JP4023959B2 - High-concentration wastewater treatment method - Google Patents

High-concentration wastewater treatment method Download PDF

Info

Publication number
JP4023959B2
JP4023959B2 JP24239399A JP24239399A JP4023959B2 JP 4023959 B2 JP4023959 B2 JP 4023959B2 JP 24239399 A JP24239399 A JP 24239399A JP 24239399 A JP24239399 A JP 24239399A JP 4023959 B2 JP4023959 B2 JP 4023959B2
Authority
JP
Japan
Prior art keywords
air
treated water
concentration
oxygen
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24239399A
Other languages
Japanese (ja)
Other versions
JP2001062482A (en
Inventor
清司 和泉
山田  豊
太一 上坂
達也 上島
進 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP24239399A priority Critical patent/JP4023959B2/en
Publication of JP2001062482A publication Critical patent/JP2001062482A/en
Application granted granted Critical
Publication of JP4023959B2 publication Critical patent/JP4023959B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高濃度汚水の処理方法に関し、有機物、窒素濃度の高い有機性汚水を膜分離装置を使用して活性汚泥処理する膜分離活性汚泥処理技術に係るものである。
【0002】
【従来の技術】
従来、有機物、窒素濃度の高い有機性汚水を処理する方法として活性汚泥処理があり、膜分離装置を併用して槽内の活性汚泥濃度を高く維持する膜分離活性汚泥処理がある。
図3〜図4に示すように、膜分離装置21は、複数枚の平板状膜カートリッジ22と、その下方より膜面洗浄気体を噴出する散気管23とをケース24の内部に配置したものである。ケース24は、搬送やメンテナンスを容易にするために、膜ケース25と散気ケース26とに分割形成し、散気管23より噴出する膜面洗浄気体の全量が膜ケース25内に入り込むように形成している。
【0003】
膜カートリッジ22は、ABS樹脂製の濾板22Aの両表面に濾過膜22Bを配置し、濾板22Aと濾過膜22Bとの間、および濾板22Aの内部に透過液流路を形成し、透過液流路に連通する透過液取出口22Cを濾板22Aの上端縁に形成したものである。各膜カートリッジ22は、透過液取出口22Cに接続したチューブ27を介して集水管28に連通しており、集水管28は膜透過液を導出する透過液導出管29に連通している。膜ケース25の上部には膜カートリッジ22の浮上を防止する押さえ板30を設けている。
【0004】
この膜分離装置21を活性汚泥処理施設において使用する場合には、曝気槽内部の活性汚泥混合液中に膜分離装置21を浸漬し、散気管23より曝気空気を噴出させる状態において、原水中の有機物や窒素を活性汚泥により処理しており、活性汚泥混合液は、槽内での水頭を駆動圧として膜カートリッジ22により重力濾過し(透過液導出管29に吸引ポンプを介装することで吸引濾過も可能である)、膜カートリッジ22の膜面を透過した透過液を処理水として透過液導出管29を通じて槽外へ導出する。このとき、散気管23より噴出する曝気空気の気泡およびそれにより生起される上昇流が掃流となって膜カートリッジ22の膜面を洗浄し、分離機能の低下を抑制して膜分離装置21が機能不全に至ることを防止している。
【0005】
上述した膜を利用する水処理設備の一般的な構成は、図2に示すものである。図2において、流入汚水41は、前処理設備42において夾雑物を除去した後に流量調整槽43に貯留し、流量調整槽43から一定の流量で曝気槽(生物処理槽)44に供給する。曝気槽44では活性汚泥により汚水中の有機物質を分解除去し、曝気槽44に浸漬配置した膜分離装置21で固液を分離し、ろ液は減菌槽45を経て放流している。
【0006】
【発明が解決しようとする課題】
上記したような浸漬型膜分離装置を使用する浸漬型膜分離活性汚泥法では、散気管から噴出する空気が、活性汚泥への酸素供給のための曝気空気と、膜面洗浄を行なう掃流の駆動源とを兼ねている。
ところで、有機物、窒素濃度の高い高濃度汚水を処理する場合には、活性汚泥が必要とする酸素量が多くなり、この酸素供給のために散気管から噴出する曝気空気量を増加させる必要がある。一方、膜カートリッジ22の濾過膜22Bを掃流によって洗浄するには、その曝気強度(噴出速度、噴出圧力、噴出量によって定まる)に適値があり、曝気空気量が過剰に増加すると、濾過膜22Bが損傷する恐れがある。
【0007】
このために、曝気槽の上流側に前曝気槽を設け、膜分離装置のない前曝気槽において十分に曝気して酸素の不足を解消している。しかし、前曝気槽を設置するためには設置スペースを必要とし、既設の面積の限られた施設において前曝気槽を設置することは困難であった。
本発明は上記した課題を解決するものであり、浸漬型膜分離装置を使用する浸漬型膜分離活性汚泥法において、曝気空気量を増加させることなく、必要量の酸素を活性汚泥に十分に供給することができる高濃度汚水の処理方法を提供することを目的とする。
【0008】
上記課題を解決するために、本発明の高濃度汚水の処理方法は、有機物、窒素濃度の高い有機性汚水を、浸漬型膜分離装置を設置した反応槽内で生物処理する膜分離活性汚泥法において、浸漬型膜分離装置でろ過した処理水の一部を浸漬型膜分離装置の散気管に曝気空気を供給する空気供給系に注入し、空気供給系内で処理水中に高速度で酸素を溶解し、十分に酸素が溶解した処理水を散気管から曝気空気とともに槽内に供給するものであって、処理水の注入は、反応槽の溶存酸素濃度を酸素濃度計で計測してモニターし、溶存酸素濃度が所定値未満の時に注水するものである。
【0009】
上記した構成により、処理水を空気供給系へ注水することにより、系内で処理水中に高速度で酸素が溶解し、散気管の空気孔から槽内液中に放出する際には、処理水中の酸素濃度がほぼ飽和の状態となる。この酸素の溶解効率の高まりによって、散気管を通して槽内に供給する必要空気量を20〜30%低減でき、ブロアの出力を抑制して消費エネルギーを削減できる。
【0010】
散気管は長期間にわたって使用していると、活性汚泥濃度が高い場合(1〜2%程度)には、散気管の空気孔に侵入した汚泥が空気乾燥されて粒状または粘土状の固形物となり、空気孔を閉塞することがある。しかし、本発明のように処理水を散気管に注水することにより、散気管の空気孔の閉塞を防止できる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。図1において、反応槽1の内部に配置する浸漬型膜分離装置21は、図3〜図4において説明したものと同様であるので、同一番号を付して詳しい説明を省略する。
浸漬型膜分離装置21の散気管23は口径10mm程度の複数の空気孔を有し、それぞれに空気供給系2が連通している。この空気供給系2は、曝気空気を供給するブロア3と、散気管23に連通する散気空気管4とからなる。
【0012】
反応槽1の上流側には、流水する高濃度汚水5の夾雑物を目幅が1mm程度のスクリーンで除去する前処理設備6を配置しており、前処理設備6の下流に夾雑物を除去した高濃度汚水5を貯留する流量調整槽7を設けている。反応槽1の下流側には処理水槽(減菌槽)8を設けており、処理水槽8は処理水返送系9を介して散気空気管4に連通している。処理水返送系9は、処理水を供給する注水ポンプ10と、散気空気管4に連通する処理水管11とからなる。反応槽1には酸素濃度計12を設けている。
【0013】
以下、上記した構成における作用を説明する。流入する高濃度汚水5は、通常多量のSSや夾雑物が含まれているので、前処理設備6において夾雑物を除去し、この高濃度汚水5を流量調整槽7に貯留し、定流量で反応槽1へ供給する。一方、空気供給系2においてブロア3から供給する曝気空気を、散気空気管4を通して散気管23に供給し、散気管23から噴出する曝気空気によって反応槽1の槽内液を曝気する。
【0014】
反応槽1では、散気管23から噴出する曝気空気および後述する処理水によって酸素を供給し、高濃度汚水5に含まれた有機物質を活性汚泥により分解除去し、浸漬型膜分離装置21で固液を分離する。浸漬型膜分離装置21で分離したろ液は処理水槽8を経て放流し、一部の処理水を処理水返送系9の注水ポンプ10によって処理水管11を通して空気供給系2の散気空気管4へ注水する。
【0015】
処理水が散気空気管4および散気管23を流れる間に、高速度で酸素が溶解する。このため、曝気空気とともに散気管23の空気孔から槽内液中に放出する処理水は、その酸素濃度がほぼ飽和の状態となる。この酸素の溶解効率の高まりによって、曝気空気量を増加させることなく、必要量の酸素を活性汚泥に十分に供給することができ、空気供給系2を通して槽内に供給する必要空気量を従来に比べて20〜30%低減でき、ブロア3の出力を抑制して消費エネルギーを削減できる。
【0016】
処理水の注入は、反応槽1の溶存酸素濃度を酸素濃度計12で計測してモニターし、溶存酸素濃度が0.5mg/L未満の時に注水し、溶存酸素濃度が1.0mg/L以上となった時に停止する。
このように、処理水を散気管23に注水することにより、散気管23の空気孔を常に洗浄することができ、散気管23の空気孔に侵入した汚泥が空気乾燥して空気孔を閉塞することがなくなり、活性汚泥濃度が高い状態にあっても散気管23を長期間にわたって使用できる。
【0017】
高濃度汚水5は、散気管23から噴出する処理水および曝気空気により生起される上昇流によって膜カートリッジ22の膜面に対してクロスフローで流れながらろ過される。このクロスフローは膜面にケーキ層が形成されることを抑制し、その流速は処理水の噴出圧力、噴出流量を調整することにより、或いは曝気空気の噴出圧力、噴出流量を調整することにより、あるいはそれらを組み合わせることにより制御することができる。
【0018】
また、反応槽1に複数の浸漬型膜分離装置21を配置する場合には、処理水を供給する散気管23を所定時間毎(例えば1分間)に変更しながら、各浸漬型膜分離装置21の各散気管23へ順次に注水しても良い。
【0019】
【発明の効果】
以上のように、本発明によれば、空気供給系に処理水を注入し、空気供給系内で処理水中に高速度で酸素を溶解させることで、曝気空気量を増加させることなく、必要量の酸素を活性汚泥に十分に供給することができ、散気管を通して供給する必要空気量を低減して消費エネルギーを抑制でき、高濃度汚水にあっても、散気管の空気孔において汚泥を空気乾燥させず、散気管の空気孔の閉塞を防止できる。
【図面の簡単な説明】
【図1】同実施の形態における汚水の処理方法を示すフローシートである。
【図2】従来の汚水の処理方法を示すフローシートである。
【図3】膜分離装置を示す横断面図である。
【図4】膜分離装置を示す縦断面図である。
【符号の説明】
1 反応槽
2 空気供給系
3 ブロア
4 散気空気管
5 高濃度汚水
6 前処理設備
7 流量調整槽
8 処理水槽
9 処理水返送系
10 注水ポンプ
11 処理水管
12 酸素濃度計
21 浸漬型膜分離装置
23 散気管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for treating high-concentration sewage, and relates to a membrane separation activated sludge treatment technique for treating organic matter and organic sewage with a high nitrogen concentration using a membrane separation apparatus.
[0002]
[Prior art]
Conventionally, there is an activated sludge treatment as a method for treating organic matter and organic sewage having a high nitrogen concentration, and there is a membrane separation activated sludge treatment in which the activated sludge concentration in the tank is kept high by using a membrane separation device in combination.
As shown in FIGS. 3 to 4, the membrane separation device 21 includes a plurality of flat plate membrane cartridges 22 and a diffuser tube 23 for ejecting a membrane cleaning gas from below the case 24. is there. The case 24 is divided into a membrane case 25 and an air diffuser case 26 to facilitate transport and maintenance, and is formed so that the entire amount of the film surface cleaning gas ejected from the air diffuser 23 enters the film case 25. is doing.
[0003]
The membrane cartridge 22 has filtration membranes 22B disposed on both surfaces of a filter plate 22A made of ABS resin, and a permeate flow path is formed between the filtration plate 22A and the filtration membrane 22B and inside the filtration plate 22A. A permeate outlet 22C communicating with the liquid flow path is formed at the upper edge of the filter plate 22A. Each membrane cartridge 22 communicates with a water collection pipe 28 via a tube 27 connected to the permeate outlet 22C, and the water collection pipe 28 communicates with a permeate discharge pipe 29 that extracts the membrane permeate. A pressing plate 30 for preventing the membrane cartridge 22 from floating is provided on the upper portion of the membrane case 25.
[0004]
When this membrane separation device 21 is used in an activated sludge treatment facility, the membrane separation device 21 is immersed in the activated sludge mixed solution inside the aeration tank, and aeration air is ejected from the aeration tube 23 in the raw water. Organic matter and nitrogen are treated with activated sludge, and the activated sludge mixed solution is gravity filtered through the membrane cartridge 22 with the water head in the tank as the driving pressure (by sucking the permeate outlet tube 29 through a suction pump) Filtration is also possible), and the permeate that has passed through the membrane surface of the membrane cartridge 22 is led out of the tank through the permeate outlet tube 29 as treated water. At this time, the bubbles of the aeration air ejected from the diffuser tube 23 and the upward flow generated thereby clean up the membrane surface of the membrane cartridge 22 and suppress the reduction of the separation function. Preventing malfunctions.
[0005]
A general configuration of a water treatment facility using the above-described membrane is shown in FIG. In FIG. 2, inflowing sewage 41 is stored in a flow rate adjustment tank 43 after removing impurities in the pretreatment facility 42, and is supplied from the flow rate adjustment tank 43 to an aeration tank (biological treatment tank) 44 at a constant flow rate. In the aeration tank 44, organic substances in the sewage are decomposed and removed by activated sludge, the solid liquid is separated by the membrane separation device 21 arranged soaked in the aeration tank 44, and the filtrate is discharged through the sterilization tank 45.
[0006]
[Problems to be solved by the invention]
In the submerged membrane separation activated sludge method using the submerged membrane separation apparatus as described above, the air ejected from the aeration tube is aerated air for supplying oxygen to the activated sludge and a sweeping flow for performing membrane cleaning. Also serves as a drive source.
By the way, when treating organic matter and high-concentration sewage with a high nitrogen concentration, the amount of oxygen required by activated sludge increases, and it is necessary to increase the amount of aerated air ejected from the air diffuser to supply this oxygen. . On the other hand, in order to wash the filtration membrane 22B of the membrane cartridge 22 by sweeping, the aeration intensity (determined by the ejection speed, ejection pressure, and ejection amount) has an appropriate value, and if the aeration air amount increases excessively, the filtration membrane 22B may be damaged.
[0007]
For this reason, a pre-aeration tank is provided on the upstream side of the aeration tank, and sufficient aeration is performed in the pre-aeration tank without a membrane separation device to solve the shortage of oxygen. However, in order to install the preaeration tank, an installation space is required, and it is difficult to install the preaeration tank in an existing facility with a limited area.
The present invention solves the above-described problems, and in the submerged membrane separation activated sludge method using a submerged membrane separator, the required amount of oxygen is sufficiently supplied to the activated sludge without increasing the amount of aerated air. It aims at providing the processing method of the high concentration wastewater which can be done.
[0008]
In order to solve the above-mentioned problems, the high-concentration sewage treatment method of the present invention is a membrane separation activated sludge method in which organic matter and organic sewage with a high nitrogen concentration are biologically treated in a reaction tank in which a submerged membrane separator is installed. Then, a part of the treated water filtered by the submerged membrane separator is injected into an air supply system that supplies aeration air to the diffuser pipe of the submerged membrane separator, and oxygen is introduced into the treated water at a high speed in the air supply system. Dissolved and sufficiently treated dissolved oxygen is supplied into the tank along with aeration air from the diffuser. The injection of the treated water is monitored by measuring the dissolved oxygen concentration in the reaction tank with an oximeter. Water is injected when the dissolved oxygen concentration is less than a predetermined value .
[0009]
With the above configuration, when the treated water is poured into the air supply system, oxygen is dissolved in the treated water at a high speed in the system, and when the oxygen is released from the air holes of the air diffuser into the liquid in the tank, The oxygen concentration of is almost saturated. This increase in oxygen dissolution efficiency can reduce the amount of air required to be supplied into the tank through the air diffuser by 20 to 30%, thereby reducing the blower output and reducing energy consumption.
[0010]
If the air diffuser is used over a long period of time, if the activated sludge concentration is high (about 1 to 2%), the sludge that has entered the air holes of the air diffuser is air dried to form a granular or clay-like solid. The air hole may be blocked. However, it is possible to prevent the air holes of the air diffuser from being blocked by pouring the treated water into the air diffuser as in the present invention.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, the submerged membrane separation device 21 disposed inside the reaction vessel 1 is the same as that described in FIGS.
The diffuser tube 23 of the submerged membrane separation device 21 has a plurality of air holes with a diameter of about 10 mm, and the air supply system 2 communicates with each of them. The air supply system 2 includes a blower 3 that supplies aeration air and an air diffuser tube 4 that communicates with the air diffuser 23.
[0012]
On the upstream side of the reaction tank 1, a pretreatment facility 6 for removing contaminants of the high-concentration sewage 5 flowing with a screen having a mesh width of about 1 mm is disposed, and the contaminants are removed downstream of the pretreatment facility 6. A flow rate adjusting tank 7 for storing the high-concentration sewage 5 is provided. A treated water tank (sterilization tank) 8 is provided on the downstream side of the reaction tank 1, and the treated water tank 8 communicates with the diffused air pipe 4 via the treated water return system 9. The treated water return system 9 includes a water injection pump 10 that supplies treated water and a treated water pipe 11 that communicates with the diffused air pipe 4. The reaction vessel 1 is provided with an oxygen concentration meter 12.
[0013]
Hereinafter, the operation of the above-described configuration will be described. The inflowing high concentration sewage 5 usually contains a large amount of SS and contaminants. Therefore, the pretreatment facility 6 removes the contaminants and stores the high concentration sewage 5 in the flow rate adjustment tank 7 so that the flow rate is constant. Feed to reaction vessel 1. On the other hand, aeration air supplied from the blower 3 in the air supply system 2 is supplied to the diffusion pipe 23 through the diffusion air pipe 4, and the liquid in the reaction tank 1 is aerated by the aeration air ejected from the diffusion pipe 23.
[0014]
In the reaction tank 1, oxygen is supplied by aeration air ejected from the diffuser pipe 23 and treated water described later, organic substances contained in the high-concentration sewage 5 are decomposed and removed by activated sludge, and solidified by the submerged membrane separator 21. Separate the liquid. The filtrate separated by the submerged membrane separator 21 is discharged through the treated water tank 8, and a part of the treated water is diffused through the treated water pipe 11 by the water injection pump 10 of the treated water return system 9 and the diffused air pipe 4 of the air supply system 2. Water.
[0015]
While the treated water flows through the diffuser air pipe 4 and the diffuser pipe 23, oxygen is dissolved at a high speed. For this reason, the oxygen concentration of the treated water released into the liquid in the tank from the air hole of the diffusing pipe 23 together with the aerated air is almost saturated. This increase in oxygen dissolution efficiency enables the required amount of oxygen to be sufficiently supplied to the activated sludge without increasing the amount of aerated air, and the required amount of air to be supplied into the tank through the air supply system 2 is conventionally increased. Compared to 20 to 30%, the output of the blower 3 can be suppressed and energy consumption can be reduced.
[0016]
The treatment water is injected by measuring the dissolved oxygen concentration in the reaction tank 1 with an oxygen concentration meter 12 and injecting water when the dissolved oxygen concentration is less than 0.5 mg / L, and the dissolved oxygen concentration is 1.0 mg / L or more. It stops when it becomes.
In this way, by pouring the treated water into the diffuser pipe 23, the air holes of the diffuser pipe 23 can always be washed, and the sludge that has entered the air holes of the diffuser pipe 23 is air-dried to block the air holes. Even if the activated sludge concentration is high, the air diffuser 23 can be used over a long period of time.
[0017]
The high-concentration sewage 5 is filtered while flowing in a cross flow with respect to the membrane surface of the membrane cartridge 22 by the upward flow generated by the treated water and aeration air ejected from the air diffuser 23. This cross flow suppresses the formation of a cake layer on the membrane surface, and its flow rate is adjusted by adjusting the jet pressure and jet flow rate of the treated water, or by adjusting the jet pressure and jet flow rate of the aerated air, Or it can control by combining them.
[0018]
Further, when a plurality of submerged membrane separators 21 are arranged in the reaction tank 1, each submerged membrane separator 21 is changed while changing the diffuser pipe 23 for supplying treated water every predetermined time (for example, one minute). Water may be sequentially poured into each of the diffuser tubes 23.
[0019]
【The invention's effect】
As described above, according to the present invention, treated water is injected into the air supply system, and oxygen is dissolved in the treated water at a high speed in the air supply system, so that the necessary amount is increased without increasing the amount of aerated air. Can sufficiently supply oxygen to activated sludge, reduce the amount of air required through the air diffuser, reduce energy consumption, and even in high-concentration sewage, the sludge is air-dried in the air holes of the air diffuser Without blocking, the air hole of the air diffuser can be prevented from being blocked.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing a wastewater treatment method according to the embodiment.
FIG. 2 is a flow sheet showing a conventional method for treating sewage.
FIG. 3 is a cross-sectional view showing a membrane separation apparatus.
FIG. 4 is a longitudinal sectional view showing a membrane separation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Air supply system 3 Blower 4 Aeration air pipe 5 High concentration sewage 6 Pretreatment equipment 7 Flow control tank 8 Treated water tank 9 Treated water return system 10 Injection water pump 11 Treated water pipe 12 Oxygen meter 21 Immersion type membrane separator 23 Diffuser

Claims (1)

有機物、窒素濃度の高い有機性汚水を、浸漬型膜分離装置を設置した反応槽内で生物処理する膜分離活性汚泥法において、浸漬型膜分離装置でろ過した処理水の一部を浸漬型膜分離装置の散気管に曝気空気を供給する空気供給系に注入し、空気供給系内で処理水中に高速度で酸素を溶解し、十分に酸素が溶解した処理水を散気管から曝気空気とともに槽内に供給するものであって、処理水の注入は、反応槽の溶存酸素濃度を酸素濃度計で計測してモニターし、溶存酸素濃度が所定値未満の時に注水することを特徴とする高濃度汚水の処理方法。In the membrane separation activated sludge method for biological treatment of organic matter and organic sewage with high nitrogen concentration in a reaction tank equipped with a submerged membrane separator, a part of the treated water filtered by the submerged membrane separator is submerged. It is injected into the air supply system that supplies aeration air to the diffuser pipe of the separator, oxygen is dissolved in the treated water at a high speed in the air supply system, and the treated water in which oxygen is sufficiently dissolved is tanked together with the aerated air from the diffuser pipe The high- concentration, which is supplied to the inside of the processing water, is measured by monitoring the dissolved oxygen concentration in the reaction vessel with an oxygen concentration meter and injecting water when the dissolved oxygen concentration is less than a predetermined value. Wastewater treatment method.
JP24239399A 1999-08-30 1999-08-30 High-concentration wastewater treatment method Expired - Lifetime JP4023959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24239399A JP4023959B2 (en) 1999-08-30 1999-08-30 High-concentration wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24239399A JP4023959B2 (en) 1999-08-30 1999-08-30 High-concentration wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2001062482A JP2001062482A (en) 2001-03-13
JP4023959B2 true JP4023959B2 (en) 2007-12-19

Family

ID=17088494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24239399A Expired - Lifetime JP4023959B2 (en) 1999-08-30 1999-08-30 High-concentration wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4023959B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948167B (en) * 2010-09-02 2012-07-11 嘉戎科技(厦门)有限公司 Membrane bioreactor for sewage treatment
JP2016215165A (en) * 2015-05-25 2016-12-22 三菱レイヨン株式会社 Water treatment method and water treatment device

Also Published As

Publication number Publication date
JP2001062482A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JP3984145B2 (en) Cleaning method for solid-liquid separator
JP2006205119A (en) Method for using immersion type membrane separation apparatus and immersion type membrane separation apparatus
JPH08266875A (en) Method for washing inside of immersion type membrane cartridge in vessel
JP4046445B2 (en) Wastewater treatment method
JP4023959B2 (en) High-concentration wastewater treatment method
JPH04290590A (en) Membrane separator in septic tank
JP3832232B2 (en) Membrane separator
JP4188226B2 (en) Filtration device and filtration method using the filtration device
JP3933320B2 (en) Operation method of water treatment apparatus equipped with membrane separator
KR101594197B1 (en) Filtering device having a cleaning function
JP3700932B2 (en) Method and apparatus for cleaning filter using ozone
JP3654799B2 (en) Nitrogen-containing wastewater treatment equipment
JP3773360B2 (en) Septic tank with membrane separation
JP2001170677A (en) Air diffuser for high-concentration sewage
JP3659833B2 (en) Operation method of multi-stage submerged membrane separator
JP4111579B2 (en) Operation method and apparatus of organic sewage treatment apparatus
JP2001062483A (en) Treatment of concentrated sewage
JP2001062481A (en) Treatment of concentrated sewage
JP2000254674A (en) Water treatment and the device
JP3832969B2 (en) Operation method of membrane separator
JP3414609B2 (en) Operating method of sewage treatment equipment
JP2004066025A (en) Difer
JP2005007378A (en) Charcoal type water purification device
JP2005279448A (en) Flocculant injection method in membrane separation process
JPH08141566A (en) Wastewater treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Ref document number: 4023959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term