WO2018096583A1 - Microorganism reaction vessel and method for treating wastewater - Google Patents

Microorganism reaction vessel and method for treating wastewater Download PDF

Info

Publication number
WO2018096583A1
WO2018096583A1 PCT/JP2016/084606 JP2016084606W WO2018096583A1 WO 2018096583 A1 WO2018096583 A1 WO 2018096583A1 JP 2016084606 W JP2016084606 W JP 2016084606W WO 2018096583 A1 WO2018096583 A1 WO 2018096583A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
sludge
cylindrical
treated
raw water
Prior art date
Application number
PCT/JP2016/084606
Other languages
French (fr)
Japanese (ja)
Inventor
藤野 清治
Original Assignee
日本アルシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本アルシー株式会社 filed Critical 日本アルシー株式会社
Priority to PCT/JP2016/084606 priority Critical patent/WO2018096583A1/en
Priority to TW106100490A priority patent/TW201819314A/en
Publication of WO2018096583A1 publication Critical patent/WO2018096583A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a microorganism reaction tank and a wastewater treatment method using the microorganism reaction tank.
  • Wastewater containing high concentrations of nitrogen, phosphorus, organic substances and other pollutants that increase biochemical oxygen demand (hereinafter referred to as BOD) and suspended solids concentration (hereinafter referred to as SS) can cause river pollution and red tides. It is a cause of environmental pollution.
  • BOD biochemical oxygen demand
  • SS suspended solids concentration
  • a so-called modified Bernard method which is one of aerobic and anaerobic circulation methods, is known as a method for treating wastewater containing such high-concentration pollutants. This method uses the first denitrification tank and the second denitrification tank located before and after the first nitrification tank in the activated sludge treatment process in order to reuse the alkali liberated during the denitrification reaction in the nitrification reaction.
  • the wastewater treatment by this method has the following problems.
  • the nitrification reaction depends on the pH, the nitrification reaction becomes slower when the pH decreases. As a result, the activated sludge treatment becomes insufficient, and phosphorus removal and the like become insufficient.
  • the present inventor has a microorganism reaction tank capable of efficiently performing activated sludge treatment of waste water containing pollutants such as high concentration nitrogen components, phosphorus components, and organic substances, and A wastewater treatment method using the same has been proposed (Patent Document 1).
  • This microbial reaction tank is provided with an inner tank having a nitrification reaction part and a denitrification reaction part connected to each other by turbine blades.
  • anaerobic / aerobic microbial treatment of treated raw water can be continuously performed while maintaining a high circulation rate in the tank, and the cylindrical inner tank can be simplified.
  • a microorganism reaction tank has been proposed that can be easily installed even if the capacity of the reaction tank is increased by adopting a simple shape (Patent Document 2).
  • Patent Document 2 A microbial reaction tank that can be installed in a part of an accommodation facility such as a hotel and can reuse treated wastewater, and a microbial reaction tank therefor. The purpose is to provide the wastewater treatment method used.
  • the microorganism reaction tank of the present invention includes an outer tank, a cylindrical inner tank disposed inside the outer tank and having openings on the upper and lower sides, and an in-tank circulation of water to be treated provided on the upper part of the cylindrical inner tank.
  • a circulation rate control device for controlling the rate a cylindrical control plate for allowing sludge to settle by placing an open lower surface close to the inclined surface of the upper outer periphery of the cylindrical inner tub, and
  • This microbial reactor has the following characteristics.
  • the said cylindrical inner tank is divided
  • the upper part of the cylinder has a truncated cone-shaped top part with an open top and bottom surface, the inclination angle of the height direction cross section passing through the center of the truncated cone is 40 degrees to 60 degrees, and the upper part of the cylinder
  • a plurality of air blowing openings are provided around the communication hole and in the peripheral edge of the partition wall, and are provided in the cylindrical inner tank by a plurality of support columns that are fixed and erected on a base that is a bottom surface of the outer tank.
  • the aerobic microorganism processing tank arrange
  • the cylindrical lower part is an anaerobic microorganism treatment tank having an opening on the bottom surface.
  • the raw water supply ports are a plurality of discharge ports or slits provided in an annular raw water supply unit disposed below the opening of the anaerobic microorganism treatment tank.
  • At least one settling-immobilization preventing device selected from a scraper and a stirring flow generator for preventing settling of the settled sludge is provided in the lower part of the outer tank where the sludge settles.
  • Means and means for controlling the circulation rate in the tank to be treated to 3 to 20 in accordance with the measured value detected by the means are provided in the circulation rate control device. It is a device that controls at least one amount selected from the opening / closing of the adjustment valve, the rotation or vertical movement of the liquid level adjustment control plate, and the amount of air blown from the air blowing port.
  • the to-be-processed water circulation rate in a reaction tank means the quantity defined by following Formula.
  • Rate of treated water circulation amount of treated water discharged from the upper part of the inner tank (m 3 / day) / raw water supply (m 3 / day) (7)
  • a membrane separation device is provided in the microorganism reaction tank or outside the tank and capable of filtering treated water.
  • the raw water supplied from the raw water supply port passes through the inside of the cylindrical inner tank together with the activated sludge, the outer peripheral surface of the cylindrical inner tank, and the activated sludge settled in the lower part of the outer tank.
  • the anaerobic microorganism treatment and the aerobic microorganism treatment are continuously performed by circulating the gas.
  • the wastewater treatment method of the present invention is a circulating wastewater treatment method including an activated sludge treatment step using the microorganism reaction tank of the present invention.
  • This waste water treatment method includes the following steps. (1) supplying wastewater discharged from the sewage discharge source to the raw water aeration control tank; (2) In the raw water aeration adjusting tank, after adjusting the aeration so that the oxidation-reduction potential becomes a positive value, supplying the adjusted treated raw water to the microorganism reaction tank; (3) an activated sludge treatment step in which anaerobic and aerobic microorganism treatment is continuously performed in the microorganism reaction tank; (4) supplying the sludge generated from the microorganism reaction tank to the raw water aeration adjustment tank; (5) A step of returning the treated water introduced into the membrane separation apparatus and separated by the apparatus to the wastewater discharge source.
  • a cylindrical inner tank disposed inside is divided into an upper part of the cylinder and a lower part of the cylinder by a partition wall having a communication hole in the center, and therefore contains a high-concentration pollutant.
  • Anaerobic / aerobic microbial treatment of raw water can be continuously performed while maintaining a high circulation rate in the tank.
  • the settling immobilization prevention device is provided, sludge can be prevented from being settled and fixed in the lower part of the microorganism reaction tank.
  • anaerobic / aerobic microbial treatment of raw water containing high-concentration pollutants can be continuously performed while maintaining a high circulation rate in the tank, and the cylindrical inner tank can be made into a simple shape.
  • the microbial reaction tank can be easily installed. Furthermore, since the membrane separation device capable of filtering the treated water is provided, the amount of the treatment liquid in the microorganism reaction tank can be reduced, so that the microorganism reaction tank can be further miniaturized and the treated water can be reused as domestic water.
  • the above-described miniaturized microbial reaction tank can be easily installed in a site such as an accommodation facility, and the circulation of the present invention includes a membrane separation device capable of filtering treated water.
  • the circulation of the present invention includes a membrane separation device capable of filtering treated water.
  • FIG. 1 is a cross-sectional view of a microbial reaction tank.
  • the microbial reaction tank 1 includes an outer tank 2, a cylindrical inner tank 3 disposed in the outer tank 2, a circulation rate control device 4 provided on the upper part of the cylindrical inner tank 3, and a cylindrical shape
  • the cylindrical control board 5 provided in the outer peripheral side of the inner tank 3 and the to-be-processed water quality measuring apparatus 6 are comprised.
  • the sludge extraction port 13 can be provided.
  • the water tank volume of the microbial treatment equipment is not limited, and it can be applied from a small scale to a large scale, but the effect is remarkably exhibited when the microbial reaction tank 1 is 20 m 3 or more. It is preferably applied to a microbial reactor having an internal volume of 30 to 6000 m 3 . When the volume of the treatment tank exceeds 6000 m 3 , it becomes difficult to create a circulating flow. Moreover, in the case of a small scale of less than 20 m 3 , the advantage of circulating the sludge up and down in the microorganism reaction tank 1 is reduced.
  • the outer tub 2 has a true cylindrical appearance including a cylindrical side surface 2b and an upper surface portion 2c on a base 2a serving as a bottom surface.
  • a rotating shaft 7 for attaching a stirring blade or the like is provided at the center of the cylinder.
  • the rotary shaft 7 is rotatably fixed by a frame 2d provided at the center of the circle of the base 2a and a bearing 2e provided at the center of the circle of the upper surface portion 2c.
  • the rotating shaft 7 is rotated by the driving device 2f.
  • the upper surface portion 2c fixes the rotating shaft 7 rotatably, and holds the cylindrical inner tank 3 with a support or the like.
  • a raw water supply port 10 is provided at the bottom of the outer tub 2 and below the cylindrical inner tub 3.
  • the raw water supply port 10 includes a plurality of discharge ports 10b or slits provided in the annular raw water supply unit 10a, which are disposed below the lower opening 3f of the cylindrical inner tank 3. By disposing the raw water supply port 10 in this way, the anaerobic sludge is sufficiently stirred.
  • the raw water supply port 10 can be provided in addition to the lower part of the cylindrical inner tank 3 as long as it is a circulation path of the water to be treated.
  • the upper part of the outer tank 2 is provided with a treated water discharge port 11 for discharging purified treated water and a membrane separator 14 capable of filtering the treated water, and sedimentation of settled sludge is performed on the inner and outer surfaces of the outer tank.
  • a settling immobilization prevention device 12 is provided for preventing immobilization.
  • the arrangement position of the membrane separation device 14 is shown in FIG.
  • a plurality of membrane separation devices 14 shown in FIG. 2 are preferably arranged as a submerged membrane separation device that is used by being immersed in a purified treated water region in the upper part of the outer tub 2.
  • the membrane separation device 14 in the present invention is arranged to further purify treated water rather than separating activated sludge and treated water in a so-called membrane separation activated sludge method (hereinafter also referred to as MBR method).
  • MBR method membrane separation activated sludge method
  • the activated sludge and the treated water include an inclined surface 3h formed in the upper part 3c of the cylindrical inner tank and an inclined surface 3h set to 40 to 60 degrees, and the inclined surface 3h.
  • the sludge sedimentation is further accelerated by the boycott effect due to the interaction with the lower surface 5a of the cylindrical control plate 5 disposed in close proximity to each other. Therefore, there is almost no activated sludge in the purified treated water region in the upper part of the outer tank 2 where the membrane separation device 14 is disposed.
  • the membrane separation device 14 can be separately provided outside the microorganism reaction tank 1. In that case, the discharge water discharged from the treated water discharge port 11 can be filtered and circulated by a membrane separation device provided outside the microorganism reaction tank.
  • a plurality of membrane elements 14b are arranged in the frame body 14a.
  • a part 14c of the frame 14a has an opening, and the treated water in the microbial reaction tank flows into the opening through the membrane element 14b and becomes treated water that can be used as domestic water. It is discharged from 14d.
  • An air diffuser (not shown) can be disposed around the membrane element 14b, and a part of the air sent to the air blowing port 8 can be used. Further, an ultrasonic vibration device can be used in combination.
  • the submerged membrane separator 14 can use not only a flat plate type but also a hollow fiber membrane module.
  • the material of the membrane element 14b is polyethylene, polypropylene, polysulfone, polyethersulfone, polyvinyl alcohol, cellulose acetate, polyacrylonitrile, chlorinated polyethylene, polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethyne, aliphatic polyamide, aromatic Group polyamide, polyethylene terephthalate, and composite films thereof.
  • a known MF membrane microfiltration membrane: pore size: 0.01 ⁇ m to 10 ⁇ m
  • UF membrane ultrafiltration membrane: pore size: 0.001 ⁇ m to 0.01 ⁇ m
  • a settling immobilization preventing device 12 for preventing settling of settled sludge will be described below with reference to FIGS.
  • the anti-settling device 12 include a scraper or a stirring flow generation device, and may be a single device or a combination thereof.
  • Scraper provided on the inner wall of the lower part of the outer tank in which sludge settles
  • FIG. 1 An example of a cross-sectional view of a microorganism reaction tank provided with a scraper is shown in FIG.
  • a moving device 12e capable of moving along the upper peripheral edge of the outer tub is attached to the upper peripheral edge of the outer tub, and a scraper 12d is attached to the tip of the moving device 12e.
  • the movement of the scraper 12d may be a moving device 12e capable of traveling along the upper peripheral edge of the outer tub, or may be a mechanical rotary moving device that rotates on the upper peripheral edge of the outer tub.
  • FIG. 4 and FIG. 4 is a cross-sectional view of a microorganism reaction tank provided with a movable fluid spray nozzle that sprays fluid while moving on the inclined surface of the inner wall, and FIG. 5 is fixed to the inclined surface of the inner wall at a predetermined interval. It is a figure which shows the example of the fluid spray nozzle.
  • the nozzle 12f arranged on the inclined surface at the lower part of the inner wall of the outer tank shown in FIG. 4 sprays the fluid sent from the blower or pump mounted on the moving device 12e attached to the upper peripheral edge of the outer tank to the accumulated sludge. be able to.
  • Examples of the fluid include air, water, and sludge.
  • a fluid from the nozzle 12f By spraying a fluid from the nozzle 12f on the accumulated sludge, it is possible to impart fluidity to the deposited sludge and prevent sedimentation and fixation of the sludge.
  • a plurality of nozzles 12g shown in FIG. 5 are arranged at a predetermined interval in the circumferential direction of the inclined surface of the lower part of the inner wall of the outer tank where fluid can be sprayed uniformly on the sludge accumulated in advance.
  • a plurality of them are arranged at a predetermined interval in the inclination direction of the inclined surface of the lower part of the inner wall of the outer tank.
  • the fixed nozzle 12g has a structure in which a nozzle is provided above the inclined surface of the lower inner wall of the outer tank and the piping is installed in the direction of the circulating flow so as not to inhibit the circulating flow of sludge as much as possible.
  • the discharge pump provided with the suction nozzle which sucks the sludge settled in the outer tank lower part, and the discharge port which discharges the sucked sludge in an anaerobic microorganisms processing tank instead of the nozzle 12g.
  • the discharge pump is fixedly arranged, it is important to install the discharge pump in a method that does not hinder the sludge circulation flow. For example, all the pump pipes are installed in parallel with the flow direction of the sludge circulation.
  • the cylindrical inner tub 3 is disposed in the outer tub provided with the settling and fixing prevention device 12.
  • the cylindrical inner tank 3 having a substantially circular cross section is divided into a cylindrical upper part 3c and a cylindrical lower part 3d by a partition wall 3a.
  • a communication hole 3b is provided in the central portion of the partition wall 3a to connect the cylindrical upper part 3c and the cylindrical lower part 3d.
  • the aerobic microorganism treatment reaction can be sufficiently performed in the cylindrical upper portion 3c, and the anaerobic microorganism treatment reaction can be sufficiently performed in the cylindrical lower portion 3d.
  • the communication hole 3b has a diameter that allows the activated sludge treated with anaerobic microorganisms to move from the cylindrical lower part 3d to the cylindrical upper part 3c, which is an aerobic microorganism treatment part.
  • the diameter of the communication hole 3b is adjusted by the volume of the microorganism reaction tank, the nature and amount of raw water to be treated, and the like.
  • the cylindrical upper part 3c has a truncated cone-shaped top with an open top and bottom. That is, it is a shape in which the tip of the cylindrical portion is reduced in diameter by a predetermined angle in the height direction.
  • the inclination angle of the cross section in the height direction passing through the center of the truncated cone is 40 to 60 degrees, preferably 45 degrees.
  • the cylindrical upper portion 3c is an aerobic microorganism treatment tank in which air blowing ports 8 and 8a are provided.
  • the air blowing port 8 is provided around the central shaft 7 and around the communication hole 3b, and can be fixed on the partition wall 3a by a support pillar (not shown). It is preferable that the air outlet of the air inlet 8 is preferably disposed downward because it can contribute to the agitation of the water to be treated and sludge in the aerobic tank.
  • the air blowing port 8a has a plurality of air holes 8c or air blowing portions 8b provided in the air blowing portion 8b. It can be made into the slit formed in the upper surface or side surface of this.
  • the amount of water to be treated is varied within the range of 3 to 20 without using a circulation pump, depending on the amount of air blown from the air blowing ports 8 and 8a and the control amount of the circulation rate control device described later.
  • Can do Thereby, the aerobic microorganism treatment by an appropriate nitrification condition and the anaerobic microorganism treatment by an appropriate denitrification condition can be easily set. Furthermore, because the sludge solid-liquid separation is made very efficient by the forced sedimentation principle on the outer peripheral surface of the aerobic microorganism treatment tank having the above-mentioned inclination angle, the aerobic / anaerobic microorganism treatment reaction is efficiently carried out in the same vertical tank. Can be done. In the aerobic tank, an alkali supply port or an acid supply port (not shown) can be provided.
  • the cylindrical lower part 3d is an anaerobic microorganism treatment tank having a volume that is 1/10 to 1 times the volume of the upper part of the cylinder. Within this volume range, for example, an aerobic microbial treatment reaction and an anaerobic microbial treatment reaction of raw water containing a high-concentration nitrogen-containing pollutant can be efficiently performed.
  • a denitrifying nutrient supply port (not shown) can be provided in the anaerobic microorganism treatment tank.
  • the volume of the anaerobic microorganism treatment tank is made larger than that of the aerobic microorganism treatment tank.
  • the shape of the cylindrical lower portion 3d is a shape having an inverted truncated cone shape having an opening 3f having a larger area than the opening 3e of the cylindrical upper portion 3c at the lower portion of the cylinder. That is, it is a shape in which the tip of the cylindrical portion is reduced in diameter by a predetermined angle in the lower direction. By increasing the area of the opening 3f, the sludge can be easily stirred in the anaerobic microorganism treatment tank.
  • the shape of the cylindrical lower portion 3d is the inverted truncated cone shape, it is preferable that the lower inner surface 2g of the outer tub 2 has the same angle as the predetermined angle because it is possible to prevent sludge from being settled and fixed.
  • the cylindrical inner tank 3 is provided with a stirring device for sufficiently carrying out the treatment reaction between the water to be treated and the activated sludge in the aerobic microorganism treatment tank as the cylinder upper part 3c and in the anaerobic microorganism treatment tank as the cylinder lower part 3d.
  • the stirring device is preferably a stirring blade 7a or 7b fixed to a rotary shaft 7 attached to the center of the cylindrical inner tank 3.
  • the stirring blade 7a is preferably provided in the cylindrical upper part 3c, and a turbine blade capable of sufficiently performing the aerobic microorganism treatment reaction is preferable.
  • any shape can be used as long as the number of rotations at which the aeration performance is not significantly lowered by the amount of air blown is relatively small and the air and water can be mixed.
  • Any stirring blade can be used as long as the stirring blade 7b is provided in the cylindrical lower part 3d and can sufficiently perform the anaerobic microorganism treatment reaction, but a turbine blade or a propeller blade is preferable.
  • the partition wall 3 a provided in the cylindrical inner tub 3 is supported by a plurality of support columns 9 that are fixed and erected on the base 2 a that is the bottom surface of the outer tub 2. Due to the buffer effect of the plurality of support columns 9, the stirring flow in the anaerobic microorganism treatment tank is disturbed, and the stirring in the tank is efficiently performed.
  • the cylindrical inner tank 3 is held in the outer tank by a support by the support column 9 and a support tool bridged to the upper part of the outer tank 2.
  • a circulation rate control device 4 for controlling the circulation rate of the water to be treated in the reaction tank is provided on the upper part of the cylindrical inner tank 3.
  • the circulation rate control device 4 includes a liquid level adjustment valve and / or liquid level adjustment control plates 4a and 4b provided on a concentric cylinder.
  • the liquid level adjustment control plates 4a and 4b are formed with longitudinal slits in both or one of them. Specifically, the control of the circulation rate in the reaction tank of the water to be treated is performed by opening and closing the liquid level adjustment control plates 4a and 4b in which longitudinal slits are formed on both sides, or the liquid level adjustment control plate 4a.
  • And 4b are formed by mutual vertical movement of a liquid level adjustment control plate in which a vertical slit is formed on one side and no slit is formed on the other side.
  • the level of the water to be treated is lowest when the liquid level control valve is fully opened, when the slit of the liquid level control plate is fully opened, or when the liquid level control plate without slits is moved up and down.
  • the water level is indicated by A.
  • the control of the circulation rate in the reaction tank can also be controlled by the amount of air blown from the air blowing port 8 and / or 8a. Increasing the amount of air blown increases the circulation rate. It is also possible to combine opening / closing of the liquid level control valve and air amount control.
  • the air blowing port 8a is provided with an air blowing portion 8b having an annular shape in plan view, which is in communication with an external blower or the like around the stirring blade 7a in an aerobic portion which is the upper surface of the partition wall 3a.
  • the part 8b is provided with a hole or a slit. This not only simply increases the amount of air, but also exhibits a baffle effect of the stirring blade 7a, and exhibits a synergistic effect that allows efficient stirring.
  • the circulation rate of the water to be treated can be changed without using a pump.
  • the water to be treated is treated from the aerobic microorganism treatment tank 3c to the anaerobic microorganism treatment tank 3d through the cylindrical control plate 5 disposed outside the tank, and further from the anaerobic microorganism treatment tank 3d.
  • denitrification, dephosphorization, etc. are performed. Therefore, optimal denitrification, dephosphorization, etc. can be performed by controlling the circulation rate of the water to be treated based on a predetermined control program according to the detected value.
  • a cylindrical control plate 5 is disposed on the upper outer periphery of the cylindrical inner tank 3.
  • the cylindrical control plate 5 is a cylinder whose upper and lower surfaces are open, and the lower surface 5 a of the cylindrical control plate 5 is disposed close to the inclined surface 3 h of the cylindrical inner tank 3.
  • a sludge sedimentation portion is formed in the inclined surface portion disposed close to the slurry, and sludge is concentrated and treated water is separated. Moreover, the rapid forced sedimentation of sludge is attained by arrange
  • the shape of the cylindrical control plate 5 can be a right cylindrical shape in which the opening surfaces of the upper surface and the lower surface have the same area, or an inverted truncated cone shape in which the opening area of the upper surface is larger than the opening area of the lower surface.
  • a water quality measuring device 6 to be treated is provided inside and outside the cylindrical inner tank 2.
  • This to-be-processed water quality measuring apparatus 6 is an apparatus which measures pH, ORP, and DO of to-be-processed water.
  • the circulation rate of water to be treated in the microbial reaction tank of the present invention is 3 to 20, preferably 5 to 20. If the circulation rate of the treated water is less than 3, the aerobic microbial treatment reaction is more likely to occur, and if it exceeds 20, the balance between the aerobic microbial treatment reaction and the anaerobic microbial treatment reaction is lost, and the raw water is denitrified and dehydrated. Unable to perform phosphorus. That is, by setting the treated water circulation rate within this range, the ORP of the treated water measured by the treated water quality measuring device is ⁇ 10 mV or less, preferably ⁇ 50 mV or less, and the aerobic microorganism treatment in the anaerobic microorganism treatment reaction tank.
  • the reaction vessel In the reaction vessel, it can be maintained at +10 mV or more, preferably +100 mV or more. As a result, the aerobic microorganism treatment reaction and the anaerobic microorganism treatment reaction are sufficiently performed, and denitrification and dephosphorization are continuously performed. Under such conditions, the pH in the aerobic microorganism treatment reaction tank is in the range of 4.5 to 8.5, preferably 5.5 to 7.5.
  • the wastewater treatment method using the microbial reaction tank 1 is a wastewater treatment method for treating raw water by a treatment process including an activated sludge treatment process, and the activated sludge treatment process includes a sludge circulation process for forming a circulation flow of activated sludge, And a raw water addition step of adding raw water into the circulation flow of the activated sludge.
  • the activated sludge circulation flow circulates from the anaerobic microorganism treatment tank through the aerobic microorganism treatment tank, the treated water is separated at the sludge sedimentation section, and the sludge is concentrated, and this concentrated sludge is treated with the anaerobic microorganism. It is a circulating flow sent to the tank.
  • the said activated sludge process process is a sludge circulation process and raw
  • the wastewater treatment method using the microbial reaction tank 1 has the following excellent characteristics as compared with the conventional wastewater treatment method.
  • raw water and return sludge are mixed in a certain ratio and flow into the aeration tank, and then the returned sludge in contact with the sludge and treated water are separated in the sedimentation tank, which is the next step.
  • the activated sludge mixed with the first contact and the raw water are discharged, the raw water is pushed out and flows only by contacting with the same activated sludge bacteria.
  • the waste water treatment method using the microbial reaction tank 1 is a method in which a circulating flow of activated sludge circulating up and down is formed, and raw water is added to the circulating flow.
  • the sludge circulation flow is formed by using the upflow by aeration air used for microbial treatment without using a circulation pump to make the circulation flow of activated sludge. Furthermore, it is the processing method which can implement aeration of an aerobic microorganism processing tank efficiently.
  • the raw water may be added anywhere in the circulation flow path, but is preferably an aerobic microorganism treatment tank. More preferably, an anaerobic microorganism treatment tank is suitable.
  • the treated water is at least BOD is 800 mg / L or more and the total nitrogen amount (hereinafter referred to as TN) is 40 mg / L or more.
  • the BOD is usually very low, 20 mg / L or less, and generally the water quality of the discharged water can be operated at a BOD of 10 mg / L or less.
  • the contact between the sludge and the raw water becomes insufficient, and Adsorption may be insufficient. In that case, contaminated substances in the raw water which is partially untreated may be mixed with the treated water, resulting in deterioration of the treated water.
  • raw water can be added to the sludge sedimentation part in the circulation flow path, for example, as a primary treatment facility such as sewage discharge with a BOD of 300 mg / L or less or 600 mg / L or less. There is a case.
  • FIG. 6 is a diagram showing a circulation path of the water to be treated and the activated sludge in the microorganism reaction tank 1.
  • the hatched portion is a portion where the concentration of activated sludge is high, and the arrows indicate the circulation direction of the treated water and activated sludge.
  • Raw water as water to be treated containing a pollutant whose solid content has been separated by a wedge wire screen or the like is continuously supplied from a raw water supply port 10 provided at the bottom of the microorganism reaction tank 1.
  • raw water examples include raw water containing BOD of 800 mg / L or more, chemical oxygen demand (hereinafter referred to as COD) of 300 mg / L or more, and TN of 40 mg / L or more. It is also suitable for treating raw water containing a normal hexane extract oil concentration (hereinafter referred to as n-Hex) in the range of 50 mg / L or more.
  • COD chemical oxygen demand
  • n-Hex normal hexane extract oil concentration
  • the microorganism reaction tank 1 contains activated sludge in an amount of 5,000 to 12,000 mg / L in terms of solid content, and the raw water first comes into contact with the activated sludge in an anaerobic state within the cylindrical lower part 3d, and the denitrification reaction is performed. Done.
  • the raw water to be treated supplied from the raw water supply port 10 and the circulated activated sludge are circulated in the lower part 3d of the cylinder by the rotation of the stirring blades or the air blown from the air diffuser to undergo anaerobic microorganism treatment reaction.
  • the raw water and the activated sludge move through the communication hole 3b to the cylindrical upper portion 3c into which air is blown, and in contact with the activated sludge in the cylindrical upper portion 3c in an aerobic state, the rotation of the stirring blade or the air blowing port
  • the nitrification reaction which is an aerobic microorganism treatment reaction, proceeds in the cylindrical upper part 3c.
  • the pH of the treated water decreases.
  • the pH, ORP, and DO of the liquid to be treated are measured by the treated water quality measuring device 6, and the circulation amount of the raw water or the water to be treated is determined based on these values.
  • the amount of air blown is adjusted so that the ORP can be maintained at +10 mV or more in the aerobic reaction processing section where the nitrification reaction is performed and ⁇ 10 mV or less in the anaerobic reaction processing section where the denitrification reaction is performed.
  • the circulation amount can be easily achieved by controlling the air amount and / or the circulation rate control device without using a circulation pump or the like.
  • the wastewater treatment method of the present invention is an energy-saving wastewater treatment method.
  • the equipment including the microbial reaction tank of the present invention can adjust each unit of the microbial reaction, it is easy to program these controls in advance and automatically operate unattended. Have.
  • the circulation rate is controlled by the circulation rate control device 4, and the treated water and a part of the activated sludge discharged from the upper part of the cylindrical upper part 3c flow down the frustoconical outer peripheral surface having an inclination angle of about 45 degrees.
  • the treated water and activated sludge that have flowed out pass through the cylindrical control plate 5 disposed close to the inclined surface of the frustoconical outer peripheral surface and the sludge concentrating portion 5b formed by the inclined surface.
  • rapid forced sedimentation of activated sludge becomes possible.
  • separation of the purified treated water and activated sludge is facilitated, and the separated treated water is discharged from the treated water discharge port 11 or filtered through the membrane separation device 14 to be discharged or reused.
  • the activated sludge that has been rapidly forced to settle is concentrated and deposited between the inner surface of the outer tank and the outer peripheral surface of the inner tank.
  • the accumulated activated sludge moves to the anaerobic microorganism treatment reaction section while mixing with the water to be treated and circulates in the microorganism reaction tank.
  • the wastewater treatment method of the present invention can easily absorb fluctuations in the load of raw water by circulating the inside of an anaerobic / aerobic tank at a circulation rate of 3 to 20 while the activated sludge is concentrated. Further, since the circulation rate is maintained within this range, the activated sludge is acclimatized and becomes an activated sludge that is optimal for wastewater treatment.
  • the wastewater treatment method using the microbial reaction tank of the present invention may use one microbial reaction tank or a plurality of microbial reaction tanks.
  • the discharged water from the first tank is introduced into the raw water supply port of the second tank.
  • the ratio of the volume of the nitrification reaction part and the volume of the denitrification reaction part in the second tank can be changed more effectively by changing the ratio in the first tank.
  • Waste water treatment can be performed. Specifically, denitrification and dephosphorization can be performed by making the volume ratio smaller than that of the first tank.
  • the wastewater treatment method using the microorganism reaction tank of the present invention can be performed in combination with a conventional wastewater treatment method.
  • a wastewater treatment facility consisting of an existing aerobic nitrification tank and an anaerobic denitrification tank
  • by supplying the effluent from each tank to the microbial reaction tank of the present invention more effectively digesting pollutants and Denitrification and dephosphorization can be performed.
  • FIG. 7 shows a block diagram of the circulating wastewater treatment method of the present invention.
  • the wastewater discharged from the sewage discharge source 15 circulates through the microbial reaction tank 1, thereby providing a wastewater treatment method that leads to saving of water resources.
  • the sludge generated in the microorganism reaction tank 1 is digested in the process of circulating between the raw water aeration control tank 16 and the surplus sludge amount is not substantially discharged.
  • each process is demonstrated in order.
  • Step 1 is a step of supplying wastewater discharged from the sewage discharge source 15 to the raw water aeration adjusting tank 16.
  • Examples of the sewage discharge source 15 include accommodation facilities such as hotels.
  • the waste water discharged from the sewage discharge source 15 includes water for daily use mainly used in toilets, hand washing, baths and the like, and is stored in the waste water storage tank 15b.
  • Step 2 the wastewater discharged from the sewage discharge source 15 and the sludge supplied in step 4 are mixed and adjusted in the raw water aeration adjustment tank 16 so that the ORP of the wastewater becomes a positive value.
  • This is a step of supplying the treated raw water to the microbial reaction tank 1.
  • activated sludge treatment can be performed in which hydrogen sulfide, ammonia, mercaptan, etc., which cause bad odor, are oxidized and odor is hardly emitted.
  • the aeration process in the raw water aeration control tank 16 is performed by an aeration process in which the residence time of the wastewater is 3 hours or more, preferably 5 hours or more.
  • Aeration treatment is performed in the presence of sludge, and wastewater containing sludge is supplied to the microorganism reaction tank as treated raw water.
  • Step 3 is an activated sludge treatment step in which anaerobic and aerobic microorganism treatment is continuously performed in the microorganism reaction tank 1.
  • the treated raw water is subjected to aeration treatment in the raw water aeration adjusting tank 16, and the pH is naturally adjusted by the pH buffering action of the microorganisms.
  • the anaerobic microbial treatment in the microbial reactor 1 refers to a treatment in a state where DO is less than 0.05 mg / L
  • the aerobic microbial treatment refers to DO of 0.05 mg / L or more, preferably 0.1 mg. / L or more, more preferably treatment in a state of 0.2 mg / L or more.
  • the microbial reaction tank 1 anaerobically and aerobically digests the sludge contained in the treated raw water, and decomposes most of the pollutants adsorbed by the sludge into gases such as carbon dioxide, water, nitrogen gas, and methane gas.
  • gases such as carbon dioxide, water, nitrogen gas, and methane gas.
  • Step 4 is a step of supplying sludge generated by the microorganism reaction tank 1 to the raw water aeration control tank 16.
  • the raw water aeration tank 16 can be obtained by adding air blowing equipment to an existing raw water tank when renovating the existing wastewater treatment equipment. A large solid content in the wastewater to be treated is removed with a screen or the like and stored in the raw water aeration control tank as the raw water to be treated.
  • the raw water aeration tank 16 is supplied with the sludge generated in the microbial reaction tank 1 and stirred and mixed with the wastewater discharged from the wastewater discharge source 15 to destroy the refractory substances and activated sludge in the wastewater.
  • a pollutant that tends to cause abnormal treatment of activated sludge is contacted and adsorbed on the sludge. Since this sludge is the sludge treated in the microbial reaction tank 1, it is an activated sludge fungus suitable for the wastewater to be treated. For this reason, by supplying the sludge to the wastewater, the activity of the activated sludge is maintained at a high level, so that the occurrence of abnormal phenomena during the activated sludge treatment in the microorganism reaction tank is reduced, and the treatment can be stabilized. In addition, when there exists sludge which is difficult to process, it is extracted as excess sludge.
  • the sludge supplied to the raw water aeration adjustment tank 16 is supplied in a range where the sludge concentration in the raw water aeration adjustment tank 16 is 500 to 8000 mg / L as MLSS. Preferably, it is supplied in a range of 1000 to 5000 mg / L.
  • the MLSS is less than 500 mg / L, the sludge cannot adsorb the pollutant that adversely affects the activated sludge, so that the activated sludge treatment becomes unstable.
  • MLSS exceeds 8000 mg / L, the sludge will adsorb most of the pollutants, and the biochemical oxygen demand (hereinafter referred to as BOD) contained in the treated raw water will decrease.
  • Step 5 is a step of returning the treated water introduced into the membrane separation device 14 by the microorganism reaction tank 1 and separated from the membrane separation device 14 to the sewage discharge source 15.
  • the treated water filtered by the membrane separator 14 is stored in a treated water storage tank 15a provided in a sewage discharge source 15 of a hotel or the like, used in each room of a hotel as domestic water, and then stored in a drainage storage tank 15b. It is done. Moreover, it can discharge as some discharge water. Since water for domestic use can be reused in this way, effective use of water resources can be achieved.
  • the microorganism reaction tank of the present invention can continuously perform anaerobic and aerobic microorganism treatment of raw water in a simple shape even when the capacity of the reaction tank is large without substantially discharging the amount of excess sludge, It can be used as a wastewater treatment facility containing high-concentration pollutants.
  • a membrane separation device that can filter the treated water is provided, and the treated water can be used as water for daily life for hotels that effectively use water resources.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The purpose of the present invention is to provide a microorganism reaction vessel that can be installed in part of a hotel or other lodging facility and is capable of reusing treated wastewater, and a method for treating wastewater in which said microorganism reaction vessel is used. The present invention is provided with: an outer vessel 2; a cylindrical inner vessel 3 that is disposed inside the outer vessel and that has a vertical opening part; a circulation rate control device 4 that is provided to an upper part of the cylindrical inner vessel and that controls the in-vessel circulation rate of to-be-treated water; a cylindrical control plate 5 disposed such that an open lower surface thereof is near an inclined surface on the outer periphery of the upper part of the cylindrical inner vessel, the cylindrical control plate allowing precipitation of contaminants; to-be-treated water quality measurement devices 6 provided to the outer side and inner side of the cylindrical inner vessel; a raw water supply port 10 provided to a circulation path of the to-be-treated water circulating in the outer vessel and inner vessel, and a treated water discharge port 11 provided to an upper part of the outer vessel; a precipitation fixation prevention device 12 that prevents the precipitated contaminants from becoming fixed by precipitation; and a membrane separation device 14 that is provided within or outside of the microorganism reaction vessel and that is capable of filtering treated water.

Description

微生物反応槽および排水処理方法Microbial reaction tank and waste water treatment method
 本発明は微生物反応槽およびその微生物反応槽を用いた排水処理方法に関する。 The present invention relates to a microorganism reaction tank and a wastewater treatment method using the microorganism reaction tank.
 生物化学的酸素要求量(以下、BODという)や浮遊物質濃度(以下、SSという)を高める高濃度の窒素成分やリン成分、有機物質などの汚濁物質が含まれる排水は、河川の汚染や赤潮発生等、環境汚染の原因となっている。従来、このような高濃度の汚濁物質を含む排水の処理方法として、好気嫌気循環法の一つである、いわゆる修正バーナード法が知られている。この方法は、脱窒反応の際に遊離するアルカリを硝化反応で再利用するために、活性汚泥処理工程において、脱窒工程を第一硝化槽の前後に位置する第一脱窒槽と第二脱窒槽と2段に分け、さらに第二脱窒槽の後に第二硝化槽を設け、第一および第二の硝化槽から流出する混合液を第一脱窒槽に循環する方法である。 Wastewater containing high concentrations of nitrogen, phosphorus, organic substances and other pollutants that increase biochemical oxygen demand (hereinafter referred to as BOD) and suspended solids concentration (hereinafter referred to as SS) can cause river pollution and red tides. It is a cause of environmental pollution. Conventionally, a so-called modified Bernard method, which is one of aerobic and anaerobic circulation methods, is known as a method for treating wastewater containing such high-concentration pollutants. This method uses the first denitrification tank and the second denitrification tank located before and after the first nitrification tank in the activated sludge treatment process in order to reuse the alkali liberated during the denitrification reaction in the nitrification reaction. This is a method in which the nitrification tank is divided into two stages, a second nitrification tank is provided after the second denitrification tank, and the mixed liquid flowing out from the first and second nitrification tanks is circulated to the first denitrification tank.
 しかし、この方法による排水処理には次のような問題がある。
(1)高濃度のアンモニア性窒素は、それ自身殺菌性を有するので、活性汚泥処理工程で活性汚泥の活性を阻害する場合が多い。このため、活性汚泥処理が不十分になる。
(2)いわゆる修正バーナード法などでは、硝化槽において硝化反応が進行すると水素イオン濃度(以下、pHという)が低下するが、硝化反応はpHに依存するのでpHが低下すると硝化反応が遅くなる。その結果、やはり活性汚泥処理が不十分になり、リンの除去なども不十分になる。
(3)活性汚泥処理が不十分で脱窒反応が遅くなると、残存アンモニアや硝酸イオン、亜硝酸イオン濃度等が高くなる結果、これら窒素化合物に依存するBODが高くなり、排水処理が不十分になる。
(4)高濃度汚濁物質含有排水では、高濃度の活性汚泥が必要となり、必然的に活性汚泥浮遊物質(以下、MLSSという)濃度などが高くなる傾向にある。そのため、酸素の供給が困難になると共に、活性汚泥の攪拌、および、沈澱槽での固液分離が困難になる。
(5)低い有機汚濁物質濃度にもかかわらず、高い窒素成分を有する排水を活性汚泥処理で脱窒ならびに脱硝を行なう場合、pH低下や脱窒による汚泥の浮上などの問題が生じる。
However, the wastewater treatment by this method has the following problems.
(1) Since high-concentration ammoniacal nitrogen itself has bactericidal properties, it often inhibits the activity of activated sludge in the activated sludge treatment process. For this reason, the activated sludge treatment becomes insufficient.
(2) In the so-called modified Bernard method or the like, the hydrogen ion concentration (hereinafter referred to as pH) decreases as the nitrification reaction proceeds in the nitrification tank. However, since the nitrification reaction depends on the pH, the nitrification reaction becomes slower when the pH decreases. As a result, the activated sludge treatment becomes insufficient, and phosphorus removal and the like become insufficient.
(3) If the activated sludge treatment is insufficient and the denitrification reaction is delayed, the residual ammonia, nitrate ion, nitrite ion concentration, etc. will increase, resulting in an increase in BOD depending on these nitrogen compounds, resulting in insufficient wastewater treatment. Become.
(4) High-concentration pollutant-containing wastewater requires high-concentration activated sludge, which inevitably tends to increase the concentration of suspended activated sludge (hereinafter referred to as MLSS). Therefore, it becomes difficult to supply oxygen, and stirring of activated sludge and solid-liquid separation in a precipitation tank become difficult.
(5) Despite the low organic pollutant concentration, when denitrification and denitration of wastewater having a high nitrogen component is performed by activated sludge treatment, problems such as pH reduction and sludge floating due to denitrification occur.
 上記方法に対処するために、本発明者は、高濃度の窒素成分やリン成分、有機物質などの汚濁物質が含まれている排水の活性汚泥処理を効率的に行なうことのできる微生物反応槽およびそれを用いた排水処理方法を提案している(特許文献1)。この微生物反応槽は、タービン羽根により連結された硝化反応部と脱窒反応部とを上下に有する内槽を備えている。
 また、特許文献1記載の微生物反応槽の改良型として、処理原水の嫌気・好気微生物処理を、高い槽内循環率を維持して連続して行なうことができるとともに、円筒状内槽を簡易な形状とすることにより反応槽の容量が大きくなっても設置が容易になる微生物反応槽を提案している(特許文献2)。
In order to cope with the above method, the present inventor has a microorganism reaction tank capable of efficiently performing activated sludge treatment of waste water containing pollutants such as high concentration nitrogen components, phosphorus components, and organic substances, and A wastewater treatment method using the same has been proposed (Patent Document 1). This microbial reaction tank is provided with an inner tank having a nitrification reaction part and a denitrification reaction part connected to each other by turbine blades.
In addition, as an improved version of the microbial reaction tank described in Patent Document 1, anaerobic / aerobic microbial treatment of treated raw water can be continuously performed while maintaining a high circulation rate in the tank, and the cylindrical inner tank can be simplified. A microorganism reaction tank has been proposed that can be easily installed even if the capacity of the reaction tank is increased by adopting a simple shape (Patent Document 2).
特開平11-128987号JP-A-11-128987 WO2013/132608WO2013 / 132608
 しかしながら、処理原水を多量に排出するホテルなどの宿泊施設の排水処理に上記微生物反応槽を設置しようとすると、微生物反応槽自体の小型化、さらには処理された排水の再利用が求められようになったが、特許文献2記載の改良型でも対処できないという問題が生じた。
 本発明はこのような問題に対処するためになされたもので、ホテルなどの宿泊施設の一部に設置することができ、処理された排水の再利用ができる微生物反応槽およびその微生物反応槽を用いた排水処理方法の提供を目的とする。
However, if the microbial reaction tank is to be installed in the wastewater treatment of a hotel or other accommodation facility that discharges a large amount of raw water, the microbial reaction tank itself must be downsized and the treated wastewater must be reused. However, the improved type described in Patent Document 2 has a problem that it cannot be dealt with.
The present invention has been made to cope with such a problem. A microbial reaction tank that can be installed in a part of an accommodation facility such as a hotel and can reuse treated wastewater, and a microbial reaction tank therefor. The purpose is to provide the wastewater treatment method used.
 本発明の微生物反応槽は、外槽と、この外槽の内部に配置されて上下に開口部を有する円筒状内槽と、この円筒状内槽上部に設けられて被処理水の槽内循環率を制御する循環率制御装置と、上記円筒状内槽の上部外周の傾斜面に対して、開口している下面が接近して配置されて汚泥を沈降させるための円筒状制御板と、上記円筒状内槽の外側および内側に設けられた被処理水質測定装置と、上記外槽および内槽内を循環する被処理水の循環経路に設けられた原水供給口および上記外槽の上部に設けられた処理水放出口とを具備してなる微生物反応槽である。
 この微生物反応槽は以下の特徴を有している。
(1)上記円筒状内槽は、中心部に連通孔を有する隔壁で円筒上部と円筒下部とに分割されている。
(2)上記円筒上部は、上面および底面が開口した円錐台形状の頂部を有し、該円錐台形の中心を通る高さ方向断面の傾斜角が40度から60度であり、かつ該円筒上部内の上記連通孔周囲および上記隔壁周縁部に複数の空気吹込口が設けられ、上記外槽の底面となる基盤に固定されて立設する複数の支持柱により上記円筒状内槽内に設けられた上記隔壁が支えられることで、外槽内部に配置された好気微生物処理槽である。
(3)上記円筒下部は底面に開口部を有する嫌気微生物処理槽である。
(4)上記原水供給口は、上記嫌気微生物処理槽の開口部の下部に配置された円環状原水供給部に設けられた複数の吐出口またはスリットである。
(5)上記沈降させられた汚泥の沈降固定化を防止するスクレーパーおよび撹拌流発生装置から選ばれた少なくとも1つの沈降固定化防止装置が、上記汚泥が沈降する外槽下部に設けられている。
(6)上記被処理水質測定装置により測定される被処理水のpH、酸化還元電位(以下、ORPという)および溶存酸素量(以下、DOという)から選ばれた少なくとも1つの測定値を検出する手段と、この手段により検出された測定値に応じて上記被処理水の槽内循環率を3~20に制御する手段が上記循環率制御装置内に設けられ、この循環率制御装置が液面調節バルブの開閉、液面調節制御板の回転または上下動、および上記空気吹込口から吹込まれる空気量から選ばれる少なくとも1つの量を制御する装置である。ここで、反応槽内の被処理水循環率とは、次式で定義される量をいう。
 
 被処理水循環率=内槽上部から排出される被処理水量(m3/日)/原水供給量(m3/日)
 
(7)上記微生物反応槽内または槽外に設けられて、処理水をろ過できる膜分離装置を備えている。
(8)上記原水供給口より供給される原水が活性汚泥と共に上記円筒状内槽の内部と、上記円筒状内槽の外周面と、上記外槽下部に沈降した活性汚泥内とを経て槽内を循環することで嫌気微生物処理および好気微生物処理が連続してなされる。
The microorganism reaction tank of the present invention includes an outer tank, a cylindrical inner tank disposed inside the outer tank and having openings on the upper and lower sides, and an in-tank circulation of water to be treated provided on the upper part of the cylindrical inner tank. A circulation rate control device for controlling the rate, a cylindrical control plate for allowing sludge to settle by placing an open lower surface close to the inclined surface of the upper outer periphery of the cylindrical inner tub, and A device for measuring the quality of water to be treated provided outside and inside the cylindrical inner tank, a raw water supply port provided in a circulation path of the water to be treated that circulates in the outer tank and the inner tank, and an upper part of the outer tank. And a treated water discharge port.
This microbial reactor has the following characteristics.
(1) The said cylindrical inner tank is divided | segmented into the cylinder upper part and the cylinder lower part with the partition which has a communicating hole in center part.
(2) The upper part of the cylinder has a truncated cone-shaped top part with an open top and bottom surface, the inclination angle of the height direction cross section passing through the center of the truncated cone is 40 degrees to 60 degrees, and the upper part of the cylinder A plurality of air blowing openings are provided around the communication hole and in the peripheral edge of the partition wall, and are provided in the cylindrical inner tank by a plurality of support columns that are fixed and erected on a base that is a bottom surface of the outer tank. Moreover, it is the aerobic microorganism processing tank arrange | positioned inside the outer tank because the said partition is supported.
(3) The cylindrical lower part is an anaerobic microorganism treatment tank having an opening on the bottom surface.
(4) The raw water supply ports are a plurality of discharge ports or slits provided in an annular raw water supply unit disposed below the opening of the anaerobic microorganism treatment tank.
(5) At least one settling-immobilization preventing device selected from a scraper and a stirring flow generator for preventing settling of the settled sludge is provided in the lower part of the outer tank where the sludge settles.
(6) Detect at least one measurement value selected from the pH, redox potential (hereinafter referred to as ORP), and dissolved oxygen content (hereinafter referred to as DO) measured by the treated water quality measuring device. Means and means for controlling the circulation rate in the tank to be treated to 3 to 20 in accordance with the measured value detected by the means are provided in the circulation rate control device. It is a device that controls at least one amount selected from the opening / closing of the adjustment valve, the rotation or vertical movement of the liquid level adjustment control plate, and the amount of air blown from the air blowing port. Here, the to-be-processed water circulation rate in a reaction tank means the quantity defined by following Formula.

Rate of treated water circulation = amount of treated water discharged from the upper part of the inner tank (m 3 / day) / raw water supply (m 3 / day)

(7) A membrane separation device is provided in the microorganism reaction tank or outside the tank and capable of filtering treated water.
(8) The raw water supplied from the raw water supply port passes through the inside of the cylindrical inner tank together with the activated sludge, the outer peripheral surface of the cylindrical inner tank, and the activated sludge settled in the lower part of the outer tank. The anaerobic microorganism treatment and the aerobic microorganism treatment are continuously performed by circulating the gas.
 本発明の排水処理方法は、本発明の微生物反応槽を用いる活性汚泥処理工程を含む循環型排水処理方法である。
 この排水処理方法は、以下の工程を備えている。
(1)汚水排出源から排出される排水を原水曝気調整槽に供給する工程と、
(2)この原水曝気調整槽にて、酸化還元電位が正の値になるように曝気調整した後、この調整された処理原水を上記微生物反応槽に供給する工程と、
(3)上記微生物反応槽内で嫌気および好気微生物処理が連続してなされる活性汚泥処理工程と、
(4)上記微生物反応槽より発生する汚泥を上記原水曝気調整槽に供給する工程と、
(5)上記膜分離装置に導入され、該装置により分離された処理水を上記汚水排出源に戻す工程。
The wastewater treatment method of the present invention is a circulating wastewater treatment method including an activated sludge treatment step using the microorganism reaction tank of the present invention.
This waste water treatment method includes the following steps.
(1) supplying wastewater discharged from the sewage discharge source to the raw water aeration control tank;
(2) In the raw water aeration adjusting tank, after adjusting the aeration so that the oxidation-reduction potential becomes a positive value, supplying the adjusted treated raw water to the microorganism reaction tank;
(3) an activated sludge treatment step in which anaerobic and aerobic microorganism treatment is continuously performed in the microorganism reaction tank;
(4) supplying the sludge generated from the microorganism reaction tank to the raw water aeration adjustment tank;
(5) A step of returning the treated water introduced into the membrane separation apparatus and separated by the apparatus to the wastewater discharge source.
 本発明の微生物反応槽は、内部に配置される円筒状内槽が中心部に連通孔を有する隔壁で円筒上部と円筒下部とに分割されているので、高濃度の汚濁物質が含まれている原水の嫌気・好気微生物処理を、高い槽内循環率を維持して連続して行なうことができる。また、沈降固定化防止装置が設けられているので、汚泥が微生物反応槽内の下部で沈降固定化するのを防ぐことができる。その結果高濃度の汚濁物質が含まれている原水の嫌気・好気微生物処理を高い槽内循環率を維持して連続して行なうことができ、円筒状内槽を簡易な形状とすることができ、また反応槽の容量が大きくなった場合でも微生物反応槽の設置が容易になる。さらに、処理水をろ過できる膜分離装置を備えているので、微生物反応槽内の処理液量を少なくできるので微生物反応槽をより小型化できるとともに、処理水を生活用水として再利用できる。 In the microbial reaction tank of the present invention, a cylindrical inner tank disposed inside is divided into an upper part of the cylinder and a lower part of the cylinder by a partition wall having a communication hole in the center, and therefore contains a high-concentration pollutant. Anaerobic / aerobic microbial treatment of raw water can be continuously performed while maintaining a high circulation rate in the tank. Moreover, since the settling immobilization prevention device is provided, sludge can be prevented from being settled and fixed in the lower part of the microorganism reaction tank. As a result, anaerobic / aerobic microbial treatment of raw water containing high-concentration pollutants can be continuously performed while maintaining a high circulation rate in the tank, and the cylindrical inner tank can be made into a simple shape. In addition, even when the capacity of the reaction tank is increased, the microbial reaction tank can be easily installed. Furthermore, since the membrane separation device capable of filtering the treated water is provided, the amount of the treatment liquid in the microorganism reaction tank can be reduced, so that the microorganism reaction tank can be further miniaturized and the treated water can be reused as domestic water.
 本発明の排水処理方法は、上記小型化された微生物反応槽が宿泊施設などの敷地内に容易に設置することができ、また、処理水をろ過できる膜分離装置を備えている本発明の循環型排水処理方法を用いることで、宿泊施設などで排出される排水を生活用水として再利用することができる。また、水資源の有効活用が図れる。 In the wastewater treatment method of the present invention, the above-described miniaturized microbial reaction tank can be easily installed in a site such as an accommodation facility, and the circulation of the present invention includes a membrane separation device capable of filtering treated water. By using the mold wastewater treatment method, wastewater discharged from accommodation facilities can be reused as domestic water. In addition, effective use of water resources can be achieved.
微生物反応槽の断面図である。It is sectional drawing of a microbial reaction tank. 膜分離装置の配置位置について示す平面図である。It is a top view shown about the arrangement position of a membrane separator. スクレーパーが設けられた微生物反応槽の断面図である。It is sectional drawing of the microorganisms reaction tank provided with the scraper. 移動式流体吹きつけノズルが設けられた微生物反応槽の断面図である。It is sectional drawing of the microorganisms reaction tank provided with the mobile fluid spray nozzle. 固定式流体吹きつけノズルが設けられた微生物反応槽の断面図である。It is sectional drawing of the microorganisms reaction tank provided with the fixed fluid spray nozzle. 微生物反応槽における被処理水および活性汚泥の循環経路を示す図である。It is a figure which shows the to-be-processed water and the circulation path | route of activated sludge in a microbial reaction tank. 本発明の循環型排水処理方法のブロック図である。It is a block diagram of the circulation type waste water treatment method of the present invention.
 本発明の微生物反応槽を図1により説明する。図1は微生物反応槽の断面図である。
 微生物反応槽1は、外槽2と、この外槽2の内部に配置されている円筒状内槽3と、この円筒状内槽3の上部に設けられた循環率制御装置4と、円筒状内槽3の外周側に設けられた円筒状制御板5と、被処理水質測定装置6とから構成されている。なお、汚泥抜き出し口13を設けることができる。
 本発明で、微生物処理設備の水槽容積を限定するものではなく、小規模のものから、大規模のものまで適応できるが、その効果が著しく発揮されるのは、微生物反応槽1が20m3以上、好ましくは30~6000m3の内容積を有する微生物反応槽に適用した場合である。処理槽の容積が6000m3を超えるようになると循環流を作るのが困難になる。また、20m3に満たない小規模の場合は、微生物反応槽1内で汚泥を上下に循環させる優位性が少なくなる。
The microbial reaction tank of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view of a microbial reaction tank.
The microbial reaction tank 1 includes an outer tank 2, a cylindrical inner tank 3 disposed in the outer tank 2, a circulation rate control device 4 provided on the upper part of the cylindrical inner tank 3, and a cylindrical shape The cylindrical control board 5 provided in the outer peripheral side of the inner tank 3 and the to-be-processed water quality measuring apparatus 6 are comprised. In addition, the sludge extraction port 13 can be provided.
In the present invention, the water tank volume of the microbial treatment equipment is not limited, and it can be applied from a small scale to a large scale, but the effect is remarkably exhibited when the microbial reaction tank 1 is 20 m 3 or more. It is preferably applied to a microbial reactor having an internal volume of 30 to 6000 m 3 . When the volume of the treatment tank exceeds 6000 m 3 , it becomes difficult to create a circulating flow. Moreover, in the case of a small scale of less than 20 m 3 , the advantage of circulating the sludge up and down in the microorganism reaction tank 1 is reduced.
 外槽2は、底面となる基盤2aに円筒形側面2bおよび上面部2cからなる真円筒状の外観を有している。円筒の中心には撹拌翼等を取り付けるための回転軸7が設けられている。この回転軸7は、基盤2aの円中心に設けられた架台2dおよび上面部2cの円中心に設けられた軸受2eにより回転自在に固定されている。また、回転軸7は駆動装置2fにより回転される。上面部2cは回転軸7を回転自在に固定すると共に、円筒状内槽3を支持具等で保持している。
 外槽2の底部であって、円筒状内槽3の下部には原水供給口10が設けられている。原水供給口10は、円筒状内槽3の下部開口部3fの下方に配置された、円環状原水供給部10aに設けられた複数の吐出口10bまたはスリットで構成される。原水供給口10をこのように配置することにより、嫌気汚泥の撹拌が十分になされる。なお、この原水供給口10は被処理水の循環経路であれば、円筒状内槽3の下部以外にも設けることができる。
 また、外槽2の上部には浄化された処理水を放出する処理水放出口11および処理水をろ過できる膜分離装置14が設けられ、外槽内面および外面には、沈降した汚泥の沈降固定化を防止するための沈降固定化防止装置12が設けられている。
The outer tub 2 has a true cylindrical appearance including a cylindrical side surface 2b and an upper surface portion 2c on a base 2a serving as a bottom surface. A rotating shaft 7 for attaching a stirring blade or the like is provided at the center of the cylinder. The rotary shaft 7 is rotatably fixed by a frame 2d provided at the center of the circle of the base 2a and a bearing 2e provided at the center of the circle of the upper surface portion 2c. The rotating shaft 7 is rotated by the driving device 2f. The upper surface portion 2c fixes the rotating shaft 7 rotatably, and holds the cylindrical inner tank 3 with a support or the like.
A raw water supply port 10 is provided at the bottom of the outer tub 2 and below the cylindrical inner tub 3. The raw water supply port 10 includes a plurality of discharge ports 10b or slits provided in the annular raw water supply unit 10a, which are disposed below the lower opening 3f of the cylindrical inner tank 3. By disposing the raw water supply port 10 in this way, the anaerobic sludge is sufficiently stirred. The raw water supply port 10 can be provided in addition to the lower part of the cylindrical inner tank 3 as long as it is a circulation path of the water to be treated.
Moreover, the upper part of the outer tank 2 is provided with a treated water discharge port 11 for discharging purified treated water and a membrane separator 14 capable of filtering the treated water, and sedimentation of settled sludge is performed on the inner and outer surfaces of the outer tank. A settling immobilization prevention device 12 is provided for preventing immobilization.
 膜分離装置14の配置位置について図2に示す。図2に示す膜分離装置14は、外槽2の上部の浄化された処理水領域に浸漬させて使用する浸漬型膜分離装置として複数個配置することが好ましい。本発明における膜分離装置14は、いわゆる膜分離活性汚泥法(以下、MBR法ともいう)における活性汚泥と処理水を分離するよりも、処理水をさらに浄化するために配置される。後述するように、本発明において、活性汚泥と処理水とは、円筒状内槽の上部3cに形成された傾斜角が40度から60度に設定された傾斜面3hと、この傾斜面3hに接近対向して配置された円筒状制御板5の下面5aとの相互作用によるボイコット効果により汚泥の沈降をより速めている。そのため、膜分離装置14が配置されている、外槽2の上部の浄化された処理水領域に活性汚泥は殆ど存在しなくなる。なお、膜分離装置14は微生物反応槽1の外部に別個に設けることができる。その場合、処理水放出口11から放出された放出水を微生物反応槽の外に設けられた膜分離装置によりろ過して循環させることができる。 The arrangement position of the membrane separation device 14 is shown in FIG. A plurality of membrane separation devices 14 shown in FIG. 2 are preferably arranged as a submerged membrane separation device that is used by being immersed in a purified treated water region in the upper part of the outer tub 2. The membrane separation device 14 in the present invention is arranged to further purify treated water rather than separating activated sludge and treated water in a so-called membrane separation activated sludge method (hereinafter also referred to as MBR method). As will be described later, in the present invention, the activated sludge and the treated water include an inclined surface 3h formed in the upper part 3c of the cylindrical inner tank and an inclined surface 3h set to 40 to 60 degrees, and the inclined surface 3h. The sludge sedimentation is further accelerated by the boycott effect due to the interaction with the lower surface 5a of the cylindrical control plate 5 disposed in close proximity to each other. Therefore, there is almost no activated sludge in the purified treated water region in the upper part of the outer tank 2 where the membrane separation device 14 is disposed. The membrane separation device 14 can be separately provided outside the microorganism reaction tank 1. In that case, the discharge water discharged from the treated water discharge port 11 can be filtered and circulated by a membrane separation device provided outside the microorganism reaction tank.
 処理水領域に複数個配置される浸漬型膜分離装置14は、枠体14a内に複数の膜エレメント14bが配置されている。枠体14aの一部14cは開口部となっており、微生物反応槽内の処理水はこの開口部より流入し膜エレメント14bを通過することにより、生活用水として使用できる処理水となりろ過水取り出し口14dより排出される。なお、膜エレメント14bの周囲には図示を省略した散気装置を配置することができ、空気吹込口8に送り込む空気の一部を利用できる。また、超音波振動装置を併用することができる。浸漬型膜分離装置14は、平板型のみならず、中空糸膜モジュールを使用することができる。 In the submerged membrane separator 14 arranged in the treated water region, a plurality of membrane elements 14b are arranged in the frame body 14a. A part 14c of the frame 14a has an opening, and the treated water in the microbial reaction tank flows into the opening through the membrane element 14b and becomes treated water that can be used as domestic water. It is discharged from 14d. An air diffuser (not shown) can be disposed around the membrane element 14b, and a part of the air sent to the air blowing port 8 can be used. Further, an ultrasonic vibration device can be used in combination. The submerged membrane separator 14 can use not only a flat plate type but also a hollow fiber membrane module.
 膜エレメント14bの材質としては、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリビニルアルコール、セルロースアセテート、ポリアクリロニトリル、塩素化ポリエチレン、ポリ弗化ビニリデン、ポリビニルフルオライド、ポリテトラフルオロエチン、脂肪族ポリアミド、芳香族ポリアミド、ポリエチレンテレフタレート、およびこれらの複合膜が挙げられる。
 また、膜エレメント14bには公知のMF膜(精密ろ過膜:孔径が0.01μm~10μm)、UF膜(限外ろ過膜:孔径が0.001μm~0.01μm)が使用できる。
The material of the membrane element 14b is polyethylene, polypropylene, polysulfone, polyethersulfone, polyvinyl alcohol, cellulose acetate, polyacrylonitrile, chlorinated polyethylene, polyvinylidene fluoride, polyvinyl fluoride, polytetrafluoroethyne, aliphatic polyamide, aromatic Group polyamide, polyethylene terephthalate, and composite films thereof.
As the membrane element 14b, a known MF membrane (microfiltration membrane: pore size: 0.01 μm to 10 μm) or UF membrane (ultrafiltration membrane: pore size: 0.001 μm to 0.01 μm) can be used.
 沈降した汚泥の沈降固定化を防止するための沈降固定化防止装置12について、図3~図5に基づき以下説明する。
 沈降固定化防止装置12は、スクレーパーまたは撹拌流発生装置が挙げられ、単独でもよく、それらを組み合わせた装置であってもよい。
(1)汚泥が沈降する外槽下部の内壁に設けられるスクレーパー
 スクレーパーが設けられた微生物反応槽の断面図の一例を図3に示す。外槽の上部の周縁に沿って移動できる移動装置12eを外槽上部周縁に取り付け、この移動装置12eの先端にスクレーパー12dを取り付ける。このスクレーパー12dを外槽下部の内壁に沿って移動させることにより、沈降した汚泥をほぐして流動性を与える。流動性を与えられた汚泥は沈降固定化しなくなる。スクレーパー12dの移動は外槽の上部の周縁に沿って自走できる移動装置12eであっても、また、外槽の上部の周縁上を回転する機械式回転移動装置であってもよい。
A settling immobilization preventing device 12 for preventing settling of settled sludge will be described below with reference to FIGS.
Examples of the anti-settling device 12 include a scraper or a stirring flow generation device, and may be a single device or a combination thereof.
(1) Scraper provided on the inner wall of the lower part of the outer tank in which sludge settles An example of a cross-sectional view of a microorganism reaction tank provided with a scraper is shown in FIG. A moving device 12e capable of moving along the upper peripheral edge of the outer tub is attached to the upper peripheral edge of the outer tub, and a scraper 12d is attached to the tip of the moving device 12e. By moving the scraper 12d along the inner wall of the lower part of the outer tank, the settled sludge is loosened to provide fluidity. Sludge that is given fluidity will not settle and settle. The movement of the scraper 12d may be a moving device 12e capable of traveling along the upper peripheral edge of the outer tub, or may be a mechanical rotary moving device that rotates on the upper peripheral edge of the outer tub.
(2)外槽下部の内壁に沿って汚泥の撹拌流を発生させる撹拌流発生装置
 汚泥の撹拌流発生装置を図4および図5に示す。図4は内壁の傾斜面を移動しながら流体を吹き付ける移動式流体吹きつけノズルが設けられた微生物反応槽の断面図を示す図であり、図5は内壁の傾斜面に所定の間隔で固定された流体吹きつけノズルの例を示す図である。
 図4に示す、外槽内壁下部の傾斜面に配置されるノズル12fは、外槽上部周縁に取り付けられた移動装置12eに搭載された送風機またはポンプから送られる流体を堆積している汚泥に吹き付けることができる。流体としては空気、水、汚泥等が挙げられる。堆積している汚泥にノズル12fから流体を吹き付けることにより、堆積汚泥に流動性を与え汚泥の沈降固定化を防ぐことができる。
 図5に示すノズル12gは、予め堆積している汚泥に流体を均一に吹き付けられる外槽内壁下部の傾斜面の円周方向に所定の間隔に固定して複数個配置される。また、外槽内壁下部の傾斜面の傾斜方向にも所定の間隔に固定して複数個配置される。この複数個のノズル12gから流体を連続的に、または、間欠的に吹き付けることにより、堆積汚泥に流動性を与え汚泥の沈降固定化を防ぐことができる。固定式のノズル12gは外槽内壁下部の傾斜面よりも上部にノズルを設けて配管を循環流の流れ方向に設置して、汚泥の循環流を極力阻害しない構造にすることが重要である。なお、ノズル12gの代わりに、外槽下部に沈降した汚泥を吸引する吸引ノズルと、吸引した汚泥を嫌気微生物処理槽内に吐出する吐出口とを備えている吐出ポンプとすることができる。この吐出ポンプは、固定して配置する場合、汚泥の循環流を阻害しない方法で設置することが重要である。例えば、ポンプ配管類は全て汚泥の循環流の流れ方向に平行に設置する。
(2) Stirring flow generator for generating sludge stirring flow along the inner wall of the lower part of the outer tub FIG. 4 and FIG. 4 is a cross-sectional view of a microorganism reaction tank provided with a movable fluid spray nozzle that sprays fluid while moving on the inclined surface of the inner wall, and FIG. 5 is fixed to the inclined surface of the inner wall at a predetermined interval. It is a figure which shows the example of the fluid spray nozzle.
The nozzle 12f arranged on the inclined surface at the lower part of the inner wall of the outer tank shown in FIG. 4 sprays the fluid sent from the blower or pump mounted on the moving device 12e attached to the upper peripheral edge of the outer tank to the accumulated sludge. be able to. Examples of the fluid include air, water, and sludge. By spraying a fluid from the nozzle 12f on the accumulated sludge, it is possible to impart fluidity to the deposited sludge and prevent sedimentation and fixation of the sludge.
A plurality of nozzles 12g shown in FIG. 5 are arranged at a predetermined interval in the circumferential direction of the inclined surface of the lower part of the inner wall of the outer tank where fluid can be sprayed uniformly on the sludge accumulated in advance. In addition, a plurality of them are arranged at a predetermined interval in the inclination direction of the inclined surface of the lower part of the inner wall of the outer tank. By continuously or intermittently spraying the fluid from the plurality of nozzles 12g, fluidity can be imparted to the deposited sludge to prevent the sludge from being settled and fixed. It is important that the fixed nozzle 12g has a structure in which a nozzle is provided above the inclined surface of the lower inner wall of the outer tank and the piping is installed in the direction of the circulating flow so as not to inhibit the circulating flow of sludge as much as possible. In addition, it can be set as the discharge pump provided with the suction nozzle which sucks the sludge settled in the outer tank lower part, and the discharge port which discharges the sucked sludge in an anaerobic microorganisms processing tank instead of the nozzle 12g. When the discharge pump is fixedly arranged, it is important to install the discharge pump in a method that does not hinder the sludge circulation flow. For example, all the pump pipes are installed in parallel with the flow direction of the sludge circulation.
 上記沈降固定化防止装置12が設けられた外槽内に円筒状内槽3が配置される。
 図1および図2に示すように、横断面が略真円状の円筒状内槽3は、隔壁3aで円筒上部3cと円筒下部3dとに分割されている。隔壁3aの中心部には円筒上部3cと円筒下部3dとを連通する連通孔3bが設けられている。
 この隔壁3aの存在により、微生物反応槽の容積が大きくなった場合でも、円筒上部3cと円筒下部3dとが十分に分離されており、それぞれの槽内で活性汚泥処理を行なうことができる。円筒上部3c内にて好気微生物処理反応を、円筒下部3d内にて嫌気微生物処理反応を、それぞれ十分に行なわせることができる。隔壁3aの面積が大きくなった場合、支持部材3g等で補強する。
 連通孔3bは、嫌気微生物処理された活性汚泥が円筒下部3dから好気微生物処理部である円筒上部3cに移動できる大きさの直径を有する。この連通孔3bの径は微生物反応槽の容積、処理される原水の性質、量などによって調整される。
The cylindrical inner tub 3 is disposed in the outer tub provided with the settling and fixing prevention device 12.
As shown in FIGS. 1 and 2, the cylindrical inner tank 3 having a substantially circular cross section is divided into a cylindrical upper part 3c and a cylindrical lower part 3d by a partition wall 3a. A communication hole 3b is provided in the central portion of the partition wall 3a to connect the cylindrical upper part 3c and the cylindrical lower part 3d.
Even when the volume of the microorganism reaction tank is increased due to the presence of the partition wall 3a, the cylindrical upper part 3c and the cylindrical lower part 3d are sufficiently separated, and activated sludge treatment can be performed in each tank. The aerobic microorganism treatment reaction can be sufficiently performed in the cylindrical upper portion 3c, and the anaerobic microorganism treatment reaction can be sufficiently performed in the cylindrical lower portion 3d. When the area of the partition wall 3a becomes large, it is reinforced with a support member 3g or the like.
The communication hole 3b has a diameter that allows the activated sludge treated with anaerobic microorganisms to move from the cylindrical lower part 3d to the cylindrical upper part 3c, which is an aerobic microorganism treatment part. The diameter of the communication hole 3b is adjusted by the volume of the microorganism reaction tank, the nature and amount of raw water to be treated, and the like.
 円筒上部3cは、上面および底面が開口した円錐台形状の頂部を有する。すなわち、円筒部の先端が高さ方向に所定の角度で縮径する形状である。円錐台形の中心を通る高さ方向断面の傾斜角は40度から60度、好ましくは45度である。傾斜角をこの範囲にすることにより、好気槽上部から排出する被処理水に含まれる汚泥が円錐台形外面を流れ落ちることでいわゆるボイコット効果により汚泥が凝集しやすくなり汚泥の急速強制沈降が可能となる。また、汚泥が凝集することにより、汚泥と浄化された処理水との分離が容易になる。そのため、膜分離装置14が配置される領域では汚泥が存在しない。 The cylindrical upper part 3c has a truncated cone-shaped top with an open top and bottom. That is, it is a shape in which the tip of the cylindrical portion is reduced in diameter by a predetermined angle in the height direction. The inclination angle of the cross section in the height direction passing through the center of the truncated cone is 40 to 60 degrees, preferably 45 degrees. By making the inclination angle within this range, the sludge contained in the water to be treated discharged from the upper part of the aerobic tank flows down the frustoconical outer surface, so that the sludge tends to aggregate due to the so-called boycott effect, enabling rapid forced sedimentation of the sludge. Become. Moreover, when sludge aggregates, separation of the sludge and the purified treated water becomes easy. Therefore, there is no sludge in the region where the membrane separation device 14 is arranged.
 円筒上部3cは、内部に空気吹込口8および8aが設けられた好気微生物処理槽である。空気吹込口8は、中心軸7の周囲であって、連通孔3b周囲に設けられ、隔壁3a上に図示を省略した支持柱等により固定することができる。この空気吹込口8の空気噴出口は好ましくは下向きに配置されていることが、好気槽内の被処理水および汚泥の撹拌に寄与できるため好ましい。
 空気吹込口8aは、円筒上部3c内の隔壁周縁部に平面視円環状に空気吹込部8bを配置して、この空気吹込部8bに複数個設けられた空気孔8cか、あるいは空気吹込部8bの上面または側面に形成されたスリットとすることができる。
 空気吹込口8および8aより吹込まれる空気量と、後述する循環率制御装置の制御量とにより、循環ポンプを用いることなく、被処理水の循環量を3~20の範囲内に変動させることができる。それにより適切な硝化条件による好気微生物処理および適切な脱窒条件による嫌気微生物処理が容易に設定できる。さらに、上記傾斜角を有する好気微生物処理槽外周面での強制沈降原理により汚泥の固液分離が極めて効率よくなされるので、好気・嫌気微生物処理反応を縦型の同一槽内で効率よく行なうことができる。
 なお、好気槽内には、図示を省略したアルカリ供給口または酸の供給口を設けることができる。
The cylindrical upper portion 3c is an aerobic microorganism treatment tank in which air blowing ports 8 and 8a are provided. The air blowing port 8 is provided around the central shaft 7 and around the communication hole 3b, and can be fixed on the partition wall 3a by a support pillar (not shown). It is preferable that the air outlet of the air inlet 8 is preferably disposed downward because it can contribute to the agitation of the water to be treated and sludge in the aerobic tank.
The air blowing port 8a has a plurality of air holes 8c or air blowing portions 8b provided in the air blowing portion 8b. It can be made into the slit formed in the upper surface or side surface of this.
The amount of water to be treated is varied within the range of 3 to 20 without using a circulation pump, depending on the amount of air blown from the air blowing ports 8 and 8a and the control amount of the circulation rate control device described later. Can do. Thereby, the aerobic microorganism treatment by an appropriate nitrification condition and the anaerobic microorganism treatment by an appropriate denitrification condition can be easily set. Furthermore, because the sludge solid-liquid separation is made very efficient by the forced sedimentation principle on the outer peripheral surface of the aerobic microorganism treatment tank having the above-mentioned inclination angle, the aerobic / anaerobic microorganism treatment reaction is efficiently carried out in the same vertical tank. Can be done.
In the aerobic tank, an alkali supply port or an acid supply port (not shown) can be provided.
 円筒下部3dは、円筒上部の容積より1/10~1倍の容積を有する嫌気微生物処理槽である。この容積範囲内であると、例えば高濃度窒素含有汚濁物質を含有する原水の好気微生物処理反応および嫌気微生物処理反応を効率よく行なうことができる。なお、嫌気微生物処理槽内には、図示を省略した脱窒菌栄養物供給口を設けることができる。
 また、原水中に水素供与体が少なく、硝酸塩の窒素をメタノールや酢酸等の水素供与体を供給して脱窒する場合には、嫌気微生物処理槽の容積を好気性微生物処理槽よりも大きくすることが好ましい。
 円筒下部3dの形状は、円筒上部3cの開口部3eよりも面積が大きい開口部3fを有する逆円錐台形を円筒下部に有する形状である。すなわち、円筒部の先端が下部方向に所定の角度で縮径する形状である。開口部3fの面積を大きくすることにより嫌気微生物処理槽内での汚泥の撹拌を容易にできる。
 円筒下部3dの形状を上記逆円錐台形とする場合には、外槽2の下部内面2gは上記所定の角度と同じ角度とすることが汚泥の沈降固定化を防止できるため好ましい。
The cylindrical lower part 3d is an anaerobic microorganism treatment tank having a volume that is 1/10 to 1 times the volume of the upper part of the cylinder. Within this volume range, for example, an aerobic microbial treatment reaction and an anaerobic microbial treatment reaction of raw water containing a high-concentration nitrogen-containing pollutant can be efficiently performed. In the anaerobic microorganism treatment tank, a denitrifying nutrient supply port (not shown) can be provided.
In addition, when there are few hydrogen donors in the raw water and nitrogen is denitrified by supplying a nitrogen donor such as methanol or acetic acid, the volume of the anaerobic microorganism treatment tank is made larger than that of the aerobic microorganism treatment tank. It is preferable.
The shape of the cylindrical lower portion 3d is a shape having an inverted truncated cone shape having an opening 3f having a larger area than the opening 3e of the cylindrical upper portion 3c at the lower portion of the cylinder. That is, it is a shape in which the tip of the cylindrical portion is reduced in diameter by a predetermined angle in the lower direction. By increasing the area of the opening 3f, the sludge can be easily stirred in the anaerobic microorganism treatment tank.
When the shape of the cylindrical lower portion 3d is the inverted truncated cone shape, it is preferable that the lower inner surface 2g of the outer tub 2 has the same angle as the predetermined angle because it is possible to prevent sludge from being settled and fixed.
 円筒状内槽3は、円筒上部3cである好気微生物処理槽内および円筒下部3dである嫌気微生物処理槽内において、被処理水と活性汚泥との処理反応を十分に行なうための撹拌装置が設けられている。
 撹拌装置としては、円筒状内槽3の中心に取り付けられた回転軸7に固定された撹拌翼7aまたは7bであることが好ましい。撹拌翼7aは円筒上部3c内に設けられ、好気微生物処理反応を十分に行なわせることができるタービン翼が好ましい。タービン翼以外にも、空気の吹き込み量により、曝気性能が著しく低下しない回転数が比較的少なくて、空気と水を混合できる形状のであれば、使用できる。
 撹拌翼7bは円筒下部3d内に設けられ、嫌気微生物処理反応を十分に行なわせることができる撹拌翼ならば、いずれも使用できるが、タービン翼やプロペラ翼が好ましい。
The cylindrical inner tank 3 is provided with a stirring device for sufficiently carrying out the treatment reaction between the water to be treated and the activated sludge in the aerobic microorganism treatment tank as the cylinder upper part 3c and in the anaerobic microorganism treatment tank as the cylinder lower part 3d. Is provided.
The stirring device is preferably a stirring blade 7a or 7b fixed to a rotary shaft 7 attached to the center of the cylindrical inner tank 3. The stirring blade 7a is preferably provided in the cylindrical upper part 3c, and a turbine blade capable of sufficiently performing the aerobic microorganism treatment reaction is preferable. In addition to the turbine blade, any shape can be used as long as the number of rotations at which the aeration performance is not significantly lowered by the amount of air blown is relatively small and the air and water can be mixed.
Any stirring blade can be used as long as the stirring blade 7b is provided in the cylindrical lower part 3d and can sufficiently perform the anaerobic microorganism treatment reaction, but a turbine blade or a propeller blade is preferable.
 円筒状内槽3内に設けられた隔壁3aは、外槽2の底面となる基盤2aに固定されて立設する複数の支持柱9により支えられる。この複数の支持柱9によるバッファ効果により、嫌気微生物処理槽内における撹拌流が乱され、槽内の撹拌が効率的になされる。
 円筒状内槽3はこの支持柱9による支えと、外槽2の上部に橋渡しされた支持具とにより、外槽内に保持されている。
The partition wall 3 a provided in the cylindrical inner tub 3 is supported by a plurality of support columns 9 that are fixed and erected on the base 2 a that is the bottom surface of the outer tub 2. Due to the buffer effect of the plurality of support columns 9, the stirring flow in the anaerobic microorganism treatment tank is disturbed, and the stirring in the tank is efficiently performed.
The cylindrical inner tank 3 is held in the outer tank by a support by the support column 9 and a support tool bridged to the upper part of the outer tank 2.
 円筒状内槽3の上部に被処理水の反応槽内循環率を制御する循環率制御装置4が設けられている。循環率制御装置4は同心円筒上に設けられた液面調節バルブ、および/または液面調節制御板4aおよび4bにより構成される。液面調節制御板4aおよび4bには、その両方または一方に縦方向のスリットが形成されている。被処理水の反応槽内循環率の制御は、具体的には、両方に縦方向のスリットが形成されている液面調節制御板4aおよび4bの相互回転による開閉、あるいは液面調節制御板4aおよび4bの一方に縦方向のスリットが形成され、他方にスリットが形成されていない液面調節制御板の相互上下動等によりなされる。液面調節バルブの全開時、または液面調節制御板のスリット全開時またはスリットが形成されていない液面調節制御板の上下動の最下位時に、被処理水の水位レベルが最も低くなる。水位レベルをAで示す。 A circulation rate control device 4 for controlling the circulation rate of the water to be treated in the reaction tank is provided on the upper part of the cylindrical inner tank 3. The circulation rate control device 4 includes a liquid level adjustment valve and / or liquid level adjustment control plates 4a and 4b provided on a concentric cylinder. The liquid level adjustment control plates 4a and 4b are formed with longitudinal slits in both or one of them. Specifically, the control of the circulation rate in the reaction tank of the water to be treated is performed by opening and closing the liquid level adjustment control plates 4a and 4b in which longitudinal slits are formed on both sides, or the liquid level adjustment control plate 4a. And 4b are formed by mutual vertical movement of a liquid level adjustment control plate in which a vertical slit is formed on one side and no slit is formed on the other side. The level of the water to be treated is lowest when the liquid level control valve is fully opened, when the slit of the liquid level control plate is fully opened, or when the liquid level control plate without slits is moved up and down. The water level is indicated by A.
 反応槽内循環率の制御は、空気吹込口8および/または8aより吹込まれる空気量によっても制御することができる。吹込まれる空気量を多くすると循環率が増加する。液面調節バルブの開閉および空気量調節を組み合わせることもできる。 The control of the circulation rate in the reaction tank can also be controlled by the amount of air blown from the air blowing port 8 and / or 8a. Increasing the amount of air blown increases the circulation rate. It is also possible to combine opening / closing of the liquid level control valve and air amount control.
 嫌気微生物処理槽ならびに好気性微生物処理槽の大型化に伴って、汚泥の循環流量を維持することが曝気空気だけでは足らなくなったり、また、過剰な空気の吹込みによる弊害が発生したりすることがある。このような場合に備えて、図1の8aに示してある空気吹込口が必要になる。この曝気効率のよくない空気吹込口8aにより、空気吹き込み量とORPの調整が、格段に調整しやすくなる長所がある。空気吹込口8aは、例えば、隔壁3aの上面である好気部分に攪拌翼7aを中心として、外部の送風機等と連通している平面視円環状の空気吹込部8bを設置し、この空気吹込部8bに穴またはスリットが設けられている。これは、単純に空気量を増やすだけでなく、攪拌翼7aのバッフル効果も発揮され、効率的な攪拌がなされる相乗効果を発揮する。 As the anaerobic microorganism treatment tank and aerobic microorganism treatment tank increase in size, maintaining the circulating flow rate of sludge is not sufficient with aeration air alone, or harmful effects due to excessive air blowing may occur. There is. In preparation for such a case, the air inlet shown in FIG. Due to the air blowing port 8a having poor aeration efficiency, there is an advantage that the adjustment of the air blowing amount and the ORP is much easier to adjust. For example, the air blowing port 8a is provided with an air blowing portion 8b having an annular shape in plan view, which is in communication with an external blower or the like around the stirring blade 7a in an aerobic portion which is the upper surface of the partition wall 3a. The part 8b is provided with a hole or a slit. This not only simply increases the amount of air, but also exhibits a baffle effect of the stirring blade 7a, and exhibits a synergistic effect that allows efficient stirring.
 液面調節バルブの開閉等および/または空気吹込量を調節することにより、被処理水の循環率をポンプを用いることなく変動させることができる。被処理水は、後述するように、好気微生物処理槽3cからこの槽の外側に配置された円筒状制御板5を経て嫌気微生物処理槽3dへ、さらに嫌気微生物処理槽3dから好気微生物処理槽3cへと循環することにより、脱窒、脱リン等が行なわれる。したがって、被処理水の循環率を検出値に応じて所定の制御プログラムに基づき制御することにより、最適な脱窒、脱リン等を行なうことができる。 By adjusting the opening and closing of the liquid level control valve and / or the air blowing amount, the circulation rate of the water to be treated can be changed without using a pump. As will be described later, the water to be treated is treated from the aerobic microorganism treatment tank 3c to the anaerobic microorganism treatment tank 3d through the cylindrical control plate 5 disposed outside the tank, and further from the anaerobic microorganism treatment tank 3d. By circulating to the tank 3c, denitrification, dephosphorization, etc. are performed. Therefore, optimal denitrification, dephosphorization, etc. can be performed by controlling the circulation rate of the water to be treated based on a predetermined control program according to the detected value.
 円筒状内槽3の上部外周に円筒状制御板5が配置されている。円筒状制御板5は上面および下面が開口している筒であり、円筒状制御板5の下面5aは円筒状内槽3の傾斜面3hに対して接近して配置されている。この接近して配置されている傾斜面部分において汚泥沈殿部が形成され、汚泥濃縮がなされると共に処理水が分離される。また、下面5aを接近して配置することにより汚泥の急速強制沈降が可能になる。円筒状内槽3の傾斜面3hに対して下面5aの距離の大小は汚泥の種類および量により調節できることが好ましい。また、円筒状制御板5の形状は、上面および下面の開口面が同一面積の直円筒状、または上面の開口面積が下面の開口面積よりも大きい逆円錐台形状とすることができる。
 微生物反応槽内には、被処理水質測定装置6が、円筒状内槽2の内外に設けられている。この被処理水質測定装置6は、被処理水のpH、ORP、DOを測定する装置である。
A cylindrical control plate 5 is disposed on the upper outer periphery of the cylindrical inner tank 3. The cylindrical control plate 5 is a cylinder whose upper and lower surfaces are open, and the lower surface 5 a of the cylindrical control plate 5 is disposed close to the inclined surface 3 h of the cylindrical inner tank 3. A sludge sedimentation portion is formed in the inclined surface portion disposed close to the slurry, and sludge is concentrated and treated water is separated. Moreover, the rapid forced sedimentation of sludge is attained by arrange | positioning the lower surface 5a close. It is preferable that the size of the distance of the lower surface 5a with respect to the inclined surface 3h of the cylindrical inner tank 3 can be adjusted by the type and amount of sludge. Moreover, the shape of the cylindrical control plate 5 can be a right cylindrical shape in which the opening surfaces of the upper surface and the lower surface have the same area, or an inverted truncated cone shape in which the opening area of the upper surface is larger than the opening area of the lower surface.
In the microorganism reaction tank, a water quality measuring device 6 to be treated is provided inside and outside the cylindrical inner tank 2. This to-be-processed water quality measuring apparatus 6 is an apparatus which measures pH, ORP, and DO of to-be-processed water.
 本発明の微生物反応槽内での被処理水循環率は3~20、好ましくは5~20である。被処理水循環率が3未満であると、好気微生物処理反応がより起こりやすくなり、また、20をこえると好気微生物処理反応と嫌気微生物処理反応とのバランスが崩れ、原水の脱窒、脱リンを行なうことができなくなる。すなわち、被処理水循環率をこの範囲とすることにより、被処理水質測定装置により測定される被処理水のORPを、嫌気微生物処理反応槽において-10mV以下、好ましくは-50mV以下、好気微生物処理反応槽において+10mV以上、好ましくは+100mV以上に維持することができる。その結果、好気微生物処理反応および嫌気微生物処理反応が十分に行なわれ、脱窒、脱リンが連続的になされる。なお、このような条件下において好気微生物処理反応槽でのpHは4.5~8.5、好ましくは5.5~7.5の範囲となる。 The circulation rate of water to be treated in the microbial reaction tank of the present invention is 3 to 20, preferably 5 to 20. If the circulation rate of the treated water is less than 3, the aerobic microbial treatment reaction is more likely to occur, and if it exceeds 20, the balance between the aerobic microbial treatment reaction and the anaerobic microbial treatment reaction is lost, and the raw water is denitrified and dehydrated. Unable to perform phosphorus. That is, by setting the treated water circulation rate within this range, the ORP of the treated water measured by the treated water quality measuring device is −10 mV or less, preferably −50 mV or less, and the aerobic microorganism treatment in the anaerobic microorganism treatment reaction tank. In the reaction vessel, it can be maintained at +10 mV or more, preferably +100 mV or more. As a result, the aerobic microorganism treatment reaction and the anaerobic microorganism treatment reaction are sufficiently performed, and denitrification and dephosphorization are continuously performed. Under such conditions, the pH in the aerobic microorganism treatment reaction tank is in the range of 4.5 to 8.5, preferably 5.5 to 7.5.
 微生物反応槽1を用いる排水処理方法は、活性汚泥処理工程を含む処理工程により原水を処理する排水処理方法であって、この活性汚泥処理工程は、活性汚泥の循環流を形成させる汚泥循環工程と、この活性汚泥の循環流の中に原水を添加する原水添加工程とを含む。
 上記活性汚泥の循環流は、嫌気微生物処理槽から好気微生物処理槽を経由して循環し、汚泥沈殿部で処理水が分離すると共に汚泥濃縮がなされて、この濃縮された汚泥を嫌気微生物処理槽に送る循環流である。また、上記活性汚泥処理工程は、上述の微生物反応槽を用いて処理される汚泥循環工程および原水添加工程である。
The wastewater treatment method using the microbial reaction tank 1 is a wastewater treatment method for treating raw water by a treatment process including an activated sludge treatment process, and the activated sludge treatment process includes a sludge circulation process for forming a circulation flow of activated sludge, And a raw water addition step of adding raw water into the circulation flow of the activated sludge.
The activated sludge circulation flow circulates from the anaerobic microorganism treatment tank through the aerobic microorganism treatment tank, the treated water is separated at the sludge sedimentation section, and the sludge is concentrated, and this concentrated sludge is treated with the anaerobic microorganism. It is a circulating flow sent to the tank. Moreover, the said activated sludge process process is a sludge circulation process and raw | natural water addition process processed using the above-mentioned microorganisms reaction tank.
 微生物反応槽1を用いる排水処理方法は、従来の排水処理方法に比較して、以下の優れた特徴を有する。
 従来の排水処理方法は、原水と返送汚泥とが一定の割合で混合されて曝気槽内に流入し、その時接触した返送汚泥と次の工程である沈殿槽内で汚泥と被処理水とが分離されるまで、最初に接触混合した活性汚泥と原水が放流されるまで、同じ活性汚泥菌とだけ接触して、原水が押し出され流れる方法である。
 微生物反応槽1を用いる排水処理方法は、上下に循環する活性汚泥の循環流を形成させ、その循環流の中に原水を添加する方法である。活性汚泥の循環流を作るのに、循環ポンプを使用することなく、微生物処理に使用する曝気空気による上昇流を利用して、汚泥の循環流を形成させるので省エネルギーな排水処理方法である。さらに、好気微生物処理槽の曝気を効率よく実施できる処理方法である。
 原水の添加位置は、循環流の経路内であればどこでもよいが、好ましくは好気微生物処理槽である。更に好ましくは、嫌気微生物処理槽が適している。本発明の排水処理方法における循環流を用いた処理の場合は、少なくともBODが800mg/L以上、全窒素量が(以下、T-Nという)40mg/L以上の原水であっても、処理水のBODは通常極めて低く20mg/L以下、一般的には放流水の水質として、BODが10mg/L以下での運転ができる。
 なお、好気微生物処理槽である円筒状内槽の外周面に形成された、循環流経路内の汚泥沈殿部に原水を添加すると、汚泥と原水との接触が不十分になり、汚濁物質の吸着が不十分になる場合がある。その場合、処理水に一部未処理の原水中の汚濁物質が混入して、処理水の悪化をもたらす場合がある。しかしながら、水質規制値がゆるい場合において、例えばBODが300mg/L以下とか、600mg/L以下とかの下水道放流などの一次処理設備としての用途では、循環流経路内の汚泥沈殿部に原水を添加できる場合がある。
The wastewater treatment method using the microbial reaction tank 1 has the following excellent characteristics as compared with the conventional wastewater treatment method.
In the conventional wastewater treatment method, raw water and return sludge are mixed in a certain ratio and flow into the aeration tank, and then the returned sludge in contact with the sludge and treated water are separated in the sedimentation tank, which is the next step. Until the activated sludge mixed with the first contact and the raw water are discharged, the raw water is pushed out and flows only by contacting with the same activated sludge bacteria.
The waste water treatment method using the microbial reaction tank 1 is a method in which a circulating flow of activated sludge circulating up and down is formed, and raw water is added to the circulating flow. It is an energy-saving wastewater treatment method because the sludge circulation flow is formed by using the upflow by aeration air used for microbial treatment without using a circulation pump to make the circulation flow of activated sludge. Furthermore, it is the processing method which can implement aeration of an aerobic microorganism processing tank efficiently.
The raw water may be added anywhere in the circulation flow path, but is preferably an aerobic microorganism treatment tank. More preferably, an anaerobic microorganism treatment tank is suitable. In the case of treatment using a circulating flow in the wastewater treatment method of the present invention, the treated water is at least BOD is 800 mg / L or more and the total nitrogen amount (hereinafter referred to as TN) is 40 mg / L or more. The BOD is usually very low, 20 mg / L or less, and generally the water quality of the discharged water can be operated at a BOD of 10 mg / L or less.
In addition, if raw water is added to the sludge sedimentation part in the circulation flow path formed on the outer peripheral surface of the cylindrical inner tank that is an aerobic microorganism treatment tank, the contact between the sludge and the raw water becomes insufficient, and Adsorption may be insufficient. In that case, contaminated substances in the raw water which is partially untreated may be mixed with the treated water, resulting in deterioration of the treated water. However, when the water quality regulation value is loose, raw water can be added to the sludge sedimentation part in the circulation flow path, for example, as a primary treatment facility such as sewage discharge with a BOD of 300 mg / L or less or 600 mg / L or less. There is a case.
 以下、微生物反応槽1を用いて高濃度窒素含有汚濁物質を含む原水の排水処理方法について図6により具体的に説明する。図6は微生物反応槽1における被処理水および活性汚泥の循環経路を示す図である。図6において、斜線部分は活性汚泥の濃度が高い部分であり、矢印は被処理水および活性汚泥の循環方向を表す。
 ウェジワイヤースクリーンなどで固形分が分離された汚濁物質を含む被処理水としての原水は、微生物反応槽1の最下部に設けられている原水供給口10より連続的に供給される。なお、供給される原水のBODおよびSSは、あらかじめ測定しておくことが好ましい。たとえば、原水として、BODが800mg/L以上、化学的酸素要求量(以下、CODという)が300mg/L以上、T-Nが40mg/L以上含有する原水が挙げられる。また、ノルマルヘキサン抽出油分濃度(以下、n-Hexという)が50mg/L以上の範囲を含む原水の処理にも好適である。
Hereinafter, the wastewater treatment method for raw water containing high-concentration nitrogen-containing pollutant using the microbial reaction tank 1 will be described in detail with reference to FIG. FIG. 6 is a diagram showing a circulation path of the water to be treated and the activated sludge in the microorganism reaction tank 1. In FIG. 6, the hatched portion is a portion where the concentration of activated sludge is high, and the arrows indicate the circulation direction of the treated water and activated sludge.
Raw water as water to be treated containing a pollutant whose solid content has been separated by a wedge wire screen or the like is continuously supplied from a raw water supply port 10 provided at the bottom of the microorganism reaction tank 1. In addition, it is preferable to measure BOD and SS of the raw | natural water supplied beforehand. Examples of raw water include raw water containing BOD of 800 mg / L or more, chemical oxygen demand (hereinafter referred to as COD) of 300 mg / L or more, and TN of 40 mg / L or more. It is also suitable for treating raw water containing a normal hexane extract oil concentration (hereinafter referred to as n-Hex) in the range of 50 mg / L or more.
 微生物反応槽1には活性汚泥が固形分換算で5,000~12,000mg/L入れられており、原水は、まず円筒下部3d内にて嫌気状態で活性汚泥に接触し、脱窒反応が行なわれる。原水供給口10より供給される被処理水となる原水および循環している活性汚泥は、撹拌翼の回転または散気管よりの空気噴出により、円筒下部3d内を循環して嫌気微生物処理反応がなされる。
 次いで空気が吹込まれている円筒上部3cに連通孔3bを通過して原水および活性汚泥が移動し、好気状態で円筒上部3c内の活性汚泥に接触しながら、撹拌翼の回転または空気吹込口よりの空気噴出により、円筒上部3c内を循環して好気微生物処理反応である硝化反応が進行する。硝化反応が進行するにつれ被処理水のpH等が低下する。被処理液のpH、ORP、DOが処理水質測定装置6で測定され、これらの値に基づき原水または被処理水の循環量が定められる。具体的には、ORPを、硝化反応がなされる好気反応処理部において+10mV以上、脱窒反応がなされる嫌気反応処理部において-10mV以下に維持できるように空気吹き込み量などを調整して被処理水を循環する。循環量は、循環ポンプなどを使用することなく、空気量および/または循環率制御装置を制御することにより容易に行なうことができる。このため本発明の排水処理方法は省エネルギー型の排水処理方法である。また、本発明の微生物反応槽を含む設備は、微生物反応の各ユニットをそれぞれ調整できるので、これらの制御を予めプログラム化し、無人で自動運転することが容易であり、省力化プラントとしての特徴を有している。
The microorganism reaction tank 1 contains activated sludge in an amount of 5,000 to 12,000 mg / L in terms of solid content, and the raw water first comes into contact with the activated sludge in an anaerobic state within the cylindrical lower part 3d, and the denitrification reaction is performed. Done. The raw water to be treated supplied from the raw water supply port 10 and the circulated activated sludge are circulated in the lower part 3d of the cylinder by the rotation of the stirring blades or the air blown from the air diffuser to undergo anaerobic microorganism treatment reaction. The
Next, the raw water and the activated sludge move through the communication hole 3b to the cylindrical upper portion 3c into which air is blown, and in contact with the activated sludge in the cylindrical upper portion 3c in an aerobic state, the rotation of the stirring blade or the air blowing port As a result of more air ejection, the nitrification reaction, which is an aerobic microorganism treatment reaction, proceeds in the cylindrical upper part 3c. As the nitrification reaction proceeds, the pH of the treated water decreases. The pH, ORP, and DO of the liquid to be treated are measured by the treated water quality measuring device 6, and the circulation amount of the raw water or the water to be treated is determined based on these values. Specifically, the amount of air blown is adjusted so that the ORP can be maintained at +10 mV or more in the aerobic reaction processing section where the nitrification reaction is performed and −10 mV or less in the anaerobic reaction processing section where the denitrification reaction is performed. Circulate treated water. The circulation amount can be easily achieved by controlling the air amount and / or the circulation rate control device without using a circulation pump or the like. For this reason, the wastewater treatment method of the present invention is an energy-saving wastewater treatment method. In addition, since the equipment including the microbial reaction tank of the present invention can adjust each unit of the microbial reaction, it is easy to program these controls in advance and automatically operate unattended. Have.
 循環率制御装置4により循環率が制御されて、円筒上部3cの上部から排出する被処理水および活性汚泥の一部は、約45度の傾斜角度を有する円錐台形外周面を流れ落ちる。この流出した被処理水および活性汚泥は、円錐台形外周面の傾斜面に対して接近して配置されている円筒状制御板5と上記傾斜面で形成される汚泥濃縮部5bを通過することにより、活性汚泥の急速強制沈降が可能となる。また浄化された処理水と活性汚泥との分離が容易となり、分離された処理水が処理水放出口11より放流されるか、または膜分離装置14を介してろ過されて放流または再利用される。
 急速強制沈降した活性汚泥は外槽内面と内槽外周面との間に活性汚泥が濃縮されて堆積する。この堆積した活性汚泥は、被処理水と混合しながら嫌気微生物処理反応部へ移動して微生物反応槽内を循環する。
 本発明の排水処理方法は、活性汚泥が濃縮されつつ嫌気・好気槽内を3~20の循環率で循環することにより、原水の負荷変動を容易に吸収できる。また、循環率をこの範囲に維持するので、活性汚泥が馴養されて排水処理に最適な活性汚泥となる。
The circulation rate is controlled by the circulation rate control device 4, and the treated water and a part of the activated sludge discharged from the upper part of the cylindrical upper part 3c flow down the frustoconical outer peripheral surface having an inclination angle of about 45 degrees. The treated water and activated sludge that have flowed out pass through the cylindrical control plate 5 disposed close to the inclined surface of the frustoconical outer peripheral surface and the sludge concentrating portion 5b formed by the inclined surface. In addition, rapid forced sedimentation of activated sludge becomes possible. Moreover, separation of the purified treated water and activated sludge is facilitated, and the separated treated water is discharged from the treated water discharge port 11 or filtered through the membrane separation device 14 to be discharged or reused. .
The activated sludge that has been rapidly forced to settle is concentrated and deposited between the inner surface of the outer tank and the outer peripheral surface of the inner tank. The accumulated activated sludge moves to the anaerobic microorganism treatment reaction section while mixing with the water to be treated and circulates in the microorganism reaction tank.
The wastewater treatment method of the present invention can easily absorb fluctuations in the load of raw water by circulating the inside of an anaerobic / aerobic tank at a circulation rate of 3 to 20 while the activated sludge is concentrated. Further, since the circulation rate is maintained within this range, the activated sludge is acclimatized and becomes an activated sludge that is optimal for wastewater treatment.
 微生物反応槽において、原水のBOD負荷が小さいにもかかわらず、窒素分濃度が高い場合は、プロトン供与体などの有機物質からなる脱窒菌栄養物、たとえばメタノールを嫌気反応処理部に添加して処理することが好ましく、この場合、処理水のpHが上昇しやすいので、塩酸などの鉱酸を添加することが好ましい。 In a microbial reaction tank, when the BOD load of raw water is small but the nitrogen concentration is high, denitrifying nutrients made of organic substances such as proton donors, such as methanol, are added to the anaerobic reaction treatment section. In this case, since the pH of the treated water is likely to increase, it is preferable to add a mineral acid such as hydrochloric acid.
 本発明微生物反応槽を用いる排水処理方法は、微生物反応槽を1槽用いてもよいが、また複数槽用いることもできる。この場合、第1槽からの放流水を第2槽の原水供給口に導入する。また、たとえば2つの微生物反応槽を直列で連結する場合は、第2槽における硝化反応部の容積と脱窒反応部の容積との比率を第1槽における比率と変えることにより、より効果的に排水処理を行なうことができる。具体的には、容積比を第1槽のそれより小さくすることにより、脱窒・脱リンを行なうことができる。 The wastewater treatment method using the microbial reaction tank of the present invention may use one microbial reaction tank or a plurality of microbial reaction tanks. In this case, the discharged water from the first tank is introduced into the raw water supply port of the second tank. For example, when two microbial reaction tanks are connected in series, the ratio of the volume of the nitrification reaction part and the volume of the denitrification reaction part in the second tank can be changed more effectively by changing the ratio in the first tank. Waste water treatment can be performed. Specifically, denitrification and dephosphorization can be performed by making the volume ratio smaller than that of the first tank.
 また、本発明微生物反応槽を用いる排水処理方法を、従来の排水処理方法と組み合わせて行うことができる。たとえば、既設の好気硝化槽と嫌気脱窒槽の連結からなる排水処理設備において、それぞれの槽からの流出液を本発明の微生物反応槽に供給することにより、より効果的に汚濁物質の消化ならびに脱窒・脱リンを行なうことができる。 Moreover, the wastewater treatment method using the microorganism reaction tank of the present invention can be performed in combination with a conventional wastewater treatment method. For example, in a wastewater treatment facility consisting of an existing aerobic nitrification tank and an anaerobic denitrification tank, by supplying the effluent from each tank to the microbial reaction tank of the present invention, more effectively digesting pollutants and Denitrification and dephosphorization can be performed.
 本発明の循環型排水処理方法のブロック図を図7に示す。
 汚水排出源15から排出される排水が微生物反応槽1を介して循環することにより、水資源の節約につながる排水処理方法となる。また、微生物反応槽1で発生する汚泥が原水曝気調整槽16との間で循環する過程で汚泥が消化され、実質的に余剰汚泥量が排出されない。以下、各工程を順に説明する。
FIG. 7 shows a block diagram of the circulating wastewater treatment method of the present invention.
The wastewater discharged from the sewage discharge source 15 circulates through the microbial reaction tank 1, thereby providing a wastewater treatment method that leads to saving of water resources. Further, the sludge generated in the microorganism reaction tank 1 is digested in the process of circulating between the raw water aeration control tank 16 and the surplus sludge amount is not substantially discharged. Hereinafter, each process is demonstrated in order.
 工程1:
 工程1は、汚水排出源15から排出された排水を原水曝気調整槽16に供給する工程である。汚水排出源15はホテルなどの宿泊施設が挙げられる。汚水排出源15から排出された排水は、主としてトイレ、手洗い、バス等で使用される生活用水が挙げられ、排水貯蔵槽15bに貯蔵される。
Step 1:
Step 1 is a step of supplying wastewater discharged from the sewage discharge source 15 to the raw water aeration adjusting tank 16. Examples of the sewage discharge source 15 include accommodation facilities such as hotels. The waste water discharged from the sewage discharge source 15 includes water for daily use mainly used in toilets, hand washing, baths and the like, and is stored in the waste water storage tank 15b.
 工程2:
 工程2は、汚水排出源15から排出された排水と、工程4で供給される汚泥とが混合されて原水曝気調整槽16にて、排水のORPが正の値になるように曝気調整した後、該処理原水を微生物反応槽1に供給する工程である。正の値になるように曝気調整することで、悪臭の原因となる硫化水素、アンモニア、メルカプタンなどが酸化されて臭気が殆ど出ない活性汚泥処理ができる。
 原水曝気調整槽16での曝気処理は、排水の滞留時間が3時間以上、好ましくは5時間以上の曝気処理でなされる。汚泥共存下にて曝気処理されて、汚泥を含む排水は微生物反応槽に処理原水として供給される。
Step 2:
In step 2, the wastewater discharged from the sewage discharge source 15 and the sludge supplied in step 4 are mixed and adjusted in the raw water aeration adjustment tank 16 so that the ORP of the wastewater becomes a positive value. This is a step of supplying the treated raw water to the microbial reaction tank 1. By adjusting the aeration so as to have a positive value, activated sludge treatment can be performed in which hydrogen sulfide, ammonia, mercaptan, etc., which cause bad odor, are oxidized and odor is hardly emitted.
The aeration process in the raw water aeration control tank 16 is performed by an aeration process in which the residence time of the wastewater is 3 hours or more, preferably 5 hours or more. Aeration treatment is performed in the presence of sludge, and wastewater containing sludge is supplied to the microorganism reaction tank as treated raw water.
 工程3:
 工程3は、微生物反応槽1内で嫌気および好気微生物処理が連続してなされる活性汚泥処理工程である。処理原水は原水曝気調整槽16での曝気処理を経ることで、微生物の持っているpH緩衝作用により、自然にpHの調整が行なわれるので、既存の加圧浮上濃縮分離槽が不要となり敷地が有効に使用できる。
 本発明において、微生物反応槽1における嫌気微生物処理とはDOが0.05mg/L未満の状態での処理をいい、好気微生物処理とはDOが0.05mg/L以上、好ましくは0.1mg/L以上、より好ましくは0.2mg/L以上の状態での処理をいう。さらに嫌気微生物処理においてはORPが-80mV未満、好気微生物処理においてはORPが-80mV以上、好ましくは正の状態で処理する操作をいう。
 微生物反応槽1は、処理原水に含まれる汚泥を嫌気・好気消化して、汚泥が吸着した汚濁物質の殆どを分解して炭酸ガスや水や窒素ガスやメタンガスなどの気体にする。また、汚泥が微生物の増殖に使用されて、殆どが菌体に変化した消化汚泥となるため、著しく汚泥量が減少する。
Step 3:
Step 3 is an activated sludge treatment step in which anaerobic and aerobic microorganism treatment is continuously performed in the microorganism reaction tank 1. The treated raw water is subjected to aeration treatment in the raw water aeration adjusting tank 16, and the pH is naturally adjusted by the pH buffering action of the microorganisms. Can be used effectively.
In the present invention, the anaerobic microbial treatment in the microbial reactor 1 refers to a treatment in a state where DO is less than 0.05 mg / L, and the aerobic microbial treatment refers to DO of 0.05 mg / L or more, preferably 0.1 mg. / L or more, more preferably treatment in a state of 0.2 mg / L or more. Furthermore, it means an operation in which the ORP is less than −80 mV in the anaerobic microorganism treatment and the ORP is −80 mV or more in the aerobic microorganism treatment, preferably in a positive state.
The microbial reaction tank 1 anaerobically and aerobically digests the sludge contained in the treated raw water, and decomposes most of the pollutants adsorbed by the sludge into gases such as carbon dioxide, water, nitrogen gas, and methane gas. In addition, since sludge is used for the growth of microorganisms and most of it becomes digested sludge that has been transformed into cells, the amount of sludge is significantly reduced.
 工程4:
 工程4は、原水曝気調整槽16に、微生物反応槽1により発生する汚泥を供給する工程である。
 原水曝気調整槽16は、既存排水処理設備を改修する場合は、既存の原水槽に空気吹き込み設備を追加することで得られる。
 処理される排水中の大きな固形分はスクリーン等で除去し、処理される原水として原水曝気調整槽に蓄えられる。この原水曝気調整槽16に微生物反応槽1で発生する汚泥を供給して、汚水排出源15から排出された排水と攪拌混合して、排水中の難分解性物質や活性汚泥を破壊する有害物質など、活性汚泥の処理異常を与えやすい汚濁物質を汚泥に接触吸着させる。この汚泥は微生物反応槽1で処理された汚泥であるので、処理されるべき排水に適した活性汚泥菌になっている。このため、汚泥を排水に供給することにより、活性汚泥の活性を高い状態に保つので、微生物反応槽内での活性汚泥処理中の異常現象の発生が減り、処理を安定化することができる。なお、処理が困難な汚泥がある場合は余剰汚泥として引き抜かれる。
Step 4:
Step 4 is a step of supplying sludge generated by the microorganism reaction tank 1 to the raw water aeration control tank 16.
The raw water aeration tank 16 can be obtained by adding air blowing equipment to an existing raw water tank when renovating the existing wastewater treatment equipment.
A large solid content in the wastewater to be treated is removed with a screen or the like and stored in the raw water aeration control tank as the raw water to be treated. The raw water aeration tank 16 is supplied with the sludge generated in the microbial reaction tank 1 and stirred and mixed with the wastewater discharged from the wastewater discharge source 15 to destroy the refractory substances and activated sludge in the wastewater. For example, a pollutant that tends to cause abnormal treatment of activated sludge is contacted and adsorbed on the sludge. Since this sludge is the sludge treated in the microbial reaction tank 1, it is an activated sludge fungus suitable for the wastewater to be treated. For this reason, by supplying the sludge to the wastewater, the activity of the activated sludge is maintained at a high level, so that the occurrence of abnormal phenomena during the activated sludge treatment in the microorganism reaction tank is reduced, and the treatment can be stabilized. In addition, when there exists sludge which is difficult to process, it is extracted as excess sludge.
 原水曝気調整槽16に供給される汚泥は、原水曝気調整槽16内の汚泥濃度がMLSSとして、500~8000mg/Lとなる範囲で供給される。好ましくは1000~5000mg/Lとなる範囲で供給される。MLSSが500mg/L未満であると、活性汚泥に悪影響を与える汚濁物質を汚泥が吸着できないために、活性汚泥処理が不安定となる。また、MLSSが8000mg/Lをこえると、汚泥が汚濁物質の殆どを吸着してしまい処理原水に含まれる生物化学的酸素要求量(以下、BODという)が減ってしまう。 The sludge supplied to the raw water aeration adjustment tank 16 is supplied in a range where the sludge concentration in the raw water aeration adjustment tank 16 is 500 to 8000 mg / L as MLSS. Preferably, it is supplied in a range of 1000 to 5000 mg / L. When the MLSS is less than 500 mg / L, the sludge cannot adsorb the pollutant that adversely affects the activated sludge, so that the activated sludge treatment becomes unstable. Moreover, when MLSS exceeds 8000 mg / L, the sludge will adsorb most of the pollutants, and the biochemical oxygen demand (hereinafter referred to as BOD) contained in the treated raw water will decrease.
 工程5:
 工程5は、微生物反応槽1により膜分離装置14に導入されて、この膜分離装置14から分離された処理水を汚水排出源15に戻す工程である。膜分離装置14によりろ過された処理水はホテルなどの汚水排出源15に設けられた処理水貯蔵槽15aに蓄えられ、生活用水としてホテルの各部屋で使用された後、排水貯蔵槽15bに蓄えられる。また、一部放流水として放流できる。このように生活用水を再利用できるので、水資源の有効活用が図れる。
Step 5:
Step 5 is a step of returning the treated water introduced into the membrane separation device 14 by the microorganism reaction tank 1 and separated from the membrane separation device 14 to the sewage discharge source 15. The treated water filtered by the membrane separator 14 is stored in a treated water storage tank 15a provided in a sewage discharge source 15 of a hotel or the like, used in each room of a hotel as domestic water, and then stored in a drainage storage tank 15b. It is done. Moreover, it can discharge as some discharge water. Since water for domestic use can be reused in this way, effective use of water resources can be achieved.
 本発明の微生物反応槽は、実質的に余剰汚泥量を排出することなく、反応槽の容量が大きい場合でも簡易な形状で原水の嫌気・好気微生物処理を連続して行なうことができるので、高濃度の汚濁物質が含まれている排水処理設備として利用できる。また、処理水をろ過できる膜分離装置を備えて処理水を生活用水として水資源の有効活用を図るホテルなどに利用できる。 Since the microorganism reaction tank of the present invention can continuously perform anaerobic and aerobic microorganism treatment of raw water in a simple shape even when the capacity of the reaction tank is large without substantially discharging the amount of excess sludge, It can be used as a wastewater treatment facility containing high-concentration pollutants. In addition, a membrane separation device that can filter the treated water is provided, and the treated water can be used as water for daily life for hotels that effectively use water resources.
 1  微生物反応槽
 2  外槽
 3  円筒状内槽
 4  循環率制御装置
 5  円筒状制御板
 6  被処理水質測定装置
 7  回転軸
 8  空気吹込口
 9  支持柱
10  原水供給口
11  処理水放出口
12  沈降固定化防止装置
13  汚泥抜き出し口
14  膜分離装置
15  汚水排出源
16  原水曝気調整槽
DESCRIPTION OF SYMBOLS 1 Microbial reaction tank 2 Outer tank 3 Cylindrical inner tank 4 Circulation rate control apparatus 5 Cylindrical control board 6 Water quality measuring apparatus 7 Rotating shaft 8 Air inlet 9 Support pillar 10 Raw water supply port 11 Treated water discharge port 12 Settling fixation Prevention device 13 Sludge outlet 14 Membrane separation device 15 Sewage discharge source 16 Raw water aeration control tank

Claims (5)

  1.  外槽と、この外槽の内部に配置されて上下に開口部を有する円筒状内槽と、この円筒状内槽上部に設けられて被処理水の槽内循環率を制御する循環率制御装置と、前記円筒状内槽の上部外周の傾斜面に対して、開口している下面が接近して配置されて汚泥を沈降させるための円筒状制御板と、前記円筒状内槽の外側および内側に設けられた被処理水質測定装置と、前記外槽および内槽内を循環する被処理水の循環経路に設けられた原水供給口および前記外槽の上部に設けられた処理水放出口とを具備してなる微生物反応槽であって、
     前記円筒状内槽は、中心部に連通孔を有する隔壁で円筒上部と円筒下部とに分割され、
     前記円筒上部は、上面および底面が開口した円錐台形状の頂部を有し、該円錐台形の中心を通る高さ方向断面の傾斜角が40度から60度であり、かつ該円筒上部内の前記連通孔周囲および前記隔壁周縁部に複数の空気吹込口が設けられ、前記外槽の底面となる基盤に固定されて立設する複数の支持柱により前記円筒状内槽内に設けられた前記隔壁が支えられることで、外槽内部に配置された好気微生物処理槽であり、
     前記円筒下部は底面に開口部を有する嫌気微生物処理槽であり、
     前記原水供給口は、前記嫌気微生物処理槽の開口部の下部に配置された円環状原水供給部に設けられた複数の吐出口またはスリットであり、
     前記沈降させられた汚泥の沈降固定化を防止するスクレーパーおよび撹拌流発生装置から選ばれた少なくとも1つの沈降固定化防止装置が、前記汚泥が沈降する前記外槽下部に設けられ、
     前記被処理水質測定装置により測定される被処理水の水素イオン濃度、酸化還元電位および溶存酸素量から選ばれた少なくとも1つの測定値を検出する手段と、この手段により検出された測定値に応じて前記被処理水の槽内循環率を3~20に制御する手段が前記循環率制御装置内に設けられ、この循環率制御装置が液面調節バルブの開閉、液面調節制御板の回転または上下動、および前記空気吹込口から吹込まれる空気量から選ばれる少なくとも1つの量を制御する装置であり、
     前記微生物反応槽内または槽外に設けられて、処理水をろ過できる膜分離装置とを備え、
     前記原水供給口より供給される原水が活性汚泥と共に前記円筒状内槽の内部と、前記円筒状内槽の外周面と、前記外槽下部に沈降した活性汚泥内とを経て槽内を循環することで嫌気微生物処理および好気微生物処理が連続してなされることを特徴とする微生物反応槽。
    An outer tub, a cylindrical inner tub disposed inside the outer tub and having upper and lower openings, and a circulation rate control device for controlling the circulatory rate of water to be treated provided on the upper portion of the cylindrical inner tub And a cylindrical control plate for allowing sludge to settle by the lower surface being opened close to the inclined surface of the upper outer periphery of the cylindrical inner tank, and the outer and inner sides of the cylindrical inner tank A treated water quality measuring device provided in a raw water supply port provided in a circulation path of treated water circulating in the outer tank and the inner tank and a treated water discharge port provided in an upper portion of the outer tank. A microbial reaction tank comprising:
    The cylindrical inner tank is divided into a cylindrical upper part and a cylindrical lower part with a partition wall having a communication hole in the center part,
    The cylindrical upper portion has a frustoconical apex having an open top and bottom surface, and an inclination angle of a height direction cross-section passing through the center of the frustoconical shape is 40 degrees to 60 degrees. The partition wall provided in the cylindrical inner tub by a plurality of support pillars provided with a plurality of air blowing holes around the communication hole and the peripheral edge of the partition wall, and fixed to a base serving as a bottom surface of the outer tub Is an aerobic microorganism treatment tank arranged inside the outer tank,
    The cylindrical lower part is an anaerobic microorganism treatment tank having an opening on the bottom surface,
    The raw water supply port is a plurality of discharge ports or slits provided in an annular raw water supply unit disposed at the lower part of the opening of the anaerobic microorganism treatment tank,
    At least one settling and fixing preventing device selected from a scraper and a stirring flow generating device for preventing settling and fixing of the settled sludge is provided at the lower part of the outer tank in which the sludge is settling,
    Means for detecting at least one measurement value selected from the hydrogen ion concentration, redox potential and dissolved oxygen amount of the water to be treated measured by the water quality measuring device, and the measurement value detected by the means; Means for controlling the circulation rate in the tank to be treated to 3 to 20 is provided in the circulation rate control device, and this circulation rate control device opens and closes the liquid level control valve, rotates the liquid level control control plate or It is a device that controls at least one amount selected from vertical movement and the amount of air blown from the air blowing port,
    A membrane separation device provided inside or outside the microorganism reaction tank and capable of filtering treated water;
    The raw water supplied from the raw water supply port circulates in the tank together with the activated sludge through the inside of the cylindrical inner tank, the outer peripheral surface of the cylindrical inner tank, and the activated sludge settled in the lower part of the outer tank. Thus, a microorganism reaction tank characterized in that anaerobic microorganism treatment and aerobic microorganism treatment are continuously performed.
  2.  前記円筒下部は前記円筒上部の容積より1/10~1倍の容積を有することを特徴とする請求項1記載の微生物反応槽。 2. The microbial reaction tank according to claim 1, wherein the lower part of the cylinder has a volume 1/10 to 1 times the volume of the upper part of the cylinder.
  3.  前記円筒下部は、前記円筒上部の開口部よりも面積が大きい開口部を有する逆円錐台形状であることを特徴とする請求項1記載の微生物反応槽。 The microbial reaction tank according to claim 1, wherein the cylindrical lower part has an inverted truncated cone shape having an opening having a larger area than the opening of the upper part of the cylinder.
  4.  前記膜分離装置が浸漬型膜分離装置であることを特徴とする請求項1記載の微生物反応槽。 The microbial reaction tank according to claim 1, wherein the membrane separation device is an immersion type membrane separation device.
  5.  請求項1記載の微生物反応槽を用いる活性汚泥処理工程を含む循環型排水処理方法であって、
     汚水排出源から排出される排水を原水曝気調整槽に供給する工程1と、
     この原水曝気調整槽にて、酸化還元電位が正の値になるように曝気調整した後、この調整された処理原水を前記微生物反応槽に供給する工程2と、
     前記微生物反応槽内で嫌気および好気微生物処理が連続してなされる活性汚泥処理工程3と、
     前記微生物反応槽より発生する汚泥を前記原水曝気調整槽に供給する工程4と、
     前記膜分離装置に導入され、該装置により分離された処理水を前記汚水排出源に戻す工程5とを有することを特徴とする排水処理方法。
    A circulating wastewater treatment method including an activated sludge treatment step using the microorganism reaction tank according to claim 1,
    Step 1 of supplying wastewater discharged from the sewage discharge source to the raw water aeration control tank,
    In this raw water aeration adjusting tank, after adjusting the aeration so that the oxidation-reduction potential becomes a positive value, step 2 of supplying the adjusted treated raw water to the microorganism reaction tank;
    An activated sludge treatment step 3 in which anaerobic and aerobic microorganism treatment is continuously performed in the microorganism reaction tank;
    Supplying sludge generated from the microbial reaction tank to the raw water aeration control tank;
    And a step 5 of returning the treated water introduced into the membrane separation apparatus and separated by the apparatus to the wastewater discharge source.
PCT/JP2016/084606 2016-11-22 2016-11-22 Microorganism reaction vessel and method for treating wastewater WO2018096583A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2016/084606 WO2018096583A1 (en) 2016-11-22 2016-11-22 Microorganism reaction vessel and method for treating wastewater
TW106100490A TW201819314A (en) 2016-11-22 2017-01-06 Microorganism reaction vessel and method for treating wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084606 WO2018096583A1 (en) 2016-11-22 2016-11-22 Microorganism reaction vessel and method for treating wastewater

Publications (1)

Publication Number Publication Date
WO2018096583A1 true WO2018096583A1 (en) 2018-05-31

Family

ID=62195452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084606 WO2018096583A1 (en) 2016-11-22 2016-11-22 Microorganism reaction vessel and method for treating wastewater

Country Status (2)

Country Link
TW (1) TW201819314A (en)
WO (1) WO2018096583A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027036A1 (en) * 2018-07-31 2020-02-06 日本アルシー株式会社 Microbe reaction tank and wastewater treatment method
WO2021131485A1 (en) * 2019-12-24 2021-07-01 日本アルシー株式会社 Microorganism reaction tank

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646570A (en) * 2020-06-18 2020-09-11 成都筑博建材有限公司 Self-regulation type activated sludge municipal sewage treatment device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117794A (en) * 1995-10-26 1997-05-06 Mitsubishi Kakoki Kaisha Ltd Biological denitrification device
JP2008212930A (en) * 2008-04-23 2008-09-18 Hitachi Plant Technologies Ltd Membrane separator
JP2011110520A (en) * 2009-11-30 2011-06-09 Kubota Corp Apparatus for treating organic waste water and method of treating organic waste water
WO2013132611A1 (en) * 2012-03-07 2013-09-12 日本アルシー株式会社 Active sludge treatment method, and method for improving existing wastewater treatment facilities using said method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09117794A (en) * 1995-10-26 1997-05-06 Mitsubishi Kakoki Kaisha Ltd Biological denitrification device
JP2008212930A (en) * 2008-04-23 2008-09-18 Hitachi Plant Technologies Ltd Membrane separator
JP2011110520A (en) * 2009-11-30 2011-06-09 Kubota Corp Apparatus for treating organic waste water and method of treating organic waste water
WO2013132611A1 (en) * 2012-03-07 2013-09-12 日本アルシー株式会社 Active sludge treatment method, and method for improving existing wastewater treatment facilities using said method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027036A1 (en) * 2018-07-31 2020-02-06 日本アルシー株式会社 Microbe reaction tank and wastewater treatment method
JPWO2020027036A1 (en) * 2018-07-31 2021-08-02 日本アルシー株式会社 Microbial reaction tank and wastewater treatment method
JP7437037B2 (en) 2018-07-31 2024-02-22 日本アルシー株式会社 Microbial reaction tank and wastewater treatment method
WO2021131485A1 (en) * 2019-12-24 2021-07-01 日本アルシー株式会社 Microorganism reaction tank

Also Published As

Publication number Publication date
TW201819314A (en) 2018-06-01

Similar Documents

Publication Publication Date Title
US8551341B2 (en) Suspended media membrane biological reactor system including suspension system and multiple biological reactor zones
CN105693014A (en) Sewage treatment system and sewage treatment method
JP6071997B2 (en) Microbial reaction tank and waste water treatment method
KR101050375B1 (en) A submerged membrane bio reactor easilly respond to load regulation and method of wastewater treatment using the same
WO2018198422A1 (en) Membrane-separation activated sludge treatment device and membrane-separation activated sludge treatment method
JP5968420B2 (en) Activated sludge treatment method and repair method of existing wastewater treatment equipment using the method
WO2018096583A1 (en) Microorganism reaction vessel and method for treating wastewater
JP2004261711A (en) Membrane separation activated sludge treatment apparatus and membrane separation activated sludge treatment method
JP6071998B2 (en) Microbial reactor
JP2009202146A (en) Water treatment equipment and method of water treatment
JP2006205155A (en) Anaerobic tank and waste water treatment system including the same
KR102097717B1 (en) Sedimentation and floatation apparatus for waste water treatment and treatment equipmentof of livestock and wastewater using it
WO2018033997A1 (en) Active sludge treatment method, and method for improving existing waste water treatment equipment by using active sludge treatment method
KR101817471B1 (en) Wastewater Treatment System
CN205528260U (en) Sewage treatment system
CN207903981U (en) A kind of efficient up-flow biological reaction apparatus
CN210711166U (en) Villages and towns sewage treatment plant
KR20060104585A (en) Apparatus and method for wastewater treatment using upflow bio reactor and membrane filter
JP7016622B2 (en) Membrane separation activated sludge treatment equipment and membrane separation activated sludge treatment method
JP7437037B2 (en) Microbial reaction tank and wastewater treatment method
WO2021131485A1 (en) Microorganism reaction tank
JP7372859B2 (en) Organic wastewater treatment method and treatment equipment
JP2024049232A (en) Solid-liquid separation device and activated sludge treatment method
US20130175209A1 (en) Clarifier
KR20220111891A (en) SBR reaction system with efficient treatment of sludge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP