JPH07256281A - Waste water purifying method and tank - Google Patents

Waste water purifying method and tank

Info

Publication number
JPH07256281A
JPH07256281A JP5548994A JP5548994A JPH07256281A JP H07256281 A JPH07256281 A JP H07256281A JP 5548994 A JP5548994 A JP 5548994A JP 5548994 A JP5548994 A JP 5548994A JP H07256281 A JPH07256281 A JP H07256281A
Authority
JP
Japan
Prior art keywords
waste water
wastewater
membrane
chamber
treatment chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5548994A
Other languages
Japanese (ja)
Inventor
Yasutoshi Shimizu
康利 清水
Kazuhiro Izumi
一弘 出水
Takamasa Tsuji
隆正 辻
Tomoko Noguchi
朋子 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP5548994A priority Critical patent/JPH07256281A/en
Publication of JPH07256281A publication Critical patent/JPH07256281A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Activated Sludge Processes (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To reduce the thickness of a layer of matter to be filtered formed on the surface of a separation membrane by biologically treating waste water with bacteria to separate the same into a transmitted liquid and a holding liquid or a conc. liquid by the separation membrane and specifying the concn. of bacteria in waste water supplied to the separation membrane and the viscosity of waste water. CONSTITUTION:A purifying tank main body 1 is demarcated into a biological treatment chamber S1, a viscosity adjusting chamber S2 and a membrane treatment chamber S3 by partition walls 2, 3 and waste water is introduced into the biological treatment chamber S1 by an introducing pipe 4 and air is intermittently supplied to waste water from an air diffusion pipe 5 to purify waste water by aerobic treatment and anaerobic treatment. Next, waste water enters the viscosity adjusting chamber S2 and, after suspended component such as bacteria in the waste water is settled and separated, the waste water is sent into the membrane treatment chamber S3 to be separated into a conc. liquid and a transmitted liquid by a hollow yarn membrane module 6. At this time, the viscosity of the waste water is set to 30 cp or less and the concn. of bacteria in the waste water is set to 30kg/m<3> or less to thin the layer of matter to be filtered formed on the surface of a separation membrane.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は便所、洗面所、風呂、厨
房などからの廃水を浄化する方法と浄化槽に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a septic tank for purifying waste water from a toilet, washroom, bath, kitchen or the like.

【0002】[0002]

【従来の技術】活性汚泥による生物的な処理と分離膜に
よる物理的な処理とを組み合わせることで、廃水を処理
する浄化槽として、実開平4−99297号公報に開示
されるものが知られている。この公報に開示される浄化
槽は、高濃度活性汚泥処理槽内に設けた分離膜モジュー
ルが粗大固形物によって目詰りを起こすことを防止する
ために、高濃度活性汚泥処理槽に流入する廃水中の粗大
固形物を予めスクリーンによって除去するようにしてい
る。
2. Description of the Related Art As a septic tank for treating wastewater by combining biological treatment with activated sludge and physical treatment with a separation membrane, one disclosed in Japanese Utility Model Publication No. 4-99297 is known. . The septic tank disclosed in this publication discloses that the separation membrane module provided in the high-concentration activated sludge treatment tank does not cause clogging due to coarse solid matter, so that the wastewater flowing into the high-concentration activated sludge treatment tank is treated. Coarse solids are previously removed by a screen.

【0003】[0003]

【発明が解決しようとする課題】上述した膜分離装置を
組み込んだ浄化槽の高濃度活性汚泥処理槽内には、粗大
固形物を除いても好気性菌や嫌気性菌を主体とする微生
物や有機物等の被濾過物粒子が浮遊しており、これら被
濾過物粒子が分離膜の廃水側表面に濃縮されてゲル状に
堆積し、この被濾過物層が厚くなると急激に膜の透過流
束が低下する。ここで、被濾過物層の堆積を抑制するに
は、廃水中の微生物の濃度を少なくして粘度を下げれば
よいが、微生物の濃度を少なくすると生物処理効率が低
下してしまう。
In the high-concentration activated sludge treatment tank of the septic tank in which the above-mentioned membrane separation device is incorporated, microorganisms and organic substances mainly composed of aerobic bacteria and anaerobic bacteria are removed even if coarse solid matters are removed. Particles to be filtered such as are suspended, these particles to be filtered are concentrated on the surface of the separation membrane on the wastewater side and are deposited in a gel form.When the layer to be filtered becomes thick, the permeation flux of the membrane suddenly increases. descend. Here, in order to suppress the deposition of the material layer to be filtered, it is sufficient to reduce the concentration of microorganisms in the wastewater to reduce the viscosity, but reducing the concentration of microorganisms lowers the biological treatment efficiency.

【0004】[0004]

【課題を解決するための手段】上記課題を解決すべく本
発明に係る廃水の浄化方法は、廃水を生物的に処理した
後の廃水の粘度を予め所定値以下に下げ、この粘度が下
がった廃水を分離膜によって透過液と保持液あるいは濃
縮液とに分離するようにした。ここで、好ましい粘度は
200cp以下であり、この粘度にするには分離膜に供
給される廃水の微生物濃度を30kg/m3以下とす
る。
In order to solve the above problems, the method for purifying wastewater according to the present invention reduces the viscosity of wastewater after biologically treating the wastewater to a predetermined value or less, and the viscosity is lowered. The waste water was separated by a separation membrane into a permeate and a retentate or a concentrate. Here, the preferable viscosity is 200 cp or less, and in order to achieve this viscosity, the microbial concentration of the waste water supplied to the separation membrane is set to 30 kg / m 3 or less.

【0005】また、本発明に係る浄化装置は、隔壁にて
浄化槽内を上流側の生物処理室と下流側の膜処理室とを
画成するとともに、これら生物処理室と膜処理室との間
に粘度調整室を設けた。
Further, in the purifying apparatus according to the present invention, the partition wall defines an upstream biological treatment chamber and a downstream membrane treatment chamber in the septic tank, and the space between the biological treatment chamber and the membrane treatment chamber is defined. A viscosity adjusting chamber was set up.

【0006】更に本発明に係る別の浄化装置は、浄化槽
は生物処理室内に膜分離装置を浸漬し、また廃水中には
その表面に浮遊懸濁成分を吸着するか、或いは微生物が
付着するキャッチャー粒子を混入した。
Further, in another purifying apparatus according to the present invention, the septic tank is a catcher in which the membrane separator is immersed in the biological treatment chamber, and the surface of the waste water adsorbs suspended suspended components or microorganisms adhere. Incorporated particles.

【0007】[0007]

【作用】膜分離装置を配置した室では廃水中を浮遊する
微生物の量を少なくすることで、膜分離装置に供給され
る廃水の粘度が低くなり、その結果、分離膜表面に形成
される被濾過物層も厚くならない。
By reducing the amount of microorganisms floating in the wastewater in the chamber where the membrane separation device is placed, the viscosity of the wastewater supplied to the membrane separation device is lowered, and as a result, the coating formed on the surface of the separation membrane is reduced. The filtrate layer also does not become thick.

【0008】[0008]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本発明に係る浄化槽の断面
図、図2は廃水中の微生物濃度(MLSS)と透過流束
(J)及び粘度(η)との関係を示すグラフであり、浄
化槽本体1内は隔壁2,3によって生物処理室S1、粘
度調整室S2及び膜処理室S3に画成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a cross-sectional view of the septic tank according to the present invention, and FIG. 2 is a graph showing the relationship between the microbial concentration (MLSS) in the wastewater, the permeation flux (J) and the viscosity (η). The interior is partitioned by partition walls 2 and 3 into a biological treatment chamber S1, a viscosity adjusting chamber S2, and a membrane treatment chamber S3.

【0009】生物処理室S1の上部には廃水の導入パイ
プ4が取り付けられ、生物処理室S1の底部には散気管
5が設けられ、この散気管5から生物処理室S1内にエ
アを間欠的に供給するようにしている。尚、エアを供給
している間は生物処理室S1内では好気性処理が行わ
れ、エアの供給を停止している間は嫌気性処理が行われ
る。
A wastewater introduction pipe 4 is attached to the upper part of the biological treatment chamber S1, and an air diffuser pipe 5 is provided at the bottom of the biological treatment chamber S1. Air is intermittently supplied from the diffuser pipe 5 into the biological treatment chamber S1. I am trying to supply it to. The aerobic treatment is carried out in the biological treatment chamber S1 while the air is being supplied, and the anaerobic treatment is carried out while the supply of the air is stopped.

【0010】ここで、好気性処理では吹込まれた酸素を
利用して活性汚泥に含まれる硝化菌により原液中に含ま
れるアンモニア態窒素(NH4 +)が硝酸態窒素(N
3 -)や亜硝酸態窒素(NO2 -)に酸化分解され、また
未分解有機物は活性汚泥中に取り込まれる。また嫌気性
処理では活性汚泥に含まれる酸生成菌によって合併排水
中の有機物を酢酸(CH3COOH)やプロピオン酸
(CH3CH2COOH)等の有機酸に低分子化し、更に
これら有機酸をメタン菌などによってメタン(CH4
や二酸化炭素(CO2)のガスに変換し、更に、タンパ
ク質や尿素などの窒素分の分解物であるアンモニア態窒
素(NH4 +)を生成する。
Here, in the aerobic treatment, the nitrogen nitrogen (N 4 + ) contained in the stock solution is converted to nitrate nitrogen (N 4 + ) by the nitrifying bacteria contained in the activated sludge by utilizing the blown oxygen.
O 3 ) and nitrite nitrogen (NO 2 ) are oxidatively decomposed, and undecomposed organic matter is taken into activated sludge. In the anaerobic treatment, acid-producing bacteria contained in the activated sludge reduce the organic matter in the combined wastewater into organic acids such as acetic acid (CH 3 COOH) and propionic acid (CH 3 CH 2 COOH). Methane (CH 4 ) due to methane bacteria
It is converted into a gas of carbon dioxide (CO 2 ) or carbon dioxide (CO 2 ), and further, ammonia nitrogen (NH 4 + ) which is a decomposition product of nitrogen components such as protein and urea is generated.

【0011】また、粘度調整室S2を画成する隔壁3の
下部は生物処理室S1側に傾斜壁3aとし、粘度調整室
S2が沈降分離室としても機能するように構成されてい
る。
Further, the lower portion of the partition wall 3 which defines the viscosity adjusting chamber S2 is an inclined wall 3a on the biological treatment chamber S1 side, and the viscosity adjusting chamber S2 is also configured to function as a sedimentation separation chamber.

【0012】更に膜処理室S3内には、膜分離装置とし
て中空糸状膜モジュール6を配置し、この中空糸状膜モ
ジュール6の下方に散気管7を設け、中空糸状膜モジュ
ール6の上端からは配管8を導出し、ポンプ9を介して
透過液を排出するようにし、また膜処理室S3底部に溜
まった汚泥を配管10およびポンプ11を介して生物処
理室S1に戻すようにしている。
Further, in the membrane processing chamber S3, a hollow fiber membrane module 6 is arranged as a membrane separation device, an air diffusing pipe 7 is provided below the hollow fiber membrane module 6, and a pipe is provided from the upper end of the hollow fiber membrane module 6. 8 is led out so that the permeated liquid is discharged through the pump 9, and the sludge accumulated at the bottom of the membrane treatment chamber S3 is returned to the biological treatment chamber S1 through the pipe 10 and the pump 11.

【0013】ここで、中空糸状膜モジュール6の下方に
配置した散気管7は、中空糸状膜モジュール6に沿って
気液二相流を形成し、経時的に中空糸状膜の表面に堆積
した被濾過物層を振動等によって掻き取って除去するた
めのものであり、斯かる掻き取りを効果的に行う気体量
(V1)は、中空糸状膜モジュール6の膜処理室S3底
面への単位投影面積当り且つ単位時間当り、0.5≦V
1≦300(m3m-2h-1)とするのが好ましく、最適範囲
は1.0≦V1≦200(m3m-2h-1)である。
Here, the air diffusing pipe 7 arranged below the hollow fiber membrane module 6 forms a gas-liquid two-phase flow along the hollow fiber membrane module 6 and is deposited on the surface of the hollow fiber membrane over time. The filtration material layer is for scraping and removing it by vibration or the like, and the gas amount (V 1 ) for effectively scraping the filtration layer is a unit projection on the bottom surface of the membrane processing chamber S3 of the hollow fiber membrane module 6. 0.5 ≦ V per area and per unit time
It is preferable that 1 ≤ 300 (m 3 m -2 h -1 ), and the optimum range is 1.0 ≤ V 1 ≤ 200 (m 3 m -2 h -1 ).

【0014】以上において、導入パイプ4から生物処理
室S1内に導入された廃水は、生物処理室S1内で好気
性処理及び嫌気性処理が施された後に粘度調整室S2に
入る。粘度調整室S2内では生物処理後の廃水中に浮遊
する微生物等の懸濁成分を沈降分離し、廃水の粘度を低
下せしめる。
In the above, the wastewater introduced into the biological treatment chamber S1 from the introduction pipe 4 enters the viscosity adjusting chamber S2 after being subjected to aerobic treatment and anaerobic treatment in the biological treatment chamber S1. In the viscosity adjusting chamber S2, suspended components such as microorganisms floating in the wastewater after biological treatment are separated by sedimentation to reduce the viscosity of the wastewater.

【0015】そして、粘度が低下した廃水は膜処理室S
3内に送られ、中空糸状膜モジュール6によって濃縮液
と透過液に分離される。ここで、図2にも示すように、
廃水の粘度が高いと、分離膜表面に形成される被濾過物
層が厚くなり透過流束が低下するので、廃水の粘度は2
00cp以下とし、好ましくは50cp以下、最適は3
0cp以下とする。また廃水の粘度を200cp以下と
するには廃水の微生物濃度を30kg/m3以下とす
る。
Then, the waste water whose viscosity has decreased is treated in the membrane treatment chamber S.
It is sent into the inside 3 and is separated into the concentrated liquid and the permeated liquid by the hollow fiber membrane module 6. Here, as shown in FIG.
If the viscosity of the wastewater is high, the layer of the substance to be filtered formed on the surface of the separation membrane becomes thick and the permeation flux decreases, so that the viscosity of the wastewater is 2%.
00cp or less, preferably 50cp or less, optimally 3
It should be 0 cp or less. Further, in order to reduce the viscosity of the wastewater to 200 cp or less, the microbial concentration of the wastewater is set to 30 kg / m 3 or less.

【0016】尚、実施例にあっては沈降分離室が粘度調
整室S2を兼ねるようにしたが、沈降分離の代りに濾床
を配置し、濾床によって微生物を捕獲することで微生物
濃度を30kg/m3以下とすることもできる。
In the embodiment, the sedimentation separation chamber also serves as the viscosity adjusting chamber S2. However, instead of sedimentation separation, a filter bed is arranged and microorganisms are captured by the filter bed to obtain a microorganism concentration of 30 kg. / M 3 or less can be used.

【0017】図3は生物処理室に膜分離装置を配置した
浄化槽の断面図、図4は図3に示した浄化槽の作用を示
す図であり、この浄化槽は生物処理室S1内に平膜モジ
ュール13を浸漬し、配管14及びポンプ15を介して
透過液を取り出すようにし、また廃水中にはキャッチャ
ー粒子16を浮遊せしめ、キャッチャー粒子16を散気
管18からのエアにて生物処理室S1内を循環せしめ、
この間にキャッチャー粒子16表面に浮遊懸濁成分19
を吸着する或いは微生物を付着させることで、廃水の粘
度を低下せしめるようにしている。また、キャッチャー
粒子16が気液固三相流を形成することで、平膜モジュ
ール13表面に被濾過物層が厚く形成されるのを掻き取
り効果によって防止できる。
FIG. 3 is a sectional view of a septic tank in which a membrane separation device is arranged in the biological treatment chamber, and FIG. 4 is a view showing the operation of the septic tank shown in FIG. 3, which is a flat membrane module in the biological treatment chamber S1. 13 is immersed, the permeate is taken out through the pipe 14 and the pump 15, the catcher particles 16 are suspended in the waste water, and the catcher particles 16 are blown into the biological treatment chamber S1 by air from the air diffuser 18. Circulate,
During this time, the suspended suspended components 19 on the surface of the catcher particles 16
The viscosity of the wastewater is reduced by adsorbing or adsorbing microorganisms. Further, since the catcher particles 16 form a gas-liquid solid three-phase flow, it is possible to prevent a thick layer of the substance to be filtered from being formed on the surface of the flat sheet membrane module 13 by the scraping effect.

【0018】キャッチャー粒子16としては例えば菌体
の担体等が考えられ、その粒径は0.001mm以上1
00mm以下とする。また掻き取りを効果的に行う気体
量(V1)は、平膜モジュール13の膜処理室S3底面
への単位投影面積当り且つ単位時間当り、0.2≦V1
≦280(m3m-2h-1)とし、好ましくは0.5≦V1
100(m3m-2h-1)とする。
The catcher particles 16 may be, for example, a carrier of bacterial cells, and have a particle size of 0.001 mm or more 1
It is set to 00 mm or less. The amount of gas (V 1 ) for effectively scraping is 0.2 ≦ V 1 per unit projected area of the flat film module 13 onto the bottom surface of the film processing chamber S3 and per unit time.
≦ 280 (m 3 m −2 h −1 ) and preferably 0.5 ≦ V 1
It is set to 100 (m 3 m -2 h -1 ).

【0019】[0019]

【発明の効果】以上に説明した如く本発明によれば、微
生物による生物的な処理と分離膜による物理的な処理と
を1つの装置内で行うようにした浄化方法或いはこの方
法を実施する浄化槽として、生物処理室と膜分離処理室
とを別々に設ける場合には、膜分離装置の上流側に粘度
調整室を設け、また膜分離装置を生物処理室に配置する
場合には、浮遊懸濁成分を吸着する或いは微生物を付着
させるキャッチャー粒子を廃水中に混入することで、生
物処理の段階では菌体濃度を高く維持し、膜分離の段階
では廃水の粘度を低くすることができ、その結果、分離
膜表面に形成される被濾過物層も厚くならず、透過流束
を一定に維持できる。
As described above, according to the present invention, a purification method in which a biological treatment with microorganisms and a physical treatment with a separation membrane are performed in one apparatus, or a purification tank for carrying out this method. As an example, when a biological treatment chamber and a membrane separation treatment chamber are provided separately, a viscosity adjusting chamber is provided on the upstream side of the membrane separation device, and when the membrane separation device is placed in the biological treatment chamber, a floating suspension is used. By mixing catcher particles that adsorb components or attach microorganisms to wastewater, it is possible to maintain a high bacterial cell concentration during the biological treatment stage and reduce the viscosity of the wastewater during the membrane separation stage. The layer to be filtered formed on the surface of the separation membrane does not become thick, and the permeation flux can be maintained constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る浄化槽の断面図FIG. 1 is a sectional view of a septic tank according to the present invention.

【図2】廃水中の微生物濃度と透過流束及び粘度との関
係を示すグラフ
FIG. 2 is a graph showing the relationship between microbial concentration in wastewater, permeation flux and viscosity.

【図3】生物処理室に膜分離装置を配置した浄化槽の断
面図
FIG. 3 is a sectional view of a septic tank in which a membrane separation device is arranged in a biological treatment chamber.

【図4】図3に示した浄化槽の作用を示す図FIG. 4 is a diagram showing the operation of the septic tank shown in FIG.

【符号の説明】[Explanation of symbols]

1…浄化槽本体、2,3…隔壁、5,7…散気管、6,
13…膜モジュール、16…キャッチャー粒子、S1…
生物処理室、S2…粘度調整室、S3…膜処理室。
1 ... septic tank main body, 2, 3 ... partition wall, 5, 7 ... air diffuser, 6,
13 ... Membrane module, 16 ... Catcher particles, S1 ...
Biological processing room, S2 ... Viscosity adjusting room, S3 ... Membrane processing room.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辻 隆正 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 (72)発明者 野口 朋子 福岡県北九州市小倉北区中島2丁目1番1 号 東陶機器株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takamasa Tsuji 2-1-1 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka Prefecture Totoki Kikai Co., Ltd. (72) Tomoko Noguchi 2 Nakajima, Kokurakita-ku, Kitakyushu, Fukuoka 1st-1st Totoki Equipment Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 微生物によって廃水を生物的に処理した
後、この廃水を分離膜によって透過液と保持液あるいは
濃縮液とに分離するようにした廃水の浄化方法におい
て、前記分離膜に供給する廃水中の微生物濃度を30k
g/m3以下として廃水の粘度を200cp以下にする
ことを特徴とする廃水の浄化方法。
1. A method for purifying wastewater, which comprises biologically treating wastewater with microorganisms and then separating the wastewater into a permeate and a retentate or a concentrate by means of a separation membrane. Microbial concentration in the 30k
A method for purifying wastewater, characterized in that the viscosity of the wastewater is set to g / m 3 or less and the viscosity of the wastewater is set to 200 cp or less.
【請求項2】 微生物によって廃水を生物的に処理する
浄化槽において、この浄化槽は隔壁にて上流側の生物処
理室と下流側の膜処理室とを画成するとともに、これら
生物処理室と膜処理室との間に粘度調整室を設けたこと
を特徴とする浄化槽。
2. A septic tank for biologically treating wastewater with microorganisms. The septic tank defines a biological treatment chamber on the upstream side and a membrane treatment chamber on the downstream side with a partition wall, and the biological treatment chamber and the membrane treatment. A septic tank characterized in that a viscosity adjusting chamber is provided between the chamber and the chamber.
【請求項3】 請求項2に記載の浄化槽において、前記
粘度調整室とを画成する隔壁3の下部は生物処理室側へ
の傾斜壁となっていることを特徴とする浄化槽。
3. The septic tank according to claim 2, wherein a lower part of the partition wall 3 which defines the viscosity adjusting chamber is an inclined wall toward the biological treatment chamber side.
【請求項4】 微生物によって廃水を生物的に処理する
浄化槽において、この浄化槽は生物処理室内に膜分離装
置を浸漬し、また廃水中にはその表面に浮遊懸濁成分を
吸着するか微生物が付着するキャッチャー粒子を混入し
たことを特徴とする浄化槽。
4. In a septic tank for biologically treating wastewater with microorganisms, the septic tank is immersed in a membrane separator in the biological treatment chamber, and the surface of the wastewater is adsorbed by suspended suspended components or microorganisms are attached. A septic tank characterized by containing catcher particles.
【請求項5】 請求項4に記載の浄化槽において、前記
キャッチャー粒子は微生物の担体とし、その粒子径は
0.001mm以上100mm以下としたことを特徴と
する浄化槽。
5. The septic tank according to claim 4, wherein the catcher particles serve as a carrier for microorganisms, and the particle size is 0.001 mm or more and 100 mm or less.
JP5548994A 1994-03-25 1994-03-25 Waste water purifying method and tank Pending JPH07256281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5548994A JPH07256281A (en) 1994-03-25 1994-03-25 Waste water purifying method and tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5548994A JPH07256281A (en) 1994-03-25 1994-03-25 Waste water purifying method and tank

Publications (1)

Publication Number Publication Date
JPH07256281A true JPH07256281A (en) 1995-10-09

Family

ID=13000050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5548994A Pending JPH07256281A (en) 1994-03-25 1994-03-25 Waste water purifying method and tank

Country Status (1)

Country Link
JP (1) JPH07256281A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371313B1 (en) * 2000-10-23 2003-02-07 주식회사 한스환경엔지니어링 A Sewage And Waste water Treating Filter
WO2003037805A1 (en) * 2001-10-29 2003-05-08 Svatopluk Mackrle Small capacity waste water treatment plant
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP2007185660A (en) * 2007-04-09 2007-07-26 Ebara Corp Method and apparatus for treating organic waste water
KR100860300B1 (en) * 2007-08-27 2008-09-25 백운학 Advanced treatment apparatus and method of intermittent-bubble running-treatment membrane-combination type for waste water
WO2009041015A1 (en) * 2007-09-27 2009-04-02 Kobelco Eco-Solutions Co., Ltd. Water treatment equipment and method of water treatment
KR100917097B1 (en) * 2009-02-09 2009-09-15 (주) 한호건설 Sequencing batch membrane bio reactor process and the device
JP2010042329A (en) * 2008-08-08 2010-02-25 Sumitomo Electric Fine Polymer Inc Hollow fiber membrane module
JP2010069359A (en) * 2008-09-16 2010-04-02 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
KR100957825B1 (en) * 2008-06-25 2010-05-13 삼성물산 주식회사 Water Purification System using Exterior Circulative Membrane Module
WO2010064608A1 (en) * 2008-12-05 2010-06-10 Katayose Shigeru Method of treating water and water treatment tank
JP2010172843A (en) * 2009-01-30 2010-08-12 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
JP2012101154A (en) * 2010-11-08 2012-05-31 Sekisui Chem Co Ltd Sewage cleaning apparatus and sewage cleaning method
CN102815803A (en) * 2012-08-20 2012-12-12 东莞市豪丰环保工程有限公司 Electroplating wastewater system for on-line cleaning of membrane separation assembly and process thereof
KR101239249B1 (en) * 2013-01-23 2013-03-05 장명순 Sewage and waste water advanced treatment system for energy saving
JP2013515605A (en) * 2010-03-08 2013-05-09 仁何大学 産学協力団 Fluidized bed separation membrane bioreactor
JP5238897B1 (en) * 2012-06-27 2013-07-17 株式会社神鋼環境ソリューション Waste water treatment method and waste water treatment equipment
CN104386775A (en) * 2014-10-27 2015-03-04 安徽农业大学 Adsorption reactor with separated internal recycle combined membranes, and water treatment device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100371313B1 (en) * 2000-10-23 2003-02-07 주식회사 한스환경엔지니어링 A Sewage And Waste water Treating Filter
WO2003037805A1 (en) * 2001-10-29 2003-05-08 Svatopluk Mackrle Small capacity waste water treatment plant
JP2006082024A (en) * 2004-09-16 2006-03-30 Kurita Water Ind Ltd Biological treatment apparatus
JP4492268B2 (en) * 2004-09-16 2010-06-30 栗田工業株式会社 Biological treatment equipment
JP2007185660A (en) * 2007-04-09 2007-07-26 Ebara Corp Method and apparatus for treating organic waste water
JP4611334B2 (en) * 2007-04-09 2011-01-12 荏原エンジニアリングサービス株式会社 Organic wastewater treatment method and apparatus
KR100860300B1 (en) * 2007-08-27 2008-09-25 백운학 Advanced treatment apparatus and method of intermittent-bubble running-treatment membrane-combination type for waste water
WO2009041015A1 (en) * 2007-09-27 2009-04-02 Kobelco Eco-Solutions Co., Ltd. Water treatment equipment and method of water treatment
JP2009202146A (en) * 2007-09-27 2009-09-10 Kobelco Eco-Solutions Co Ltd Water treatment equipment and method of water treatment
KR100957825B1 (en) * 2008-06-25 2010-05-13 삼성물산 주식회사 Water Purification System using Exterior Circulative Membrane Module
JP2010042329A (en) * 2008-08-08 2010-02-25 Sumitomo Electric Fine Polymer Inc Hollow fiber membrane module
JP2010069359A (en) * 2008-09-16 2010-04-02 Kobelco Eco-Solutions Co Ltd Water treatment device and water treatment method
WO2010064608A1 (en) * 2008-12-05 2010-06-10 Katayose Shigeru Method of treating water and water treatment tank
JP2010172843A (en) * 2009-01-30 2010-08-12 Kobelco Eco-Solutions Co Ltd Water treatment apparatus and water treatment method
KR100917097B1 (en) * 2009-02-09 2009-09-15 (주) 한호건설 Sequencing batch membrane bio reactor process and the device
JP2013515605A (en) * 2010-03-08 2013-05-09 仁何大学 産学協力団 Fluidized bed separation membrane bioreactor
JP2012101154A (en) * 2010-11-08 2012-05-31 Sekisui Chem Co Ltd Sewage cleaning apparatus and sewage cleaning method
JP5238897B1 (en) * 2012-06-27 2013-07-17 株式会社神鋼環境ソリューション Waste water treatment method and waste water treatment equipment
WO2014003007A1 (en) * 2012-06-27 2014-01-03 株式会社神鋼環境ソリューション Wastewater treatment method and wastewater treatment device
CN102815803A (en) * 2012-08-20 2012-12-12 东莞市豪丰环保工程有限公司 Electroplating wastewater system for on-line cleaning of membrane separation assembly and process thereof
KR101239249B1 (en) * 2013-01-23 2013-03-05 장명순 Sewage and waste water advanced treatment system for energy saving
CN104386775A (en) * 2014-10-27 2015-03-04 安徽农业大学 Adsorption reactor with separated internal recycle combined membranes, and water treatment device

Similar Documents

Publication Publication Date Title
JPH07256281A (en) Waste water purifying method and tank
CN1232450C (en) Method and apparatus for treating wastewater using membrane filters
JPH025478B2 (en)
US6824685B2 (en) Method and apparatus for treating waste water
JPH07251043A (en) Filtering method and filter device
US7166220B2 (en) Systems and methods for organic wastewater treatment
JP4859170B2 (en) Nitrogen-containing organic wastewater treatment system
JPH07275887A (en) Purifying tank
JP3278560B2 (en) Water treatment equipment
JPH11104698A (en) Drainage treatment method
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
KR19990083645A (en) Organic material and nitrogen, phosphate removal method using intermitted aeration process and plate type microfiltration membrane
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JP2002192182A (en) Ultrahigh concentration membrane separation activated sludge method
JPH10314554A (en) Membrane separation activated sludge process
CN104981437A (en) Process for purification treatment of wastewater and apparatus for purification treatment of wastewater
JPH07290075A (en) Septic tank
JPH07308683A (en) Septic tank
JPH06226294A (en) Method and device for treating purified water with a high degree
JP3395171B2 (en) Septic tank
JPH07214056A (en) Device for treating waste water
JPH1177044A (en) Wastewater treatment apparatus
JPH0445895A (en) Waste water treating equipment
JPH0634985B2 (en) Bioreactor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050121