JP3592677B2 - Water treatment equipment - Google Patents

Water treatment equipment Download PDF

Info

Publication number
JP3592677B2
JP3592677B2 JP2002044553A JP2002044553A JP3592677B2 JP 3592677 B2 JP3592677 B2 JP 3592677B2 JP 2002044553 A JP2002044553 A JP 2002044553A JP 2002044553 A JP2002044553 A JP 2002044553A JP 3592677 B2 JP3592677 B2 JP 3592677B2
Authority
JP
Japan
Prior art keywords
cylindrical body
membrane
reaction tank
wastewater
membrane surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002044553A
Other languages
Japanese (ja)
Other versions
JP2003245668A (en
Inventor
和彦 田中
正秋 一瀬
修逸 河崎
義男 河窪
昇吾 毛塚
一彦 井上
Original Assignee
アタカ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アタカ工業株式会社 filed Critical アタカ工業株式会社
Priority to JP2002044553A priority Critical patent/JP3592677B2/en
Publication of JP2003245668A publication Critical patent/JP2003245668A/en
Application granted granted Critical
Publication of JP3592677B2 publication Critical patent/JP3592677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、適切な浄化処理ができる水処理装置に関するものである。
【0002】
【従来の技術】
従来、反応槽内に浸漬させて用いる膜分離手段としては、例えば特開平2−59098号公報等に記載された構造のものが知られている。
【0003】
この従来の膜分離手段は、反応槽内の活性汚泥を含む汚水中に膜モジュールが浸され、膜モジュールの直下に散気管が配置されたものであって、膜モジュールは、板面にろ過膜が重ね合わされた複数個の膜支持板がろ過膜の周縁部を押さえるための箱枠を介して並設され、相対向するろ過膜同士の間に汚水流路と、ろ過膜と膜支持板との間に処理水流路とが形成されてなり、各膜支持板の板面に突起部が形成され、これらの突起部は、相対向する突起部との間にろ過膜を挟持し、各突起部を貫通して集水管路が形成され、この集水管路が処理水流路に連通している構成となっている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の膜分離手段では、板面にろ過膜が重ね合わされた膜支持板が狭持されて、相対向するろ過膜同士の間に狭い汚水流路が形成されており、汚泥を含む汚水がこの汚水流路を通過することにより、汚水流路すなわち膜面に汚泥が付着し、膜処理の障害となる問題がある。
【0005】
この問題に関しては、特開平2−59098号公報では、膜モジュールの直下に散気管を配置し、曝気用気体の気泡により生じる上昇流で汚泥の堆積の防止を行っているが、気泡の上昇で膜面における汚泥の滞留を防止できても、膜面の日詰まりを防止もしくは解消する有効な方法ではなかった。
【0006】
さらに、特開平4−215886号公報では、上記問題の解決のために、反応槽の外に反応槽の上部に越流堰を介して連通するポンプ槽を設置し、このポンプ槽に上記特開平2−59098号公報記載のものと同様の膜分離手段を設置し、ポンプを介してポンプ槽と反応槽の間を汚水を循環させる構成とし、ポンプ槽内の流れを利用して膜面における汚泥の堆積を防止する手段を講じている。
【0007】
膜を浸漬させることは、従来から行われていたチューブラー型モジュールから循環ポンプを不要とし、反応槽の外側になんら構造物を設置しないことに特徴があるが、特開平4−215886号公報に記載の手段は、反応槽外に新たにポンプ槽を設置し、ポンプを用いて循環させる方法であって、古くから行われているチューブラー型モジュールの構成と基本的に変わらず、膜を浸漬させることに関する新しい構成が生かされていない。
【0008】
本発明は、このような点に鑑みなされたもので、簡単な構成で膜面の目詰まりを防止でき、適切な浄化処理ができる水処理装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載の水処理装置は、浄化処理すべき排水を貯留する反応槽と、この反応槽内に軸方向が上下方向に一致するように配置された両端面開口状の筒状体と、この筒状体内を通る循環流を前記反応槽内に発生させる循環流発生手段と、膜面が前記筒状体内の排水の流れ方向に沿って位置するように配置されこの筒状体内の排水をろ過する膜分離手段とを備え、前記筒状体は、略円筒形状に形成され、前記膜分離手段は、前記膜面が前記筒状体の内周面と略同一面上に位置するように配置されているものである。
【0010】
そして、反応槽内に軸方向が上下方向に一致するように配置された両端面開口状の筒状体と、この筒状体内を通る循環流を反応槽内に発生させる循環流発生手段と、膜面が筒状体内の排水の流れ方向に沿って位置するように配置されこの筒状体内の排水をろ過する膜分離手段とを備える構成であるから、簡単な構成で膜面の目詰まりが防止され、適切な浄化処理が行われる。また、膜分離手段をこの膜分離手段の膜面が略円筒形状の筒状体の内周面と略同一面上に位置するように配置したため、膜面の目詰まりがより一層適切に防止される。
【0011】
請求項2記載の水処理装置は、請求項1記載の水処理装置において、循環流発生手段は、筒状体内で駆動回転してこの筒状体内に下向流を生じさせる回転羽根を有するものである。
【0012】
そして、回転羽根の駆動回転により筒状体内に下向流を生じさせることが可能となり、循環流を反応槽内に適切に発生させることが可能となる。
【0013】
請求項3記載の水処理装置は、請求項1記載の水処理装置において、循環流発生手段は、筒状体内で駆動回転してこの筒状体内に上向流を生じさせる回転羽根を有するものである。
【0014】
そして、回転羽根の駆動回転により筒状体内に上向流を生じさせることが可能となり、循環流を反応槽内に適切に発生させることが可能となる。
【0015】
請求項4記載の水処理装置は、請求項1ないし3のいずれか一記載の水処理装置において、酸素を含有する気体をこの気体による気泡が膜分離手段の膜面に接触するように筒状体内に供給する酸素供給手段を備えるものである。
【0016】
そして、酸素供給手段からの気体による気泡が膜分離手段の膜面に接触するため、膜面の目詰まりが効果的に防止される。
【0017】
求項記載の水処理装置は、請求項1ないしのいずれか一記載の水処理装置において、膜分離手段の膜面が限外ろ過膜にて構成されているものである。
【0018】
そして、膜分離手段の膜面が限外ろ過膜にて構成されているので、例えば排水中の活性汚泥が適切に分離されることとなり、反応槽内の汚泥濃度が高く維持され、比較的短時間で高度な処理が可能となり、例えば通常の活性汚泥法で必要とされていた最終沈殿池が不要となる。
【0019】
【発明の実施の形態】
以下、本発明の水処理装置の一実施の形態の構成を図面を参照して説明する。
【0020】
図3において、1は水処理装置で、この水処理装置1は、例えば下水、生活排水等の有機性汚水、すなわち浄化処理すべき排水に対して嫌気・無酸素・好気法が実施される汚水浄化処理施設である。なお、嫌気・無酸素・好気法は、生物学的リン除去プロセスと生物学的窒素除去プロセスとを組み合わせた処理法で、活性汚泥微生物によるリンの過剰摂取現象及び硝化脱窒反応を利用するものである。この方法は、循環式硝化脱窒法と嫌気・好気活性汚泥法とを組み合わせたもので、一般にA2O法とも呼ばれている。すなわち、本法に適用されるリン除去プロセスは、嫌気・好気活性汚泥法であり、窒素除去プロセスは、循環式硝化脱窒法である。
【0021】
そして、この水処理装置1は、流入水である排水の水量および水質の調整・均一化を図る流量調整槽および排水中の夾雑物を除去するスクリーン(商品名「ATAKA CF200」)等にて構成された前処理手段2と、この前処理手段2からの排水に対してA2O法に基づく生物学的処理を行い、この浄化処理後の処理水を最終処理水として公共用水域に放流する生物処理設備3とを備えている。なお、この水処理装置1は、最初沈殿池および最終沈殿池を備えていないものである。
【0022】
この生物処理設備3は、前処理手段2側である上流側から順に嫌気タンク5、無酸素タンク6および好気タンク7を有している。
【0023】
そして、前処理手段2からの排水と好気タンク7からの返送汚泥とが、嫌気タンク5に導入される。また、好気タンク7からの好気タンク混合液(硝化液)が無酸素タンク6に循環される。なお、好気タンク7からの余剰汚泥は別途処理される。
【0024】
ここで、好気タンク7は、例えば図1および図2に示すような構造のもので、無酸素タンク6から送られてくる浄化処理すべき排水および活性汚泥(微生物の集まり)を貯留する反応槽11と、この反応槽11内に軸方向が上下方向に一致するように反応槽11内の略中央位置に配置された両端面開口状で略円筒形状の筒状体12と、を備えている。
【0025】
また、この好気タンク7は、筒状体12内を通る循環流を反応槽11内にこの反応槽11内全体にわたって発生させる循環流発生手段14と、膜面15が筒状体12内の排水の流れ方向に沿って筒状体12の内周面と略同一面上に位置するように配置されこの筒状体12内の排水(浄化処理後の処理水)をろ過してこの排水中の活性汚泥を分離する浸漬式の膜分離手段16と、この膜分離手段16によって活性汚泥が分離された排水(ろ過水である透過水)を最終処理水として公共用水域に放流する放流管17と、酸素を含有する気体、すなわち例えば空気をこの空気による気泡が膜分離手段16の膜面15に接触するように筒状体12内に供給する曝気手段等の酸素供給手段19と、を備えている。
【0026】
反応槽11には、図示しないが、一端側が無酸素タンク6に接続された排水流入管の他端側が接続されている。なお、排水流入管を設けることなく、無酸素タンク6から排水が越流によって反応槽11に流れ込むようにしてもよい。
【0027】
また、反応槽11には、一端側が無酸素タンク6に接続された排水循環管の他端側が接続されかつ一端側が嫌気タンク5に接続された返送汚泥用管の他端側が接続されている。さらに、反応槽11には余剰汚泥用管が接続されている。なお、反応槽11は、排水中の有機性成分等を反応槽11内の排水中に浮遊している微生物の生物学的作用により除去できるための十分な容量を有するものである。
【0028】
筒状体12は、この筒状体12全体が反応槽11に貯留された排水に浸漬されるように反応槽11の容量に対応した所定の大きさのもので、筒状体12の上面開口部12aが反応槽11内の排水の水面より下方の位置に配置され、筒状体12の下面開口部12bが反応槽11の底面より上方の位置に配置されている。
【0029】
また、この略円筒形状の筒状体12は、この筒状体12の軸方向中間部または下端部が切り欠かれ、この切欠き部分に略円形環状の膜分離手段16が固定的に設けられている。この筒状体12の一部をなすように設けられた膜分離手段16の外側方は、筒状体12に一体に設けられた断面略コ字状で略円形環状の環状体21で覆われている。
【0030】
そして、筒状体12の内周面とこの筒状体12の内周面と略同一面上に位置する膜分離手段16の内周面となっている膜面15とにて囲まれた空間によって、略円柱形状の循環流路22が構成されている。また、膜分離手段16の外周面と環状体21の内面とにて囲まれた空間によって透過水室23が構成されている。
【0031】
なお、環状体21には放流管17の一端部が接続され、この放流管17の他端側が反応槽11外に延びており、この放流管17の内部流路が透過水室23に連通している。放流管17の途中または他端部には必要に応じてポンプ等の吸引手段が設けられる。
【0032】
循環流発生手段14は、駆動モータ等の駆動手段31を有し、この駆動手段31にはこの駆動手段31からの駆動力を受けて駆動回転する上下方向の回転軸32の上端部が取り付けられている。この回転軸32は筒状体12と略同一軸上に位置し、この回転軸32の下端部には、この回転軸32と一体となって筒状体12内で駆動回転してこの筒状体12内に下向流Aを生じさせるインペラである攪拌翼等の回転羽根33が取り付けられている。この回転羽根33は、筒状体12内の位置であってこの筒状体12の上下方向の任意位置に回転可能に配置されている。
【0033】
そして、循環流発生手段14の回転羽根33の所定方向への回転によって筒状体12内に下向流Aが生じると、図1から明らかなように、筒状体12内すなわち循環流路22を通る循環流が反応槽11内に発生し、この反応槽11内全体にわたる循環流によって排水と活性汚泥とが攪拌されつつ循環流動し、効率よく生物処理が行われる。
【0034】
なお、循環流路22を通る排水の流速は、1.5m/秒以上、好ましくは1.5m/秒〜3.0m/秒、更に好ましくは2.0m/秒〜3.0m/秒になるように設定されている。また、筒状体12は、反応槽11の容量に相当する水量が2分から5分の間で通過する内径を有し、この筒状体12の内径より小さい外径を有する回転羽根33が筒状体12の内部の任意位置に配置され、流入した排水と反応槽内液を十分に混合攪拌可能な構成となっている。
【0035】
酸素供給手段19は、ブロワー、コンプレッサー等の空気圧送手段41を有し、この空気圧送手段41には接続管42の一端部が接続されている。この接続管42の他端部には散気手段である散気管43が取り付けられている。
【0036】
この散気管43は、例えば筒状体12の内径よりやや小さい略円形環状をなすもので、この散気管43の下部には複数の図示しない散気用の孔部(例えば約直径0.5mm〜1.5mmの細孔)が開口形成されている。
【0037】
そして、この散気管43は、筒状体12内の位置であってこの筒状体12の上下方向の任意位置すなわち例えば回転羽根33の下流側近傍位置に、筒状体12と略同心状に配置されている。
【0038】
膜分離手段16は、筒状体12内から浄化処理後の排水を活性汚泥を分離しつつ最終処理水として取り出すための固液分離手段で、図2に示されるように、筒状体12に固着された膜支持体である膜支持板51を有している。この膜支持体51は、例えばプラスチックや金属等にて、複数の孔を有する略円形環状に形成されたもので、この膜支持体51の内周面には、垂直面に沿った膜面15を構成する限外ろ過膜(例えば分離対象粒子径が約0.001μm〜0.1μmの膜)52が貼り付けられている。
【0039】
この限外ろ過膜52は、例えば酢酸セルロース、ポリアクリルニトリルやポリエーテルサルホン等にて、筒状体12の内径と略同じ内径を有する略円筒形状に形成され、この限外ろ過膜52の内周面が筒状体12の内周面と略同一面上に位置している。この限外ろ過膜52にて構成された膜面15は、筒状体12内の排水の流れ方向に平行となるように配置されている。
【0040】
次に、上記一実施の形態の作用等を説明する。
【0041】
有機物、窒素およびリン等を含んだ浄化処理すべき排水は、前処理手段2にて前処理された後、生物処理設備3に導入され、この生物処理設備3において活性汚泥微生物による生物的処理により浄化処理され、最終処理水として公共用水域に放流される。
【0042】
この処理の際、生物処理設備3の好気タンク7においては、循環流発生手段14の駆動手段31の駆動により、回転羽根33が所定方向に駆動回転して下向流Aが生じ、循環流路22を通る循環流が反応槽11内全体に発生している。また、酸素供給手段19の空気圧送手段41の駆動により、散気管43の各孔部から空気が循環流路22に供給され、反応槽11内が好気状態に維持されている。なお、循環流路22に供給された空気の気泡は、回転羽根33の回転に基づくせん断力で微細化し、生物処理に必要な酸素の溶解効率が向上する。
【0043】
そして、無酸素タンク6から送られてきた浄化処理すべき排水は、反応槽11内に導入されると、活性汚泥とともに循環流となって反応槽11内を攪拌されつつ循環流動し、微生物にて浄化処理される。
【0044】
この浄化処理後の処理水は、膜分離手段16の膜面15にてろ過され、この処理水中の活性汚泥が分離されて膜面15に一旦付着する。
【0045】
しかしながら、この付着した活性汚泥は、循環流の一部である下向流(膜面15に沿った掃流)Aによって洗い流され、膜面15から剥離される。
【0046】
また、この付着した活性汚泥は、酸素供給手段19からの空気の気泡が膜面15に接触することによっても、膜面15から剥離される。すなわち、散気管43の下方に向って開口した孔部から出た気泡がその勢いで直接膜面15に到達して接触したり、膜面15の上方(上流)から下向流Aに同伴した気泡が膜面15に接触(気泡が膜面15に対して平行的に摺接)したり、回転羽根33の回転で発生した乱流に同伴した気泡が膜面15に接触(気泡が膜面15に対して任意方向から衝突接触)したりすること等により、活性汚泥が膜面15から効果的に剥離される。なお、空気の気泡は膜面15を通過しないので、攪拌動力が最大限有効利用できる。
【0047】
このため、膜面15における活性汚泥の堆積が発生しにくく、膜面15が目詰まりするようなことはない。すなわち、筒状体12内の液流および気泡流に膜面15が直接晒されるので、膜面15に活性汚泥堆積が生じにくく、膜面15が目詰まりするようなことがない。
【0048】
一方、膜分離手段16の膜面15を通過した透過水は、最終処理水として透過水室23および放流管17の内部流路を経て、公共用水域に放流される。
【0049】
そして、上記一実施の形態によれば、簡単な構成であるにも拘わらず、生物処理設備3の好気タンク7における膜分離手段16の膜面15が簡単に目詰まりするようなことがなく、適切で高度な浄化処理ができる。
【0050】
また、循環流路22が反応槽11内に設置されているので、反応槽11をコンパクトになる。さらに、膜分離手段16にて排水中の活性汚泥が排水から適切に分離されることとなり、活性汚泥が反応槽11外に流出しないため、反応槽11内の汚泥濃度が高く維持されるので、担体等を不要にでき、比較的短時間で高度な処理が可能となり、通常の活性汚泥法で必要とされていた最終沈殿池が不要となる。
【0051】
なお、前処理手段2は、スクリーン、或いは最初沈殿池等、1mm以上の大きさの夾雑物を取り除くことができるものが望ましいが、下水、生活排水等の汚水を反応槽11に直接流入させることを妨げるものではない。
【0052】
また、循環流発生手段14は、筒状体12内で駆動回転してこの筒状体12内に下向流Aを生じさせて反応槽11内に循環流を発生させる回転羽根33を有するものには限定されず、例えば、図示しないが、筒状体内で駆動回転してこの筒状体内に上向流を生じさせて反応槽11内に循環流を発生させる回転羽根を有するものでもよい。
【0053】
さらに、膜分離手段16は、膜面15を限外ろ過膜52で構成したものには限定されず、例えば、図示しないが、精密ろ過膜(例えば分離対象粒子径が約0.1μm〜1μmの膜)を用いるものでもよい。
【0054】
また、水処理装置1は、嫌気・無酸素・好気法を利用するものには限定されず、活性汚泥法、担体法、嫌気性処理法等、いかなる処理法にも適用できる。
【0055】
さらに、酸素を含有する気体をこの気体による気泡が膜面15に接触するように筒状体12内の位置に供給する曝気手段等の酸素供給手段19は、散気管43の孔部から出た気泡がその勢いで直接膜面15に到達して接触するように散気管43を膜面15の近傍位置に配置することが好ましいが、この配置に限定されるものではなく、例えば回転羽根33の上流側の位置に配置したもの等でもよい。
【0056】
【発明の効果】
請求項1の発明によれば、反応槽内に軸方向が上下方向に一致するように配置された両端面開口状の筒状体と、この筒状体内を通る循環流を反応槽内に発生させる循環流発生手段と、膜面が筒状体内の排水の流れ方向に沿って位置するように配置されこの筒状体内の排水をろ過する膜分離手段とを備える構成であるから、簡単な構成で膜面の目詰まりを防止でき、適切な浄化処理ができる。また、膜分離手段をこの膜分離手段の膜面が略円筒形 状の筒状体の内周面と略同一面上に位置するように配置したため、膜面の目詰まりをより一層適切に防止できる。
【0057】
請求項2の発明によれば、回転羽根の駆動回転により筒状体内に下向流を生じさせることができ、循環流を反応槽内に適切に発生させることができる。
【0058】
請求項3の発明によれば、回転羽根の駆動回転により筒状体内に上向流を生じさせることができ、循環流を反応槽内に適切に発生させることができる。
【0059】
請求項4の発明によれば、酸素供給手段からの気体による気泡が膜分離手段の膜面に接触するため、膜面の目詰まりを効果的に防止できる。
【0060】
求項の発明によれば、膜分離手段の膜面が限外ろ過膜にて構成されているので、例えば排水中の活性汚泥が適切に分離されることとなり、反応槽内の汚泥濃度を高く維持でき、比較的短時間で高度な処理が可能となり、例えば通常の活性汚泥法で必要とされていた最終沈殿池を不要にできる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の水処理装置における好気タンクを示す断面図である。
【図2】同上水処理装置における好気タンクの膜分離手段を示す断面図である。
【図3】同上水処理装置の全体を示す概念図である。
【符号の説明】
1 水処理装置
11 反応槽
12 筒状体
14 循環流発生手段
15 膜面
16 膜分離手段
19 酸素供給手段
33 回転羽根
52 限外ろ過膜
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a water treatment device capable of performing an appropriate purification treatment.
[0002]
[Prior art]
Conventionally, as a membrane separation means to be immersed in a reaction tank, for example, one having a structure described in JP-A-2-59098 or the like is known.
[0003]
In this conventional membrane separation means, a membrane module is immersed in sewage containing activated sludge in a reaction tank, and an air diffuser is disposed immediately below the membrane module. Are stacked side by side via a box frame for holding down the periphery of the filtration membrane, a sewage flow path between the opposed filtration membranes, and the filtration membrane and the membrane support plate. A treatment water flow path is formed between them, and projections are formed on the plate surface of each membrane support plate. These projections sandwich a filtration membrane between opposing projections, and each projection A water collection pipe is formed through the portion, and the water collection pipe is configured to communicate with the treated water flow path.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional membrane separation means, a membrane support plate in which a filtration membrane is superimposed on a plate surface is sandwiched, and a narrow sewage flow path is formed between opposed filtration membranes, and contains sludge. When the sewage passes through the sewage flow path, there is a problem that sludge adheres to the sewage flow path, that is, the membrane surface, and this obstructs the membrane treatment.
[0005]
Regarding this problem, in Japanese Unexamined Patent Application Publication No. 2-59098, an air diffuser is disposed immediately below the membrane module to prevent the accumulation of sludge by an ascending flow generated by the bubbles of the aeration gas. Even if sludge accumulation on the membrane surface could be prevented, it was not an effective method for preventing or eliminating clogging of the membrane surface.
[0006]
Further, in Japanese Patent Application Laid-Open No. 4-215886, in order to solve the above problem, a pump tank communicating with an upper part of the reaction tank via an overflow weir is installed outside the reaction tank, and the pump tank is connected to the pump tank. No. 2-59098, a membrane separation means similar to that described in JP-A-2-59098 is installed, and sewage is circulated between a pump tank and a reaction tank via a pump, and sludge on the membrane surface is utilized by using a flow in the pump tank. Take measures to prevent the accumulation of
[0007]
The immersion of the membrane is characterized by eliminating the need for a circulating pump from the conventional tubular module and not installing any structure outside the reaction tank. The means described is a method of installing a new pump tank outside the reaction tank and circulating it using a pump, and immersing the membrane basically same as the configuration of the tubular type module that has been performed for a long time No new organization has been put to use.
[0008]
The present invention has been made in view of such a point, and an object of the present invention is to provide a water treatment apparatus that can prevent clogging of a membrane surface with a simple configuration and that can perform appropriate purification treatment.
[0009]
[Means for Solving the Problems]
The water treatment device according to claim 1, a reaction tank for storing wastewater to be purified, and a tubular body having an open end on both ends arranged in the reaction tank so that an axial direction thereof coincides with a vertical direction, A circulating flow generating means for generating a circulating flow passing through the cylindrical body in the reaction vessel, and arranging the membrane surface so as to be positioned along a flow direction of the drainage in the cylindrical body; Membrane filtration means for filtering , the cylindrical body is formed in a substantially cylindrical shape, the membrane separation means, so that the membrane surface is located on substantially the same plane as the inner peripheral surface of the cylindrical body It is what is arranged .
[0010]
And a cylindrical body having an open end on both ends arranged so that the axial direction coincides with the vertical direction in the reaction tank, and a circulating flow generating means for generating a circulating flow through the cylindrical body in the reaction tank, Since the membrane surface is disposed so as to be located along the flow direction of the drainage in the cylindrical body, and the membrane separation means for filtering the drainage in the cylindrical body, the membrane surface is clogged with a simple configuration. It is prevented and appropriate purification processing is performed. Further, since the membrane separation means is arranged such that the membrane surface of the membrane separation means is located on substantially the same plane as the inner peripheral surface of the substantially cylindrical tubular body, clogging of the membrane surface is more appropriately prevented. You.
[0011]
According to a second aspect of the present invention, there is provided the water treatment apparatus according to the first aspect, wherein the circulating flow generating means has rotating blades which are driven and rotated in the cylindrical body to generate a downward flow in the cylindrical body. It is.
[0012]
Then, a downward flow can be generated in the tubular body by driving rotation of the rotating blades, and a circulating flow can be appropriately generated in the reaction tank.
[0013]
According to a third aspect of the present invention, there is provided the water treatment apparatus according to the first aspect, wherein the circulating flow generating means has rotating blades which are driven and rotated in the cylindrical body to generate an upward flow in the cylindrical body. It is.
[0014]
Then, an upward flow can be generated in the cylindrical body by driving rotation of the rotating blades, and a circulating flow can be appropriately generated in the reaction tank.
[0015]
According to a fourth aspect of the present invention, in the water treatment apparatus according to any one of the first to third aspects, the gas containing oxygen is formed into a cylindrical shape such that bubbles formed by the gas come into contact with the membrane surface of the membrane separation means. It is provided with an oxygen supply means for supplying to the body.
[0016]
Since the gas bubbles from the oxygen supply unit come into contact with the membrane surface of the membrane separation unit, clogging of the membrane surface is effectively prevented.
[0017]
Water treatment apparatus Motomeko 5 wherein, in the water treatment device according to any one of claims 1 to 4, in which the membrane surface of the membrane separation means are constituted by an ultrafiltration membrane.
[0018]
And, since the membrane surface of the membrane separation means is constituted by an ultrafiltration membrane, for example, activated sludge in wastewater is appropriately separated, the sludge concentration in the reaction tank is maintained at a high level, and a relatively short Advanced treatment can be performed in a short time, and a final sedimentation basin, which is required in the ordinary activated sludge method, is not required.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of an embodiment of the water treatment apparatus of the present invention will be described with reference to the drawings.
[0020]
In FIG. 3, reference numeral 1 denotes a water treatment apparatus, which performs an anaerobic / anoxic / aerobic method on organic wastewater such as sewage and domestic wastewater, that is, wastewater to be purified. This is a sewage purification facility. The anaerobic, anoxic, and aerobic method is a treatment method that combines a biological phosphorus removal process and a biological nitrogen removal process, and utilizes the excessive intake phenomenon of activated sludge microorganisms and the nitrification denitrification reaction. Things. This method is a combination of the circulating nitrification denitrification method and the anaerobic / aerobic activated sludge method, and is generally called the A 2 O method. That is, the phosphorus removal process applied to the present method is an anaerobic / aerobic activated sludge process, and the nitrogen removal process is a circulating nitrification denitrification process.
[0021]
The water treatment apparatus 1 includes a flow control tank for adjusting and equalizing the amount and quality of wastewater as inflow water, a screen for removing impurities in wastewater (trade name “ATAKA CF200”), and the like. A biological treatment based on the A 2 O method is performed on the treated pretreatment means 2 and the wastewater from the pretreatment means 2, and the treated water after the purification treatment is discharged as final treated water to public water bodies. And a biological treatment facility 3. The water treatment apparatus 1 does not include a first settling tank and a final settling tank.
[0022]
The biological treatment equipment 3 has an anaerobic tank 5, an oxygen-free tank 6, and an aerobic tank 7 in this order from the upstream side which is the pretreatment means 2 side.
[0023]
Then, the wastewater from the pretreatment means 2 and the return sludge from the aerobic tank 7 are introduced into the anaerobic tank 5. The aerobic tank mixture (nitrification liquid) from the aerobic tank 7 is circulated to the anoxic tank 6. Excess sludge from the aerobic tank 7 is separately treated.
[0024]
Here, the aerobic tank 7 has a structure as shown in FIGS. 1 and 2, for example, and is a reaction for storing wastewater to be purified and activated sludge (collection of microorganisms) sent from the anoxic tank 6. A tank 11, and a substantially cylindrical tubular body 12 with open ends on both ends arranged at a substantially central position in the reaction tank 11 so that the axial direction coincides with the vertical direction in the reaction tank 11. I have.
[0025]
Further, the aerobic tank 7 includes a circulating flow generating means 14 for generating a circulating flow passing through the inside of the tubular body 12 in the reaction vessel 11 and the membrane surface 15 in the tubular body 12. It is disposed so as to be located on substantially the same plane as the inner peripheral surface of the tubular body 12 along the flow direction of the wastewater, and the wastewater (the treated water after the purification treatment) in the tubular body 12 is filtered. Immersion type membrane separation means 16 for separating the activated sludge of the present invention, and a discharge pipe 17 for discharging wastewater (permeated water which is filtered water) from which the activated sludge is separated by the membrane separation means 16 to a public water area as final treatment water. And oxygen supply means 19 such as aeration means for supplying oxygen-containing gas, for example, air, into the cylindrical body 12 such that air bubbles come into contact with the membrane surface 15 of the membrane separation means 16. ing.
[0026]
Although not shown, the other end of the drainage inflow pipe, one end of which is connected to the oxygen-free tank 6, is connected to the reaction tank 11. Note that the drainage may flow from the anoxic tank 6 into the reaction tank 11 by overflow without providing a drainage inflow pipe.
[0027]
Further, the reaction tank 11 is connected to the other end of the drainage circulation pipe having one end connected to the oxygen-free tank 6 and the other end of the return sludge pipe connected to the anaerobic tank 5 at one end. Further, a tube for excess sludge is connected to the reaction tank 11. The reaction tank 11 has a sufficient capacity to remove organic components and the like in the wastewater by the biological action of microorganisms floating in the wastewater in the reaction tank 11.
[0028]
The cylindrical body 12 has a predetermined size corresponding to the capacity of the reaction tank 11 so that the entire cylindrical body 12 is immersed in the wastewater stored in the reaction tank 11. The portion 12a is arranged at a position lower than the water surface of the waste water in the reaction tank 11, and the lower surface opening 12b of the tubular body 12 is arranged at a position higher than the bottom surface of the reaction tank 11.
[0029]
The cylindrical body 12 having a substantially cylindrical shape has an axially middle portion or a lower end portion of the cylindrical body 12 cut out, and a substantially circular annular membrane separation means 16 is fixedly provided in the cutout portion. ing. The outer side of the membrane separation means 16 provided so as to form a part of the tubular body 12 is covered with a substantially circular annular body 21 having a substantially U-shaped cross section provided integrally with the tubular body 12. ing.
[0030]
A space surrounded by an inner peripheral surface of the cylindrical body 12 and a film surface 15 which is an inner peripheral surface of the membrane separation means 16 located on substantially the same plane as the inner peripheral surface of the cylindrical body 12. Thereby, a substantially cylindrical circulation channel 22 is formed. A permeated water chamber 23 is formed by a space surrounded by the outer peripheral surface of the membrane separation means 16 and the inner surface of the annular body 21.
[0031]
One end of a discharge pipe 17 is connected to the annular body 21, and the other end of the discharge pipe 17 extends outside the reaction tank 11, and an internal flow path of the discharge pipe 17 communicates with the permeated water chamber 23. ing. In the middle or at the other end of the discharge pipe 17, suction means such as a pump is provided as necessary.
[0032]
The circulating flow generating means 14 has a driving means 31 such as a driving motor, and the driving means 31 is provided with an upper end of a vertical rotating shaft 32 which is driven and rotated by receiving a driving force from the driving means 31. ing. The rotating shaft 32 is located on substantially the same axis as the cylindrical body 12, and the lower end of the rotating shaft 32 is driven integrally with the rotating shaft 32 to rotate within the tubular body 12 to rotate the cylindrical body 12. A rotating blade 33 such as a stirring blade which is an impeller for generating a downward flow A in the body 12 is attached. The rotary blade 33 is rotatably arranged at an arbitrary position in the vertical direction of the cylindrical body 12 at a position in the cylindrical body 12.
[0033]
When a downward flow A is generated in the cylindrical body 12 by the rotation of the rotating blades 33 of the circulating flow generating means 14 in a predetermined direction, as is apparent from FIG. Is generated in the reaction tank 11, and the circulating flow over the entire reaction tank 11 circulates and flows the wastewater and the activated sludge while being stirred, so that the biological treatment is efficiently performed.
[0034]
The flow rate of the wastewater passing through the circulation channel 22 is 1.5 m / sec or more, preferably 1.5 m / sec to 3.0 m / sec, and more preferably 2.0 m / sec to 3.0 m / sec. It is set as follows. The cylindrical body 12 has an inner diameter through which the amount of water corresponding to the capacity of the reaction tank 11 passes for 2 to 5 minutes, and the rotating blades 33 having an outer diameter smaller than the inner diameter of the cylindrical body 12 It is arranged at an arbitrary position in the inside of the body 12, and has a configuration in which the inflowing wastewater and the liquid in the reaction tank can be sufficiently mixed and stirred.
[0035]
The oxygen supply means 19 has an air pressure feeding means 41 such as a blower and a compressor, and one end of a connection pipe 42 is connected to the air pressure feeding means 41. To the other end of the connection pipe 42, an air diffusion pipe 43 as an air diffusion means is attached.
[0036]
The air diffuser 43 has, for example, a substantially circular annular shape slightly smaller than the inner diameter of the cylindrical body 12, and a plurality of air diffusion holes (not shown, for example, having a diameter of about 0.5 mm A 1.5 mm pore) is formed.
[0037]
The air diffuser 43 is disposed substantially concentrically with the tubular body 12 at a position within the tubular body 12 and at an arbitrary position in the vertical direction of the tubular body 12, for example, at a position near the downstream side of the rotating blade 33. Are located.
[0038]
The membrane separation means 16 is a solid-liquid separation means for taking out the wastewater after the purification treatment from the inside of the cylindrical body 12 as the final treated water while separating the activated sludge, and as shown in FIG. It has a membrane support plate 51, which is a fixed membrane support. The membrane support 51 is formed in a substantially circular ring shape having a plurality of holes by, for example, plastic or metal, and an inner peripheral surface of the membrane support 51 has a membrane surface 15 along a vertical plane. (For example, a membrane having a particle size of about 0.001 μm to 0.1 μm) to be separated.
[0039]
The ultrafiltration membrane 52 is formed, for example, of cellulose acetate, polyacrylonitrile, polyethersulfone, or the like into a substantially cylindrical shape having an inner diameter substantially the same as the inner diameter of the cylindrical body 12. The inner peripheral surface is located on substantially the same plane as the inner peripheral surface of the tubular body 12. The membrane surface 15 constituted by the ultrafiltration membrane 52 is disposed so as to be parallel to the flow direction of the drainage in the tubular body 12.
[0040]
Next, the operation and the like of the embodiment will be described.
[0041]
The wastewater to be purified containing organic matter, nitrogen, phosphorus, etc. is pretreated by the pretreatment means 2 and then introduced into the biological treatment facility 3, where the wastewater is subjected to biological treatment by activated sludge microorganisms. It is purified and released to public water bodies as final treated water.
[0042]
In this process, in the aerobic tank 7 of the biological treatment equipment 3, the driving of the driving means 31 of the circulating flow generating means 14 drives the rotating blades 33 to rotate in a predetermined direction to generate a downward flow A. A circulating flow passing through the passage 22 is generated throughout the reaction tank 11. Further, by driving the air supply means 41 of the oxygen supply means 19, air is supplied from each hole of the air diffuser 43 to the circulation flow path 22, and the inside of the reaction tank 11 is maintained in an aerobic state. Note that the air bubbles supplied to the circulation channel 22 are miniaturized by a shearing force based on the rotation of the rotary blade 33, and the dissolving efficiency of oxygen required for biological treatment is improved.
[0043]
Then, when the wastewater to be purified and sent from the oxygen-free tank 6 is introduced into the reaction tank 11, the wastewater becomes a circulating flow together with the activated sludge and circulates and flows in the reaction tank 11 while being agitated. Is purified.
[0044]
The treated water after the purification treatment is filtered at the membrane surface 15 of the membrane separation means 16, and the activated sludge in the treated water is separated and adheres to the membrane surface 15 once.
[0045]
However, the attached activated sludge is washed away by the downward flow (sweep along the membrane surface 15) A, which is a part of the circulation flow, and is separated from the membrane surface 15.
[0046]
The attached activated sludge is also separated from the membrane surface 15 when air bubbles from the oxygen supply means 19 come into contact with the membrane surface 15. In other words, the bubbles coming out of the holes opened downward to the air diffuser 43 directly reach the membrane surface 15 and come into contact therewith with their momentum, or accompany the downward flow A from above (upstream) the membrane surface 15. Bubbles come into contact with the membrane surface 15 (bubbles slide in parallel with the membrane surface 15), or bubbles accompanied by turbulence generated by the rotation of the rotating blades 33 contact the membrane surface 15 (bubbles are The activated sludge is effectively peeled off from the membrane surface 15 by, for example, colliding with the surface 15 from any direction. Since the air bubbles do not pass through the membrane surface 15, the stirring power can be used to the maximum extent.
[0047]
Therefore, accumulation of activated sludge on the membrane surface 15 is unlikely to occur, and the membrane surface 15 is not clogged. That is, since the membrane surface 15 is directly exposed to the liquid flow and the bubble flow in the cylindrical body 12, the activated sludge is hardly deposited on the membrane surface 15, and the membrane surface 15 is not clogged.
[0048]
On the other hand, the permeated water that has passed through the membrane surface 15 of the membrane separation means 16 is discharged to the public water area through the permeated water chamber 23 and the internal flow passage of the discharge pipe 17 as final treated water.
[0049]
According to the one embodiment, the membrane surface 15 of the membrane separation means 16 in the aerobic tank 7 of the biological treatment facility 3 is not easily clogged despite the simple configuration. , Suitable and advanced purification treatment.
[0050]
Further, since the circulation channel 22 is provided in the reaction tank 11, the reaction tank 11 is made compact. Further, the activated sludge in the wastewater is appropriately separated from the wastewater by the membrane separation means 16, and the activated sludge does not flow out of the reaction tank 11, so the sludge concentration in the reaction tank 11 is maintained at a high level. Carriers and the like can be made unnecessary, and advanced treatment can be performed in a relatively short time, so that a final sedimentation basin, which is required in the ordinary activated sludge method, is not required.
[0051]
The pretreatment means 2 is preferably one capable of removing contaminants having a size of 1 mm or more, such as a screen or a first sedimentation basin. However, it is preferable to directly flow sewage such as sewage and domestic wastewater into the reaction tank 11. It does not hinder.
[0052]
Further, the circulating flow generating means 14 has rotating blades 33 which are driven and rotated in the cylindrical body 12 to generate a downward flow A in the cylindrical body 12 and generate a circulating flow in the reaction tank 11. For example, although not shown, a rotating blade that drives and rotates in the cylindrical body to generate an upward flow in the cylindrical body and generate a circulating flow in the reaction tank 11 may be used.
[0053]
Further, the membrane separation means 16 is not limited to the membrane surface 15 constituted by the ultrafiltration membrane 52. For example, although not shown, a microfiltration membrane (for example, a separation target particle diameter of about 0.1 μm to 1 μm Film).
[0054]
Further, the water treatment apparatus 1 is not limited to an apparatus using an anaerobic / anoxic / aerobic method, and can be applied to any treatment method such as an activated sludge method, a carrier method, and an anaerobic treatment method.
[0055]
Further, oxygen supply means 19 such as aeration means for supplying a gas containing oxygen to a position in the tubular body 12 such that bubbles of the gas come into contact with the membrane surface 15 emerged from the hole of the diffuser 43. It is preferable to dispose the diffuser 43 at a position near the membrane surface 15 so that the air bubbles reach the membrane surface 15 directly and contact therewith, but the arrangement is not limited to this. It may be arranged at a position on the upstream side.
[0056]
【The invention's effect】
According to the first aspect of the present invention, a tubular body having both ends opened and arranged in the reaction vessel so that the axial direction thereof coincides with the vertical direction, and a circulating flow passing through the tubular body is generated in the reaction vessel. A simple configuration because it has a circulating flow generating means to be provided, and a membrane separation means arranged so that the membrane surface is located along the flow direction of the wastewater in the cylindrical body and which filters the wastewater in the cylindrical body. Thus, clogging of the membrane surface can be prevented, and appropriate purification processing can be performed. Furthermore, since placing the membrane separation means so that the film surface of the membrane separation means is located on the inner peripheral surface and substantially the same surface of the substantially cylindrical shape of the cylindrical body, more appropriately prevent clogging of the membrane surface it can.
[0057]
According to the second aspect of the present invention, a downward flow can be generated in the tubular body by the driving rotation of the rotary blade, and a circulating flow can be appropriately generated in the reaction tank.
[0058]
According to the third aspect of the present invention, an upward flow can be generated in the tubular body by the driving rotation of the rotary blade, and a circulating flow can be appropriately generated in the reaction tank.
[0059]
According to the fourth aspect of the present invention, since bubbles caused by gas from the oxygen supply unit come into contact with the membrane surface of the membrane separation unit, clogging of the membrane surface can be effectively prevented.
[0060]
According to the invention Motomeko 5, since the membrane surface of the membrane separation means are constituted by an ultrafiltration membrane, for example activated sludge in the waste water becomes to be properly separated, the sludge concentration in the reaction vessel Can be maintained at a high level, and advanced treatment can be performed in a relatively short time. For example, a final sedimentation basin required in the ordinary activated sludge method can be eliminated.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an aerobic tank in a water treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a membrane separation means of an aerobic tank in the same water treatment apparatus.
FIG. 3 is a conceptual diagram showing the whole of the water treatment apparatus.
[Explanation of symbols]
1 Water treatment equipment
11 Reaction tank
12 Cylindrical body
14 Circulating flow generation means
15 Membrane surface
16 Membrane separation means
19 Oxygen supply means
33 rotating blades
52 Ultrafiltration membrane

Claims (5)

浄化処理すべき排水を貯留する反応槽と、
この反応槽内に軸方向が上下方向に一致するように配置された両端面開口状の筒状体と、
この筒状体内を通る循環流を前記反応槽内に発生させる循環流発生手段と、
膜面が前記筒状体内の排水の流れ方向に沿って位置するように配置されこの筒状体内の排水をろ過する膜分離手段とを備え
前記筒状体は、略円筒形状に形成され、
前記膜分離手段は、前記膜面が前記筒状体の内周面と略同一面上に位置するように配置されている
ことを特徴とする水処理装置。
A reaction tank for storing wastewater to be purified,
A tubular body having an open end on both ends arranged so that the axial direction coincides with the vertical direction in the reaction tank;
Circulating flow generating means for generating a circulating flow through the cylindrical body in the reaction vessel;
Membrane separation means arranged so that the membrane surface is located along the flow direction of the wastewater in the cylindrical body, and filtration means for filtering the wastewater in the cylindrical body ,
The cylindrical body is formed in a substantially cylindrical shape,
The water treatment apparatus , wherein the membrane separation means is arranged such that the membrane surface is located substantially on the same plane as an inner peripheral surface of the tubular body .
循環流発生手段は、筒状体内で駆動回転してこの筒状体内に下向流を生じさせる回転羽根を有する
ことを特徴とする請求項1記載の水処理装置。
2. The water treatment apparatus according to claim 1, wherein the circulating flow generating means has a rotating blade that is driven and rotated in the cylindrical body to generate a downward flow in the cylindrical body.
循環流発生手段は、筒状体内で駆動回転してこの筒状体内に上向流を生じさせる回転羽根を有する
ことを特徴とする請求項1記載の水処理装置。
2. The water treatment apparatus according to claim 1, wherein the circulating flow generating means has a rotating blade that is driven and rotated in the cylindrical body to generate an upward flow in the cylindrical body.
酸素を含有する気体をこの気体による気泡が膜分離手段の膜面に接触するように筒状体内に供給する酸素供給手段を備える
ことを特徴とする請求項1ないし3のいずれか一記載の水処理装置。
The water according to any one of claims 1 to 3, further comprising an oxygen supply means for supplying a gas containing oxygen into the cylindrical body so that bubbles of the gas come into contact with the membrane surface of the membrane separation means. Processing equipment.
膜分離手段の膜面が限外ろ過膜にて構成されている
ことを特徴とする請求項1ないしのいずれか一記載の水処理装置。
The water treatment apparatus according to any one of claims 1 to 4 , wherein the membrane surface of the membrane separation means is constituted by an ultrafiltration membrane.
JP2002044553A 2002-02-21 2002-02-21 Water treatment equipment Expired - Fee Related JP3592677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002044553A JP3592677B2 (en) 2002-02-21 2002-02-21 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002044553A JP3592677B2 (en) 2002-02-21 2002-02-21 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2003245668A JP2003245668A (en) 2003-09-02
JP3592677B2 true JP3592677B2 (en) 2004-11-24

Family

ID=28659118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002044553A Expired - Fee Related JP3592677B2 (en) 2002-02-21 2002-02-21 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP3592677B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101376040B1 (en) * 2011-12-30 2014-03-19 주식회사 평화개발 Advanced wastewater treatment apparatus
KR101519824B1 (en) 2013-07-30 2015-05-14 코오롱글로벌 주식회사 Appratus preventing biocube screen from clogging
JP6172531B2 (en) * 2014-08-27 2017-08-02 Jfeエンジニアリング株式会社 Membrane separation activated sludge treatment equipment
JP6425067B2 (en) * 2014-09-16 2018-11-21 Jfeエンジニアリング株式会社 Membrane separation activated sludge treatment system
JP6300103B2 (en) * 2014-11-07 2018-03-28 Jfeエンジニアリング株式会社 Membrane separation activated sludge treatment equipment
KR102480266B1 (en) * 2021-12-22 2022-12-23 (주)우진 Air supply system for bioreactor

Also Published As

Publication number Publication date
JP2003245668A (en) 2003-09-02

Similar Documents

Publication Publication Date Title
KR100805866B1 (en) Separation membrane device, and wastewater processing apparatus employing the same
JPH07155758A (en) Waste water treating device
JP4059790B2 (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP3963497B2 (en) Organic wastewater treatment method and apparatus
JP3592677B2 (en) Water treatment equipment
JPS61274799A (en) Apparatus for treating waste water
JP3832232B2 (en) Membrane separator
JPH04290590A (en) Membrane separator in septic tank
WO2018096583A1 (en) Microorganism reaction vessel and method for treating wastewater
JP2004321908A (en) Sewage treatment apparatus and sewage treatment method
JPH11226317A (en) Apparatus and method for rotary disc type solid and liquid separation
JP2003080286A (en) Water treatment equipment and screen for the same
JP2003033764A (en) Method and apparatus for washing filtration body by using ozone
JP2004249235A (en) Membrane separation device of activated sludge treatment system, membrane separation method, and activated sludge treatment system equipped with membrane separation device
JP2587793B2 (en) Rotating flat membrane separator
JPH09117794A (en) Biological denitrification device
KR20010068850A (en) The system to treat the sanitary sewage,wastewater by the membrane separator activated sludge process and the advanced oxidation process
JP4268418B2 (en) Water treatment system and water treatment method using oxidation ditch method
JP2001062480A (en) Treatment of sewage
JP2018140388A (en) Wastewater treatment apparatus
JP2002316189A (en) Biological treatment apparatus and autotrophic sulfur denitrification method
KR100506008B1 (en) Woven tubular fiber membrane module for waste water treatment system
JP2000000593A (en) Sewage treatment equipment
JPH06134265A (en) Throwing-in type solid-liquid separator
JP2006247481A (en) Membrane treatment apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees