JP3368682B2 - Septic tank and its operation method - Google Patents

Septic tank and its operation method

Info

Publication number
JP3368682B2
JP3368682B2 JP22062694A JP22062694A JP3368682B2 JP 3368682 B2 JP3368682 B2 JP 3368682B2 JP 22062694 A JP22062694 A JP 22062694A JP 22062694 A JP22062694 A JP 22062694A JP 3368682 B2 JP3368682 B2 JP 3368682B2
Authority
JP
Japan
Prior art keywords
water level
biological reaction
reaction chamber
septic tank
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22062694A
Other languages
Japanese (ja)
Other versions
JPH0884995A (en
Inventor
康利 清水
一弘 出水
勝嗣 瓜生
祐一 奥野
Original Assignee
東陶機器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東陶機器株式会社 filed Critical 東陶機器株式会社
Priority to JP22062694A priority Critical patent/JP3368682B2/en
Publication of JPH0884995A publication Critical patent/JPH0884995A/en
Application granted granted Critical
Publication of JP3368682B2 publication Critical patent/JP3368682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は家庭からの廃水や工場廃
水等を生物的に処理する浄化槽及びその運転方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a septic tank for biologically treating domestic wastewater, industrial wastewater and the like, and a method of operating the same.

【0002】[0002]

【従来の技術】便所、洗面所、風呂及び厨房などの家庭
からの廃水や工場廃水等を生物的に処理する浄化槽の運
転方法として、特開平4−108600号公報に開示さ
れる方法が知られている。この先行技術に開示される運
転方法は、図7に示すように、生物反応室内に連続的に
廃水を流入せしめ、最高水位(H.W.L.)から最低水位
(L.W.L.)に至るまでは曝気と濾過とを同時に行う好気
性処理を行い、逆に最低水位(L.W.L.)から最高水位
(H.W.L.)に至るまでは曝気も濾過も行わない嫌気性処
理を行うようにしたものである。
2. Description of the Related Art A method disclosed in Japanese Unexamined Patent Publication No. 4-108600 is known as a method for operating a septic tank for biologically treating wastewater from households such as toilets, washrooms, baths and kitchens, and industrial wastewater. ing. As shown in FIG. 7, the operation method disclosed in this prior art allows wastewater to continuously flow into the bioreaction chamber and performs aeration and filtration from the highest water level (HWL) to the lowest water level (LWL). The aerobic treatment is performed at the same time, and conversely, the anaerobic treatment without aeration or filtration is performed from the lowest water level (LWL) to the highest water level (HWL).

【0003】[0003]

【発明が解決しようとする課題】上述した先行技術にあ
っては、生物反応室へ廃水が常時流入しているので、こ
の廃水の流入に伴って酸素が持ち込まれ、生物反応室内
の溶存酸素濃度が充分に低下せず、嫌気性処理を効率よ
く行えない。また、嫌気性処理を一定水位を維持した安
定した状態で行うことができないので、脱窒反応が十分
に進まない。更に、曝気による好気性処理の初期或いは
好気性処理の中間において、生物反応室への廃水の流入
を行うと、嫌気性処理の際の脱窒反応に要求される流入
廃水に含まれる有機炭素が好気性反応時に消費され、脱
窒反応がスムーズになされない。また、膜利用の浄化槽
では廃水と共に槽内に持ち込まれる粗大粒子、毛髪等の
繊維状物質といった夾雑物が膜の原水経路を閉塞させた
り、膜表面に付着して濾過特性の劣化を招くといった問
題点があった。
In the above-mentioned prior art, since the wastewater constantly flows into the biological reaction chamber, oxygen is brought in with the inflow of the wastewater, and the dissolved oxygen concentration in the biological reaction chamber is increased. Does not decrease sufficiently and anaerobic treatment cannot be performed efficiently. Further, since the anaerobic treatment cannot be performed in a stable state where a constant water level is maintained, the denitrification reaction does not proceed sufficiently. Furthermore, when the wastewater flows into the biological reaction chamber at the beginning of the aerobic treatment by aeration or in the middle of the aerobic treatment, organic carbon contained in the inflowing wastewater required for the denitrification reaction during the anaerobic treatment is generated. It is consumed during aerobic reaction, and the denitrification reaction is not smooth. Also, in septic tanks that use membranes, contaminants such as coarse particles and fibrous substances such as hair that are brought into the tank together with wastewater clog the raw water path of the membrane, or adhere to the membrane surface, causing deterioration of filtration characteristics. There was a point.

【0004】[0004]

【課題を解決するための手段】上記課題を解決すべく本
発明に係る浄化槽は、曝気装置を配置した生物反応室
と、この生物反応室内へ流入する廃水の量を調整するた
めの流量調整部と、この流量調整部内の廃水を生物反応
室へ移行する移行手段と、生物反応室内の廃水を透過液
と保持液に分離する膜分離装置とを備えた浄化槽におい
て、この浄化槽は前記生物反応室内の最低水位(L.W.
L.)と最高水位( H.W.L.)を検知する水位検知手段を
備え、前記水位検知手段と前記移行手段によって前記生
物反応室内の水位が最低水位(L.W.L.)と最高水位(
H.W.L.)の範囲内に収まるように制御し、かつ前記水位
検知手段によって前記生物反応室内の最低水位(L.W.
L.)の信号を受けた後、一定時間または一定量もしくは
最高水位( H.W.L.)になるまで廃水の移行運転を制御
するとともに、前記移行運転停止から一定時間経過後、
曝気運転及び濾過運転を開始するよう制御する制御部を
備えた。
In order to solve the above-mentioned problems, a septic tank according to the present invention comprises a biological reaction chamber in which an aeration device is arranged, and a flow rate adjusting unit for adjusting the amount of waste water flowing into the biological reaction chamber. And a transfer means for transferring the wastewater in the flow rate adjusting unit to the biological reaction chamber, and a membrane separation device for separating the wastewater in the biological reaction chamber into a permeate and a retentate, the septic tank being the biological reaction chamber. Minimum water level (LW
L.) and a high water level (HWL) are detected by the water level detecting means, and the water level detecting means and the shifting means make the water level in the biological reaction chamber the lowest water level (LWL) and the highest water level (LWL).
HWL) within the range, and the water level detecting means controls the minimum water level (LW) in the biological reaction chamber.
After receiving the signal of L.), the transfer operation of the wastewater is controlled for a certain time or until a certain amount or the maximum water level (HWL) is reached, and after a certain time has elapsed from the stop of the transfer operation,
The control part which controls to start aeration operation and filtration operation was provided.

【0005】尚、前記生物反応室よりも前段に、流入廃
水中の粗大粒子、毛髪、繊維状物等の夾雑物を除去する
夾雑物除去手段を配置することが可能であり、夾雑物除
去手段としては流量調整部に設ける濾床或いはスクリー
ンが考えられ、また前記膜分離装置を構成する分離膜と
して中空糸膜を選択する場合には、前記夾雑物として長
さが0.2mm以上の繊維状物質を除去することが好ま
しい。
It should be noted that it is possible to dispose a contaminant removing means for removing contaminants such as coarse particles, hair and fibrous substances in the inflowing wastewater before the biological reaction chamber. As the filter, a filter bed or a screen provided in the flow rate adjusting unit may be considered, and when a hollow fiber membrane is selected as the separation membrane constituting the membrane separation device, the contaminants are fibrous substances having a length of 0.2 mm or more. It is preferable to remove the substance.

【0006】また本発明に係る浄化槽の運転方法は、曝
気装置を配置した生物反応室と、この生物反応室内へ流
入する廃水の量を調整するための流量調整部と、この流
量調整部内の廃水を生物反応室へ移行する移行手段と、
前記生物反応室内の廃水を透過液と保持液に分離する膜
分離装置と、前記生物反応室内の最低水位(L.W.L.)と
最高水位( H.W.L.)を検知する水位検知手段とを備え
た浄化槽の運転方法において、前記生物反応室への曝気
をタイマーにより間欠的に行い、膜分離装置の運転は前
記曝気装置の運転開始と略同時または若干遅れて開始す
るとともに、生物反応室内の水位が最低水位(L.W.L.)
に達した時点で停止し、生物反応室への廃水の移行は膜
分離のために確保した時間が終了した時点で開始し、生
物反応室内の水位が最高水位( H.W.L.)に達した時
点、または一定量の移送を終了した時点、若しくは所定
時間移送を行った時点で停止するようにした。ここで、
前記廃水の移行時間は曝気装置の運転時間の1/2以
下、更には1/3以下とすることが好ましい。
In the method for operating the septic tank according to the present invention, the biological reaction chamber in which the aeration device is arranged, the flow rate adjusting unit for adjusting the amount of waste water flowing into the biological reaction chamber, and the waste water in the flow rate adjusting unit are provided. To a biological reaction chamber,
A method for operating a septic tank equipped with a membrane separation device for separating waste water in the biological reaction chamber into a permeate and a retentate, and a water level detecting means for detecting a minimum water level (LWL) and a maximum water level (HWL) in the biological reaction chamber. In the above, the aeration of the biological reaction chamber is intermittently performed by a timer, the operation of the membrane separation device is started at approximately the same time as or slightly later than the start of the operation of the aeration device, and the water level in the biological reaction chamber is the lowest water level (LWL). )
When it reaches the maximum water level (HWL), or when the water level in the bioreaction chamber reaches the maximum water level (HWL), The transfer is stopped when a fixed amount of transfer is completed or when the transfer is performed for a predetermined time. here,
The transition time of the wastewater is preferably 1/2 or less, more preferably 1/3 or less of the operating time of the aeration device.

【0007】更に、流量調整部に濾床、スクリーンを配
置するなどして、生物反応室の上流側で、流入廃水中の
粗大粒子、繊維状物質といった濾過特性を劣化させる夾
雑物を予め除去して廃水処理することで、濾過特性の長
期安定化を図ることができる。
Further, by disposing a filter bed and a screen in the flow rate adjusting unit, impurities such as coarse particles and fibrous substances in the inflowing wastewater that deteriorate the filtration characteristics are removed in advance on the upstream side of the biological reaction chamber. By treating the wastewater with water, the filtration characteristics can be stabilized for a long period of time.

【0008】図8は夾雑物除去スクリーンの目開きの大
きさと運転時間の経過に伴う透過流束の変化との関係を
示すグラフであり、このグラフからも分るように、大き
さ(粒径)が0.1mmを越える夾雑物は膜表面への付
着、目詰り、流路の閉塞を引き起こして膜濾過特性の低
下を招く。そのため、最低限8mmを越える大きさの粒
子を夾雑物として除去する必要がある。
FIG. 8 is a graph showing the relationship between the size of the opening of the contaminant removal screen and the change of the permeation flux with the passage of operating time. As can be seen from this graph, the size (particle size) () Exceeds 0.1 mm causes adhesion to the surface of the membrane, clogging, and clogging of the flow channel, resulting in deterioration of the membrane filtration characteristics. Therefore, it is necessary to remove particles having a size exceeding 8 mm at least as impurities.

【0009】特に、分離膜が中空糸膜の場合は、膜エレ
メント間が0.2mm前後のため、長さが0.2mm以
上の繊維が膜エレメントの束に絡み付き、更にそこへ粒
子が沈着することで、膜面での廃水の流れを阻害して膜
濾過特性の劣化を招く。また、繊維としてはパルプや毛
髪等があり、パルプの平均長さは0.2mmである。そ
のため長さが0.2mmを越える大きさの繊維状物質と
粒子径が0.1mmを越える大きさの粒子状物質、望ま
しくは長さが8mmを越える大きさの繊維状物質及び粒
子径が8mmを越える大きさの粒子状物質を夾雑物とし
て除去するのが好ましい。
In particular, when the separation membrane is a hollow fiber membrane, the distance between the membrane elements is around 0.2 mm, so fibers having a length of 0.2 mm or more are entangled in the bundle of membrane elements, and particles are further deposited there. As a result, the flow of waste water on the membrane surface is obstructed, and the membrane filtration characteristics are deteriorated. The fibers include pulp and hair, and the average length of pulp is 0.2 mm. Therefore, a fibrous substance having a length exceeding 0.2 mm and a particulate substance having a particle diameter exceeding 0.1 mm, preferably a fibrous substance having a length exceeding 8 mm and a particle diameter of 8 mm. It is preferable to remove particulate matter having a size of more than 3 as contaminants.

【0010】[0010]

【作用】好気性処理では廃水中のアンモニア態窒素(N
4 +)が硝酸態窒素(NO3 -)や亜硝酸態窒素(N
2 -)に酸化分解され、また嫌気性処理では、嫌気性の
脱窒菌が有機炭素を用いて、これら硝酸態窒素(N
3 -)や亜硝酸態窒素(NO2 -)を還元し窒素ガス(N
2)に変換する。
[Function] In aerobic treatment, ammonia nitrogen (N
H 4 +) is nitrate nitrogen (NO 3 -) and nitrite nitrogen (N
O 2 -) in the oxidative decomposition, also in anaerobic processes, anaerobic denitrifying bacteria using organic carbon, they nitrate nitrogen (N
O 3 -) and nitrite nitrogen (NO 2 -) and reduced nitrogen (N
2 ) Convert to.

【0011】[0011]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る浄化槽及びその
運転方法の実施に用いる浄化槽の断面図であり、浄化槽
1は流量調整部S1と生物反応室S2とを隔壁2で画成
してなり、流量調整部S1には廃水の導入管3と、最高
水位( H.W.L.)及び最低水位(L.W.L.)を検知する水
位センサ4を設け、水位センサ4が最高水位( H.W.
L.)または最低水位(L.W.L.)を検知した場合には、浄
化槽1の運転停止或いは警報等を発するようにしてい
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a cross-sectional view of the septic tank and the septic tank used for implementing the operating method according to the present invention. The septic tank 1 has a flow rate adjusting section S1 and a biological reaction chamber S2 defined by a partition wall 2, The adjustment section S1 is provided with a wastewater introduction pipe 3 and a water level sensor 4 for detecting the highest water level (HWL) and the lowest water level (LWL).
L.) or the minimum water level (LWL) is detected, the septic tank 1 is stopped or an alarm is issued.

【0012】更に、流量調整部S1には濾床20を配置
し、流入廃水中の夾雑物を除去するようにしている。
Further, a filter bed 20 is arranged in the flow rate adjusting section S1 to remove impurities in the inflowing wastewater.

【0013】また、流量調整部S1と生物反応室S2と
の間には流量調整部S1から生物反応室S2へ廃水を移
行するポンプ5及び配管6を設けている。尚、ポンプ5
を用いる代りにエアリフタ等を用いることも可能であ
る。
A pump 5 and a pipe 6 for transferring wastewater from the flow rate adjusting unit S1 to the biological reaction chamber S2 are provided between the flow rate adjusting unit S1 and the biological reaction chamber S2. In addition, pump 5
It is also possible to use an air lifter or the like instead of using.

【0014】一方、生物反応室S2内には膜分離装置7
を配置するとともに、この膜分離装置7の下方に曝気装
置12を配置している。ここで、膜分離装置7は中空糸
状膜等の分離膜8、集水管9、配管10及びポンプ11
から構成される。
On the other hand, in the biological reaction chamber S2, a membrane separation device 7
And the aeration device 12 is arranged below the membrane separation device 7. Here, the membrane separation device 7 includes a separation membrane 8 such as a hollow fiber membrane, a water collection pipe 9, a pipe 10 and a pump 11.
Composed of.

【0015】また、生物反応室S2には廃水の最高水位
( H.W.L.)及び最低水位(L.W.L.)を検知する水位セ
ンサ13を設け、水位センサ13からの信号を制御部1
4に入力し、この制御部14からの信号によって、流量
調整部S1から生物反応室S2へ廃水を移行するポンプ
5、膜分離装置7のポンプ11及び曝気装置12のブロ
ア15をオン・オフするようにしている。
Further, the biological reaction chamber S2 is provided with a water level sensor 13 for detecting the maximum water level (HWL) and the minimum water level (LWL) of the wastewater, and a signal from the water level sensor 13 is sent to the controller 1
4 and the signal from the control unit 14 turns on / off the pump 5 for transferring wastewater from the flow rate adjusting unit S1 to the biological reaction chamber S2, the pump 11 for the membrane separation device 7 and the blower 15 for the aeration device 12. I am trying.

【0016】図2は本発明に係る浄化槽の運転方法の実
施に用いる別のタイプの浄化槽の断面図であり、この実
施例にあっては、分離膜18は生物反応室S2内に浸漬
させずに膜モジュール17として外部に設け、更に分離
膜18にて濃縮された液をエジェクタ16を介して生物
反応室S2に戻すようにしている。このようにエジェク
タ16を用いることで、曝気効果が向上する。尚、分離
膜18としては管状膜、平板状膜も可能である。本実施
例では流量調整部S1の前段にスクリーン21を配した
夾雑物除去室S3を設置している。
FIG. 2 is a sectional view of another type of septic tank used for carrying out the method of operating the septic tank according to the present invention. In this embodiment, the separation membrane 18 is not immersed in the biological reaction chamber S2. Further, the membrane module 17 is provided outside, and the liquid concentrated by the separation membrane 18 is returned to the biological reaction chamber S2 via the ejector 16. By using the ejector 16 in this way, the aeration effect is improved. The separation membrane 18 may be a tubular membrane or a flat membrane. In this embodiment, a contaminant removing chamber S3 having a screen 21 is installed in front of the flow rate adjusting unit S1.

【0017】次に、本発明に係る浄化槽の運転方法の一
例を処理パターンを示した図3乃至図6に基づいて説明
する。先ず、図3に示す処理パターンでは、流量調整部
S1から生物反応室S2への廃水の移行(バッチ移行)
終了から次の移行終了に至るまでを1パターンとし、こ
れを繰り返すようにしている。即ち、廃水の移行はセン
サ13が最高水位( H.W.L.)を検知した時点、または
一定量の廃水の移送を終了した時点、若しくは所定時間
廃水の移送を行った時点で、制御部14からの信号によ
ってポンプ5が停止することによって行われ、この廃水
の移行終了時点から所定時間は曝気装置12も膜分離装
置7も運転せずに、一定水位を維持したまま、嫌気性処
理を行う。このように嫌気性処理中に運転操作を行わ
ず、安定した状態を保つことで、生物処理室S2内の溶
存酸素の消費が早く進み、嫌気時間を十分確保でき、処
理が効果的に進む。
Next, an example of the method for operating the septic tank according to the present invention will be described with reference to FIGS. 3 to 6 showing processing patterns. First, in the processing pattern shown in FIG. 3, transfer of waste water from the flow rate adjusting unit S1 to the biological reaction chamber S2 (batch transfer)
One pattern is set from the end to the end of the next transition, and this is repeated. That is, the transfer of the waste water is performed by a signal from the control unit 14 when the sensor 13 detects the maximum water level (HWL), when the transfer of the waste water of a certain amount is completed, or when the waste water is transferred for a predetermined time. This is performed by stopping the pump 5, and the anaerobic treatment is performed while maintaining a constant water level without operating the aeration device 12 or the membrane separation device 7 for a predetermined time from the end of the transition of the wastewater. In this way, by not performing a driving operation during the anaerobic treatment and maintaining a stable state, consumption of the dissolved oxygen in the biological treatment chamber S2 progresses rapidly, a sufficient anaerobic time can be secured, and the treatment effectively proceeds.

【0018】この後、タイマーを組み込んだ制御部14
からの信号によって曝気装置12と膜分離装置7の運転
を同時に開始し、最低水位(L.W.L.)になった時点で膜
分離装置7の運転(濾過運転)を停止し、濾過時間の終
了と同時にポンプ5を駆動し流量調整部S1から生物反
応室S2への廃水の移行(バッチ移行)を開始する。そ
して、最高水位( H.W.L.)となった時点、または一定
量の廃水の移送を終了した時点、若しくは所定時間廃水
の移送を行った時点で廃水の移行停止と曝気装置12の
運転停止を同時に行う。
After this, the control unit 14 incorporating a timer
The operation of the aeration device 12 and the membrane separation device 7 is started at the same time according to the signal from, and the operation of the membrane separation device 7 (filtration operation) is stopped at the time when the water level reaches the minimum water level (LWL), and at the same time when the filtration time ends 5 is started to start the transfer (batch transfer) of the waste water from the flow rate adjusting unit S1 to the biological reaction chamber S2. Then, when the maximum water level (HWL) is reached, or when the transfer of a certain amount of waste water is completed, or when the waste water is transferred for a predetermined time, the transfer of the waste water and the operation of the aeration device 12 are stopped at the same time.

【0019】濾過時間内で、定量の透過液を得るように
した図3のパターンか、或いは濾過速度を早く設定し、
濾過時間内で早く終了する図4のパターンとすることも
可能である。
Within the filtration time, the pattern of FIG. 3 is used to obtain a fixed amount of permeate, or the filtration rate is set fast,
It is also possible to adopt the pattern of FIG. 4 in which the filtering is completed early within the filtering time.

【0020】図5に示す処理パターンにあっては、膜分
離装置7による濾過運転の開始時点を曝気装置12の運
転開始時点よりも若干遅らせ、他の構成については図3
に示したパターンと同一にしている。このように、濾過
前に若干曝気を行うようにすることで、廃水中のアンモ
ニアが酸化され、膜透過液中のアンモニア濃度が低下す
る。また、分離膜として浸漬型の中空糸膜を用いる場合
には膜面の洗浄効果が高まる。
In the processing pattern shown in FIG. 5, the start time of the filtration operation by the membrane separation device 7 is slightly delayed from the start time of the operation of the aeration device 12, and other configurations are as shown in FIG.
It is the same as the pattern shown in. In this way, by slightly performing aeration before filtration, the ammonia in the wastewater is oxidized and the concentration of ammonia in the membrane permeate decreases. Further, when an immersion type hollow fiber membrane is used as the separation membrane, the effect of cleaning the membrane surface is enhanced.

【0021】図6に示す処理パターンにあっては、曝気
装置12と膜分離装置7の運転を同時に開始し、同時に
停止するとともに、濾過時間の終了した時点から廃水の
移行(バッチ移行)を開始するようにしている。このよ
うなパターンとすることで、廃水の移行と曝気とがオー
バラップしないので、廃水の移行に伴って供給される有
機炭素が好気性処理つまり生物酸化されることがないの
で、嫌気性処理時に有機炭素による脱窒反応が効果的に
なされる。
In the treatment pattern shown in FIG. 6, the operations of the aeration device 12 and the membrane separation device 7 are started at the same time, stopped at the same time, and the transfer of waste water (batch transfer) is started at the end of the filtration time. I am trying to do it. By adopting such a pattern, the transfer of wastewater and aeration do not overlap, and the organic carbon supplied with the transfer of wastewater is not aerobically treated, that is, biooxidized. The denitrification reaction by organic carbon is effectively performed.

【0022】尚、図6に示す処理パターンにおいて、濾
過前に若干曝気を行うようにしてもよい。
In the processing pattern shown in FIG. 6, aeration may be carried out before filtration.

【0023】[0023]

【発明の効果】以下の(表1)は図3に示した本発明方
法と図7に示した従来法とを処理水質において比較した
ものであり、この(表1)から、本発明法によれば従来
法に比較して、窒素成分のうち、処理水中に検出される
硝酸態窒素の量が少なく、脱窒反応が十分に進んでいる
ことが分る。
The following (Table 1) compares the method of the present invention shown in FIG. 3 with the conventional method shown in FIG. 7 in terms of treated water quality. According to this, it can be seen that, compared with the conventional method, the amount of nitrate nitrogen detected in the treated water among the nitrogen components is small, and the denitrification reaction is sufficiently advanced.

【0024】[0024]

【表1】 [Table 1]

【0025】以上の説明及び(表1)から明らかな如く
本発明によれば、曝気装置を内部に配置した生物反応室
と、この生物反応室内へ流入する廃水の量を調整するた
めの流量調整部と、生物反応室内の廃水を透過液と保持
液に分離する膜分離装置とを備えた浄化槽の運転するに
あたって、前記流量調整部から生物反応室への廃水の移
行は生物反応室内の水位が最低水位(L.W.L.)になった
時点から開始して最高水位( H.W.L.)になるまで、ま
たは一定量の廃水の移送を終了した時点、若しくは所定
時間廃水の移送を行った時点まで行い、また前記曝気装
置の運転は前記流量調整部から生物反応室への廃水の移
行が停止してから所定時間経過後に開始するとともに次
の廃水の移行の開始または停止と略同時に停止させ、更
に前記膜分離装置の運転は前記曝気装置の運転開始と略
同時または若干遅れて開始するとともに最低水位(L.W.
L.)になった時点で停止させるようにしたので、嫌気性
処理時に廃水の流入がないので、生物反応室内の溶存酸
素濃度が充分に低下し、嫌気性処理を効率よく行え、ま
た、廃水の移行完了後に嫌気性処理は一定水位を維持し
た状態で行うことになり、脱窒反応を十分に進ませるこ
とができる。
As is clear from the above description and (Table 1), according to the present invention, the biological reaction chamber in which the aeration device is disposed, and the flow rate adjustment for adjusting the amount of waste water flowing into this biological reaction chamber. When operating the septic tank equipped with the membrane section and the membrane separation device that separates the wastewater in the biological reaction chamber into the permeate and the retentate, the transition of the wastewater from the flow rate adjusting unit to the biological reaction chamber depends on the water level in the biological reaction chamber. Start from the time of reaching the lowest water level (LWL) until reaching the highest water level (HWL), or the time when the transfer of a certain amount of wastewater is completed, or the time when the wastewater is transferred for a predetermined time, and the aeration The operation of the apparatus is started after a lapse of a predetermined time after the transfer of the waste water from the flow rate adjusting unit to the biological reaction chamber is stopped, and is stopped at substantially the same time as the start or stop of the transfer of the next waste water, and further the operation of the membrane separation device is stopped. Before driving It starts at about the same time as the start of operation of the aeration device, or slightly later, and the lowest water level (LW
Since it was stopped at the time when it reached L.), there is no inflow of wastewater during anaerobic treatment, so the concentration of dissolved oxygen in the bioreaction chamber is sufficiently reduced, and anaerobic treatment can be performed efficiently. After the completion of the transition, the anaerobic treatment will be performed while maintaining a constant water level, and the denitrification reaction can be sufficiently advanced.

【0026】特に、廃水の移行時間を曝気装置の運転時
間の1/2以下、好ましくは1/3以下とし、廃水の移
行を曝気(好気性処理)の終了直前または終了直後にま
とめて生物反応室内へ供給することで、嫌気性処理に必
要な有機炭素が十分に供給され、嫌気性処理の際の脱窒
反応がスムーズに進む。
In particular, the transition time of wastewater is set to 1/2 or less, preferably 1/3 or less of the operating time of the aeration device, and the transition of wastewater is collected immediately before or after the end of aeration (aerobic treatment) and the biological reaction is summarized. By supplying it indoors, the organic carbon required for anaerobic treatment is sufficiently supplied, and the denitrification reaction during anaerobic treatment proceeds smoothly.

【0027】更に、流量調整部内若しくはその前段部に
濾床、スクリーン等を配置するなどして、生物反応室の
上流側で流入廃水中の夾雑物を除去するようにしたの
で、膜濾過特性の長期安定化が図れる。
Further, by disposing a filter bed, a screen, etc. in the flow rate adjusting section or in the front stage thereof, the impurities in the inflowing wastewater are removed on the upstream side of the biological reaction chamber, so that the membrane filtration characteristics can be improved. Long-term stabilization can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る浄化槽及びその運転方法の実施に
用いる浄化槽の断面図
FIG. 1 is a cross-sectional view of a septic tank according to the present invention and a septic tank used for operating the method of operating the same.

【図2】同運転方法の実施に用いる別のタイプの浄化槽
の断面図
FIG. 2 is a cross-sectional view of another type of septic tank used for implementing the operation method.

【図3】第1発明に係る運転方法の処理パターンを示す
グラフ
FIG. 3 is a graph showing a processing pattern of the driving method according to the first invention.

【図4】別発明に係る運転方法の処理パターンを示すグ
ラフ
FIG. 4 is a graph showing a processing pattern of a driving method according to another invention.

【図5】別発明に係る運転方法の処理パターンを示すグ
ラフ
FIG. 5 is a graph showing a processing pattern of a driving method according to another invention.

【図6】別発明に係る運転方法の処理パターンを示すグ
ラフ
FIG. 6 is a graph showing a processing pattern of a driving method according to another invention.

【図7】従来の運転方法の処理パターンを示すグラフFIG. 7 is a graph showing a processing pattern of a conventional driving method.

【図8】夾雑物除去スクリーンの目開きの大きさと運転
時間の経過に伴う透過流束の変化との関係を示すグラフ
FIG. 8 is a graph showing the relationship between the size of the openings of the contaminant removal screen and the change in permeation flux with the passage of operating time.

【符号の説明】[Explanation of symbols]

1…浄化槽、4,13…水位センサ、5,11…ポン
プ、7…膜分離装置、8…分離膜、12…曝気装置、1
4…制御部、20…濾床、21…スクリーン、S1…流
量調整部、S2…生物反応室、S3…夾雑物除去室。
1 ... Septic tank, 4, 13 ... Water level sensor, 5, 11 ... Pump, 7 ... Membrane separation device, 8 ... Separation membrane, 12 ... Aeration device, 1
4 ... Control part, 20 ... Filter bed, 21 ... Screen, S1 ... Flow control part, S2 ... Biological reaction chamber, S3 ... Contaminant removal chamber.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥野 祐一 福岡県北九州市小倉北区中島2丁目1番 1号 東陶機器株式会社内 (56)参考文献 特開 平4−108600(JP,A) 特開 平6−47387(JP,A) 実開 平4−99294(JP,U) (58)調査した分野(Int.Cl.7,DB名) C02F 3/00 C02F 3/12 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuichi Okuno Yuichi Okuno 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu-shi, Fukuoka Totoki Kikai Co., Ltd. (56) Reference JP-A-4-108600 (JP, A) JP-A-6-47387 (JP, A) Actual development 4-99294 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) C02F 3/00 C02F 3/12

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 曝気装置を配置した生物反応室と、この
生物反応室内へ流入する廃水の量を調整するための流量
調整部と、この流量調整部内の廃水を生物反応室へ移行
する移行手段と、生物反応室内の廃水を透過液と保持液
に分離する膜分離装置とを備えた浄化槽において、この
浄化槽は前記生物反応室内の最低水位(L.W.L.)と最高
水位( H.W.L.)を検知する水位検知手段を備え、前記
水位検知手段と前記移行手段によって前記生物反応室内
の水位が最低水位(L.W.L.)と最高水位( H.W.L.)の
範囲内に収まるように制御し、かつ前記水位検知手段に
よって前記生物反応室内の最低水位(L.W.L.)の信号を
受けた後、一定時間または一定量もしくは最高水位(
H.W.L.)になるまで廃水の移行運転を制御するととも
に、前記移行運転停止から一定時間経過後、曝気運転及
び濾過運転を開始するよう制御する制御部を備えたこと
を特徴とする浄化槽。
1. A biological reaction chamber in which an aeration device is arranged, a flow rate adjusting unit for adjusting the amount of waste water flowing into the biological reaction chamber, and a transfer means for transferring the waste water in the flow rate adjusting unit to the biological reaction chamber. And a membrane separation device for separating the wastewater in the biological reaction chamber into a permeate and a retentate, the septic tank detecting the minimum water level (LWL) and the maximum water level (HWL) in the biological reaction chamber. Means for controlling the water level in the biological reaction chamber by the water level detection means and the transfer means so as to fall within the range of the minimum water level (LWL) and the maximum water level (HWL), and the biological reaction by the water level detection means. After receiving the signal of the minimum water level (LWL) in the room, a certain time or a certain amount or the maximum water level (
The septic tank is provided with a control unit that controls the transfer operation of the wastewater until HWL) and starts the aeration operation and the filtration operation after a lapse of a certain time from the stop of the transfer operation.
【請求項2】 請求項1に記載の浄化槽において、前記
生物反応室よりも前段に、流入廃水中の粗大粒子、毛
髪、繊維状物等の夾雑物を除去する夾雑物除去手段を配
置したことを特徴とする浄化槽。
2. The septic tank according to claim 1, wherein a contaminant removing means for removing contaminants such as coarse particles, hair and fibrous substances in the inflowing wastewater is arranged in front of the biological reaction chamber. A septic tank characterized by.
【請求項3】 請求項2に記載の浄化槽において、前記
夾雑物除去手段は流量調整部に設ける濾床或いはスクリ
ーンであることを特徴とする浄化槽。
3. The septic tank according to claim 2, wherein the foreign matter removing means is a filter bed or a screen provided in a flow rate adjusting section.
【請求項4】 請求項2に記載の浄化槽において、前記
スクリーンは目開き0.1mm乃至10mmのスクリー
ンであることを特徴とする浄化槽。
4. The septic tank according to claim 2, wherein the screen is a screen having an opening of 0.1 mm to 10 mm.
【請求項5】 請求項2または請求項3に記載の浄化槽
において、除去される夾雑物は径が0.1mm以上の粒
子状物質であることを特徴とする浄化槽。
5. The septic tank according to claim 2 or 3, wherein the impurities to be removed are particulate substances having a diameter of 0.1 mm or more.
【請求項6】 請求項4に記載の浄化槽において、前記
膜分離装置を構成する分離膜を中空糸膜とし、前記夾雑
物は長さが0.2mm以上の繊維状物質であることを特
徴とする浄化槽。
6. The septic tank according to claim 4, wherein the separation membrane constituting the membrane separation device is a hollow fiber membrane, and the contaminants are fibrous substances having a length of 0.2 mm or more. A septic tank.
【請求項7】 曝気装置を配置した生物反応室と、この
生物反応室内へ流入する廃水の量を調整するための流量
調整部と、この流量調整部内の廃水を生物反応室へ移行
する移行手段と、前記生物反応室内の廃水を透過液と保
持液に分離する膜分離装置と、前記生物反応室内の最低
水位(L.W.L.)と最高水位( H.W.L.)を検知する水位
検知手段とを備えた浄化槽の運転方法において、前記生
物反応室への曝気をタイマーにより間欠的に行い、膜分
離装置の運転は前記曝気装置の運転開始と略同時または
若干遅れて開始するとともに、生物反応室内の水位が最
低水位(L.W.L.)に達した時点で停止し、生物反応室へ
の廃水の移行は膜分離のために確保した時間が終了した
時点で開始し、生物反応室内の水位が最高水位(H.W.
L.)に達した時点、または一定量の移送を終了した時
点、若しくは所定時間移送を行った時点で停止すること
を特徴とする浄化槽の運転方法。
7. A biological reaction chamber in which an aeration device is arranged, a flow rate adjusting unit for adjusting the amount of waste water flowing into the biological reaction chamber, and a transfer means for transferring the waste water in the flow rate adjusting unit to the biological reaction chamber. And a membrane separation device for separating the waste water in the biological reaction chamber into a permeate and a retentate, and a water level detection means for detecting the minimum water level (LWL) and the maximum water level (HWL) in the biological reaction chamber. In the operating method, aeration of the biological reaction chamber is intermittently performed by a timer, the operation of the membrane separation device is started at substantially the same time as or slightly later than the start of operation of the aeration device, and the water level in the biological reaction chamber is the minimum water level. (LWL) is reached, the transfer of wastewater to the bioreaction chamber starts at the end of the time secured for membrane separation, and the water level in the bioreaction chamber reaches the maximum water level (HW
L.) is reached, a certain amount of transfer is completed, or the transfer is performed for a predetermined time, the process is stopped, and the septic tank is operated.
【請求項8】 請求項7に記載の浄化槽の運転方法にお
いて、前記廃水の移行時間は曝気装置の運転時間の1/
2以下としたことを特徴とする浄化槽の運転方法。
8. The method for operating the septic tank according to claim 7, wherein the transition time of the wastewater is 1 / the operating time of the aeration device.
A method for operating a septic tank, which is characterized in that the number is 2 or less.
JP22062694A 1994-09-14 1994-09-14 Septic tank and its operation method Expired - Fee Related JP3368682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22062694A JP3368682B2 (en) 1994-09-14 1994-09-14 Septic tank and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22062694A JP3368682B2 (en) 1994-09-14 1994-09-14 Septic tank and its operation method

Publications (2)

Publication Number Publication Date
JPH0884995A JPH0884995A (en) 1996-04-02
JP3368682B2 true JP3368682B2 (en) 2003-01-20

Family

ID=16753928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22062694A Expired - Fee Related JP3368682B2 (en) 1994-09-14 1994-09-14 Septic tank and its operation method

Country Status (1)

Country Link
JP (1) JP3368682B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4497646B2 (en) * 2000-04-10 2010-07-07 三菱レイヨン株式会社 Water treatment apparatus and water treatment system provided with the same
JP2003019481A (en) * 2001-07-06 2003-01-21 Asahi Kasei Corp Method for managing liquid level of membrane separation apparatus
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
JP5140980B2 (en) * 2006-09-28 2013-02-13 栗田工業株式会社 Biological treatment equipment
CN101885570B (en) * 2009-05-15 2012-04-04 江西金达莱环保研发中心有限公司 Sludge treatment method
JP6309281B2 (en) * 2014-01-22 2018-04-11 ダイセン・メンブレン・システムズ株式会社 Multistage separation membrane device and its operation method
JP6645367B2 (en) * 2016-06-22 2020-02-14 株式会社デンソー Wastewater treatment method
JP7151177B2 (en) * 2018-05-30 2022-10-12 三菱ケミカル株式会社 Water treatment equipment and its operation method

Also Published As

Publication number Publication date
JPH0884995A (en) 1996-04-02

Similar Documents

Publication Publication Date Title
US6824685B2 (en) Method and apparatus for treating waste water
JPH0665371B2 (en) Organic wastewater biological treatment equipment
JP3368682B2 (en) Septic tank and its operation method
JPH0839089A (en) Purifying tank and operation thereof
JPH07256281A (en) Waste water purifying method and tank
JP2009061349A (en) Sewage treatment method by membrane separation activated sludge process
JP3832232B2 (en) Membrane separator
JP2008221133A (en) Wastewater treatment equipment
JP3773360B2 (en) Septic tank with membrane separation
JP3171746B2 (en) Domestic wastewater treatment equipment
JP3204125B2 (en) Biological treatment method
JPH11347550A (en) Membrane separation method and apparatus
JP2001047089A (en) Method and apparatus for treating sewage
JP2002143880A (en) Device for biological treatment of waste water
JPH10128373A (en) Biological treatment method
JP2006035138A (en) Activated sludge processing equipment
JP4124957B2 (en) Filter body washing method and apparatus
JP3721092B2 (en) Solid-liquid separation method and apparatus for activated sludge
JPH06114388A (en) Biological filtering method
JP3883358B2 (en) Filtration separation method and apparatus for sewage treatment
JP3244012B2 (en) Activated sludge filtration device
JP2001276874A (en) Solid/liquid separation method and device in organic drain treatment
JPH0839088A (en) Purifying tank and operation thereof
JP2004237219A (en) Biological membrane filter apparatus and treatment method
JP2006043706A (en) Method and apparatus for treating waste water

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071115

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081115

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091115

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101115

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees