WO2005077839A1 - Method for treating organic wastewater - Google Patents

Method for treating organic wastewater Download PDF

Info

Publication number
WO2005077839A1
WO2005077839A1 PCT/JP2004/001563 JP2004001563W WO2005077839A1 WO 2005077839 A1 WO2005077839 A1 WO 2005077839A1 JP 2004001563 W JP2004001563 W JP 2004001563W WO 2005077839 A1 WO2005077839 A1 WO 2005077839A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
organic wastewater
tank
added
membrane
Prior art date
Application number
PCT/JP2004/001563
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Nakashima
Takashi Yamada
Original Assignee
Asahi Organic Chemicals Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co., Ltd. filed Critical Asahi Organic Chemicals Industry Co., Ltd.
Priority to PCT/JP2004/001563 priority Critical patent/WO2005077839A1/en
Publication of WO2005077839A1 publication Critical patent/WO2005077839A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for treating organic wastewater such as domestic wastewater, livestock wastewater, fishery processing wastewater, or various kinds of industrial wastewater. More specifically, treatment of organic wastewater using an activated sludge treatment device that has a reaction tank that treats organic wastewater with microorganisms and a filtration membrane that separates the suspension after the reaction treatment into treated water and a concentrated liquid About the method.
  • an activated sludge treatment device that has a reaction tank that treats organic wastewater with microorganisms and a filtration membrane that separates the suspension after the reaction treatment into treated water and a concentrated liquid About the method.
  • methods for treating organic wastewater using a filtration membrane include immersing the filtration membrane in a reaction tank, separating the suspension after the reaction into treated water and a concentrated liquid using a filtration membrane, and Although some of the concentrated liquid separated in the filtration membrane is returned to the reaction tank, basically, as shown in Fig. 4, the organic wastewater 16 is pre-treated via a pipeline.
  • the mixture is introduced into the process 17, passed through a flow control tank (not shown), and introduced into the reaction tank 18.
  • the suspension in the reaction tank is converted into sludge 24 and filtered water 23 by the filtration membrane 20. Solid-liquid separation is performed.
  • the filtered water 23 is disinfected in the disinfection tank 19 and released into rivers, etc., and the sludge 24 accumulated in the reaction tank 18 is replaced with excess sludge 25 so that the sludge concentration in the reaction tank is maintained. After passing through the sludge concentration tank 21, it is held in the sludge storage tank 22, and then is carried out of the system.
  • sugars, proteins, nucleic acids, etc., produced by microorganisms become viscous polymers, which cause clogging of the filtration membrane surface and clogging in pores of the membrane. This is the cause of the problem.
  • a certain amount of treated water cannot be discharged, and the suspension in the reaction tank may carry over.
  • microorganisms such as bacteria, fungi, and protozoa take up organic matter as nutrients and purify while repeating the growth of these microorganisms. Will occur.
  • the generated sludge itself is a source of foul odors and is difficult to use secondaryly.Therefore, it is difficult to secure excess sludge disposal sites, increase the cost of disposal, and degrade the environment due to the disposal of disposed sludge. It is a problem. Furthermore, when dewatered sludge is incinerated, it causes a decrease in the temperature of the incinerator, which may cause the generation of dioxin.
  • the conventional organic wastewater treatment apparatus using a filtration membrane has problems in that the maintenance and management costs are high and excess sludge is generated in large quantities.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to extend the life of a filtration membrane used in an activated sludge treatment apparatus and greatly reduce the amount of excess sludge generated. To provide a method for treating organic wastewater.
  • the present inventor has found that at least one compound of wood vinegar, polyphenols, organic acids, and metal salts of organic acids is 1 ppb-
  • the microorganisms are activated by maintaining the concentration at 100 ppm, and the activated microorganisms decompose the polymer, whereby the permeability of the suspension through the filtration membrane is improved, and as a result, the membrane life is extended. I found it to be longer.
  • activated microorganisms are extinguished by the cellular mechanism called autooxidation, and the resulting excess sludge is greatly reduced.
  • the inventors have found that the present invention is reduced, and completed the present invention.
  • the present invention relates to an organic wastewater treatment apparatus using an activated sludge treatment apparatus having a reaction tank for treating organic wastewater with microorganisms, and a filtration membrane for separating the suspension after the reaction treatment into treated water and a concentrated liquid.
  • the treatment method at least one compound of wood vinegar solution, polyphenols, organic acid, and metal salt of organic acid is added, and the concentration of the added compound in the reaction tank becomes 1 ppb to 100 ppm.
  • the first feature is that the concentration of the compound added is kept at 10 ppb to lp pm. Further, a polyphenol and an organic acid metal salt are added, and the concentrations of the added polyphenol and the organic acid metal salt in the reaction vessel are maintained at 10 ppb to lp pm, respectively.
  • the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.
  • FIG. 1 is a diagram showing a configuration and a processing flow of an experimental apparatus used in the present example and a comparative example.
  • FIG. 2 is a graph showing a relationship between a processing time and a pressure change in Example 1.
  • 3 is a graph showing the relationship between the processing time and the pressure change in Example 2
  • FIG. 4 is a diagram showing a general processing flow of organic wastewater using a conventional filtration membrane.
  • A is a reaction tank
  • 1 is a raw water tank
  • 2 is an organic wastewater
  • 3 is a denitrification tank
  • 4 is a nitrification tank
  • 5 is a filtration membrane
  • 6 is filtered water
  • 7 is a sewage transfer pump
  • 8 is a sludge circulation pump.
  • filtered water transfer pump 10 is a pressure gauge
  • 11 is a stirrer
  • 1 2 is a diffuser
  • 13 is a blower
  • 14 is a filtered water circulation pump
  • 15 is a filtered water tank
  • 16 is organic wastewater.
  • 17 is a pretreatment step
  • 18 is a reaction tank
  • 19 is a disinfection tank
  • 20 is a filtration membrane
  • 21 is a sludge concentration tank
  • 22 is a sludge storage tank
  • 23 is filtered water
  • 24 is sludge
  • 25 is excess sludge.
  • wood vinegar, phenols, polyphenols, organic phenols, polyphenols, organic acids, and organic acid metal salts are added in a reaction vessel by adding at least one compound of the compounds. It is necessary to maintain at least one compound of an acid and a metal salt of an organic acid at a concentration of 1 ppb to 100 p; m, more preferably 10 ppb to lppm. From the viewpoint of the effect of activating sludge and reducing excess sludge, the concentration of the compound in the reaction tank must be higher than 1 ppb, and it does not deteriorate the quality of the treated water as a bactericide and inhibitor for activated sludge. From the point of view, it must be lower than l OO p pm.
  • the reaction tank in the present invention refers to a tank for treating organic wastewater with microorganisms.
  • a two-tank type is shown, but the reaction tank may be a single tank. It may be a double tank of more than a tank.
  • the wood vinegar liquid in the present invention is preferably derived from hardwood, and the polyphenols are not particularly limited, but tannin, rutin, and quercetin are preferable, and the organic acid and the organic acid metal salt are not particularly limited. Preferred are formic acid, acetic acid, propionic acid, butyric acid and metal salts thereof such as sodium salts and potassium salts.
  • the above compounds have the effect of suppressing the amount of activated sludge polymer and the amount of generated sludge even when they are used alone, but they contain both polyphenols and metal salts of organic acids, and the concentration in the reaction tank solution is reduced.
  • the mass ratio of polyphenols to organic acid metal salt is 70 to 3 ppm. It is preferable to mix in the range of 0 to 30/70.
  • the blocking of the filtration membrane is caused by the adhesion of the activated sludge polymer that does not pass through the filtration membrane to the filtration membrane surface, and the effect of the present invention is that the amount of the polymer is reduced by the compound held in the reaction tank.
  • Microfiltration membranes pore size 0.1 l / m to 10 m
  • ultrafiltration membranes pore size 0.001 ⁇ ! ⁇ 0.01 / zm
  • the pore size of the filtration membrane is preferably larger than that of the ultrafiltration membrane.
  • the pore diameter of the filtration membrane is preferably smaller than that of the microfiltration membrane.
  • the method for maintaining the concentration of the compound in the reaction tank is not particularly limited, but the sludge multiplies in the reaction tank, and the compound acts more effectively in this step. It is preferable to maintain the concentration in the reaction tank by adding it to at least one of the reaction tanks. Since the flow control tank has a function to temporarily stay in order to transfer the inflow wastewater to the reaction tank at a constant rate, it is possible to read the amount of inflow wastewater from the flow meter and add the compound quantitatively based on the flow rate. it can.
  • the compound enhances the respiratory activity of bacteria in the sludge, thereby reducing the amount of polymer produced by the bacterium, and the produced polymer is active. Consumed by transformed bacteria. As a result, the amount of viscous polymer that causes blockage of the membrane is reduced, membrane clogging is delayed, and activated microorganisms are promoted by auto-oxidation, reducing excess sludge generated. it is conceivable that.
  • organic wastewater is oxidized by microorganisms in activated sludge in a reaction tank during the treatment process.
  • the organic wastewater is fed into the reactor as a nutrient for activated sludge and treated. Therefore, in the following Reference Example, an organic wastewater was treated by treating an Erlenmeyer flask as a reaction tank.
  • the obtained suspension (activated sludge) was centrifuged (1300 rpm, 10 minutes), and the COD of the supernatant was measured. After drying (105 ° C, 24 hours), the weight was measured and the sludge increase rate was calculated.
  • the obtained suspension (activated sludge) is concentrated and used in accordance with the Nutsche test described in Chapter 4, Section 14 of the Sewerage Test Method issued by the Japan Sewerage Association.
  • the sludge specific resistance was calculated.
  • the sludge increase rate calculated in the above Reference Examples 1 to 6 is the sludge increase rate of Reference Comparative Example 1 as 100%, and the sludge increase rate of each Reference Example.
  • the amount is divided by the amount of sludge increase in Reference Comparative Example 1 and is shown in%. From Table 1, looking at the specific resistance of the sludge is indicative of the dehydrating, or, if none added 3.4 9 1 0 1 () seconds against although it was 2 7 Dea', pyroligneous acid, polyphenols , Organic acids and organic acid metal salts were added, the specific resistance of the sludge was small, as 2.28 X 101 () to 3.18 X 101 Qs 2 Zg It can be seen that the dehydration property was improved.
  • Table 1 also shows that when wood vinegar, polyphenols, organic acids, and organic acid metal salts are added, the rate of increase in sludge is suppressed to about 66 to 85%, and the amount of excess sludge generated is reduced. It turns out that there are few. In addition, the water quality at this time was equal to or higher than Comparative Reference Example 1 in which none of them was added.
  • Fig. 1 shows the configuration of the experimental apparatus.
  • reaction tank A is composed of a denitrification tank 3 (7.5 L) and a nitrification tank 4 (7.5 L).
  • a filtration membrane 5 of 90 mm ⁇ 200 mm) was immersed.
  • the denitrification tank 3 is provided with a stirrer 11 for stirring activated sludge
  • the nitrification tank 4 is provided with an air diffuser 12 at the bottom of the tank for the purpose of supplying oxygen to the activated sludge and stirring the sludge. It was installed and connected to a blower 13 to allow ventilation. Further, a pressure gauge 10 was installed between the filtration membrane 5 and the filtration water transfer pump 9 to measure the suction pressure of the membrane.
  • the denitrification tank 3 and the nitrification tank 4 were previously filled with activated sludge collected from the treatment plant to a concentration of about 10 g ZL, and then the organic wastewater collected from the treatment plant on a daily basis.
  • the raw water tank 1 The wastewater was sent to the denitrification tank 3 using the sewage transfer pump 7 at a flow rate of 1-25 L / r (30 L / day).
  • the organic wastewater 2 sent to the denitrification tank 3 is mixed with the activated sludge in the denitrification tank 3 and then transferred to the nitrification tank 4 in an extrusion flow manner.
  • activated sludge of about 300% of the inflow water is circulated by the sludge circulation pump 8, and the filtration is performed through the filtration membrane 5 immersed in the nitrification tank 4.
  • Water 6 is drained by a filtered water transfer pump 9.
  • the film flux 1.
  • the water was returned to the nitrification tank 4 by the water circulation pump 14 at a flow rate of 3.75 L / hr.
  • the air volume in the nitrification tank 4 was about 5 LZmin, and continuous air ventilation was performed.
  • the membrane flux 1 To a 2 m 3 / m 2 ⁇ day , 3. 7 5 transports the filtered water 6 in continuous operation so that the flow rate of the LZH r to filtering water tank 1 5, further filtered water 6 The same treatment as in Example 1 was performed except that the filtrate was returned to the nitrification tank 4 at a flow rate of 2 LZ hr by the filtered water circulation pump 14, and the same measurement was performed.
  • Example 2 To the membrane flux and 0. 5 m 3 / m 2 ⁇ day, except for transferring the filtered water 6 to filtering water tank 1 5 in continuous operation so that the flow rate of 1. 2 5 L / hr, Example The same processing was performed as in 1. The measurement was performed on the reactor sludge concentration, reactor sludge volume, and filtered water COD.
  • Table 2 and Fig. 2 show the results of the pressure change at each elapsed time in Example 1 and Comparative Example 1
  • Table 3 shows the results of the pressure change at each elapsed time in Example 2 and Comparative Example 2. This is shown in FIG. Table 2 shows the results of measuring the filtered water COD of each of the elapsed times of Example 1 and Comparative Example 1, and the filtered water COD of each of the elapsed times of Example 2 and Comparative Example 2 was measured. The measured results are shown in Table 3.
  • the respiratory activity of patella in activated sludge is activated, and the amount of activated sludge polymer is reduced.
  • the service life of the membrane is prolonged and the amount of permeated water is increased. Therefore, the cost for membrane management is reduced. Also, since the amount of excess sludge generated can be reduced, the disposal cost of excess sludge is also reduced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Activated Sludge Processes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A method for treating an organic wastewater, which comprises maintaining the concentration of at least one of pyroligneous acid, a polyphenol, an organic acid and a metal salt of an organic acid in a reaction vessel (A) of an activated sludge process apparatus at a level of 1 ppb to 100 ppm. The method allows the elongation of the life of a filtration film (5) being used in an activated sludge process apparatus and also the reduction of the amount of generation of an excess sludge.

Description

明細書 有機性排水の処理方法 技術分野  Description Organic wastewater treatment method
本発明は、 例えば生活系排水、 畜産排水、 水産加工排水又は各 種産業排水などの有機性排水の処理方法に関する。 更に詳しくは、 有機性排水を微生物処理する反応槽と、 反応処理後の懸濁液を処 理水と濃縮液に分離するろ過膜とを有する活性汚泥処理装置を使 用した有機性排水の処理方法に関する。 背景技術  The present invention relates to a method for treating organic wastewater such as domestic wastewater, livestock wastewater, fishery processing wastewater, or various kinds of industrial wastewater. More specifically, treatment of organic wastewater using an activated sludge treatment device that has a reaction tank that treats organic wastewater with microorganisms and a filtration membrane that separates the suspension after the reaction treatment into treated water and a concentrated liquid About the method. Background art
従来、 ろ過膜を用いた有機性排水の処理方法は、 ろ過膜を反 応槽内に浸漬するものや、 反応後の懸濁液をろ過膜で処理水と濃 縮液に分離すると共に、 該ろ過膜において分離された濃縮液の一 部を反応槽内に返送するものがあるが、 基本的には、 図 4に示す ように、 有機性排水 1 6は、 管路を経由して前処理工程 1 7に導 入され、 流量調整槽 (図示せず) を経て、 反応槽 1 8に導入され、 反応槽中の懸濁液はろ過膜 2 0によって汚泥 2 4とろ過水 2 3と に固液分離される。 ろ過水 2 3は、 消毒槽 1 9で消毒されて河川 等に放出され、 反応槽 1 8に蓄積した汚泥 2 4は、 反応槽中の汚 泥濃度が維持されるように、 余剰汚泥 2 5として汚泥濃縮槽 2 1 を経て汚泥貯留槽 2 2にて保持され、 その後系外へ搬出される。 しかしながら、 有機性排水を微生物処理する過程において、 微 生物が生産する糖、 タンパク、 核酸等が粘質性のポリマーとなり、 該ポリマーがろ過膜表面の閉塞や膜細孔内への目詰まりを引き起 こす原因となっている。 その結果、 処理水を一定量排出すること ができず、 反応槽の懸濁液がキヤリ一オーバーする恐れがある。 これを解決するには膜を交換すれば良いが、 それにかかる費用が 大きく、 問題がある。 また、 膜に付着した該ポリマーを除去すベ く、 種々洗浄方法も考案されているが、 この方法では膜のろ過流 路の閉塞を防ぐ原因である有機性排水中のし渣を除去するに過ぎ ず、 問題の解決には至っていない。 Conventionally, methods for treating organic wastewater using a filtration membrane include immersing the filtration membrane in a reaction tank, separating the suspension after the reaction into treated water and a concentrated liquid using a filtration membrane, and Although some of the concentrated liquid separated in the filtration membrane is returned to the reaction tank, basically, as shown in Fig. 4, the organic wastewater 16 is pre-treated via a pipeline. The mixture is introduced into the process 17, passed through a flow control tank (not shown), and introduced into the reaction tank 18. The suspension in the reaction tank is converted into sludge 24 and filtered water 23 by the filtration membrane 20. Solid-liquid separation is performed. The filtered water 23 is disinfected in the disinfection tank 19 and released into rivers, etc., and the sludge 24 accumulated in the reaction tank 18 is replaced with excess sludge 25 so that the sludge concentration in the reaction tank is maintained. After passing through the sludge concentration tank 21, it is held in the sludge storage tank 22, and then is carried out of the system. However, in the process of microbial treatment of organic wastewater, sugars, proteins, nucleic acids, etc., produced by microorganisms become viscous polymers, which cause clogging of the filtration membrane surface and clogging in pores of the membrane. This is the cause of the problem. As a result, a certain amount of treated water cannot be discharged, and the suspension in the reaction tank may carry over. The solution is to replace the membrane, but it costs Big and problematic. Various cleaning methods have also been devised to remove the polymer adhering to the membrane, but this method is intended to remove the residue in organic wastewater, which is a cause of preventing the membrane from blocking the filtration channel. This has not been solved.
また、 そもそも有機性排水の生物処理では、 細菌、 菌類及び原 生動物等の微生物群が、 有機物を栄養素として取り込み、 これら 微生物群が増殖を繰り返しながら浄化を行うため、 この過程で大 量の汚泥が発生することとなる。  In the biological treatment of organic wastewater, microorganisms such as bacteria, fungi, and protozoa take up organic matter as nutrients and purify while repeating the growth of these microorganisms. Will occur.
発生した汚泥はそれ自体が悪臭の発生源となったり、 二次利用 が困難であるため、 余剰汚泥処分地の確保難や処分にかかる費用 の増大及び処分汚泥の投棄による環境の悪化が大きな社会問題と なっている。 更に、 脱水汚泥を焼却処分する場合には、 焼却炉の 温度を低下させる原因となり、 ダイォキシンの発生が危惧される。  The generated sludge itself is a source of foul odors and is difficult to use secondaryly.Therefore, it is difficult to secure excess sludge disposal sites, increase the cost of disposal, and degrade the environment due to the disposal of disposed sludge. It is a problem. Furthermore, when dewatered sludge is incinerated, it causes a decrease in the temperature of the incinerator, which may cause the generation of dioxin.
このように、 従来のろ過膜を用いた有機性排水処理装置では維 持管理にかかる費用が高いことや、 余剰汚泥が大量に発生するこ とが問題であった。  As described above, the conventional organic wastewater treatment apparatus using a filtration membrane has problems in that the maintenance and management costs are high and excess sludge is generated in large quantities.
本発明は、 以上のような問題点に鑑みなされたものであり、 そ の目的は、 活性汚泥処理装置に用いられるろ過膜の膜寿命を長く すると共に、 発生する余剰汚泥量を大きく削減することのできる 有機性排水の処理方法を提供することである。  The present invention has been made in view of the above-described problems, and an object of the present invention is to extend the life of a filtration membrane used in an activated sludge treatment apparatus and greatly reduce the amount of excess sludge generated. To provide a method for treating organic wastewater.
発明の開示  Disclosure of the invention
以上のような従来技術の状況に鑑み、 種々研究を重ねた結果、 本発明者は、 木酢液、 ポリフエノール類、 有機酸、 有機酸金属塩 の少なくとも 1種の化合物が反応槽において 1 p p b〜 1 0 0 p p mの濃度に保持されることによって微生物を活性化し、 活性化 された微生物が前記ポリマーを分解することによって、 ろ過膜に よる懸濁液の透過性が向上し、 結果として膜寿命が長くなること を見出した。 また、 活性化された微生物は自己酸化という細胞メ 力ニズムによって消滅し、 結果として発生する余剰汚泥が大幅に 削減されることを見出し、 本発明を完成させた。 In view of the situation of the prior art as described above, as a result of various studies, the present inventor has found that at least one compound of wood vinegar, polyphenols, organic acids, and metal salts of organic acids is 1 ppb- The microorganisms are activated by maintaining the concentration at 100 ppm, and the activated microorganisms decompose the polymer, whereby the permeability of the suspension through the filtration membrane is improved, and as a result, the membrane life is extended. I found it to be longer. In addition, activated microorganisms are extinguished by the cellular mechanism called autooxidation, and the resulting excess sludge is greatly reduced. The inventors have found that the present invention is reduced, and completed the present invention.
すなわち、 本発明は、 有機性排水を微生物処理する反応槽と、 反応処理後の懸濁液を処理水と濃縮液に分離するろ過膜とを有す る活性汚泥処理装置を使用した有機性排水の処理方法において、 木酢液、 ポリフエノール類、 有機酸、 有機酸金属塩の少なくとも 1種の化合物を添加し、 前記反応槽における該添加した化合物の 濃度が 1 p p b〜 1 0 0 p p mになるように保持することを第 1 の特徴とするものであり、 前記添加した化合物の濃度が 1 0 p p b〜 l p pmになるように保持することを第 2の特徴とする。 ま た、 ポリフエノール類及び有機酸金属塩を添加し、 前記反応槽に おける該添加したポリフエノール類及び有機酸金属塩の濃度がそ れぞれ 1 0 p p b〜 l p pmになるように保持することを第 3の 特徴とし、 ろ過膜が精密ろ過膜あるいは限外ろ過膜であることを 第 4の特徵とする。 図面の簡単な説明  That is, the present invention relates to an organic wastewater treatment apparatus using an activated sludge treatment apparatus having a reaction tank for treating organic wastewater with microorganisms, and a filtration membrane for separating the suspension after the reaction treatment into treated water and a concentrated liquid. In the treatment method, at least one compound of wood vinegar solution, polyphenols, organic acid, and metal salt of organic acid is added, and the concentration of the added compound in the reaction tank becomes 1 ppb to 100 ppm. The first feature is that the concentration of the compound added is kept at 10 ppb to lp pm. Further, a polyphenol and an organic acid metal salt are added, and the concentrations of the added polyphenol and the organic acid metal salt in the reaction vessel are maintained at 10 ppb to lp pm, respectively. This is the third feature, and the fourth feature is that the filtration membrane is a microfiltration membrane or an ultrafiltration membrane. Brief Description of Drawings
図 1は、 本実施例及び比較例で用いた実験装置の構成と処理フ ローを示す図であり、 図 2は、 実施例 1における処理時間と圧力 変化の関係を示したグラフであり、 図 3は、 実施例 2における処 理時間と圧力変化の関係を示したグラフであり、 図 4は、 従来の ろ過膜を用いた有機性排水の一般的な処理フローを示す図である。 図中、 Aは反応槽、 1は原水槽、 2は有機性排水、 3は脱窒槽、 4は硝化槽、 5はろ過膜、 6はろ過水、 7は汚水移送ポンプ、 8 は汚泥循環ポンプ、 9はろ過水移送ポンプ、 1 0は圧力計、 1 1 は攪拌機、 1 2は散気管、 1 3はブロア、 1 4はろ過水循環ボン プ、 1 5はろ過水槽、 1 6は有機性排水、 1 7は前処理工程、 1 8は反応槽、 1 9は消毒槽、 2 0はろ過膜、 2 1は汚泥濃縮槽、 2 2は汚泥貯留槽、 2 3はろ過水、 24は汚泥、 2 5は余剰汚泥 である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a configuration and a processing flow of an experimental apparatus used in the present example and a comparative example. FIG. 2 is a graph showing a relationship between a processing time and a pressure change in Example 1. 3 is a graph showing the relationship between the processing time and the pressure change in Example 2, and FIG. 4 is a diagram showing a general processing flow of organic wastewater using a conventional filtration membrane. In the figure, A is a reaction tank, 1 is a raw water tank, 2 is an organic wastewater, 3 is a denitrification tank, 4 is a nitrification tank, 5 is a filtration membrane, 6 is filtered water, 7 is a sewage transfer pump, and 8 is a sludge circulation pump. , 9 is a filtered water transfer pump, 10 is a pressure gauge, 11 is a stirrer, 1 2 is a diffuser, 13 is a blower, 14 is a filtered water circulation pump, 15 is a filtered water tank, and 16 is organic wastewater. , 17 is a pretreatment step, 18 is a reaction tank, 19 is a disinfection tank, 20 is a filtration membrane, 21 is a sludge concentration tank, 22 is a sludge storage tank, 23 is filtered water, 24 is sludge, 25 is excess sludge. BEST MODE FOR CARRYING OUT THE INVENTION
本発明では、 木酢液、 フエノール類、 ポリフエノール類、 有機 酸、 有機酸金属塩の少なくとも 1種の化合物を添加することによ り、 反応槽において、 木酢液、 フエノール類、 ポリフエノール類、 有機酸、 有機酸金属塩の少なくとも 1種の化合物を 1 P P b〜 1 0 0 p; mの濃度に保持することが必要であり、 より好ましくは 1 0 p p b〜 l p pmである。 汚泥活性化効果及び余剰汚泥削減 効果の点から、 反応槽での化合物の濃度は 1 p p bより高いこと が必要であり、 また活性汚泥に対する殺菌剤および阻害剤となつ て処理水の水質を悪化させないようにする点から、 l O O p pm より低くする必要がある。 尚、 本発明における反応槽とは、 有機 性排水を微生物処理する槽のことであり、 後記実施例では 2槽式 が示されているが、 反応槽は単槽であっても良く、 また 2槽以上 の複槽であっても良い。  In the present invention, wood vinegar, phenols, polyphenols, organic phenols, polyphenols, organic acids, and organic acid metal salts are added in a reaction vessel by adding at least one compound of the compounds. It is necessary to maintain at least one compound of an acid and a metal salt of an organic acid at a concentration of 1 ppb to 100 p; m, more preferably 10 ppb to lppm. From the viewpoint of the effect of activating sludge and reducing excess sludge, the concentration of the compound in the reaction tank must be higher than 1 ppb, and it does not deteriorate the quality of the treated water as a bactericide and inhibitor for activated sludge. From the point of view, it must be lower than l OO p pm. The reaction tank in the present invention refers to a tank for treating organic wastewater with microorganisms. In the examples described later, a two-tank type is shown, but the reaction tank may be a single tank. It may be a double tank of more than a tank.
本発明における木酢液としては、 広葉樹由来のものが好ましく、 ポリフエノール類としては、 特に限定されないが、 タンニン、 ル チン、 ケルセチンが好ましく、 有機酸および有機酸金属塩として は、 特に限定されないが、 蟻酸、 酢酸、 プロピオン酸、 酪酸およ びそれらのナトリゥム塩や力リゥム塩などの金属塩が好ましい。 前記化合物は、 それぞれ単独で使用した場合でも活性汚泥ポリ マ一および発生汚泥の生成量を抑制する効果はあるが、 ポリフエ ノール類及び有機酸金属塩の両者を配合して、 反応槽液中濃度で それぞれが 1 0 p p b〜 l p p mになるように保持するのがより 効果的で、 更に好ましくはポリフエノール類と有機酸金属塩との 質量比 (ポリフエノール類 有機酸金属塩) を 7 0ノ 3 0〜 3 0 / 7 0の範囲に配合するのが好ましい。  The wood vinegar liquid in the present invention is preferably derived from hardwood, and the polyphenols are not particularly limited, but tannin, rutin, and quercetin are preferable, and the organic acid and the organic acid metal salt are not particularly limited. Preferred are formic acid, acetic acid, propionic acid, butyric acid and metal salts thereof such as sodium salts and potassium salts. The above compounds have the effect of suppressing the amount of activated sludge polymer and the amount of generated sludge even when they are used alone, but they contain both polyphenols and metal salts of organic acids, and the concentration in the reaction tank solution is reduced. It is more effective to keep each of them at 10 ppb to lppm, and more preferably, the mass ratio of polyphenols to organic acid metal salt (polyphenols organic acid metal salt) is 70 to 3 ppm. It is preferable to mix in the range of 0 to 30/70.
' ろ過膜の閉塞は、 ろ過膜を透過しない活性汚泥ポリマ一がろ過 膜面へ付着することが原因であり、 本発明による効果は反応槽に 保持した前記化合物により該ポリマ一量が減少することによって、 ろ過膜の寿命を長くするので、 精密ろ過膜 (孔径 0 . l / m〜 l 0 m ) や限外ろ過膜 (孔径 0 . 0 0 1 β η!〜 0 . 0 1 /z m) が 用いられた場合により効果的である。 挟雑物の多い排水処理を考 慮した場合、 ろ過膜の孔径が限外ろ過膜のそれより大きいと好ま しい。 また、 活性汚泥菌体がろ過膜を透過して処理水を悪化させ ないためには、 ろ過膜の孔径が精密ろ過膜のそれより小さいこと が好ましい。 '' The blocking of the filtration membrane is caused by the adhesion of the activated sludge polymer that does not pass through the filtration membrane to the filtration membrane surface, and the effect of the present invention is that the amount of the polymer is reduced by the compound held in the reaction tank. By Microfiltration membranes (pore size 0.1 l / m to 10 m) and ultrafiltration membranes (pore size 0.001 βη! ~ 0.01 / zm) are used to extend the life of filtration membranes. It is more effective when When considering wastewater treatment with a large amount of contaminants, the pore size of the filtration membrane is preferably larger than that of the ultrafiltration membrane. In order to prevent the activated sludge cells from permeating the filtration membrane and deteriorating the treated water, the pore diameter of the filtration membrane is preferably smaller than that of the microfiltration membrane.
前記化合物の反応槽における濃度を保持する方法は特に限定さ れないが、 汚泥は反応槽において増殖し、 前記化合物はこの工程 においてより効果的に作用することから、 工程中の流量調整槽及 び反応槽の少なくとも一方に添加することにより、 反応槽におけ る前記濃度を保持することが好ましい。 流量調整槽は流入排水を 一定の割合で反応槽へ移送するために一時的に滞留する機能を有 するので、 流入排水量を流量計から読み取り、 その流量によって 定量的に前記化合物を添加することができる。  The method for maintaining the concentration of the compound in the reaction tank is not particularly limited, but the sludge multiplies in the reaction tank, and the compound acts more effectively in this step. It is preferable to maintain the concentration in the reaction tank by adding it to at least one of the reaction tanks. Since the flow control tank has a function to temporarily stay in order to transfer the inflow wastewater to the reaction tank at a constant rate, it is possible to read the amount of inflow wastewater from the flow meter and add the compound quantitatively based on the flow rate. it can.
本発明の詳細な作用機構は明らかでないが、 前記化合物が活性 汚泥中のバクテリアの呼吸活性を向上させることによって、 バク テリアが生産するポリマ一量が減少し、 また、 生産されたポリ マーは活性化されたバクテリァによって消費される。 その結果、 膜の閉塞原因である粘質性のポリマー量が減少し、 膜の目詰まり が遅延されると共に、 活性化された微生物は自己酸化が促進され るので発生する余剰汚泥が削減するものと考えられる。  Although the detailed mechanism of action of the present invention is not clear, the compound enhances the respiratory activity of bacteria in the sludge, thereby reducing the amount of polymer produced by the bacterium, and the produced polymer is active. Consumed by transformed bacteria. As a result, the amount of viscous polymer that causes blockage of the membrane is reduced, membrane clogging is delayed, and activated microorganisms are promoted by auto-oxidation, reducing excess sludge generated. it is conceivable that.
<実施例 >  <Example>
以下、 本発明の実施例を説明するが、 本発明はこれらの実施例 に限定されるものではない。  Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.
まず、 ろ過膜を用いた連続実験を行う前に、 種々の化合物の効 果を評価すべく、 参考例として、 それぞれ化合物を加えた場合、 あるいは加えない場合とで汚泥を培養し、 培養後の汚泥の増加量 の比較と、 脱水性試験の汚泥の比抵抗値による脱水性の比較とを 行った。 First, before conducting a continuous experiment using a filtration membrane, to evaluate the effects of various compounds, as a reference example, sludge was cultured with or without the compound, and after the culture. Comparison of sludge increase and comparison of dewaterability based on sludge resistivity in dewaterability test went.
ところで、 有機性排水は、 処理工程中の反応槽で活性汚泥中の 微生物により酸化処理される。 言い換えれば、 有機性排水は活性 汚泥の栄養源として反応槽へ投入され、 処理されるのである。 よって、 以下の参考例では、 三角フラスコを反応槽に見立て、 有 機性排水の処理を行った。  By the way, organic wastewater is oxidized by microorganisms in activated sludge in a reaction tank during the treatment process. In other words, the organic wastewater is fed into the reactor as a nutrient for activated sludge and treated. Therefore, in the following Reference Example, an organic wastewater was treated by treating an Erlenmeyer flask as a reaction tank.
尚、 以下の説明において、 Lはリッ トルを表す。  In the following description, L represents a little.
<参考例 1 >  <Reference Example 1>
有機性排水の処理は、 5 0 OmLの三角フラスコに、 下水処理 場より採取した活性汚泥 ( 5 5 0 0 mgZL) を 2 0 OmL投入 し、 肉エキス、 ポリペプトン、 尿素、 N a2HP〇4、 N a C l、 KC 1、 C a C lい Mg S 04からなる有機性排水 ( C 0 D 2 8 7 0 m g /L) 2 5mLを加え、 木酢液が l O O p p bとなるよ うに、 木酢液 ( 1 0mg/L) を 2. 5 mL加え、 全量が 2 5 0 mLとなるように水道水を加え、 2 0 ° (:、 1 3 0 r pmの条件下 で 8時間回転振とう培養することで行った。 Treatment of the organic waste water is 5 0 Erlenmeyer flask OML, the activated sludge collected from a sewage treatment plant (5 5 0 0 mgZL) 2 0 was OML charged, meat extract, polypeptone, urea, N a 2 HP_〇 4 , N a C l, KC 1 , C a C l There mg S 0 4 organic wastewater consisting of a (C 0 D 2 8 7 0 mg / L) 2 5mL was added, urchin by the wood vinegar is l OO ppb Then, add 2.5 mL of wood vinegar solution (10 mg / L), add tap water so that the total volume becomes 250 mL, and rotate for 8 hours under the condition of 20 ° (: 130 rpm). This was performed by cultivation.
培養後、 得られた懸濁液 (活性汚泥) を遠心分離 ( 1 3 0 0 0 r pm, 1 0分) し、 上澄み液の C ODを測定する一方、 得られ た沈殿物 (汚泥) を乾燥 ( 1 0 5°C, 24時間) させた後、 重量 測定を行い、 汚泥増加率を算出した。  After the culture, the obtained suspension (activated sludge) was centrifuged (1300 rpm, 10 minutes), and the COD of the supernatant was measured. After drying (105 ° C, 24 hours), the weight was measured and the sludge increase rate was calculated.
また、 これとは別に、 培養後、 得られた懸濁液 (活性汚泥) を 濃縮したものを用い、 財団法人日本下水道協会発行 「下水道試験 方法」 の 4章第 1 4節記載のヌッチェテストに従って汚泥の比抵 抗を算出した。  Separately from this, after culturing, the obtained suspension (activated sludge) is concentrated and used in accordance with the Nutsche test described in Chapter 4, Section 14 of the Sewerage Test Method issued by the Japan Sewerage Association. The sludge specific resistance was calculated.
結果を表 1に示した。  The results are shown in Table 1.
<参考例 2〉  <Reference Example 2>
参考例 1における木酢液に代えて、 夕ンニンが 1 0 0 p p bと なるように、 タンニン ( l OmgZL) を 2. 5mL加え、 参考 例 1 と同様にして培養を行い、 同様の測定及び算出を行った。 そ の結果を表 1に示した。 Instead of the wood vinegar solution in Reference Example 1, 2.5 mL of tannin (lOmgZL) was added so that the ninnin became 100 ppb, and the culture was performed in the same manner as in Reference Example 1. went. So Table 1 shows the results.
<参考例 3 >  <Reference Example 3>
参考例 1における木酢液に代えて、 酢酸が 1 0 0 p p bとなる ように、 酢酸 (l OmgZL) を 2. 5mL加え、 参考例 1と同 様にして培養を行い、 同様の測定及び算出を行った。 その結果を 表 1に示した。  Instead of the wood vinegar solution in Reference Example 1, add 2.5 mL of acetic acid (lOmgZL) so that the acetic acid becomes 100 ppb, culture in the same manner as in Reference Example 1, and perform the same measurement and calculation. went. Table 1 shows the results.
<参考例 4>  <Reference example 4>
参考例 1における木酢液に代えて、 酢酸ナトリゥムが 1 00 p p bとなるように、 酢酸ナトリウム (1 0mg/L) を 2. 5m L加え、 参考例 1と同様にして培養を行い、 同様の測定及び算出 を行った。 その結果を表 1に示した。  Instead of the wood vinegar solution in Reference Example 1, 2.5 mL of sodium acetate (10 mg / L) was added so that sodium acetate would be 100 ppb, and cultivation was performed in the same manner as in Reference Example 1, and the same measurement was performed. And calculated. The results are shown in Table 1.
<参考例 5 >  <Reference Example 5>
参考例 1における木酢液に代えて、 夕ンニンと酢酸がそれぞれ 50 p p bとなるように、 タンニン ( 5 m g / L ) と酢酸 (5m g/L) を各々 2. 5mL加え、 参考例 1と同様にして培養を行 い、 同様の測定及び算出を行った。 その結果を表 1に示した。  In place of the wood vinegar solution in Reference Example 1, 2.5 mL of tannin (5 mg / L) and 2.5 mL of acetic acid (5 mg / L) were added so that the amount of ninnin and acetic acid became 50 ppb, respectively. , And the same measurement and calculation were performed. The results are shown in Table 1.
<参考例 6 >  <Reference Example 6>
参考例 1における木酢液に代えて、 タンニンと酢酸ナトリゥム がそれぞれ 50 p p bとなるように、 タンニン ( 5 mg/L) と 酢酸ナトリウム (5mgZL) を各々 2. 5mL加え、 参考例 1 と同様にして培養を行い、 同様の測定及び算出を行った。 その結 果を表 1に示した。  Instead of the wood vinegar solution in Reference Example 1, 2.5 mL of tannin (5 mg / L) and 2.5 mL of sodium acetate (5 mgZL) were added so that the tannin and sodium acetate became 50 ppb, respectively. Culture was performed, and the same measurement and calculation were performed. Table 1 shows the results.
<参考比較例 1 >  <Reference Comparative Example 1>
木酢液を添加しなかった以外は参考例 1と同様にして同様の培 養を行い、 同様の測定及び算出を行った。 但し、 本参考比較例 1 における汚泥増加量を汚泥増加率 1 0 0 %とした。 その結果を表 1に示した。  The same culture was performed as in Reference Example 1 except that the wood vinegar solution was not added, and the same measurement and calculation were performed. However, the amount of sludge increase in Reference Comparative Example 1 was defined as a sludge increase rate of 100%. The results are shown in Table 1.
尚、 上記参考例 1〜 6で算出した汚泥増加率とは、 参考比較例 1の汚泥増加量を汚泥増加率 1 00 %とし、 各参考例の汚泥増加 量を参考比較例 1の汚泥増加量で割り、 %表示したものである。 表 1より、 脱水性の指標である汚泥の比抵抗についてみると、 何も添加しない場合は 3. 4 9 1 01 ()27 でぁったのに対 し、 木酢液、 ポリフエノール類、 有機酸、 有機酸金属塩を添加し た場合は 2. 2 8 X 1 01 ()〜 3. 1 8 X 1 01 Q2 Zgであった ことから、 汚泥の比抵抗が小さくなり、 脱水性が向上したことが わかる。 また、 表 1より、 木酢液、 ポリフエノール類、 有機酸、 有機酸金属塩を添加した場合は、 汚泥の増加率が 6 6〜 8 5 %程 度に抑制されており、 発生余剰汚泥量が少ないことがわかる。 ま た、 この時の水質はいずれもこれらを添加していない比較参考例 1と同等以上であった。 The sludge increase rate calculated in the above Reference Examples 1 to 6 is the sludge increase rate of Reference Comparative Example 1 as 100%, and the sludge increase rate of each Reference Example. The amount is divided by the amount of sludge increase in Reference Comparative Example 1 and is shown in%. From Table 1, looking at the specific resistance of the sludge is indicative of the dehydrating, or, if none added 3.4 9 1 0 1 () seconds against although it was 2 7 Dea', pyroligneous acid, polyphenols , Organic acids and organic acid metal salts were added, the specific resistance of the sludge was small, as 2.28 X 101 () to 3.18 X 101 Qs 2 Zg It can be seen that the dehydration property was improved. Table 1 also shows that when wood vinegar, polyphenols, organic acids, and organic acid metal salts are added, the rate of increase in sludge is suppressed to about 66 to 85%, and the amount of excess sludge generated is reduced. It turns out that there are few. In addition, the water quality at this time was equal to or higher than Comparative Reference Example 1 in which none of them was added.
以上のことより、 木酢液、 ポリフエノール類、 有機酸、 有機酸 金属塩、 及びそれらの組合わせが汚泥の発生量を抑制し、 更に培 養された汚泥の脱水性が向上することがわかった。 これを踏まえ て、 ろ過膜を用いた連続実験を行った。 From the above, it was found that wood vinegar, polyphenols, organic acids, organic acid metal salts, and combinations thereof suppressed the amount of generated sludge, and further improved the dewaterability of the cultivated sludge. . Based on this, a continuous experiment using a filtration membrane was performed.
表 1 table 1
Figure imgf000011_0001
Figure imgf000011_0001
<実施例 1 >  <Example 1>
精密ろ過膜を有する活性汚泥法による連続実験を行った。  A continuous experiment by the activated sludge method with a microfiltration membrane was performed.
実験装置の構成を図 1に示す。  Fig. 1 shows the configuration of the experimental apparatus.
図 1に示すように、 反応槽 Aは、 脱窒槽 3 ( 7. 5 L) 及び硝 化槽 4 ( 7. 5 L) からなり、 硝化槽 4に公称孔径 0. 4 mの 平膜 ( 3 9 0 mmX 2 0 0 mm) であるろ過膜 5を浸漬した。 該 脱窒槽 3には、 活性汚泥を攪拌するための攪拌機 1 1を設置し、 硝化槽 4には、 活性汚泥への酸素供給と汚泥の攪拌を目的として、 槽の底部に散気管 1 2を設置し、 これをブロア 1 3に接続して通 気を可能にした。 更に、 膜の吸引圧を測定すべく、 ろ過膜 5とろ 過水移送ポンプ 9の間に圧力計 1 0を設置した。  As shown in Fig. 1, reaction tank A is composed of a denitrification tank 3 (7.5 L) and a nitrification tank 4 (7.5 L). A filtration membrane 5 of 90 mm × 200 mm) was immersed. The denitrification tank 3 is provided with a stirrer 11 for stirring activated sludge, and the nitrification tank 4 is provided with an air diffuser 12 at the bottom of the tank for the purpose of supplying oxygen to the activated sludge and stirring the sludge. It was installed and connected to a blower 13 to allow ventilation. Further, a pressure gauge 10 was installed between the filtration membrane 5 and the filtration water transfer pump 9 to measure the suction pressure of the membrane.
上記実験装置による処理は、 予め脱窒槽 3及び硝化槽 4に処理 場から採取した活性汚泥を濃度 1 0 gZL程度となるように満た し、 続いて、 日々、 処理場から採取した有機性排水 2を原水槽 1 に投入し、 これを流入水として 1 - 2 5 L/ r ( 30 L/d a y ) の流速で汚水移送ポンプ 7を用いて脱窒槽 3へ送ることで 行った。 脱室槽 3へ送られた有機性排水 2は、 脱窒槽 3で活性汚 泥と混合された後、 押し出し流れ式に硝化槽 4へ移送される。 一 方、 硝化槽 4から脱窒槽 3へは、 流入水量の 30 0 %程度の活性 汚泥を汚泥循環ポンプ 8により循環しており、 硝化槽 4に浸漬さ れたろ過膜 5を通じて処理されたろ過水 6はろ過水移送ポンプ 9 により排出される。 In the treatment with the above experimental equipment, the denitrification tank 3 and the nitrification tank 4 were previously filled with activated sludge collected from the treatment plant to a concentration of about 10 g ZL, and then the organic wastewater collected from the treatment plant on a daily basis. The raw water tank 1 The wastewater was sent to the denitrification tank 3 using the sewage transfer pump 7 at a flow rate of 1-25 L / r (30 L / day). The organic wastewater 2 sent to the denitrification tank 3 is mixed with the activated sludge in the denitrification tank 3 and then transferred to the nitrification tank 4 in an extrusion flow manner. On the other hand, from the nitrification tank 4 to the denitrification tank 3, activated sludge of about 300% of the inflow water is circulated by the sludge circulation pump 8, and the filtration is performed through the filtration membrane 5 immersed in the nitrification tank 4. Water 6 is drained by a filtered water transfer pump 9.
尚、 膜フラックスを 1. 5 m3Zm2 · d a yとするために、 5 L/h rの流速となるように間欠運転でろ過水 6をろ過水槽 1 5 へ移送し、 更にろ過水 6をろ過水循環ポンプ 14により 3. 7 5 L/h rの流速で硝化槽 4へ返送した。 硝化槽 4でのばつ気風量 は 5 LZm i n程度であり、 連続ばつ気を行った。 Incidentally, the film flux 1. To a 5 m 3 Zm 2 · day, and transfer the filtered water 6 to filtering water tank 1 5 in an intermittent operation so that the flow rate of 5 L / hr, further filtering the filtered water 6 The water was returned to the nitrification tank 4 by the water circulation pump 14 at a flow rate of 3.75 L / hr. The air volume in the nitrification tank 4 was about 5 LZmin, and continuous air ventilation was performed.
上記条件の下、 1回 日、 各 20 p pmに調製したタンニンお よび酢酸ナトリゥム混合溶液 1 50 mLを脱窒槽 3に直接添加し た。 測定は、 膜の吸引圧、 ろ過水 CODについて行った。  Under the above conditions, once a day, 150 mL of a mixed solution of tannin and sodium acetate prepared at 20 ppm each was directly added to the denitrification tank 3. The measurement was performed on the suction pressure of the membrane and the filtered water COD.
<実施例 2>  <Example 2>
膜フラックスを 1. 2 m3/m2 · d a yとするために、 3. 7 5 LZh rの流速となるように連続運転でろ過水 6をろ過水槽 1 5へ移送し、 更にろ過水 6をろ過水循環ポンプ 14により 2 LZ h rの流速で硝化槽 4へ返送した以外は、 実施例 1と同様に処理 を行い、 同様の測定を行った。 The membrane flux 1. To a 2 m 3 / m 2 · day , 3. 7 5 transports the filtered water 6 in continuous operation so that the flow rate of the LZH r to filtering water tank 1 5, further filtered water 6 The same treatment as in Example 1 was performed except that the filtrate was returned to the nitrification tank 4 at a flow rate of 2 LZ hr by the filtered water circulation pump 14, and the same measurement was performed.
<実施例 3>  <Example 3>
膜フラックスを 0. 5 m3/m2 · d a yとするために、 1. 2 5 L/h rの流速となるように連続運転でろ過水 6をろ過水槽 1 5へ移送した以外は、 実施例 1と同様に処理を行った。 測定は、 反応槽汚泥濃度、 反応槽汚泥量、 ろ過水 CODについて行った。 To the membrane flux and 0. 5 m 3 / m 2 · day, except for transferring the filtered water 6 to filtering water tank 1 5 in continuous operation so that the flow rate of 1. 2 5 L / hr, Example The same processing was performed as in 1. The measurement was performed on the reactor sludge concentration, reactor sludge volume, and filtered water COD.
<比較例 1 >  <Comparative Example 1>
タンニンおよび酢酸ナトリゥムを添加しなかった以外は、 実施 例 1と同様に処理を行い、 同様の測定を行った。 Performed except that tannin and sodium acetate were not added The same processing as in Example 1 was performed, and the same measurement was performed.
<比較例 2 >  <Comparative Example 2>
膜フラックスを 1. 2 m3/m2 · d a yとなるようにした以外 は、 比較例 1 と同様に処理を行い、 同様の測定を行った。 The same treatment as in Comparative Example 1 was performed except that the film flux was changed to 1.2 m 3 / m 2 · day, and the same measurement was performed.
<比較例 3 >  <Comparative Example 3>
膜フラックスを 0. 5 m3/m2 · d a yとなるようにした以外 は、 比較例 1 と同様に処理を行い、 実施例 3と同様の測定を行つ た。 The same processing as in Comparative Example 1 was performed, except that the membrane flux was set to 0.5 m 3 / m 2 · day, and the same measurement as in Example 3 was performed.
上記実施例 1〜 3及び比較例 1〜 3の結果を表 2、 3、 4に示 した。  The results of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in Tables 2, 3, and 4.
実施例 1及び比較例 1の各経過時間毎の圧力変化の結果が表 2 と図 2に示されており、 実施例 2及び比較例 2の各経過時間毎の 圧力変化の結果が表 3と図 3に示されている。 また、 実施例 1及 び比較例 1の各経過時間毎のろ過水 CODを測定した結果は表 2 に示されており、 実施例 2及び比較例 2の各経過時間毎のろ過水 C ODを測定した結果は表 3に示されている。  Table 2 and Fig. 2 show the results of the pressure change at each elapsed time in Example 1 and Comparative Example 1, and Table 3 shows the results of the pressure change at each elapsed time in Example 2 and Comparative Example 2. This is shown in FIG. Table 2 shows the results of measuring the filtered water COD of each of the elapsed times of Example 1 and Comparative Example 1, and the filtered water COD of each of the elapsed times of Example 2 and Comparative Example 2 was measured. The measured results are shown in Table 3.
表 2、 3および図 2、 3より、 タンニンおよび酢酸ナトリウム を 2 0 0 p p bとなるように添加した場合には、 添加しない場合 に比べ、 圧力上昇が抑制されており、 図 3より、 使用したろ過膜 の最大吸引圧力である— 5 0 k P aに到達した期間についてみる と、 何も添加しない場合は 3 6日間であつたのに対して、 タン二 ンおよび酢酸ナトリウムを 2 0 0 p p bとなるように添加した場 合には 6 0日間となり、 膜の寿命が約 1. 7倍に長くなつたこと がわかる。 また、 その時のろ過水 CODは同等程度であった。 更に、 汚泥増加量についてみると、 表 4に示されるように、 何 も加えない場合は 1 0 日間で 3 9 2 mgZL増加したのに対して、 夕ンニン及び酢酸ナトリウムを 2 0 O p p bとなるように加えた 場合には 1 0 日間で 8 8 mg/Lしか増加しておらず、 発生汚泥 量が 2 2 %にまで抑制されたことがわかる。 また、 その時のろ過 水 C ODは同等程度であった。 According to Tables 2 and 3, and Figures 2 and 3, when tannin and sodium acetate were added to give 200 ppb, the pressure rise was suppressed as compared to the case where tannin and sodium acetate were not added. Regarding the period when the maximum suction pressure of the filtration membrane was reached—50 kPa, tannin and sodium acetate were added at 200 ppb, compared to 36 days without any addition. When it was added so as to be 60 days, the life of the film was increased by about 1.7 times. The COD of the filtered water at that time was comparable. Furthermore, as for the sludge increase, as shown in Table 4, when nothing was added, the amount of ninnin and sodium acetate was 20 O ppb, while the amount of 392 mg ZL increased in 10 days. In this case, only 88 mg / L increased in 10 days, indicating that the amount of generated sludge was suppressed to 22%. Also, the filtration at that time Water COD was comparable.
表 2
Figure imgf000014_0001
Table 2
Figure imgf000014_0001
(注 : 一は測定せず) (Note: one is not measured)
表 3 Table 3
Figure imgf000015_0001
Figure imgf000015_0001
(注 : 一は測定せず) (Note: one is not measured)
表 4 Table 4
Figure imgf000016_0001
Figure imgf000016_0001
(注: 一は測定せず) 産業上の利用可能性  (Note: one is not measured) Industrial applicability
以上説明したように、 本発明の有機性排水の処理方法によれば、 活性汚泥中のパクテリァの呼吸活性が活性化し、 活性汚泥ポリ マー量が減少するので、 ろ過膜が閉塞しにく くなり、 膜寿命が延 び、 且つ透過水量が上がる。 よって、 膜管理にかかる費用が軽減 される。 また、 発生する余剰汚泥量が削減できるので、 余剰汚泥 処分費も軽減されるものである。  As described above, according to the method for treating organic wastewater of the present invention, the respiratory activity of patella in activated sludge is activated, and the amount of activated sludge polymer is reduced. As a result, the service life of the membrane is prolonged and the amount of permeated water is increased. Therefore, the cost for membrane management is reduced. Also, since the amount of excess sludge generated can be reduced, the disposal cost of excess sludge is also reduced.

Claims

請求の範囲 The scope of the claims
1. 有機性排水を微生物処理する反応槽と、 反応処理後の懸濁液 を処理水と濃縮液に分離するろ過膜とを有する活性汚泥処理装置 を使用した有機性排水の処理方法において、 木酢液、 ポリフエ ノール類、 有機酸、 有機酸金属塩の少なくとも 1種の化合物を添 加し、 前記反応槽における該添加した化合物の濃度が 1 p p b〜 1 00 p pmになるように保持することを特徴とする有機性排水 の処理方法。  1. An organic wastewater treatment method using an activated sludge treatment apparatus having a reaction tank for treating organic wastewater with microorganisms and a filtration membrane for separating a suspension after the reaction treatment into treated water and a concentrated liquid, comprising: Liquid, a polyphenol, an organic acid, and a metal salt of an organic acid are added, and the concentration of the added compound in the reaction vessel is maintained at 1 ppb to 100 ppm. Characteristic organic wastewater treatment method.
2. 添加した化合物の濃度が 1 0 p p b〜 l p pmになるように 保持することを特徴とする請求の範囲第 1項記載の有機性排水の 処理方法。  2. The method for treating organic wastewater according to claim 1, wherein the concentration of the added compound is maintained at 10 ppb to 1 pm.
3. ポリフエノール類及び有機酸金属塩を添加し、 該添加したポ リフエノール類及び有機酸金属塩の濃度がそれぞれ 1 0 p p b〜 1 p pmになるように保持することを特徴とする請求の範囲第 1 項または第 2項に記載の有機性排水の処理方法。  3. A polyphenol and an organic acid metal salt are added, and the concentrations of the added polyphenol and the organic acid metal salt are each maintained at 10 ppb to 1 ppm. 3. The method for treating organic wastewater according to paragraph 1 or 2.
4. ろ過膜が精密ろ過膜あるいは限外ろ過膜であることを特徴と する請求の範囲第 1項〜第 3項のいずれかに.記載の有機性排水の 処理方法。  4. The method for treating organic wastewater according to any one of claims 1 to 3, wherein the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.
PCT/JP2004/001563 2004-02-13 2004-02-13 Method for treating organic wastewater WO2005077839A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/001563 WO2005077839A1 (en) 2004-02-13 2004-02-13 Method for treating organic wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/001563 WO2005077839A1 (en) 2004-02-13 2004-02-13 Method for treating organic wastewater

Publications (1)

Publication Number Publication Date
WO2005077839A1 true WO2005077839A1 (en) 2005-08-25

Family

ID=34857521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/001563 WO2005077839A1 (en) 2004-02-13 2004-02-13 Method for treating organic wastewater

Country Status (1)

Country Link
WO (1) WO2005077839A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357332A (en) * 2019-08-13 2019-10-22 李建虎 A kind of tail water processing water circulation system for aquaculture
CN113526801A (en) * 2021-08-09 2021-10-22 青岛农业大学 Wood vinegar and biomass charcoal combined sewage treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319494A (en) * 1998-05-21 1999-11-24 Hitoshi Daido Sewage treating apparatus
JP2002113485A (en) * 2000-10-05 2002-04-16 Asahi Organic Chem Ind Co Ltd Method for treating organic wastewater
JP2002166139A (en) * 2000-12-04 2002-06-11 Hitachi Plant Eng & Constr Co Ltd Membrane separator
JP2003047985A (en) * 2001-08-07 2003-02-18 Asahi Organic Chem Ind Co Ltd Treatment method of organic waste water
JP2003136085A (en) * 2001-11-06 2003-05-13 Asahi Organic Chem Ind Co Ltd Organic wastewater treatment method
JP2004081973A (en) * 2002-08-27 2004-03-18 Asahi Organic Chem Ind Co Ltd Treatment method for organic wastewater

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319494A (en) * 1998-05-21 1999-11-24 Hitoshi Daido Sewage treating apparatus
JP2002113485A (en) * 2000-10-05 2002-04-16 Asahi Organic Chem Ind Co Ltd Method for treating organic wastewater
JP2002166139A (en) * 2000-12-04 2002-06-11 Hitachi Plant Eng & Constr Co Ltd Membrane separator
JP2003047985A (en) * 2001-08-07 2003-02-18 Asahi Organic Chem Ind Co Ltd Treatment method of organic waste water
JP2003136085A (en) * 2001-11-06 2003-05-13 Asahi Organic Chem Ind Co Ltd Organic wastewater treatment method
JP2004081973A (en) * 2002-08-27 2004-03-18 Asahi Organic Chem Ind Co Ltd Treatment method for organic wastewater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110357332A (en) * 2019-08-13 2019-10-22 李建虎 A kind of tail water processing water circulation system for aquaculture
CN113526801A (en) * 2021-08-09 2021-10-22 青岛农业大学 Wood vinegar and biomass charcoal combined sewage treatment method

Similar Documents

Publication Publication Date Title
Mannina et al. Membrane bioreactors for treatment of saline wastewater contaminated by hydrocarbons (diesel fuel): an experimental pilot plant case study
Munz et al. Powdered activated carbon and membrane bioreactors (MBRPAC) for tannery wastewater treatment: long term effect on biological and filtration process performances
Arévalo et al. Effect of temperature on membrane bioreactor performance working with high hydraulic and sludge retention time
Jiang et al. Membrane fouling in a powdered activated carbon–membrane bioreactor (PAC-MBR) for micro-polluted water purification: fouling characteristics and the roles of PAC
WO2014146439A1 (en) Biochemical method for treating synthetic leather wastewater comprising dimethylformamide
JP2002306930A (en) Method for treating water and equipment for water treatment
Izadi et al. Performance of an integrated fixed bed membrane bioreactor (FBMBR) applied to pollutant removal from paper-recycling wastewater
WO2015026269A1 (en) Installation for biological treatment of wastewater
JP4679413B2 (en) High temperature treatment method for hydrocarbon or oxygenated compound production plant wastewater
KR100807219B1 (en) Purification apparatus and method for high organic wastewater
Saleem et al. Exploring dynamic membrane as an alternative for conventional membrane for the treatment of old landfill leachate
JP5307066B2 (en) Waste water treatment method and waste water treatment system
Kimura et al. Filtration resistance and efficient cleaning methods of the membrane with fixed nitrifiers
JP5981096B2 (en) Wastewater treatment method and apparatus
Nikoonahad et al. Evaluation of a novel integrated membrane biological aerated filter for water reclamation: A practical experience
CN208071544U (en) A kind of railway communication system production wastewater treatment system
JP5224502B2 (en) Biodegradation treatment method
Prado et al. Zero Nuisance Piggeries: Long-term performance of MBR (membrane bioreactor) for dilute swine wastewater treatment using submerged membrane bioreactor in semi-industrial scale
WO2005077839A1 (en) Method for treating organic wastewater
KR100953075B1 (en) Oxidation-reduction reaction tank for treating wastewater and wastewater treatment method using the same
JPH06292900A (en) Waste water treating device using ultrafilter membrane
CN209468283U (en) Chilled processing waste water processing unit
JP2004081973A (en) Treatment method for organic wastewater
CN110563265A (en) Landfill leachate treatment process
JP2005013937A (en) Organic waste water treatment method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase