumption.
[0011]
If the air diffuser is used over a long period of time, if the activated sludge concentration is high (about 1 to 2%), the sludge that has entered the air holes of the air diffuser is air dried to form a granular or clay-like solid. The air hole may be blocked. However, blocking of air holes in the air diffuser can be prevented by pouring sewage into the air diffuser as in the present invention.
The injection of sewage into the air diffuser may be performed by stopping the blower that supplies the aeration air to the air diffuser, or the water may be injected while being diffused. Further, the sewage may be simultaneously poured into the diffuser pipes of all the submerged membrane separators, or the diffuser pipes that are sequentially poured every certain time, for example, every minute, may be replaced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 to 2, the reaction tank 1 has a rectangular shape in plan view and a long shape with a ratio of a short side to a long side of 1: 3 or more. Biological treatment to decompose and remove with activated sludge.
[0013]
Inside the reaction tank 1, a plurality (several to tens of units) of submerged membrane separation devices 21 are arranged in a line at predetermined intervals. The submerged membrane separator 21 is the same as that described with reference to FIGS.
Each diffuser tube 23 of each submerged membrane separation device 21 has a plurality of air holes with a diameter of about 10 mm, and the air supply system 2 communicates with each of them. The air supply system 2 includes a blower 3 that supplies aeration air, an air supply main pipe 4 that communicates with the blower 3, a diffused air pipe 5 that communicates the air supply main pipe 4 and each of the diffuser pipes 23, It consists of an air valve 6 interposed in the air diffuser pipe 5.
[0014]
The sewage supply system 7 includes a sewage pump 8 that supplies sewage, a sewage supply main pipe 9 that communicates with the sewage pump 8, a sewage pipe 10 that communicates the sewage supply main pipe 9 and each aeration air pipe 5, and each sewage It consists of a sewage valve 11 interposed in the pipe 10.
As shown in FIG. 2, a pretreatment facility 42 is disposed upstream of the reaction tank 1 to remove impurities in the sewage 41 flowing with a screen having a mesh width of about 1 mm, and downstream of the pretreatment facility 42. Is provided with a flow rate adjusting tank 43 for storing sewage from which impurities have been removed. A sterilization tank 45 is provided on the downstream side of the reaction tank 1.
[0015]
Hereinafter, the operation of the above-described configuration will be described. Since the inflowing sewage 41 usually contains a large amount of SS and contaminants, removing the contaminants in the pretreatment facility 42 may clog the air holes (about 10 mm) in the downstream diffuser 23. To prevent. The sewage 41 from which the impurities have been removed is stored in the flow rate adjustment tank 43 and is quantitatively supplied to each air diffuser 23 of each submerged membrane separator 21 through the sewage supply system 7. On the other hand, the air supply system 2 supplies the aeration air supplied by the blower 3 to each of the diffusion tubes 23 through the air supply main tube 4, the air valve 6, and the diffusion air tube 5.
[0016]
The sewage supply system 7 injects sewage 41 supplied by the sewage pump 8 into each diffused air pipe 5 through the sewage supply main pipe 9, the sewage valve 11, and the sewage pipe 10. Oxygen dissolves at high speed in the sewage 41 poured into the diffuser air pipe 5 while flowing through the diffuser air pipe 5 and the diffuser pipe 23. The suction pipe of the sewage pump 8 may be provided with a strainer or the like.
[0017]
For this reason, the oxygen concentration of the sewage 41 released into the liquid in the tank from the air hole of the diffusing tube 23 together with the aeration air is almost saturated. This increase in oxygen dissolution efficiency can reduce the amount of air required to be supplied into the tank through the air supply system 2 by 20 to 30% compared to the conventional case, and can suppress the output of the blower 3 and reduce energy consumption.
In this way, by supplying the sewage 41 dispersed in the tank through the air diffusers 23 of the submerged membrane separation devices 21, the organic matter that is a biological treatment load is dispersed in the tank, and the entire reaction tank 1 The activated sludge concentration can be kept uniform in the region.
[0018]
In addition, by pouring the sewage 41 into the air diffuser 23, the sludge that has entered the air holes of the air diffuser 23 does not air dry and block the air holes, and the activated sludge concentration is high (about 1-2%). However, the diffuser 23 can be used for a long time.
The sewage 41 ejected from the air diffuser 23 is filtered while flowing in a cross flow with respect to the membrane surface of the membrane cartridge 22 on the aeration air bubbles and the upward flow generated thereby. This cross flow suppresses the formation of a cake layer on the membrane surface, and its flow rate is adjusted by adjusting the jet pressure and jet flow rate of the sewage 41 or by adjusting the jet pressure and jet flow rate of aeration air. Or by combining them.
[0019]
The supply of the sewage 41 to the air diffuser 23 may be performed in a state where each air valve 6 is closed or the blower 3 is stopped to stop the supply of aeration air. In addition, by appropriately opening and closing each sewage valve 11, the diffusing pipes 23 that supply the sewage 41 are changed every predetermined time (for example, 1 minute), and to each diffusing pipe 23 of each submerged membrane separator 21. You may inject water sequentially. Furthermore, when the amount of sewage 41 flowing into the reaction tank 1 is small, treated water or fresh water can be poured into the diffuser pipe 23 after the sewage 41 has been poured. Further, the sewage 41 may contain oil, and therefore, the diffuser 23 is usually washed with treated water or clean water once a day.
[0020]
【The invention's effect】
As described above, according to the present invention, the organic matter is dispersed in the tank by supplying the sewage dispersed in the tank through each aeration tube of each submerged membrane separator, and in all regions in the reaction tank. The activated sludge concentration can be maintained uniformly. By dissolving oxygen at high speed in the sewage in the air diffuser, the amount of necessary air supplied through the air diffuser can be reduced to reduce energy consumption. Even when the activated sludge concentration is high (about 1 to 2%), the sludge is not air-dried in the air holes of the air diffuser, and the air holes of the air diffuser can be prevented from being blocked.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a configuration of a reaction tank in an embodiment of the present invention.
FIG. 2 is a flow sheet showing a wastewater treatment method according to the embodiment.
FIG. 3 is a flow sheet showing a conventional method for treating sewage.
FIG. 4 is a schematic diagram showing the configuration of a conventional reaction tank.
FIG. 5 is a cross-sectional view showing a membrane separation apparatus.
FIG. 6 is a longitudinal sectional view showing a membrane separation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Air supply system 3 Blower 4 Air supply main pipe 5 Aeration air pipe 6 Air valve 7 Sewage supply system 8 Sewage pump 9 Sewage supply main pipe 10 Sewage pipe 11 Sewage valve 21 Immersion type membrane separator 23 Aeration pipe 41 Wastewater 42 Pretreatment equipment 43 Flow rate adjustment tank 45 Sterilization tank

Claims (3)

反応槽内に複数の浸漬型膜分離装置を設置し、浸漬型膜分離装置に配置した散気管から曝気用空気を散気し、反応槽内に流入する汚水を活性汚泥で生物処理する膜分離活性汚泥法において、流入汚水を前処理して夾雑物をスクリーンで除去し、前処理により夾雑物を除去された汚水を浸漬型膜分離装置の散気管を通して内に供給することを特徴とする汚水の処理方法。Membrane separation in which a plurality of submerged membrane separation devices are installed in the reaction tank, aeration air is diffused from the air diffuser installed in the submerged membrane separation device, and the sewage flowing into the reaction tank is biologically treated with activated sludge In the activated sludge method, the influent sewage is pretreated to remove contaminants with a screen, and the sewage from which the contaminants have been removed by the pretreatment is supplied into the tank through the diffuser pipe of the submerged membrane separator. Wastewater treatment method. 散気管を通して槽内に汚水を供給する時に曝気用空気の供給を停止することを特徴とする請求項1に記載の汚水の処理方法。2. The method for treating sewage according to claim 1, wherein the supply of aeration air is stopped when sewage is supplied into the tank through the air diffuser. 汚水を供給する散気管を所定時間毎に変更しながら、各浸漬型膜分離装置の各散気管へ順次に注水することを特徴とする請求項1又は2に記載の汚水の処理方法。  The method for treating sewage according to claim 1 or 2, wherein water is sequentially poured into each diffusing pipe of each submerged membrane separation device while changing the diffusing pipe for supplying sewage every predetermined time.
JP23903199A 1999-08-26 1999-08-26 Wastewater treatment method Expired - Lifetime JP4046445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23903199A JP4046445B2 (en) 1999-08-26 1999-08-26 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23903199A JP4046445B2 (en) 1999-08-26 1999-08-26 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2001062480A JP2001062480A (en) 2001-03-13
JP4046445B2 true JP4046445B2 (en) 2008-02-13

Family

ID=17038865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23903199A Expired - Lifetime JP4046445B2 (en) 1999-08-26 1999-08-26 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4046445B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001062481A (en) * 1999-08-26 2001-03-13 Kubota Corp Treatment of concentrated sewage
EP1897857A4 (en) * 2005-02-28 2012-01-25 Kubota Kk Water treatment system
JP5448285B2 (en) * 2005-12-07 2014-03-19 三菱レイヨン株式会社 Membrane separation activated sludge treatment method
CN103613191B (en) * 2013-12-05 2015-04-22 乐山世峰环保科技有限责任公司 Aeration sewage treatment pond
JP6475580B2 (en) * 2015-06-30 2019-02-27 水ing株式会社 Activated sludge treatment equipment
US20220274855A1 (en) * 2019-07-16 2022-09-01 Fibracast Ltd. System and method for feeding immersed membrane units

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52130147A (en) * 1976-04-23 1977-11-01 Nippon Mining Co Method of preventing clogging of diffusing pipe for aeration
JPH04290590A (en) * 1991-03-19 1992-10-15 Kubota Corp Membrane separator in septic tank
JPH06106167A (en) * 1992-09-28 1994-04-19 Kubota Corp Method and apparatus for solid-liquid separation of waste water
JPH1043789A (en) * 1996-08-08 1998-02-17 Kubota Corp Cleaner of air diffusion pipe
JP3668570B2 (en) * 1996-09-27 2005-07-06 三菱レイヨン株式会社 Membrane treatment equipment
JP3600947B2 (en) * 1996-11-25 2004-12-15 前澤工業株式会社 Operating method of wastewater treatment equipment
JP3714749B2 (en) * 1996-11-25 2005-11-09 前澤工業株式会社 Operation method of waste water treatment equipment
JP2001062481A (en) * 1999-08-26 2001-03-13 Kubota Corp Treatment of concentrated sewage

Also Published As

Publication number Publication date
JP2001062480A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
KR101363015B1 (en) Membrane unit and membrane separation device
JPH07155758A (en) Waste water treating device
JP2010194524A (en) Immersion type membrane separator, washing method of air diffuser, and membrane separation method
JPH1015574A (en) Sewage treatment apparatus
JP4046445B2 (en) Wastewater treatment method
JP3984145B2 (en) Cleaning method for solid-liquid separator
JPH04290590A (en) Membrane separator in septic tank
JP4188226B2 (en) Filtration device and filtration method using the filtration device
JP5448287B2 (en) Membrane separation activated sludge treatment equipment
KR101594197B1 (en) Filtering device having a cleaning function
JP5423184B2 (en) Filtration membrane module cleaning method and cleaning apparatus
JP3933320B2 (en) Operation method of water treatment apparatus equipped with membrane separator
JP3773360B2 (en) Septic tank with membrane separation
JP2001170677A (en) Air diffuser for high-concentration sewage
JP4023959B2 (en) High-concentration wastewater treatment method
JP3654799B2 (en) Nitrogen-containing wastewater treatment equipment
JP2003033764A (en) Method and apparatus for washing filtration body by using ozone
JP3204125B2 (en) Biological treatment method
JP2001062481A (en) Treatment of concentrated sewage
JP2001062483A (en) Treatment of concentrated sewage
JP2004066025A (en) Difer
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
CN219709332U (en) Integrated inclined plate oxidation ditch bioreactor
JPH11128929A (en) Solid-liquid separator for sludge mixed liquid
JPH11347377A (en) Solid-liquid separation apparatus and washing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4046445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

EXPY Cancellation because of completion of term