JP3600947B2 - Operating method of wastewater treatment equipment - Google Patents

Operating method of wastewater treatment equipment Download PDF

Info

Publication number
JP3600947B2
JP3600947B2 JP31338996A JP31338996A JP3600947B2 JP 3600947 B2 JP3600947 B2 JP 3600947B2 JP 31338996 A JP31338996 A JP 31338996A JP 31338996 A JP31338996 A JP 31338996A JP 3600947 B2 JP3600947 B2 JP 3600947B2
Authority
JP
Japan
Prior art keywords
water
treatment tank
treatment
tank
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31338996A
Other languages
Japanese (ja)
Other versions
JPH10151480A (en
Inventor
辰彦 鈴木
徹 数井
伸幸 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Industries Inc
Original Assignee
Maezawa Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Industries Inc filed Critical Maezawa Industries Inc
Priority to JP31338996A priority Critical patent/JP3600947B2/en
Publication of JPH10151480A publication Critical patent/JPH10151480A/en
Application granted granted Critical
Publication of JP3600947B2 publication Critical patent/JP3600947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

【0001】
【発明の属する技術分野】
本発明は、排水処理装置の運転方法に関し、詳しくは、比較的小型で必要に応じて移設も可能な膜分離法による排水処理装置の運転方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来の排水処理施設で用いられてきた固液分離法は、主に重力沈殿法であり、施設の小型化は困難であった。また、比較的設置や撤去が容易な素堀り池等の簡易な構造も知られてはいるが、移設には相当の期間や費用が必要である。
【0003】
一方、下水,屎尿,浄水の分野で近年急速に実用化が進んでいる膜分離法は、重力沈殿法に比べて比較的コンパクトな施設での固液分離が可能であり、省力化も可能である。しかし、膜分離法を使用した今までの排水処理施設は、未だに膜分離法の利点を十分に活用しているとはいい難かった。
【0004】
そこで本発明は、膜分離法の利点を十分に活用し、小型化を図るとともに、移設にも対応することが可能な排水処理装置の運転方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の排水処理装置の運転方法は、下排水の浄化処理を行う処理槽に原水を流入させ、処理槽内の処理水を膜分離装置を介して排出する排水処理装置の運転方法において、原水の流入量が排水処理装置の計画水量のときには、処理槽に原水流入経路から所定量の原水を流入させ、処理水撹拌手段により処理槽内の処理水を撹拌しながら、処理水排出経路から処理槽内の処理水を膜分離装置を介して排出するとともに、曝気経路による曝気運転を所定間隔で行い、原水の流入量が計画水量より少ないときに、処理槽内の余剰汚泥を汚泥導出経路から引抜くことを特徴としている。
【0006】
また、本発明の排水処理装置の別の運転方法は、下排水の浄化処理を行う処理槽に原水を流入させ、処理槽内の処理水を膜分離装置を介して排出する排水処理装置の運転方法において、前記処理槽を第一処理槽と第二処理槽に区画し、原水の流入量が排水処理装置の計画水量のときには、処理槽に原水流入経路から所定量の原水をそれぞれ流入させ、第一及び第二処理水撹拌手段により処理槽内の処理水をそれぞれ撹拌しながら、第一及び第二処理水排出経路から処理槽内の膜分離装置を介して処理水をそれぞれ排出するとともに、第一及び第二曝気経路による曝気運転を所定間隔で行い、原水の流入量が計画水量より少ないときに、第一処理槽及び第二処理槽のいずれか一方で前記曝気運転を所定間隔で行い、いずれか他方の処理槽内の余剰汚泥を汚泥導出経路から引抜くことを特徴としている。さらに、上記両運転方法における原水の流入量が計画水量より少ない低水量時の運転において、処理槽内に複数ユニット設けられている膜分離装置の中の1ユニットを水面上に引上げ、引上げた膜分離装置内に薬液調整槽内の薬液を注入して膜を洗浄することができる
【0007】
【発明の実施の形態】
以下、本発明を、図面を参照してさらに詳細に説明する。図1は本発明の排水処理装置の一例を示す系統図であって、図2乃至図4はそれぞれ運転方法の説明図、図5は膜分離装置の洗浄運転の一例を示す説明図である。
【0008】
まず、図1に示すように、本形態例に示す排水処理装置は、処理槽10内に原水を流入させる原水流入経路11と、処理槽10内の処理水を膜分離装置12を介して排出する処理水排出経路13と、処理槽10内の処理水を撹拌する処理水撹拌手段である処理水循環経路14と、処理槽10内に曝気空気を導入する曝気経路15と、処理槽10内の汚泥を導出する汚泥導出経路16とを備えている。
【0009】
原水流入経路11は、原水流入路1にスクリーン2を介して接続しており、処理水排出経路13には、紫外線殺菌装置等の後処理装置3が設けられている。また、汚泥導出経路16には、汚泥貯留槽4が設けられており、汚泥貯留槽4内の余剰汚泥は、車載タイプの移動脱水車等の汚泥処理設備5で脱水処理してコンテナ6aに移送し、前記スクリーン2からのし渣も、し渣処理器7で処理して同様にコンテナ6bに移送するように形成している。また、各経路の必要個所には、ポンプ(P)やブロワー(B)がそれぞれ設けられている。
【0010】
さらに、曝気経路15の処理槽10内の噴出部15aは、前記処理水循環経路14にインジェクター方式で設けられており、曝気空気は、処理水循環経路14により循環する処理水中に分散した状態で処理槽10内に噴出するように形成されている。また、その設置位置は、曝気空気により膜分離装置12の膜洗浄が可能な位置に設定されている。なお、膜分離装置12及び噴出部15aは、後述の膜洗浄等を考慮して複数ユニットが設けられている。また、前記処理水循環経路14は、ポンプ14Pにより槽内の処理水を吸引放出して処理水の撹拌を行うものであるが、これに代えて通常の撹拌装置を設けることができる。
【0011】
次に、上記構成の排水処理装置の運転方法を説明する。まず、図2及び図3は、原水の流入量が、この排水処理装置の計画水量のときの運転方法を示すもので、間欠的に曝気処理を行って嫌気好気法により下排水の処理を行う例を示している。
【0012】
処理槽10には、原水流入経路11から所定量の原水が流入しており、処理水循環経路14のポンプ14Pが作動して処理槽10内の処理水を循環させて槽内の処理水を撹拌するとともに、処理水排出経路13のポンプ13Pが作動して処理槽10内の処理水を膜分離装置12から排出している。そして、図2に示す曝気経路15による曝気運転(好気運転)と、図3に示す非曝気運転(嫌気運転)とが交互に行われる。すなわち、曝気経路15のブロワー15Bを所定間隔で間欠的に作動させることにより、下排水の好気処理と嫌気処理とを交互に行うようにしている。この運転方法(間欠曝気法)は、好気運転と嫌気運転との時間の割振りを適当に設定することにより、窒素除去率を向上させることができ、高度の浄水処理を行うことができる。
【0013】
また、好気運転と嫌気運転とを交互に行うことにより、好気運転時の曝気処理で膜分離装置12の付着物(ケーキ層)を除去することができ、長期間にわたって安定した運転を行うことができる。
【0014】
なお、膜分離装置12からの処理水の吸引排出は、間欠的に行うことが望ましく、運転時間中に1/5〜1/10程度の時間割合で停止させることが好ましい。さらに、膜の透過流速は、通常、1日あたり0.24〜0.4mの範囲に設定することが好ましい。
【0015】
図4は、計画水量よりも水量が少ないときの運転状態例を示すもので、処理槽10内の処理水を、処理水排出経路13から所定量抜き取った状態で上述の間欠曝気法を行い、流入原水の処理を行いながら、ポンプ16Pを作動させて槽底部に濃縮された状態の汚泥を汚泥導出経路16から抜き取るようにしている。これにより、余剰汚泥を濃縮した状態で抜き取ることができるので、汚泥の処理を容易に行うことができる。
【0016】
また、膜分離装置12においては、膜の性能を保証するために、適当な時期に膜を薬液で洗浄する必要があるが、例えば、図4に示した低水量時の運転方法で運転しているときに容易に行うことができる。
【0017】
すなわち、図5に示すように、前述の図4に示す低水量時の運転において、複数ユニット設けられている膜分離装置12の中の1ユニットを水面上に引上げ、該膜分離装置12内に薬液調整槽31内の薬液を、経路32,ポンプ32Pを介して注入し、所定時間、例えば約1時間放置して膜の洗浄を行う。その後、この膜分離装置12を処理水中に戻して処理水の排出を開始すればよい。
【0018】
本形態例に示すように、この排水処理装置は、固液分離を膜分離装置で行うので沈殿池を設ける必要がないことから、維持管理が容易であるだけでなく、施工や撤去を迅速に行うことができ、移設も容易に行うことができる。また、膜分離装置と曝気装置とをユニット化することにより、施工や撤去を迅速に行うことができる。
【0019】
さらに、高濃度MLSSにより汚泥発生量の低減が図れ、間欠曝気法により窒素の除去も行うことができる。しかも、膜の洗浄も、現地で簡単な操作で行うことができ、原水流入量に応じた自動化も可能である。加えて、余剰汚泥を引抜く際に膜を介して処理水をある程度抜き取ってから行うことにより、余剰汚泥の減容化が図れ、後処理装置として紫外線殺菌装置を使用することにより、安全で高度な処理水質を得ることができる。
【0020】
また、本発明では、上述のような処理槽を複数設置することもできる。例えば、図6は、処理水槽51内をオーバーフロー堰52で区画して第一処理槽60と第二処理槽70とを形成したもので、各処理槽60,70には、原水を流入させる第一流入経路61及び第二流入経路71と、各処理槽60,70内の処理水をそれぞれ膜分離装置62,72を介して排出する第一排水経路63及び第二排水経路73と、各処理槽60,70内の処理水を導出して各処理槽60,70内に循環させることにより処理水を撹拌する第一循環経路64及び第二循環経路74と、この第一循環経路64及び第二循環経路74の経路を利用して一方の処理槽内の処理水を他方の処理槽内に導入する第一導入経路65と、前記オーバーフロー堰52により形成される第二導入経路75と、各処理槽60,70内に曝気空気を導入する第一曝気経路66及び第二曝気経路76と、各処理槽60,70内の汚泥を導出する第一汚泥経路67及び第二汚泥経路77とがそれぞれ設けられている。
【0021】
第一流入経路61及び第二流入経路71は、原水流入路1に設けたスクリーン2の下流で分岐しており、第一排水経路63及び第二排水経路73は、紫外線殺菌装置等の後処理装置3の入口部で合流している。さらに、第一汚泥経路67及び第二汚泥経路77は、汚泥貯留槽4の入口部で合流しており、汚泥貯留槽4内の余剰汚泥は、汚泥処理設備5で脱水処理してコンテナ6aに移送し、前記スクリーン2からのし渣も、し渣処理器7で処理してコンテナ6bに移送するように形成している。また、各経路の必要個所には、それぞれポンプ(P)や弁が設けられ、両曝気経路66,76には、ブロワー(B)がそれぞれ設けられている。なお、両曝気経路66,76の噴出部やその設置位置は、前記同様に形成されているので詳細な説明は省略する。
【0022】
このような2槽式の装置においては、図7に示すように、前記図2及び図3と同様の間欠曝気法による運転方法を行うことができる。
【0023】
すなわち、第一処理槽60及び第二処理槽70には、それぞれ第一流入経路61及び第二流入経路71から所定量の原水を流入させ、第一循環経路64及び第二循環経路74により各処理槽60,70内の処理水を各処理層内に循環させて撹拌するとともに、第一排水経路63及び第二排水経路73から各処理槽内の処理水を膜分離装置62,27を介して排出する。そして、第一曝気経路66及び第二曝気経路76による曝気運転は、両処理槽60,70についてそれぞれ間欠的に行うようにしている。
【0024】
なお、図7においては、処理槽60が嫌気運転中、処理槽70が好気運転中の状態を表しており、第一,第二流入経路61,71の弁61V,71V及び第一,第二循環経路64,74の弁64V,74Vがそれぞれ開、第一,第二排水経路63,73のポンプ63P,73P及び第一,第二循環経路64,74のポンプ64P,74Pがそれぞれ作動中であって、第一,第二曝気経路66,76においては、第二曝気経路76のブロワー76Bが作動中である。
【0025】
このように両処理槽60,70について、それぞれ別個に嫌気運転と好気運転とを行って間欠曝気法により処理することにより、前記同様に高度の浄水処理を行うことができる。なお、両処理槽60,70が同時に嫌気運転あるいは好気運転を行うようにしてもよい。
【0026】
図8は、上記運転状態において水量が少ないときの運転状態例を示すもので、第一処理槽60と第二処理槽70とのいずれか一方で前記間欠曝気法による排水処理を行い、他方の処理槽を待機状態とするものである。
【0027】
例えば、第一処理槽60を待機状態にする場合は、第二処理槽70において、第二流入経路71から原水を流入させるとともに、第二循環経路74により槽内の処理水を循環させながら第二曝気経路76による曝気を間欠的に行い、膜分離装置72を介して第二排水経路73から第二処理槽70内の処理水を排出する前述の間欠曝気法による排水処理を行う。
【0028】
そして、第一処理槽60では、膜分離装置62を介して第一排水経路63から第一処理槽60内の処理水をある程度排出して汚泥を濃縮した後、第一汚泥経路67のポンプ67Pを作動させて槽内の余剰汚泥の引抜きを行ったり、膜分離装置62の洗浄等の保守作業を行うようにする。
【0029】
図9は、計画水量時における他の運転方法を示すもので、一方の処理槽、例えば第一処理槽60で嫌気運転を行い、他方の処理槽である第二処理槽70で好気運転を行うとともに、該第二処理槽70内の処理水の一部を第一処理槽60に循環させる循環法による排水処理を行う例を示している。
【0030】
まず、嫌気運転を行っている第一処理槽60には、第一流入経路61から所定量の原水を流入させるとともに、第二処理槽70から弁74Vを介して導出した処理水の一部をポンプ64Pにより第一導入経路65,弁65V及び第一循環経路64を介して循環流入させる。同時に、第一処理槽60内の処理水は、膜分離装置62からポンプ63P,第一排水経路63を介して排出されている。
【0031】
また、好気運転を行っている第二処理槽70には、第一処理槽60の処理水がオーバーフロー堰52(第二導入経路75)をオーバーフローして流入しており、第二処理槽70内の処理水は、前述のように、その一部が第一導入経路65及び第一循環経路64を介して第一処理槽60に循環するとともに、残部がポンプ74Pにより第二循環経路74を通って第二処理槽70に循環して槽内を撹拌している。同時に、第二曝気経路76のブロワー76Bによる曝気処理が行われるとともに、処理水を膜分離装置72を介して第二排水経路73,ポンプ73Pから排出している。
【0032】
このような循環法による排水処理は、窒素除去率は、第二処理槽70から第一処理槽60への処理水の循環率によって決まるため、ある程度以上の除去率を望むことはできないが、循環率を適当に設定するだけの簡単な操作で安定した運転を行うことができる。
【0033】
そして、第一処理槽60での嫌気運転と第二処理槽70での好気運転とを、適当な期間、例えば1日毎に切換えて運転することにより、好気運転時の曝気処理で膜分離装置62,72の付着物(ケーキ層)を除去することができる。
【0034】
したがって、前記図7に示す間欠曝気法と、この循環法とは、管理レベルによって選択することが可能であり、ある程度の窒素除去率で安定した運転状態を望むならば循環法を、高度の窒素除去を必要とする場合は、前記間欠曝気法を採用すればよい。
【0035】
【発明の効果】
以上説明したように、本発明の排水処理装置の運転方法によれば、簡単な装置構成で高度の排水処理が可能であり、施工や撤去も迅速に行うことができる。
【図面の簡単な説明】
【図1】本発明の排水処理装置の一例を示す系統図である。
【図2】計画水量時における好気運転の状態を示す説明図である。
【図3】同じく嫌気運転の状態を示す説明図である。
【図4】低水量時における運転状態を示す説明図である。
【図5】膜分離装置の洗浄時の状態を示す説明図である。
【図6】2槽式とした排水処理装置の一例を示す系統図である。
【図7】2槽式排水処理装置における計画水量時の運転状態の一例を示す説明図である。
【図8】同じく低水量時の運転状態を示す説明図である。
【図9】2槽式排水処理装置における他の運転状態を示す説明図である。
【符号の説明】
1…原水流入路、2…スクリーン、3…後処理装置、4…汚泥貯留槽、5…汚泥処理設備、7…し渣処理器、10…処理槽、11…原水流入経路、12…膜分離装置、13…処理水排出経路、14…処理水循環経路、15…曝気経路、16…汚泥導出経路、60,70…第一,第二処理槽
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of operating a waste water treatment equipment, particularly, a method for the operation of waste water treatment equipment by possible membrane separation method relocation optionally relatively small.
[0002]
Problems to be solved by the prior art and the invention
Solid-liquid separation methods used in conventional wastewater treatment facilities are mainly gravity sedimentation methods, and it has been difficult to reduce the size of the facilities. Although a simple structure such as an unearthed pond that is relatively easy to install and remove is also known, relocation requires a considerable period of time and cost.
[0003]
On the other hand, the membrane separation method, which has been rapidly commercialized in recent years in the fields of sewage, human waste, and water purification, can perform solid-liquid separation in a relatively compact facility as compared with the gravity sedimentation method, and can save labor. is there. However, it has been difficult to say that the conventional wastewater treatment facilities that use the membrane separation method still make full use of the advantages of the membrane separation method.
[0004]
The present invention is to fully utilize the advantages of membrane separation method, with miniaturized, and its object is to provide a wastewater treatment equipment operating method capable to cope with the relocation.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method of operating a wastewater treatment apparatus according to the present invention is directed to a wastewater treatment method in which raw water flows into a treatment tank for purifying sewage and the treated water in the treatment tank is discharged through a membrane separation device. In the operation method of the apparatus, when the inflow amount of raw water is the planned water amount of the wastewater treatment apparatus, a predetermined amount of raw water flows into the treatment tank from the raw water inflow path, and the treated water in the treatment tank is stirred by the treated water stirring means. When the treated water in the treatment tank is discharged from the treated water discharge path through the membrane separation device and the aeration operation by the aeration path is performed at predetermined intervals, and when the inflow amount of the raw water is smaller than the planned water amount, It is characterized in that excess sludge is extracted from the sludge discharge route .
[0006]
Further, another operation method of the wastewater treatment apparatus of the present invention is an operation method of a wastewater treatment apparatus in which raw water flows into a treatment tank for purifying sewage and the treated water in the treatment tank is discharged through a membrane separation device. In the method, the treatment tank is divided into a first treatment tank and a second treatment tank, and when the inflow of raw water is the planned water amount of the wastewater treatment apparatus, a predetermined amount of raw water flows into both treatment tanks from the raw water inflow path. while stirring the treated water in each processing tank respectively by the first and second treated water stirring means, discharging the first and second from the treated water discharge path via a membrane separation device in each processing tank treated water, respectively The aeration operation by the first and second aeration paths is performed at predetermined intervals, and when the inflow of raw water is smaller than the planned water amount, the aeration operation is performed in one of the first processing tank and the second processing tank. performed at intervals, the other one of the processing tank It is characterized by pulling excess sludge from the sludge outlet path. Further, in the operation at the time of low water flow where the inflow of raw water is smaller than the planned water flow in both of the above operation methods, one of the membrane separation devices provided in the processing tank is pulled up on the water surface, and the pulled-up membrane is pulled up. The membrane can be washed by injecting the chemical in the chemical adjustment tank into the separation device .
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a system diagram showing an example of a wastewater treatment apparatus according to the present invention. FIGS. 2 to 4 are explanatory diagrams of operation methods, respectively, and FIG. 5 is an explanatory diagram showing an example of a cleaning operation of a membrane separation device.
[0008]
First, as shown in FIG. 1, the wastewater treatment apparatus according to the present embodiment includes a raw water inflow path 11 through which raw water flows into a treatment tank 10, and discharges treated water in the treatment tank 10 via a membrane separation device 12. Treated water discharge path 13, treated water circulation path 14 as treated water stirring means for stirring treated water in treatment tank 10, aeration path 15 for introducing aerated air into treatment tank 10, And a sludge deriving route 16 for deriving sludge.
[0009]
The raw water inflow path 11 is connected to the raw water inflow path 1 via the screen 2, and the treated water discharge path 13 is provided with a post-processing device 3 such as an ultraviolet sterilizer. The sludge discharge route 16 is provided with a sludge storage tank 4. Excess sludge in the sludge storage tank 4 is dewatered by a sludge treatment facility 5 such as a vehicle-mounted mobile dewatering vehicle and transferred to a container 6 a. The residue from the screen 2 is also processed by the residue processor 7 and transferred to the container 6b. In addition, a pump (P) and a blower (B) are provided at necessary portions of each path.
[0010]
Further, the jetting portion 15a in the treatment tank 10 of the aeration path 15 is provided in the treatment water circulation path 14 by an injector method, and the aeration air is dispersed in the treatment water circulated by the treatment water circulation path 14. It is formed so as to squirt into 10. The installation position is set at a position where the membrane of the membrane separation device 12 can be washed with aerated air. The membrane separation device 12 and the ejection unit 15a are provided with a plurality of units in consideration of later-described membrane cleaning and the like. The treated water circulation path 14 is for agitating the treated water by suctioning and discharging the treated water in the tank by the pump 14P. Instead of this, a normal stirring device can be provided.
[0011]
Next, an operation method of the wastewater treatment apparatus having the above configuration will be described. First, FIG. 2 and FIG. 3 show the operation method when the inflow of raw water is the planned amount of water in the wastewater treatment apparatus. The wastewater is treated intermittently by aerating and aerobically aerobic. An example is shown.
[0012]
A predetermined amount of raw water flows into the processing tank 10 from the raw water inflow path 11, and the pump 14P of the processing water circulation path 14 operates to circulate the processing water in the processing tank 10 to stir the processing water in the tank. At the same time, the pump 13P of the treated water discharge path 13 is operated to discharge the treated water in the treatment tank 10 from the membrane separation device 12. Then, the aeration operation (aerobic operation) by the aeration path 15 shown in FIG. 2 and the non-aeration operation (anaerobic operation) shown in FIG. 3 are alternately performed. That is, the aerobic treatment and the anaerobic treatment of the drainage are alternately performed by intermittently operating the blower 15B of the aeration path 15 at predetermined intervals. In this operation method (intermittent aeration method), the nitrogen removal rate can be improved and the advanced water purification treatment can be performed by appropriately setting the time allocation between the aerobic operation and the anaerobic operation.
[0013]
Further, by alternately performing the aerobic operation and the anaerobic operation, it is possible to remove deposits (cake layer) on the membrane separation device 12 by aeration treatment during the aerobic operation, and to perform stable operation for a long period of time. be able to.
[0014]
The suction and discharge of the treatment water from the membrane separation device 12 is desirably performed intermittently, and is preferably stopped at a time ratio of about 1/5 to 1/10 during the operation time. Further, it is preferable that the permeation flow rate of the membrane is usually set in the range of 0.24 to 0.4 m per day.
[0015]
FIG. 4 shows an example of an operation state when the amount of water is smaller than the planned amount of water. The above-described intermittent aeration method is performed in a state where a predetermined amount of the treated water in the treatment tank 10 is withdrawn from the treated water discharge path 13. While the inflow raw water is being processed, the pump 16 </ b> P is operated to extract the sludge concentrated at the bottom of the tank from the sludge discharge path 16. Thereby, since the excess sludge can be extracted in a concentrated state, the sludge can be easily treated.
[0016]
Further, in the membrane separation device 12, in order to guarantee the performance of the membrane, it is necessary to wash the membrane with a chemical solution at an appropriate time. For example, the membrane separation device 12 is operated by a low water flow operation method shown in FIG. Can be easily done when
[0017]
That is, as shown in FIG. 5, in the operation at the time of the low water amount shown in FIG. 4 described above, one unit of the membrane separation device 12 provided with a plurality of units is pulled up on the water surface, and The chemical solution in the chemical solution adjusting tank 31 is injected through the path 32 and the pump 32P, and the film is washed for a predetermined time, for example, about 1 hour. Thereafter, the membrane separation device 12 may be returned to the treated water to start discharging the treated water.
[0018]
As shown in the present embodiment, the wastewater treatment device does not require a sedimentation tank because solid-liquid separation is performed by a membrane separation device, so not only maintenance and management is easy, but also construction and removal can be performed quickly. The transfer can be easily performed. Further, by unitizing the membrane separation device and the aeration device, construction and removal can be performed quickly.
[0019]
Furthermore, the sludge generation amount can be reduced by the high concentration MLSS, and nitrogen can be removed by the intermittent aeration method. In addition, membrane cleaning can be performed on the spot with simple operations, and automation according to the amount of raw water inflow is also possible. In addition, the volume of excess sludge can be reduced by extracting the treated water to a certain extent through a membrane when extracting excess sludge, and by using an ultraviolet sterilizer as a post-treatment device, it is safe and sophisticated. The quality of treated water can be obtained.
[0020]
Further, in the present invention, a plurality of processing tanks as described above may be provided. For example, FIG. 6 shows a case where the inside of the treatment water tank 51 is partitioned by an overflow weir 52 to form a first treatment tank 60 and a second treatment tank 70. A first inflow path 61 and a second inflow path 71, a first drainage path 63 and a second drainage path 73 for discharging the processing water in the processing tanks 60 and 70 through the membrane separation devices 62 and 72, respectively; The first circulation path 64 and the second circulation path 74 for extracting the treated water in the tanks 60 and 70 and circulating the treated water in the respective treatment tanks 60 and 70 to agitate the treated water; A first introduction path 65 for introducing the treated water in one treatment tank into the other treatment tank using the path of the two circulation paths 74, a second introduction path 75 formed by the overflow weir 52, Aerating air is introduced into the processing tanks 60 and 70 As one aeration path 66 and the second aeration path 76, a first sludge passage 67 and the second sludge passage 77 to derive the sludge of the treatment tank 60 and 70 are provided, respectively.
[0021]
The first inflow path 61 and the second inflow path 71 are branched downstream of the screen 2 provided in the raw water inflow path 1, and the first and second drainage paths 63 and 73 are provided for post-processing such as an ultraviolet sterilizer. They meet at the entrance of the device 3. Further, the first sludge route 67 and the second sludge route 77 join at the entrance of the sludge storage tank 4, and the excess sludge in the sludge storage tank 4 is dehydrated by the sludge treatment equipment 5 and is converted into the container 6 a. The sewage from the screen 2 is also processed by the sewage processor 7 and transferred to the container 6b. In addition, a pump (P) and a valve are provided at necessary positions of each path, and a blower (B) is provided in each of the aeration paths 66 and 76. In addition, the spouting portions of both aeration paths 66 and 76 and their installation positions are formed in the same manner as described above, and thus detailed description is omitted.
[0022]
In such a two-tank type apparatus, as shown in FIG. 7, an operation method based on the intermittent aeration method similar to FIGS. 2 and 3 can be performed.
[0023]
That is, a predetermined amount of raw water flows into the first processing tank 60 and the second processing tank 70 from the first inflow path 61 and the second inflow path 71, respectively. The treated water in the treatment tanks 60 and 70 is circulated and stirred in the respective treatment layers, and the treated water in the treatment tanks from the first drain passage 63 and the second drain passage 73 is passed through the membrane separation devices 62 and 27. And discharge. Then, the aeration operation by the first aeration path 66 and the second aeration path 76 is performed intermittently in both the processing tanks 60 and 70.
[0024]
Note that FIG. 7 shows a state in which the processing tank 60 is performing an anaerobic operation and the processing tank 70 is performing an aerobic operation, and the valves 61V and 71V of the first and second inflow paths 61 and 71 and the first and second valves. The valves 64V and 74V of the two circulation paths 64 and 74 are open, respectively, and the pumps 63P and 73P of the first and second drain paths 63 and 73 and the pumps 64P and 74P of the first and second circulation paths 64 and 74 are operating. In the first and second aeration paths 66 and 76, the blower 76B of the second aeration path 76 is operating.
[0025]
As described above, by performing the anaerobic operation and the aerobic operation separately for the two treatment tanks 60 and 70 and performing the treatment by the intermittent aeration method, it is possible to perform the advanced water purification treatment as described above. In addition, you may make it the both processing tanks 60 and 70 perform an anaerobic operation or an aerobic operation simultaneously.
[0026]
FIG. 8 shows an example of an operation state when the amount of water is small in the above operation state. In one of the first treatment tank 60 and the second treatment tank 70, the drainage treatment is performed by the intermittent aeration method, and the other is performed. The processing tank is in a standby state.
[0027]
For example, when the first processing tank 60 is to be in a standby state, in the second processing tank 70, the raw water flows in from the second inflow path 71 and the second circulation path 74 circulates the processing water in the tank. The aeration by the second aeration path 76 is performed intermittently, and the above-mentioned intermittent aeration method of discharging the treated water in the second processing tank 70 from the second drainage path 73 through the membrane separation device 72 is performed.
[0028]
Then, in the first treatment tank 60, the treated water in the first treatment tank 60 is discharged to some extent from the first drainage passage 63 through the membrane separation device 62 to concentrate the sludge, and then the pump 67P of the first sludge passage 67 is concentrated. Is operated to pull out excess sludge in the tank or to perform maintenance work such as cleaning of the membrane separation device 62.
[0029]
FIG. 9 shows another operation method at the time of the planned water volume. An anaerobic operation is performed in one processing tank, for example, the first processing tank 60, and an aerobic operation is performed in the second processing tank 70 that is the other processing tank. In addition, an example is shown in which wastewater treatment is performed by a circulation method in which a part of the treatment water in the second treatment tank 70 is circulated to the first treatment tank 60.
[0030]
First, a predetermined amount of raw water flows from the first inflow path 61 into the first treatment tank 60 performing the anaerobic operation, and a part of the treated water derived from the second treatment tank 70 via the valve 74V is used. The pump 64P circulates and flows through the first introduction path 65, the valve 65V, and the first circulation path 64. At the same time, the treated water in the first treatment tank 60 is discharged from the membrane separation device 62 via the pump 63P and the first drainage channel 63.
[0031]
Further, the treated water in the first treatment tank 60 overflows into the overflow weir 52 (the second introduction path 75) and flows into the second treatment tank 70 that is performing the aerobic operation. As described above, a part of the treated water in the inside is circulated to the first treatment tank 60 via the first introduction path 65 and the first circulation path 64, and the remaining part is passed through the second circulation path 74 by the pump 74P. The water is circulated through the second processing tank 70 to stir the inside of the tank. At the same time, the aeration process is performed by the blower 76B in the second aeration path 76, and the treated water is discharged from the second drain path 73 and the pump 73P via the membrane separation device 72.
[0032]
In such wastewater treatment by the circulation method, since the nitrogen removal rate is determined by the circulation rate of the treated water from the second treatment tank 70 to the first treatment tank 60, it is not possible to expect a removal rate of a certain degree or more. Stable operation can be performed with a simple operation of setting the rate appropriately.
[0033]
The anaerobic operation in the first processing tank 60 and the aerobic operation in the second processing tank 70 are switched for an appropriate period, for example, every day, so that the membrane is separated by the aeration process during the aerobic operation. The deposits (cake layer) on the devices 62 and 72 can be removed.
[0034]
Therefore, the intermittent aeration method shown in FIG. 7 and this circulation method can be selected depending on the management level. If a stable operation state with a certain nitrogen removal rate is desired, the circulation method should be performed at a high nitrogen level. When removal is necessary, the above-mentioned intermittent aeration method may be adopted.
[0035]
【The invention's effect】
As described above, according to the waste water treatment equipment operating method of the present invention, is capable of a high degree of wastewater treatment with a simple apparatus configuration can be carried out construction and removal quickly.
[Brief description of the drawings]
FIG. 1 is a system diagram showing an example of a wastewater treatment device of the present invention.
FIG. 2 is an explanatory diagram showing a state of aerobic operation at a planned water volume.
FIG. 3 is an explanatory diagram showing a state of anaerobic driving.
FIG. 4 is an explanatory diagram showing an operation state when the amount of water is low.
FIG. 5 is an explanatory diagram showing a state of the membrane separation device during cleaning.
FIG. 6 is a system diagram showing an example of a two-tank type wastewater treatment apparatus.
FIG. 7 is an explanatory diagram showing an example of an operation state of the two-tank type wastewater treatment apparatus at a planned water volume.
FIG. 8 is an explanatory diagram showing an operation state when the amount of water is low.
FIG. 9 is an explanatory diagram showing another operation state of the two-tank type wastewater treatment apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Raw water inflow path, 2 ... Screen, 3 ... Post-processing device, 4 ... Sludge storage tank, 5 ... Sludge treatment equipment, 7 ... Slag treatment equipment, 10 ... Treatment tank, 11 ... Raw water inflow path, 12 ... Membrane separation Apparatus, 13: treated water discharge path, 14: treated water circulation path, 15: aeration path, 16: sludge derivation path, 60, 70: first and second treatment tanks

Claims (3)

下排水の浄化処理を行う処理槽に原水を流入させ、処理槽内の処理水を膜分離装置を介して排出する排水処理装置の運転方法において、原水の流入量が排水処理装置の計画水量のときには、処理槽に原水流入経路から所定量の原水を流入させ、処理水撹拌手段により処理槽内の処理水を撹拌しながら、処理水排出経路から処理槽内の処理水を膜分離装置を介して排出するとともに、曝気経路による曝気運転を所定間隔で行い、原水の流入量が計画水量より少ないときに、処理槽内の余剰汚泥を汚泥導出経路から引抜くことを特徴とする排水処理装置の運転方法In a method of operating a wastewater treatment apparatus in which raw water flows into a treatment tank for purifying sewage wastewater and discharges treated water in the treatment tank through a membrane separation device, the amount of raw water flowing in the wastewater treatment apparatus is equal to the planned amount of water in the wastewater treatment apparatus. Sometimes, a predetermined amount of raw water flows into the treatment tank from the raw water inflow path, and the treated water in the treatment tank is stirred from the treated water discharge path through the membrane separation device while the treated water in the treatment tank is stirred by the treated water stirring means. A wastewater treatment device characterized by performing aeration operation by an aeration route at a predetermined interval and extracting excess sludge in a treatment tank from a sludge discharge route when an inflow amount of raw water is smaller than a planned water amount . Driving method . 下排水の浄化処理を行う処理槽に原水を流入させ、処理槽内の処理水を膜分離装置を介して排出する排水処理装置の運転方法において、前記処理槽を第一処理槽と第二処理槽に区画し、原水の流入量が排水処理装置の計画水量のときには、処理槽に原水流入経路から所定量の原水をそれぞれ流入させ、第一及び第二処理水撹拌手段により処理槽内の処理水をそれぞれ撹拌しながら、第一及び第二処理水排出経路から処理槽内の膜分離装置を介して処理水をそれぞれ排出するとともに、第一及び第二曝気経路による曝気運転を所定間隔で行い、原水の流入量が計画水量より少ないときに、第一処理槽及び第二処理槽のいずれか一方で前記曝気運転を所定間隔で行い、いずれか他方の処理槽内の余剰汚泥を汚泥導出経路から引抜くことを特徴とする排水処理装置の運転方法。 In a method for operating a wastewater treatment apparatus in which raw water flows into a treatment tank for purifying sewage wastewater and discharges treated water in the treatment tank through a membrane separation device, the treatment tank is provided with a first treatment tank and a second treatment tank. partitioned into the bath, when the inflow of raw water planning water waste water treatment apparatus, both treatment tank is allowed to flow respectively raw water of a predetermined amount from the water inlet path, each of the processing tank by the first and second treated water stirring means While each of the treated water is being stirred, the treated water is discharged from the first and second treated water discharge paths through the membrane separation device in each treatment tank, and the aeration operation by the first and second aeration paths is performed in a predetermined manner. Performed at intervals, when the inflow of raw water is smaller than the planned water volume, the aeration operation is performed at a predetermined interval in one of the first treatment tank and the second treatment tank, and excess sludge in one of the other treatment tanks is removed. It is particularly important to remove How the operation of the wastewater treatment device according to. 原水の流入量が計画水量より少ない低水量時の運転において、処理槽内に複数ユニット設けられている膜分離装置の中の1ユニットを水面上に引上げ、引上げた膜分離装置内に薬液調整槽内の薬液を注入して膜を洗浄することを特徴とする請求項1又は2記載の排水処理装置の運転方法 In operation at a low water flow where the inflow of raw water is smaller than the planned water flow, one of the membrane separation devices provided in the treatment tank is pulled up on the water surface, and the chemical solution adjustment tank is placed in the pulled up membrane separation device. The method for operating a wastewater treatment apparatus according to claim 1, wherein the membrane is washed by injecting a chemical solution in the inside .
JP31338996A 1996-11-25 1996-11-25 Operating method of wastewater treatment equipment Expired - Fee Related JP3600947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31338996A JP3600947B2 (en) 1996-11-25 1996-11-25 Operating method of wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31338996A JP3600947B2 (en) 1996-11-25 1996-11-25 Operating method of wastewater treatment equipment

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2004145998A Division JP3754977B2 (en) 2004-05-17 2004-05-17 Waste water treatment apparatus and operation method thereof
JP2004145997A Division JP2004268040A (en) 2004-05-17 2004-05-17 Waste water treatment apparatus and operation method therefor

Publications (2)

Publication Number Publication Date
JPH10151480A JPH10151480A (en) 1998-06-09
JP3600947B2 true JP3600947B2 (en) 2004-12-15

Family

ID=18040689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31338996A Expired - Fee Related JP3600947B2 (en) 1996-11-25 1996-11-25 Operating method of wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP3600947B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4046445B2 (en) * 1999-08-26 2008-02-13 株式会社クボタ Wastewater treatment method
JP2001062481A (en) * 1999-08-26 2001-03-13 Kubota Corp Treatment of concentrated sewage
CN1143725C (en) * 1999-11-18 2004-03-31 齐侬环境有限公司 Immersed membrane element and module
US7264727B2 (en) * 2003-01-25 2007-09-04 Holt Karl K Septic system remediation method and apparatus
US7468135B2 (en) 2003-01-25 2008-12-23 Engineered Solutions, Inc. Portable tank wastewater treatment system and method
CA2609005C (en) 2005-05-19 2012-10-23 Karl K. Holt Improved septic system remediation method and apparatus
JP5194151B2 (en) * 2011-07-20 2013-05-08 前澤工業株式会社 Waste water treatment equipment
CN103112950A (en) * 2013-03-08 2013-05-22 厦门大学 Dynamic-membrane anaerobic-aerobic integrated online backwash treatment method for printing and dyeing wastewater
CN103721569B (en) * 2014-01-03 2017-03-08 成都大学 A kind of Ultra-filtration device for rural domestic wastewater

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55127192A (en) * 1979-03-22 1980-10-01 Toshiba Corp Operating of sewage treating apparatus by activated soludge method
JP2727189B2 (en) * 1987-10-31 1998-03-11 株式会社鶴見製作所 Adjustment method of sludge concentration in sewage treatment tank
JPH05185092A (en) * 1992-01-10 1993-07-27 Kubota Corp Waste water disposing device
JPH06335694A (en) * 1993-05-31 1994-12-06 Meidensha Corp Controller of device for biologically treating waste water
JP3493051B2 (en) * 1993-12-28 2004-02-03 ヤンマー株式会社 Batch type wastewater treatment equipment and activated sludge concentration measurement equipment
JPH07241596A (en) * 1994-03-01 1995-09-19 Sumitomo Heavy Ind Ltd Treatment of waste water
JP4269345B2 (en) * 1995-07-27 2009-05-27 栗田工業株式会社 Wastewater treatment equipment

Also Published As

Publication number Publication date
JPH10151480A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
CN104876360B (en) Rainwater purification apparatus based on ceramic membrane
JP7110052B2 (en) Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment
JP3600947B2 (en) Operating method of wastewater treatment equipment
HU227187B1 (en) Method for biological effluent treatment
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
JP6181003B2 (en) Membrane separation activated sludge treatment apparatus and operation method thereof
JPH0461998A (en) Discharged water treatment device
JP4082556B2 (en) Nitrogen removal equipment in membrane separation type oxidation ditch
CN110461777A (en) Method for processing organic wastewater and organic waste-water treating apparatus
PL186772B1 (en) Sewage treating process
JP3714749B2 (en) Operation method of waste water treatment equipment
JPS63166499A (en) Apparatus for biological denitrification/ dephosphorization treatment of sewage
JP2004321908A (en) Sewage treatment apparatus and sewage treatment method
JP2002166139A (en) Membrane separator
JP3754977B2 (en) Waste water treatment apparatus and operation method thereof
KR100566320B1 (en) Submerged membrane coupled advanced wastewater treatment method and its system
JP2004268040A (en) Waste water treatment apparatus and operation method therefor
JP2007275895A (en) Method for removing nitrogen in membrane separation type oxidation ditch and device therefor
JP3785212B2 (en) Wastewater treatment equipment
JP2003205297A (en) Waste water treating system
JP3408699B2 (en) Sewage treatment equipment using immersion type membrane separation equipment
JP7195968B2 (en) Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment
JPH11216490A (en) Organic waste water treating device
JPS6125439B2 (en)
JP2744381B2 (en) Water treatment control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees