JP3832232B2 - Membrane separator - Google Patents

Membrane separator Download PDF

Info

Publication number
JP3832232B2
JP3832232B2 JP2000368269A JP2000368269A JP3832232B2 JP 3832232 B2 JP3832232 B2 JP 3832232B2 JP 2000368269 A JP2000368269 A JP 2000368269A JP 2000368269 A JP2000368269 A JP 2000368269A JP 3832232 B2 JP3832232 B2 JP 3832232B2
Authority
JP
Japan
Prior art keywords
liquid
ozone
treated
membrane
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000368269A
Other languages
Japanese (ja)
Other versions
JP2002166139A (en
Inventor
清和 武村
真人 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2000368269A priority Critical patent/JP3832232B2/en
Publication of JP2002166139A publication Critical patent/JP2002166139A/en
Application granted granted Critical
Publication of JP3832232B2 publication Critical patent/JP3832232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は膜分離装置に係り、特に、活性汚泥処理を用いた廃水処理施設における膜分離装置に関する。
【0002】
【従来の技術】
活性汚泥処理を用いた廃水処理施設においては、最終沈殿池における「バルキング」及び「放線菌による汚泥浮上」といった固液分離障害が非常に大きな問題になっている。この問題を解決する手段として、活性汚泥処理と膜分離を組み合わせた膜分離活性汚泥法の開発が進められている。この方法は、固液分離の手法として膜ろ過を採用しているため、処理液の濁質分の流出を防ぐことができ、且つ、大腸菌も完全に除去できることから、衛生的で、透明度の高い処理液を安定して得ることができるという特徴を持っている。また、活性汚泥の高濃度保持が可能であるため、処理時間の短縮、及び処理施設のコンパクト化が図れる。
【0003】
【発明が解決しようとする課題】
しかしながら、膜分離活性汚泥処理を用いた従来の膜分離装置は、処理液に色度成分が残留したり、膜の目詰まりが起こるという大きな問題を抱えている。特に、汚泥の性状が悪い場合(即ち、汚泥のフロックが細かい、生物の代謝物が非常に多い等)には、処理液の色度が高くなるだけでなく、膜の目詰まりを起こしやすく、頻繁に膜の薬液洗浄を必要とし、汚泥性状の更なる悪化を招き、安定運転の妨げになっていた。
【0004】
また、従来の膜分離装置は、固液分離手段を膜のみに頼るため、生物分解しにくい難分解性物質(生物代謝物)が系外に排出されず、槽内に蓄積されていき、膜表面に付着しゲル化して、膜の差圧を上昇させる大きな原因になっていた。
【0005】
本発明はこのような事情に鑑みて成されたもので、薬品洗浄頻度を減少させ、膜処理性能、及び生物処理性能の優れた膜分離装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の発明は前記目的を達成するために、反応槽に設けられ、該反応槽に供給された被処理液を膜でろ過して処理液を得るろ過ユニットと、該ろ過ユニットで得られた処理液を前記ろ過ユニットに逆流させて前記膜を逆洗する逆洗手段と、を備えた膜分離装置において、前記反応槽に接続された循環ラインを介して、前記被処理液を循環させる循環手段と、該循環手段によって循環する前記循環ライン内の被処理液と、前記ろ過ユニットで得られた処理液とに、オゾンを供給するオゾン供給手段を備え、前記オゾン供給手段が前記循環ライン内の被処理液に供給するオゾン量を調節する調節手段と、前記反応槽から汚泥サンプルを採取してTOC濃度を測定してデータを獲得し、該データに基づいて前記調節手段を制御する制御手段と、を備えたことを特徴とる。
【0007】
請求項1記載の発明によれば、ろ過ユニットで得られた処理液にオゾンを供給するので、処理液の色度除去を行うことができるとともに、この処理液によって膜を逆洗するので、膜の高い洗浄効果を得ることができ、さらには、循環ライン内の被処理液にオゾンを供給するので、オゾンを効率良く添加して膜にゲル状物質が付着することを抑制できる。
【0008】
請求項記載の発明によれば、反応槽の被処理液を性状分析し、この分析結果に基づいて循環ライン内の被処理液に供給するオゾン量を調節するので、常に適切な量のオゾンを反応槽に供給することができる。したがって、ろ過ユニットのろ過膜が閉塞することを必要最小量のオゾンで効果的に抑制できる。
【0009】
【発明の実施の形態】
以下添付図面に従って、本発明に係る膜分離装置の好ましい実施の形態について詳説する。
【0010】
図1は、本発明に係る膜分離装置を適用した硝化・脱窒装置10の全体構成を示す概略図である。
【0011】
同図に示すように、硝化・脱窒装置10は、仕切壁12によって脱窒槽14と硝化槽16とに仕切られた反応槽を備えている。このうち脱窒槽14には、供給ライン18が接続され、この供給ライン18から被処理液(原液)20が供給されて脱窒槽14に貯留される。脱窒槽14は連通路22を介して硝化槽16に連通されており、前記脱窒槽14に供給された被処理液20は、この連通路22を介して硝化槽16に流入する。また、硝化槽16は、循環ライン24を介して脱窒槽14に接続されている。循環ライン24には、ポンプ26が配設されており、このポンプ26を駆動することによって、硝化槽16内の被処理液20の一部が循環ライン24を介して脱窒槽14に戻される。これにより、被処理液20は硝化槽16と脱窒槽14との間を循環する。
【0012】
硝化槽16の内部には、ろ過ユニット28が設けられ、このろ過ユニット28の下方に散気管30が配設されている。散気管30は、エア供給ライン32を介してブロア34に接続されており、ブロア34からエアが供給されると、このエアを被処理液20中に細かな気泡として散気する。これにより、被処理液20が攪拌されるとともに、ろ過ユニット28のろ過膜(不図示)に付着した付着物を剥離させることができ、さらには、被処理液20中の活性汚泥に酸素を供給することができる。
【0013】
ろ過ユニット28は、排出ライン36を介して処理水槽38に連通されている。排出ライン36には、弁46と、ポンプ40が配設されており、このポンプ40を駆動することによってろ過ユニット28の内部に被処理液20を吸引する。その際、被処理液20は、ろ過ユニット28のろ過膜(不図示)を透過して固液分離処理され、処理された処理液42が排出ライン36を介して排出され、処理水槽38に貯留される。
【0014】
処理水槽38は、注入ライン44を介して、弁46よりも上流側の排出ライン36に接続される。この注入ライン44には、弁48、ポンプ50が配設されており、ポンプ50を駆動することによって、処理水槽38の処理液42がろ過ユニット28内に逆流する。これにより、ろ過ユニット28のろ過膜を逆洗することができる。
【0015】
処理水槽38の底部には、オゾン散気管52が配設されている。このオゾン散気管52は、オゾン供給ライン54を介してオゾン発生器56に連通されている。したがって、オゾン発生器56からオゾン供給ライン54にオゾンガスを供給すると、オゾン散気管52から処理液42中にオゾンガスが散気される。これにより、処理液42がオゾンを含有する。
【0016】
前記オゾン発生器56は、オゾン供給ライン58を介して循環ライン24に接続されている。したがって、硝化槽16から脱窒槽14に循環する被処理液20に、オゾンガスを供給することができる。これにより、オゾンを含んだ被処理液20が硝化槽16と脱窒槽14とを循環する。
【0017】
次に上記の如く構成された硝化・脱窒装置10の作用について説明する。
【0018】
通常運転時には、弁48を閉じて弁46を開くとともに、ポンプ40を駆動する。これによって、被処理液20が生物学的に処理されてろ過ユニット28に吸引され、吸引された処理液42が排出ライン36を介して処理水槽38に流入する。処理水槽38に流入した処理液42には、オゾン発生器56からオゾンガスが供給され、このオゾンガスによって処理液42の色度成分が除去される。したがって、処理液42は、再利用に適した状態で排水管60から排水される。
【0019】
また、通常運転中、循環ライン24のポンプ26を駆動することによって、被処理液20は、硝化槽16と脱窒槽14とを循環している。このとき、オゾン発生器56から循環ライン24にオゾンガスが供給されるので、循環する被処理液20に含まれる難分解性物質(生物代謝物)が低分子化される。したがって、生物処理を促進させることができ、ろ過ユニット28のろ過膜にゲル状物質が付着することを抑制することができる。なお、循環ライン24へのオゾンガスの供給は、間欠的であっても、連続的であってもよい。
【0020】
ろ過ユニット28のろ過膜にゲル状物質が付着した場合には、ポンプ40を停止して弁46を閉じるとともに、弁48を開いてポンプ50を駆動する。これにより、処理水槽38の処理液42が注入ライン44を介してろ過ユニット28に逆流する。ろ過ユニット28に逆流した処理液42は、通常運転時のろ過方向と反対方向にろ過膜を透過し、ろ過膜に付着したゲル状物質をろ過膜から剥離させる。このとき、処理液42にはオゾンが残留しているので、ろ過膜は、オゾンの強い酸化力によって殺菌される。したがって、ろ過膜の洗浄効果が大きく、洗浄後に高い膜透過流速が得られる。
【0021】
このように本実施の形態の硝化・脱窒装置10によれば、処理液42にオゾンを供給したので、色度除去を行うことができるとともに、ろ過膜の逆洗効果を増加させることができる。
【0022】
また、硝化・脱窒装置10によれば、循環ライン24にオゾンを供給し、オゾンを含んだ被処理液20を硝化槽16と脱窒槽14とに循環させたので、ろ過ユニット28の膜の閉塞を抑制することができる。したがって、ろ過膜を薬液洗浄する頻度を減少させることができ、ろ過膜の寿命を向上させることができる。
【0023】
また、常に所定量の被処理液20が流れる循環ライン24にオゾンを供給したので、脱窒槽14及び硝化槽16に効率良くオゾンを供給できるとともに、脱窒槽14及び硝化槽16の内部のオゾン濃度が偏ることを防止できる。
【0024】
さらに、硝化・脱窒装置10によれば、処理水槽38にオゾンを供給するオゾン発生器56によって、循環ライン24にオゾンを供給するようにしたので、装置が大型化することを防止できる。
【0025】
図2は、オゾンガス注入量調整手段を備えた硝化・脱窒装置62の全体構成を示す概略図である。
【0026】
同図に示す硝化・脱窒槽装置62は、オゾン供給ライン58に電磁弁64が配設されている。電磁弁64は、制御器66によって開閉制御される。
【0027】
制御器66は、電磁弁64の開放時間を制御することによって循環ライン24に注入されるオゾンガス量を調節する。
【0028】
また、硝化・脱窒装置62は、性状分析装置68を備えている。性状分析装置68は、汚泥引込み管70、汚泥戻し管72を介して硝化槽16に連通されており、汚泥引込み管70を介して硝化槽16から汚泥サンプルを採取する。そして、この汚泥サンプルを分析し、TOC濃度やろ過比抵抗等の汚泥性状に関するデータを獲得した後、汚泥サンプルを汚泥戻し管72を介して硝化槽16に返送する。
【0029】
前記制御器66は、この性状分析装置68が獲得したデータに基づいて電磁弁64の開放時間、即ちオゾンガスの注入量を制御する。例えば、性状分析装置68がTOC濃度のデータを得た場合、制御器66は、図3に示す曲線に基づいて電磁弁64の開放時間を制御する。即ち、被処理液20のTOC濃度が高いほど、電磁弁64の開放時間を長く設定して、多量のオゾンガスを循環ライン24に注入する。被処理液20のTOC濃度が高い場合、被処理液20の濾過性が悪く、ろ過ユニット28のろ過膜が閉塞しやすい。したがって、オゾンガスの注入量を増加させることによってろ過膜の閉塞を効果的に抑制できる。逆に、被処理液20のTOC濃度が低い場合には、被処理液20はろ過性が良く、ろ過膜が閉塞されにくいので、オゾンガスの注入量を減少させる。これにより、オゾンガスの無駄な消費を抑えることができる。
【0030】
このように硝化・脱窒装置62によれば、硝化槽16の汚泥の性状に応じて適切な量のオゾンガスを循環ライン24に注入するので、必要最小量のオゾンガスによってろ過膜の閉塞を効果的に抑制できる。
【0031】
【発明の効果】
以上説明したように本発明に係る膜分離装置によれば、処理液にオゾンを供給したので、処理液の色度除去を行うことができるとともに、この処理液によって膜を逆洗したので、膜の高い洗浄効果を得ることができ、さらには、循環する被処理液にオゾンを供給したので、膜にゲル状物質が付着することを抑制できる。したがって、本発明の膜分離装置は、膜の薬品洗浄頻度が少なく、且つ、膜の処理性能と生物処理性能が優れているので、排水処理を効率良く、低コストで行うことができる。
【図面の簡単な説明】
【図1】本発明に係る膜分離装置を適用した硝化・脱窒装置の全体構成を示す概略図
【図2】オゾンガス注入量調整手段を備えた硝化・脱窒装置の全体構成を示す概略図
【図3】TOC濃度による制御例を示す図
【符号の説明】
10…硝化・脱窒装置、14…脱窒槽、16…硝化槽、18…供給ライン、20…被処理液、24…循環ライン、28…ろ過ユニット、30…散気管、36…排出ライン、38…処理水槽、42…処理液、44…注入ライン、52…オゾン散気管、54…オゾン供給ライン、56…オゾン発生器、58…オゾン供給ライン、64…電磁弁、66…制御器、68…性状分析装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane separation device, and more particularly to a membrane separation device in a wastewater treatment facility using activated sludge treatment.
[0002]
[Prior art]
In wastewater treatment facilities using activated sludge treatment, solid-liquid separation problems such as “bulking” and “sludge floating by actinomycetes” in the final sedimentation basin have become very serious problems. As a means for solving this problem, development of a membrane separation activated sludge method combining activated sludge treatment and membrane separation is in progress. Since this method employs membrane filtration as a solid-liquid separation technique, it can prevent the turbidity of the processing liquid from flowing out and can completely remove E. coli, so it is hygienic and highly transparent. It has the characteristic that a processing liquid can be obtained stably. In addition, since the activated sludge can be kept at a high concentration, the processing time can be shortened and the processing facility can be made compact.
[0003]
[Problems to be solved by the invention]
However, the conventional membrane separation apparatus using the membrane separation activated sludge treatment has a big problem that the chromaticity component remains in the treatment liquid or the membrane is clogged. In particular, when the sludge has poor properties (that is, sludge flocs are fine, biological metabolites are very large, etc.), not only the chromaticity of the treatment liquid becomes high, but the membrane is likely to be clogged. Frequent cleaning of the membrane with chemicals was required, causing further deterioration of sludge properties and hindering stable operation.
[0004]
In addition, since conventional membrane separation devices rely only on membranes for solid-liquid separation means, hardly degradable substances (biological metabolites) that are difficult to biodegrade are not discharged out of the system, but accumulated in the tank. It adhered to the surface and gelled, which was a major cause of increasing the differential pressure of the film.
[0005]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a membrane separation device that reduces the frequency of chemical cleaning and has excellent membrane treatment performance and biological treatment performance.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the invention according to claim 1 is provided in a reaction tank, and a filtration unit that obtains a treatment liquid by filtering the liquid to be treated supplied to the reaction tank through a membrane, and obtained by the filtration unit. And backwashing means for backwashing the membrane by causing the treated liquid to flow back to the filtration unit, and circulating the liquid to be treated through a circulation line connected to the reaction vessel. An ozone supply means for supplying ozone to the circulation means to be circulated, the liquid to be treated in the circulation line circulated by the circulation means, and the treatment liquid obtained by the filtration unit, the ozone supply means being the circulation An adjusting means for adjusting the amount of ozone supplied to the liquid to be treated in the line, a sludge sample collected from the reaction tank, a TOC concentration is measured to obtain data, and the adjusting means is controlled based on the data Control means , Comprising the.
[0007]
According to the invention described in claim 1, since ozone is supplied to the treatment liquid obtained by the filtration unit, the chromaticity of the treatment liquid can be removed and the film is backwashed with the treatment liquid. In addition, since ozone is supplied to the liquid to be treated in the circulation line, it is possible to efficiently add ozone and prevent the gel substance from adhering to the film.
[0008]
According to the first aspect of the present invention, the property of the liquid to be treated in the reaction tank is analyzed, and the amount of ozone supplied to the liquid to be treated in the circulation line is adjusted based on the analysis result. Can be fed to the reaction vessel. Therefore, the filtration membrane of the filtration unit can be effectively suppressed with the minimum amount of ozone.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of a membrane separation apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
[0010]
FIG. 1 is a schematic diagram showing the overall configuration of a nitrification / denitrification apparatus 10 to which a membrane separation apparatus according to the present invention is applied.
[0011]
As shown in FIG. 1, the nitrification / denitrification apparatus 10 includes a reaction tank partitioned by a partition wall 12 into a denitrification tank 14 and a nitrification tank 16. Among them, a supply line 18 is connected to the denitrification tank 14, and a liquid to be treated (raw solution) 20 is supplied from the supply line 18 and stored in the denitrification tank 14. The denitrification tank 14 is communicated with the nitrification tank 16 via a communication path 22, and the liquid 20 to be treated supplied to the denitrification tank 14 flows into the nitrification tank 16 via the communication path 22. Further, the nitrification tank 16 is connected to the denitrification tank 14 via a circulation line 24. The circulation line 24 is provided with a pump 26, and by driving the pump 26, a part of the liquid 20 to be treated in the nitrification tank 16 is returned to the denitrification tank 14 via the circulation line 24. Thereby, the liquid 20 to be treated circulates between the nitrification tank 16 and the denitrification tank 14.
[0012]
A filtration unit 28 is provided inside the nitrification tank 16, and an air diffuser 30 is disposed below the filtration unit 28. The air diffuser 30 is connected to a blower 34 via an air supply line 32. When air is supplied from the blower 34, the air is diffused as fine bubbles in the liquid 20 to be treated. Thereby, while the to-be-processed liquid 20 is stirred, the deposit | attachment adhering to the filtration membrane (not shown) of the filtration unit 28 can be peeled, and also oxygen is supplied to the activated sludge in the to-be-processed liquid 20 can do.
[0013]
The filtration unit 28 communicates with the treated water tank 38 via the discharge line 36. The discharge line 36 is provided with a valve 46 and a pump 40. By driving the pump 40, the liquid 20 to be treated is sucked into the filtration unit 28. At that time, the liquid 20 to be treated passes through a filtration membrane (not shown) of the filtration unit 28 and is subjected to a solid-liquid separation process, and the treated liquid 42 is discharged via the discharge line 36 and stored in the treated water tank 38. Is done.
[0014]
The treated water tank 38 is connected to the discharge line 36 on the upstream side of the valve 46 via the injection line 44. The injection line 44 is provided with a valve 48 and a pump 50. When the pump 50 is driven, the treatment liquid 42 in the treatment water tank 38 flows back into the filtration unit 28. Thereby, the filtration membrane of the filtration unit 28 can be backwashed.
[0015]
An ozone diffusing tube 52 is disposed at the bottom of the treated water tank 38. The ozone diffusing pipe 52 communicates with an ozone generator 56 through an ozone supply line 54. Accordingly, when ozone gas is supplied from the ozone generator 56 to the ozone supply line 54, the ozone gas is diffused into the treatment liquid 42 from the ozone diffuser tube 52. Thereby, the processing liquid 42 contains ozone.
[0016]
The ozone generator 56 is connected to the circulation line 24 through an ozone supply line 58. Therefore, ozone gas can be supplied to the liquid 20 to be treated that circulates from the nitrification tank 16 to the denitrification tank 14. Thereby, the to-be-processed liquid 20 containing ozone circulates through the nitrification tank 16 and the denitrification tank 14.
[0017]
Next, the operation of the nitrification / denitrification apparatus 10 configured as described above will be described.
[0018]
During normal operation, the valve 48 is closed and the valve 46 is opened, and the pump 40 is driven. As a result, the liquid 20 to be treated is biologically processed and sucked into the filtration unit 28, and the sucked processing liquid 42 flows into the treated water tank 38 through the discharge line 36. Ozone gas is supplied from the ozone generator 56 to the treatment liquid 42 flowing into the treatment water tank 38, and the chromaticity component of the treatment liquid 42 is removed by the ozone gas. Therefore, the treatment liquid 42 is drained from the drain pipe 60 in a state suitable for reuse.
[0019]
Further, the liquid to be treated 20 is circulated through the nitrification tank 16 and the denitrification tank 14 by driving the pump 26 of the circulation line 24 during normal operation. At this time, since ozone gas is supplied from the ozone generator 56 to the circulation line 24, the hardly decomposable substance (biological metabolite) contained in the circulating liquid 20 is reduced in molecular weight. Therefore, biological treatment can be promoted, and adhesion of the gel substance to the filtration membrane of the filtration unit 28 can be suppressed. The supply of ozone gas to the circulation line 24 may be intermittent or continuous.
[0020]
When the gel substance adheres to the filtration membrane of the filtration unit 28, the pump 40 is stopped and the valve 46 is closed, and the valve 48 is opened and the pump 50 is driven. As a result, the treatment liquid 42 in the treatment water tank 38 flows back to the filtration unit 28 via the injection line 44. The treatment liquid 42 that has flowed back to the filtration unit 28 permeates the filtration membrane in the direction opposite to the filtration direction during normal operation, and peels off the gel-like substance attached to the filtration membrane from the filtration membrane. At this time, since ozone remains in the treatment liquid 42, the filtration membrane is sterilized by the strong oxidizing power of ozone. Therefore, the cleaning effect of the filtration membrane is large, and a high membrane permeation flow rate can be obtained after cleaning.
[0021]
Thus, according to the nitrification / denitrification apparatus 10 of the present embodiment, ozone is supplied to the treatment liquid 42, so that chromaticity can be removed and the backwashing effect of the filtration membrane can be increased. .
[0022]
Further, according to the nitrification / denitrification apparatus 10, ozone is supplied to the circulation line 24, and the treatment liquid 20 containing ozone is circulated through the nitrification tank 16 and the denitrification tank 14. Blockage can be suppressed. Therefore, the frequency with which the filtration membrane is chemically washed can be reduced, and the lifetime of the filtration membrane can be improved.
[0023]
Further, since ozone is supplied to the circulation line 24 through which a predetermined amount of the liquid 20 to be treated always flows, ozone can be efficiently supplied to the denitrification tank 14 and the nitrification tank 16, and the ozone concentration inside the denitrification tank 14 and the nitrification tank 16 Can be prevented from being biased.
[0024]
Furthermore, according to the nitrification / denitrification apparatus 10, since ozone is supplied to the circulation line 24 by the ozone generator 56 that supplies ozone to the treated water tank 38, it is possible to prevent the apparatus from becoming large.
[0025]
FIG. 2 is a schematic diagram showing the overall configuration of a nitrification / denitrification apparatus 62 provided with ozone gas injection amount adjusting means.
[0026]
In the nitrification / denitrification tank device 62 shown in the figure, an electromagnetic valve 64 is disposed in an ozone supply line 58. The electromagnetic valve 64 is controlled to be opened and closed by a controller 66.
[0027]
The controller 66 adjusts the amount of ozone gas injected into the circulation line 24 by controlling the opening time of the electromagnetic valve 64.
[0028]
The nitrification / denitrification device 62 includes a property analysis device 68. The property analyzer 68 communicates with the nitrification tank 16 via a sludge inlet pipe 70 and a sludge return pipe 72 and collects a sludge sample from the nitrification tank 16 via the sludge inlet pipe 70. Then, after analyzing the sludge sample and acquiring data on sludge properties such as TOC concentration and filtration specific resistance, the sludge sample is returned to the nitrification tank 16 via the sludge return pipe 72.
[0029]
The controller 66 controls the opening time of the electromagnetic valve 64, that is, the injection amount of ozone gas, based on the data acquired by the property analyzer 68. For example, when the property analyzer 68 obtains TOC concentration data, the controller 66 controls the opening time of the electromagnetic valve 64 based on the curve shown in FIG. That is, the higher the TOC concentration of the liquid to be treated 20 is, the longer the opening time of the electromagnetic valve 64 is set, and a larger amount of ozone gas is injected into the circulation line 24. When the TOC concentration of the liquid to be treated 20 is high, the filterability of the liquid to be treated 20 is poor and the filtration membrane of the filtration unit 28 is likely to be blocked. Therefore, the filtration membrane can be effectively blocked by increasing the amount of ozone gas injected. Conversely, when the TOC concentration of the liquid to be treated 20 is low, the liquid to be treated 20 has good filterability and the filtration membrane is not easily clogged, thereby reducing the amount of ozone gas injected. Thereby, useless consumption of ozone gas can be suppressed.
[0030]
As described above, according to the nitrification / denitrification apparatus 62, an appropriate amount of ozone gas is injected into the circulation line 24 according to the property of the sludge in the nitrification tank 16, so that the filtration membrane is effectively blocked by the minimum amount of ozone gas. Can be suppressed.
[0031]
【The invention's effect】
As described above, according to the membrane separation apparatus according to the present invention, since ozone is supplied to the treatment liquid, the chromaticity of the treatment liquid can be removed, and the membrane is backwashed with the treatment liquid. In addition, since ozone is supplied to the circulating liquid to be treated, it is possible to suppress adhesion of a gel substance to the film. Therefore, the membrane separation apparatus of the present invention has a low chemical cleaning frequency of the membrane and is excellent in membrane treatment performance and biological treatment performance, so that wastewater treatment can be performed efficiently and at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of a nitrification / denitrification apparatus to which a membrane separation apparatus according to the present invention is applied. FIG. 2 is a schematic diagram showing an overall configuration of a nitrification / denitrification apparatus having an ozone gas injection amount adjusting means. FIG. 3 is a diagram showing an example of control by TOC concentration.
DESCRIPTION OF SYMBOLS 10 ... Nitrification / denitrification apparatus, 14 ... Denitrification tank, 16 ... Nitrification tank, 18 ... Supply line, 20 ... Liquid to be processed, 24 ... Circulation line, 28 ... Filtration unit, 30 ... Air diffuser, 36 ... Discharge line, 38 ... treatment tank, 42 ... treatment liquid, 44 ... injection line, 52 ... ozone diffuser, 54 ... ozone supply line, 56 ... ozone generator, 58 ... ozone supply line, 64 ... solenoid valve, 66 ... controller, 68 ... Property analyzer

Claims (1)

反応槽に設けられ、該反応槽に供給された被処理液を膜でろ過して処理液を得るろ過ユニットと、
該ろ過ユニットで得られた処理液を前記ろ過ユニットに逆流させて前記膜を逆洗する逆洗手段と、を備えた膜分離装置において、
前記反応槽に接続された循環ラインを介して、前記被処理液を循環させる循環手段と、 該循環手段によって循環する前記循環ライン内の被処理液と、前記ろ過ユニットで得られた処理液とに、オゾンを供給するオゾン供給手段を備え
前記オゾン供給手段が前記循環ライン内の被処理液に供給するオゾン量を調節する調節手段と、
前記反応槽から汚泥サンプルを採取してTOC濃度を測定してデータを獲得し、該データに基づいて前記調節手段を制御する制御手段と、
を備えたことを特徴とする膜分離装置。
A filtration unit that is provided in a reaction tank and obtains a treatment liquid by filtering the liquid to be treated supplied to the reaction tank through a membrane;
Backwashing means for backwashing the membrane by allowing the treatment liquid obtained by the filtration unit to flow back to the filtration unit,
A circulation means for circulating the liquid to be treated through a circulation line connected to the reaction tank; a liquid to be treated in the circulation line circulated by the circulation means; a treatment liquid obtained by the filtration unit; And an ozone supply means for supplying ozone ,
Adjusting means for adjusting the amount of ozone supplied by the ozone supply means to the liquid to be treated in the circulation line;
A control means for collecting a sludge sample from the reaction tank and measuring the TOC concentration to obtain data, and controlling the adjusting means based on the data;
Membrane separation apparatus characterized by comprising a.
JP2000368269A 2000-12-04 2000-12-04 Membrane separator Expired - Fee Related JP3832232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368269A JP3832232B2 (en) 2000-12-04 2000-12-04 Membrane separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368269A JP3832232B2 (en) 2000-12-04 2000-12-04 Membrane separator

Publications (2)

Publication Number Publication Date
JP2002166139A JP2002166139A (en) 2002-06-11
JP3832232B2 true JP3832232B2 (en) 2006-10-11

Family

ID=18838553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368269A Expired - Fee Related JP3832232B2 (en) 2000-12-04 2000-12-04 Membrane separator

Country Status (1)

Country Link
JP (1) JP3832232B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386702B2 (en) * 2003-09-30 2009-12-16 株式会社クボタ Chemical cleaning device
WO2005077839A1 (en) * 2004-02-13 2005-08-25 Asahi Organic Chemicals Industry Co., Ltd. Method for treating organic wastewater
JP2007222830A (en) * 2006-02-27 2007-09-06 Kubota Corp Treatment method of nitrogen-containing organic wastewater, and treatment apparatus for it
JP5001923B2 (en) * 2008-09-16 2012-08-15 株式会社神鋼環境ソリューション Water treatment apparatus and water treatment method
KR101069773B1 (en) * 2008-11-10 2011-10-04 (주)미시간기술 Membrane bioreactor, water disposal apparatus and method thereof
JP2010207657A (en) * 2009-03-06 2010-09-24 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and wastewater treatment method
CN106186592B (en) * 2016-09-12 2020-08-04 南京大学 Device for removing nitrate nitrogen in resin desorption liquid and application process thereof
JP7015117B2 (en) * 2017-05-17 2022-02-02 株式会社クボタ Organic wastewater treatment method and organic wastewater treatment system
SG11202011443TA (en) * 2018-05-30 2020-12-30 Mitsubishi Electric Corp Membrane cleaning device and membrane cleaning method

Also Published As

Publication number Publication date
JP2002166139A (en) 2002-06-11

Similar Documents

Publication Publication Date Title
JP4920990B2 (en) Separation membrane cleaning method
WO2001072643A1 (en) Method and apparatus for treating waste water
JPH0665371B2 (en) Organic wastewater biological treatment equipment
JPH07155758A (en) Waste water treating device
JP3832232B2 (en) Membrane separator
JP2010012434A (en) Structure of mbr+ro system and operation method for the system
JP2003117578A (en) Repairing method for bioreaction region in biotreatment equipment for sewage
JP3368682B2 (en) Septic tank and its operation method
JP3700932B2 (en) Method and apparatus for cleaning filter using ozone
JP3773360B2 (en) Septic tank with membrane separation
JPH07256282A (en) Membrane separation small-sized combined purifying tank
JP3171746B2 (en) Domestic wastewater treatment equipment
JP3278560B2 (en) Water treatment equipment
JP3592677B2 (en) Water treatment equipment
JP4373871B2 (en) Activated sludge treatment equipment
JPH10118684A (en) Immersion type membrane separation and activated sludge apparatus
JPH0775782A (en) Membrane separator
JP2004249235A (en) Membrane separation device of activated sludge treatment system, membrane separation method, and activated sludge treatment system equipped with membrane separation device
JPH09117794A (en) Biological denitrification device
JP5016827B2 (en) Membrane separation activated sludge treatment method
JP2005163411A (en) Circulating flush toilet system
JP2001062480A (en) Treatment of sewage
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JP2004249236A (en) Water treatment system using oxidation ditch method and water treatment method
JP3555521B2 (en) Membrane separation biological treatment equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees