JPS63166499A - Apparatus for biological denitrification/ dephosphorization treatment of sewage - Google Patents

Apparatus for biological denitrification/ dephosphorization treatment of sewage

Info

Publication number
JPS63166499A
JPS63166499A JP31237086A JP31237086A JPS63166499A JP S63166499 A JPS63166499 A JP S63166499A JP 31237086 A JP31237086 A JP 31237086A JP 31237086 A JP31237086 A JP 31237086A JP S63166499 A JPS63166499 A JP S63166499A
Authority
JP
Japan
Prior art keywords
tank
anaerobic
reaction
sludge
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31237086A
Other languages
Japanese (ja)
Inventor
Ko Habata
幅田 皎
Toshihide Araki
荒木 敏英
Tetsuya Kiguchi
城口 哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP31237086A priority Critical patent/JPS63166499A/en
Publication of JPS63166499A publication Critical patent/JPS63166499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To effectively remove nitrogen and phosphorus, by providing an aeration stirrer having both stirring and aeration functions in one tank and by mounting reaction tanks communicating with each other to be capable of being changed over to either one of aerobic and anaerobic treatments. CONSTITUTION:Inflow sewage and return sludge are introduced into one anaerobic tank 5 to be stirred under an anaerobic condition. Two reaction tanks 1, 2 are connected to the outflow part of the anaerobic tank 5 through a change- over introducing means 4 such as an inflow change-over valve and a liquid mixture is intermittently supplied to be reaction tank 1 through an inflow passage or to the reaction tank 2 through an inflow passage by changing over the change-over valve 4. The reaction tanks 1, 2 are interconnected through a communication passage 7 so as to be capable of communicating with each other at a proper time. The outflow passages from the reaction tanks 1, 2 go toward a solid-liquid separation means 3 such as a sedimentation tank through a change-over introducing means 6 and treatment process water is treated to be clarified. By this method, nitrogen/phosphorus removing efficiency can be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水、廃水などの汚水中の窒素・リンを生物
学的に同時に除去処理する装置、詳しくは、汚水中の窒
素・リンを高効率で除去する嫌気・好気二種切替式の処
理装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an apparatus for biologically simultaneously removing nitrogen and phosphorus from wastewater such as sewage and wastewater, and more specifically, an apparatus for biologically simultaneously removing nitrogen and phosphorus from wastewater such as sewage and wastewater. The present invention relates to an anaerobic/aerobic dual-type treatment device that removes with high efficiency.

〔従来の技術〕[Conventional technology]

従来、汚水の生物学的窒素・リン除去法には、(11活
性汚泥循環変法の前段に嫌気槽を設ける方法、(2)循
環法そのものをステップ分注する方法、(3)前記の前
段嫌気槽付循環変法において、返送汚泥もしくは余剰汚
泥に石灰を添加して、リン成分を回収する方法などがあ
るが、いずれも窒素とリンともに効率よく、かつ設置費
、運転費ともに低置な処理方法を実現するには困難があ
った。
Conventionally, biological nitrogen and phosphorus removal methods for wastewater include (11) a method of providing an anaerobic tank at the front stage of the modified activated sludge circulation method, (2) a method of step-dispensing the circulation method itself, and (3) a method of dispensing the circulation method itself in the first stage. In the modified circulation method with an anaerobic tank, there is a method of adding lime to returned sludge or surplus sludge to recover phosphorus components, but both methods are efficient in recovering both nitrogen and phosphorus and have low installation and operating costs. There were difficulties in implementing the treatment method.

また特開昭55−73398号公報に示されるように、
嫌気性工程、硝化工程、脱窒工程を複数段直列に連結し
、濃縮活性汚泥を注入原水中および、または嫌気性工程
に返送するようにした脱窒・脱リン法が提案されている
Also, as shown in Japanese Patent Application Laid-open No. 55-73398,
A denitrification/dephosphorization method has been proposed in which an anaerobic process, a nitrification process, and a denitrification process are connected in series in multiple stages, and concentrated activated sludge is returned to the raw water for injection and/or to the anaerobic process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、特開昭55−73398号公報に記載さ
れた方法は、処理槽、撹拌機、曝気機、配管、用地など
を多く必要とし、コスト高となり、性能面では融通がき
かないなどの問題点を有している。
However, the method described in JP-A-55-73398 requires a large number of treatment tanks, agitators, aerators, piping, land, etc., resulting in high costs and inflexibility in terms of performance. have.

本発明は上記の諸点に鑑みなされたもので、二つの反応
槽を用いそれぞれの槽内を嫌気と好気に交互に切り替え
ることにより、生物学的硝化・脱窒を行う装置で、その
前段に嫌気槽を付加した方式により、窒素およびリンの
除去性能に優れた効果を発揮するようにした装置の提供
を目的とするものである。
The present invention was developed in view of the above points, and is a device that performs biological nitrification and denitrification by using two reaction tanks and switching the inside of each tank alternately between anaerobic and aerobic conditions. The object of the present invention is to provide a device that exhibits excellent nitrogen and phosphorus removal performance by adding an anaerobic tank.

C問題点を解決するための手段および作用〕本発明の生
物学的脱窒・脱リン処理装置は、図面を参照して説明す
れば、汚水と返送汚泥を受け入れて嫌気処理するかきま
ぜ式の撹拌機を備えた嫌気槽5と、該嫌気槽からの流出
水を反応槽1.2のいずれかに導入する切替導入手段4
と、撹拌機と曝気機とを別個に、または撹拌と曝気の両
方の機能を兼ねる陽気撹拌機を一つの槽内に有し、かつ
相互に連通して好気または嫌気のいずれかの処理に切り
替えることのできる二基の反応槽1.2と、該反応槽1
.2のいずれかから流出する混合液を固液分離手段に導
入する切替導入手段6と、反応槽1.2から流出する混
合液を固液分離する固液分離手段3と、該固液分離手段
で分離された汚泥の一部を前記嫌気槽5に返送する汚泥
返送系路8とからなることを特徴としている。
Means and operation for solving problem C] The biological denitrification/dephosphorization treatment apparatus of the present invention will be described with reference to the drawings. an anaerobic tank 5 equipped with an anaerobic tank, and a switching introduction means 4 for introducing the outflow water from the anaerobic tank into either of the reaction tanks 1.2.
and a separate agitator and aerator, or an aerobic agitator that functions as both agitation and aeration in one tank, and communicated with each other for either aerobic or anaerobic treatment. Two reaction tanks 1.2 that can be switched, and the reaction tank 1
.. 2, a switching introduction means 6 for introducing the mixed liquid flowing out from either of the reaction vessels 1.2 into the solid-liquid separation means, a solid-liquid separation means 3 for solid-liquid separation of the mixed liquid flowing out from the reaction tank 1.2, and the solid-liquid separation means. The system is characterized by comprising a sludge return line 8 for returning a part of the sludge separated in the anaerobic tank 5 to the anaerobic tank 5.

流入汚水および返送汚泥が嫌気槽(脱リン槽)5に導入
され、ここで嫌気撹拌される。ついで混合液は切替導入
手段4により、反応槽1または反応槽2に供給される。
Inflow sewage and return sludge are introduced into an anaerobic tank (dephosphorization tank) 5, where they are anaerobically stirred. Next, the mixed liquid is supplied to the reaction tank 1 or the reaction tank 2 by the switching introduction means 4.

何れかの反応槽からの処理過程水は、切替導入手段6を
介し固液分離手段3に入り、ここで清澄化した処理水は
放流され、沈降汚泥の大部分は、汚泥返送系路8を経て
嫌気槽5に返送される。
The treatment process water from any of the reaction tanks enters the solid-liquid separation means 3 via the switching introduction means 6, and the treated water clarified here is discharged, and most of the settled sludge flows through the sludge return system 8. After that, it is returned to the anaerobic tank 5.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明の装置の流通線図を示す。−基の嫌気槽
5に流入汚水および返送汚泥が導かれ、ここで嫌気撹拌
される。二基の反応槽1.2は流入切替弁などの切替導
入手段4(以下、切替弁4という)を介して嫌気槽5の
流出部と接続され、切替弁4の切替により、混合液は流
入路を経て反応槽1に、あるいは流入路を経て反応槽2
に継続的に供給される0反応槽1.2は適時連通可能な
ように、連通路7を介し相互接続される0反応槽1およ
び2からの各流出路は、流出切替弁などの切替導入手段
6 (以下、切替弁6という)を介し、沈殿槽なとの固
液分離手段3(以下、沈殿槽3という)に向かい、切替
弁6の切替により、何れかの反応槽からの処理過程水が
沈殿槽3に入り、ここで清澄化した処理水は沈殿槽3か
ら放流される。
FIG. 1 shows a flow diagram of the device according to the invention. - The inflowing sewage and return sludge are led to the anaerobic tank 5, where they are anaerobically stirred. The two reaction tanks 1.2 are connected to the outflow section of the anaerobic tank 5 via switching introduction means 4 (hereinafter referred to as switching valve 4) such as an inflow switching valve, and by switching the switching valve 4, the mixed liquid flows into the inflow. into reaction tank 1 via a channel, or into reaction tank 2 via an inlet channel.
Each outlet passage from the zero reaction tanks 1 and 2, which are interconnected via the communication path 7, is equipped with a switching system such as an outflow switching valve so that the zero reaction tanks 1 and 2, which are continuously supplied to the zero reaction tanks 1 and 2, can communicate with each other in a timely manner. The means 6 (hereinafter referred to as the switching valve 6) is directed to the solid-liquid separation means 3 (hereinafter referred to as the settling tank 3) such as a settling tank, and by switching the switching valve 6, the treatment process from either reaction tank is transferred. Water enters the settling tank 3, and the treated water clarified here is discharged from the settling tank 3.

沈殿槽3の沈降汚泥の大部分は汚泥返送系路8を経て、
脱リン槽である嫌気槽5に返送され、一部は余剰汚泥と
して系外へ排出される。
Most of the settled sludge in the settling tank 3 passes through the sludge return line 8,
The sludge is returned to the anaerobic tank 5, which is a dephosphorization tank, and a portion is discharged outside the system as surplus sludge.

第2図に基づいて本発明をさらに詳細に説明する。第2
図は本発明の装置の一実施態様を示し、1〜7は第1図
の同じ機器を示している。9は嫌気槽5内に設けられた
撹拌機である0反応槽1.2はそれぞれ内部に撹拌手段
10.11、および空気吹込手段12.13もしくは酸
素吹込手段をそれぞれ独立または一体化した機構として
備えている0反応槽1.2の原水人口14.15は原水
供給管16と三方切替弁4を介して切替自在に接続され
ている。また反応槽1.2の反応処理水出口17.18
は沈殿槽3に切替弁6 a s 6 bを介して切替自
在に接続されている。さらに両反応槽1.2は連通管7
により相互に連通接続されている。20は曝気用プロワ
−121は原水供給ポンプ、22は返送汚泥ポンプ、2
3は余剰汚泥ポンプである。
The present invention will be explained in more detail based on FIG. Second
The figure shows one embodiment of the apparatus of the invention, 1-7 indicating the same equipment of FIG. 9 is a stirrer provided in the anaerobic tank 5. 0 Reaction tanks 1.2 each have internal stirring means 10.11 and air blowing means 12.13 or oxygen blowing means as independent or integrated mechanisms. The raw water capacity 14.15 of the provided 0 reaction tank 1.2 is switchably connected to the raw water supply pipe 16 via the three-way switching valve 4. In addition, the reaction treated water outlet 17.18 of the reaction tank 1.2
are switchably connected to the settling tank 3 via switching valves 6a, 6b. Furthermore, both reaction vessels 1.2 are connected to a communication pipe 7.
are interconnected by. 20 is an aeration blower, 121 is a raw water supply pump, 22 is a return sludge pump, 2
3 is a surplus sludge pump.

嫌気槽5では、撹拌機や水中ポンプ等により混合液は嫌
気撹拌され、反応槽1または2で嫌気性雰囲気として与
える間は、浮遊汚泥の撹拌ができるように嫌気撹拌され
、反応槽1または2を好気性雰囲気とする間は、曝気装
置等により、空気が供給される。嫌気槽5および反応槽
1.2に使用する嫌気撹拌装置はカイ型、門型、タービ
ン型、プロペラ型など各種の撹拌機のほか、水中ポンプ
、水中撹拌機、エジェクター、インジェクターなどの槽
内置型のもの、燃焼廃ガスやN、など不活性ガスを槽内
で循環する装置などがある。また反応槽を好気性雰囲気
にする装置としては、ブロワ−がら空気の供給を受けて
散気管、散気盤、パドル型ローター、水中曝気撹拌機、
水中インジェクター(エジェクター)、クラスターなど
があり、反応槽を嫌気性雰囲気にする装置としては、前
述の撹拌機の他、水中曝気撹拌機で空気のみ供給を断っ
て運転したり、少量のエアレーシッンを実施することも
できる。
In the anaerobic tank 5, the mixed liquid is agitated anaerobically using a stirrer, a submersible pump, etc., and while it is being provided as an anaerobic atmosphere in the reaction tank 1 or 2, it is anaerobically stirred so that suspended sludge can be stirred. While creating an aerobic atmosphere, air is supplied by an aeration device or the like. The anaerobic stirring devices used in the anaerobic tank 5 and reaction tank 1.2 include various types of stirrers such as Kai type, gate type, turbine type, and propeller type, as well as in-tank types such as submersible pumps, submersible stirrers, ejectors, and injectors. There are devices that circulate inert gas such as combustion waste gas and N in the tank. Devices that make the reaction tank an aerobic atmosphere include air diffusers, air diffusers, paddle rotors, submersible aeration stirrers,
There are submersible injectors (ejectors), clusters, etc., and in addition to the above-mentioned agitators, there are submersible aeration agitators that operate with only air supplied or perform small amounts of air lacing. You can also.

嫌気槽の形状は、設備の経済性の他、流入汚水と返送汚
泥の混合、嫌気撹拌作用において外部からの空気の混入
を極力避けることが望ましく、槽の外気接触水面積をで
きるだけ少なくすることが望ましい、このためには液水
面付近の形状をガラス瓶の口のように、液面絞り型とす
ることが望ましい。
Regarding the shape of the anaerobic tank, in addition to the economic efficiency of the equipment, it is desirable to avoid as much air as possible from the outside during the mixing of inflow sewage and returned sludge and the anaerobic stirring action, and it is desirable to minimize the area of water in contact with outside air in the tank. For this purpose, it is desirable that the shape near the liquid surface be shaped like the mouth of a glass bottle, with a liquid level constriction type.

本発明の装置で運転を実施するための一例を述べると、
第2図に示す装置において、原水と返送汚泥とをまず嫌
気槽5に導き、嫌気槽5からの流出液を三方切替弁4を
介して、まず一方の反応槽1に混合液を供給して、この
反応槽1を嫌気性状態にするとともに、他方の反応槽2
を好気性状態として、反応槽2から反応処理水を沈殿槽
3に導入し、ついで一方の反応槽1を好気性状態に他方
の反応槽2を好気性状態として、反応槽2から反応処理
水を沈殿槽3に導入し、または混合液流入を反応槽2に
導き、反応槽2を嫌気性状態とし、反応槽1を好気性状
態として、反応槽2から反応処理水を沈殿槽3に導入し
、ついで混合液の流入を反応槽1に接続し、反応槽1を
嫌気性状態、反応槽2を好気性状態として、反応槽2か
ら反応処理水を沈殿槽3に導入し、ついで、混合液の流
入路を反応槽2に接続し、反応槽2を嫌気性状態、反応
槽1を好気性状態として反応槽1から反応処理水を沈殿
槽3に導入した後、反応槽1を好気性状態、反応槽2を
好気性状態として反応槽1から反応処理液を沈殿槽3に
導入し、また番1原水流入部を切り替えて、反応槽1に
混合液を供給して、反応槽1を嫌気性状態、反応槽2を
好気性状態として、反応槽1から反応処理水を沈殿槽3
に導入し、ついで混合液を反応槽2に流入させるととも
に、反応槽2を嫌気性状態、反応槽1を好気性状態とし
て、反応槽2から反応処理水を沈殿槽3に導入する。
An example for carrying out operation with the device of the present invention is as follows:
In the apparatus shown in FIG. 2, raw water and returned sludge are first led to an anaerobic tank 5, and the effluent from the anaerobic tank 5 is first supplied to one reaction tank 1 as a mixed liquid through a three-way switching valve 4. , this reaction tank 1 is brought into an anaerobic state, and the other reaction tank 2 is
is set in an aerobic state, and the reaction treated water is introduced from the reaction tank 2 into the settling tank 3. Next, one reaction tank 1 is set in an aerobic state and the other reaction tank 2 is set in an aerobic state, and the reaction treated water is introduced from the reaction tank 2. is introduced into the settling tank 3, or the mixed liquid inflow is led to the reaction tank 2, the reaction tank 2 is brought into an anaerobic state, the reaction tank 1 is brought into an aerobic state, and the reaction treated water is introduced from the reaction tank 2 into the settling tank 3. Then, the inflow of the mixed liquid is connected to the reaction tank 1, reaction tank 1 is set to an anaerobic state, and reaction tank 2 is set to an aerobic state, and the reaction treated water is introduced from the reaction tank 2 to the settling tank 3, and then mixed. Connect the liquid inflow path to reaction tank 2, set reaction tank 2 in an anaerobic state and reaction tank 1 in an aerobic state, and introduce the reaction treated water from reaction tank 1 into settling tank 3, and then set reaction tank 1 in an aerobic state. The reaction tank 2 is in an aerobic state, the reaction treatment liquid is introduced from the reaction tank 1 into the settling tank 3, and the No. 1 raw water inlet is switched to supply the mixed liquid to the reaction tank 1. The reaction treated water is transferred from the reaction tank 1 to the sedimentation tank 3 while the reaction tank 2 is in the anaerobic state and the reaction tank 2 is in the aerobic state.
Then, the mixed liquid is allowed to flow into the reaction tank 2, and the reaction treated water is introduced from the reaction tank 2 into the precipitation tank 3, with the reaction tank 2 in an anaerobic state and the reaction tank 1 in an aerobic state.

前述の硝化・脱窒を行うための両反応槽の流通系統は、
たとえば第3図のA1からA、あるいは第4図のB1か
らB、に略示するシーケンスで運転される。
The flow system for both reaction tanks for nitrification and denitrification mentioned above is as follows:
For example, they are operated in the sequence shown schematically from A1 to A in FIG. 3 or from B1 to B in FIG. 4.

図中斜線を施した反応槽は嫌気性状態、無斜線の反応槽
は好気性状態であることを示す、Aシーケンスのステッ
プA1〜A−について説明する。ステップA、では原汚
水は反応槽1に供給され、反応槽1から反応槽2に接続
され、反応槽2から沈殿槽3に接続される4反応槽1で
は嫌気性雰囲気が与えられ、硝酸性窒素の脱窒反応が行
われ、反応槽2では好気性雰囲気によるBOD成分の酸
化およびアンモニア性窒素の硝化が行われる。つづいて
ステップ^よでは、反応槽1.2とも好気性状態として
、主としてBoil成分の酸化およびアンモニア性窒素
の硝化が行われる。ついでステップA3ではA1と同様
に反応槽1で嫌気性雰囲気による脱窒反応および反応槽
2で好気性雰囲気によるアンモニア成分の硝化などが行
われる。ステップA、では、原水混合液は反応槽1に代
って反応槽2に接続され、反応槽1から沈殿槽3に接続
されるようにする0反応槽2内は嫌気性雰囲気が与えら
れ、反応槽1内は好気性雰囲気が与えられる。この状態
はステップA1での各反応槽相互の立場が入れ替わった
状態と同じである。以下同様に、ステップ^1、A、と
進んでいり、A、のあと再度、流路をA、の状態に切り
替え、以下ステップA、からA−までの順次一連の操作
を繰り返す。
Steps A1 to A- of the A sequence will be described, in which hatched reaction vessels in the figure indicate an anaerobic state, and non-hatched reaction vessels indicate an aerobic state. In step A, raw sewage is supplied to reaction tank 1, which is connected to reaction tank 2, and from reaction tank 2 to settling tank 3.An anaerobic atmosphere is provided in reaction tank 1, and nitric acid A denitrification reaction of nitrogen is performed, and in the reaction tank 2, oxidation of BOD components and nitrification of ammonia nitrogen are performed in an aerobic atmosphere. Subsequently, in step ^yo, both reaction vessels 1 and 2 are brought into an aerobic state, and mainly oxidation of Boil components and nitrification of ammonia nitrogen are performed. Next, in step A3, similarly to A1, denitrification reaction is performed in the reaction tank 1 in an anaerobic atmosphere, and nitrification of ammonia components is performed in the reaction tank 2 in an aerobic atmosphere. In step A, the raw water mixture is connected to reaction tank 2 instead of reaction tank 1, and an anaerobic atmosphere is provided in reaction tank 2 so that reaction tank 1 is connected to precipitation tank 3. An aerobic atmosphere is provided inside the reaction tank 1. This state is the same as the state in which the positions of the reaction vessels were swapped with each other in step A1. Thereafter, the procedure proceeds to step ^1 and A in the same manner, and after A, the flow path is switched to the state of A again, and the series of operations from steps A to A- are repeated sequentially.

本発明の装置の操作条件をのべると、嫌気槽での滞留時
間は1〜5時間が好適である。1時間未満のときは、返
送汚泥のリン放出量が十分でなくリン除去性能を損ない
、5時間を越えるときには、嫌気槽の容積が過大となり
、設備費などが増大して不適当である0反応槽の二個の
滞留時間は計6〜20時間が好ましい、6時間未満のと
きは、窒素の硝化脱窒が十分に達成されず、20時間を
越えれば、設備費などが増大して不適当である。
Regarding the operating conditions of the apparatus of the present invention, the residence time in the anaerobic tank is preferably 1 to 5 hours. If the time is less than 1 hour, the amount of phosphorus released from the returned sludge will be insufficient, impairing the phosphorus removal performance, and if it exceeds 5 hours, the volume of the anaerobic tank will become too large, increasing equipment costs, resulting in an inappropriate 0 reaction. The total residence time of the two tanks is preferably 6 to 20 hours. If the residence time is less than 6 hours, the nitrification and denitrification of nitrogen will not be sufficiently achieved, and if it exceeds 20 hours, the equipment cost will increase, making it unsuitable. It is.

本プロセスの繰返し操作単位時間(シーケンスの一周期
)は2〜6時間が好ましい、2時間未満のときは、切替
操作によっても、十分に各設定雰囲気に追従し得ないた
め、適切な処理が実現し得す、また6時間を越えれば、
硝化・脱窒の繰返し頻度が少なくなるので不適当である
。ここで反応槽の切替単位時間は0.2〜2時間が好適
である。
The repeated operation unit time (one cycle of the sequence) of this process is preferably 2 to 6 hours. If it is less than 2 hours, it will not be possible to sufficiently follow each setting atmosphere even with switching operations, so appropriate processing will be achieved. Yes, if it takes more than 6 hours,
This is unsuitable because the frequency of nitrification and denitrification is reduced. Here, the unit time for switching the reaction tank is preferably 0.2 to 2 hours.

0.2時間未満のときは、好気・嫌気性雰囲気の適正な
維持が行えず、2時間を越えると、硝化・脱窒の適正な
処理が行われず不適当である。好適な脱窒・脱リン能力
を得るためには、嫌気槽、反応槽の混合液のFILss
濃度を2,000〜5.000fflr/ Itとする
のが好適である。またBOD・SS負荷は0.05〜0
、2 k+rBOD/瞳SS・日とするのが好適である
。 0.05kgBOD/kgss・日未溝では、種類
の容量が過大となり、これに対して0.2 kgBOD
/krss・日を越えると、硝化反応が生成できず不適
当である。
If it is less than 0.2 hours, an aerobic/anaerobic atmosphere cannot be maintained properly, and if it exceeds 2 hours, proper nitrification and denitrification cannot be carried out, which is inappropriate. In order to obtain suitable denitrification/dephosphorization ability, FILss of the mixed liquid in the anaerobic tank and reaction tank must be
It is preferable that the concentration is 2,000 to 5,000 fflr/It. Also, the BOD/SS load is 0.05 to 0.
, 2k+rBOD/pupil SS·day. At 0.05kgBOD/kgss/Himizo, the capacity of the type is excessive, whereas 0.2kgBOD
If the temperature exceeds /krss·day, the nitrification reaction cannot occur and it is inappropriate.

嫌気槽5での汚泥の撹拌能力は、大気中の空気の混入に
よる溶存酸素の導入を防ぐため、撹拌方法としては汚泥
の沈降が阻止され、かつ槽内の均一な混合が実現できる
下限の撹拌方法が好適である。撹拌速度は汚泥が10 
am/5ecy 100as/secの範囲が望ましい
* 10 cm7sec未満であれば、汚泥の沈降が生
じ適切な混合が達成されず、汚泥のリン放出に支障を来
たし、100as/secを越えれば、嫌気槽内が乱流
となり、槽内の液に空気が混入し、十分な嫌気槽となら
ず、かつ汚泥の破壊による微細化が進行し不適当である
。また嫌気槽内のORP値(酸化還元電位)は、−40
0mV 〜+10011Vに維持することが望ましい、
  400s+V未満では、嫌気槽の滞留時間が著しく
過大となり、実現化が困難となり、+ 100mVを越
えると、汚泥の十分な放出が行われず不適当である。と
ころで嫌気槽5では混合液の水面が大気と触れることに
より、嫌気性雰囲気が損なわれるので、水面の面積をで
きるだけ少なくするため細口型の水槽としたり、水面を
hのような不活性ガスで置換することにより十分な嫌気
性雰囲気を確立することができる。
The sludge agitation capacity in the anaerobic tank 5 is set at the lowest level of agitation that prevents the sludge from settling and achieves uniform mixing in the tank, in order to prevent the introduction of dissolved oxygen due to the mixing of air in the atmosphere. The method is preferred. The stirring speed is 10 for sludge.
The range of am/5ecy 100as/sec is desirable.* If it is less than 10cm7sec, sludge will settle and proper mixing will not be achieved, which will hinder the release of phosphorus from the sludge, and if it exceeds 100as/sec, the anaerobic tank will The sludge becomes turbulent, air gets mixed into the liquid in the tank, the tank is not sufficiently anaerobic, and the sludge breaks down and becomes finer, making it unsuitable. Also, the ORP value (oxidation-reduction potential) in the anaerobic tank is -40
It is desirable to maintain the voltage between 0mV and +10011V.
If it is less than 400 s+V, the residence time in the anaerobic tank will be extremely excessive, making it difficult to realize it, and if it exceeds +100 mV, sufficient sludge will not be discharged, which is inappropriate. By the way, in the anaerobic tank 5, the anaerobic atmosphere is damaged when the water surface of the mixed liquid comes into contact with the atmosphere, so in order to minimize the area of the water surface, a narrow-mouthed water tank is used, or the water surface is replaced with an inert gas such as h. By doing so, a sufficient anaerobic atmosphere can be established.

本発明の装置を用いる処理方法が対象とする廃水には、
下水、し尿、集落排水、各種産業廃水、ゴミ埋立浸出水
、浚渫余吐水など窒素・リンを含む種々の廃水に適用で
きる。
The wastewater targeted by the treatment method using the device of the present invention includes:
It can be applied to a variety of wastewater containing nitrogen and phosphorus, such as sewage, human waste, community drainage, various industrial wastewater, garbage landfill leachate, and dredging overflow.

本発明によれば、下廃水の窒素およびリン除去性能とし
て、窒素除去率80%以上、リン除去率90%以上を容
易に達成することができる。これと同時にBODは95
%以上除去できる。また5VI(汚泥沈降指標)もML
S54000w/ 1程度で100〜200と高濃度混
合液でありながら、低い値を維持することができる。
According to the present invention, nitrogen and phosphorus removal performance of sewage wastewater can easily achieve a nitrogen removal rate of 80% or more and a phosphorus removal rate of 90% or more. At the same time, BOD is 95
% or more can be removed. In addition, 5VI (sludge settling index) is also ML.
S54000w/1 can maintain a low value of 100 to 200 even though it is a highly concentrated mixed liquid.

〔実施例〕〔Example〕

以下、本発明の実施例および比較例について説明する。 Examples and comparative examples of the present invention will be described below.

実施例1、比較例1 第1図に示すフローに従うて、下記の条件で下水の脱窒
・脱リン処理を実施した。運転操作方式は第3図または
第4図に示すものであった。結果を第1表に示す。
Example 1, Comparative Example 1 According to the flow shown in FIG. 1, denitrification and dephosphorization treatment of sewage was carried out under the following conditions. The operating system was as shown in Figure 3 or Figure 4. The results are shown in Table 1.

流入汚水処理流量:247/日 反応槽滞留時間 :11時間(2槽分)沈殿槽滞留時間
 ;0〜3時間 返送汚泥比   ;1 溶存酸素濃度  :0〜5■/i 水温      :20℃ 第   1   表 なおシーケンスF−62,61はそれぞれ第4図および
第3図に示す操作方式を表わす。
Inflow sewage treatment flow rate: 247/day Reaction tank retention time: 11 hours (2 tanks) Sedimentation tank retention time: 0 to 3 hours Return sludge ratio: 1 Dissolved oxygen concentration: 0 to 5 ■/i Water temperature: 20℃ 1st Note that sequences F-62 and F-61 represent the operating methods shown in FIGS. 4 and 3, respectively.

第1表かられかるように、本実施例により、リン除去性
能として除去率86%以上、窒素除去性能として除去率
80%以上を得ることができた。
As can be seen from Table 1, according to this example, a removal rate of 86% or more was achieved as a phosphorus removal performance, and a removal rate of 80% or more was achieved as a nitrogen removal performance.

実施例2、比較例2 実施例1と同じ条件で、運転操作方式F−61で嫌気槽
の容量を同一にして、水面付近の形状を第5図〜第7図
に示すように変えた。第5図の嫌気槽5aは広口型また
は通常型、第6図の嫌気槽5bは細口型、第7図の嫌気
槽5Cは細口型で、細目部24にN、ガスを流通させて
、水面での空気接触を断つようにした。25はN2ガス
ボンベである。結果は第2表に示す如くであった。
Example 2, Comparative Example 2 Under the same conditions as Example 1, the capacity of the anaerobic tank was made the same using the operation method F-61, and the shape near the water surface was changed as shown in FIGS. 5 to 7. The anaerobic tank 5a in FIG. 5 is a wide-mouthed or normal type, the anaerobic tank 5b in FIG. 6 is a narrow-mouthed type, and the anaerobic tank 5C in FIG. 7 is a narrow-mouthed type. I tried to cut off air contact with the area. 25 is an N2 gas cylinder. The results were as shown in Table 2.

(以下余白) 第   2   表 第2表から明らかなように、第6図および第7図の嫌気
槽の採用により、良好なリン除去性能を得ることができ
た。
(The following is a blank space) Table 2 As is clear from Table 2, good phosphorus removal performance could be obtained by employing the anaerobic tanks shown in FIGS. 6 and 7.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されているので、汚水中の窒
素およびリンを同時に効率よく除去することができると
いう効果を有し、また従来の循環法のように、嫌気−硝
化一説窒一沈殿のように直列に配置されないので、コン
パクトで配管、循環ポンプその他の設備が簡単になると
いう利点を有している。
Since the present invention is configured as described above, it has the effect of being able to efficiently remove nitrogen and phosphorus from wastewater at the same time. Because they are not arranged in series, they are compact and have the advantage of simplifying piping, circulation pumps, and other equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の汚水の生物学的脱窒・脱リン処理装置
の一例を示すフローシート、第2図は第1図に示す装置
をさらに詳細に描いたフローシート、第3図および第4
図は実施例におけるシーケンスを示す説明図で、斜線部
は嫌気性状態の反応槽を示している。第5図は比較例2
における嫌気槽の説明図、第6図および第7図は実施例
2における嫌気槽の説明図である。 1.2・・・反応槽、3・・・固液分離手段、4・・・
切替導入手段、5.5a、5b、5c・・・嫌気槽、6
・・・切替導入手段、6a、6b・・・切替弁、7・・
・連通路、8・・・汚泥返送系路、9・・・撹拌機、1
0.11・・・撹拌手段、12.13・・・空気吹込手
段、14.15・・・原水入口、16・・・原水供給管
、17.18・・・反応処理水出口、20・・・曝気用
ブロワ−121・・・原水供給ポンプ、22・・・返送
汚泥ポンプ、23・・・余剰汚泥ポンプ、24・・・細
口部、25・・・N2ガスボンベ 出 願 人  川崎重工業株式会社 第う図 ハ+         Az        A)1 
(用今fh’l)       0.り       
0.5第π図
Figure 1 is a flow sheet showing an example of the biological denitrification/dephosphorization treatment equipment for wastewater of the present invention, Figure 2 is a flow sheet depicting the equipment shown in Figure 1 in more detail, Figures 3 and 3 are 4
The figure is an explanatory diagram showing a sequence in an example, and the shaded area shows a reaction tank in an anaerobic state. Figure 5 shows comparative example 2.
FIG. 6 and FIG. 7 are explanatory diagrams of the anaerobic tank in Example 2. 1.2... Reaction tank, 3... Solid-liquid separation means, 4...
Switching introduction means, 5.5a, 5b, 5c...anaerobic tank, 6
...Switching introduction means, 6a, 6b...Switching valve, 7...
・Communication path, 8...Sludge return system path, 9...Agitator, 1
0.11... Stirring means, 12.13... Air blowing means, 14.15... Raw water inlet, 16... Raw water supply pipe, 17.18... Reaction treated water outlet, 20...・Aeration blower 121...Raw water supply pump, 22...Return sludge pump, 23...Excess sludge pump, 24...Narrow mouth, 25...N2 gas cylinder Applicant: Kawasaki Heavy Industries, Ltd. No. Figure C + Az A)1
(Use now fh'l) 0. the law of nature
0.5 Pi diagram

Claims (1)

【特許請求の範囲】[Claims] 1 汚水と返送汚泥を受け入れて嫌気処理するかきまぜ
式の撹拌機を備えた嫌気槽(5)と、該嫌気槽からの流
出水を反応槽(1)、(2)のいずれかに導入する切替
導入手段(4)と、撹拌機と曝気機とを別個に、または
撹拌と曝気の両方の機能を兼ねる曝気撹拌機を一つの槽
内に有し、かつ相互に連通して好気または嫌気のいずれ
かの処理に切り替えることのできる二基の反応槽(1)
、(2)と、該反応槽(1)、(2)のいずれかから流
出する混合液を固液分離手段に導入する切替導入手段(
6)と、反応槽(1)、(2)から流出する混合液を固
液分離する固液分離手段(3)と、該固液分離手段で分
離された汚泥の一部を前記嫌気槽(5)に返送する汚泥
返送系路(8)とからなることを特徴とする汚水の生物
学的脱窒・脱リン処理装置。
1 An anaerobic tank (5) equipped with a stirrer that receives sewage and returned sludge and processes it anaerobically, and a switch to introduce the effluent from the anaerobic tank into either the reaction tank (1) or (2). The introduction means (4), a stirrer and an aerator may be installed separately, or an aeration stirrer that functions as both stirring and aeration may be installed in one tank, and communicated with each other to provide an aerobic or anaerobic system. Two reaction tanks (1) that can be switched to either treatment
, (2), and a switching introduction means (
6), solid-liquid separation means (3) for solid-liquid separation of the mixed liquid flowing out from the reaction tanks (1) and (2), and a part of the sludge separated by the solid-liquid separation means to be transferred to the anaerobic tank ( 5) A biological denitrification/dephosphorization treatment device for sewage, comprising a sludge return line (8) for returning the sludge to the sludge.
JP31237086A 1986-12-29 1986-12-29 Apparatus for biological denitrification/ dephosphorization treatment of sewage Pending JPS63166499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31237086A JPS63166499A (en) 1986-12-29 1986-12-29 Apparatus for biological denitrification/ dephosphorization treatment of sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31237086A JPS63166499A (en) 1986-12-29 1986-12-29 Apparatus for biological denitrification/ dephosphorization treatment of sewage

Publications (1)

Publication Number Publication Date
JPS63166499A true JPS63166499A (en) 1988-07-09

Family

ID=18028439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31237086A Pending JPS63166499A (en) 1986-12-29 1986-12-29 Apparatus for biological denitrification/ dephosphorization treatment of sewage

Country Status (1)

Country Link
JP (1) JPS63166499A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531496A (en) * 1991-07-30 1993-02-09 Kawasaki Heavy Ind Ltd Treatment of sludge and sewage of bottom layer and equipment therefor
KR100239887B1 (en) * 1995-10-31 2000-01-15 이종학 Method for removing nutrient salt(N,P)
KR100243565B1 (en) * 1997-06-03 2000-02-01 이상일 Apparatus for purifying wastewater
KR100275563B1 (en) * 1999-04-29 2000-12-15 백갑종 Wastewater treatment methods using anaerobic condition and two stage altering-intermittent aerating condition
KR100398061B1 (en) * 2000-11-08 2003-09-19 한국과학기술연구원 Alternatedly circulated process with alternated aeration to simultaneously remove organics, solids, nitrogen and phosphorus
KR100415437B1 (en) * 2001-10-29 2004-01-24 대림산업 주식회사 Advanced sludge reaeration process improving denitrification rate for nutrient removal
KR100448305B1 (en) * 2001-05-29 2004-09-10 주식회사 한화건설 The removal method of nutrition salts in waste water
KR100581751B1 (en) * 2004-04-29 2006-05-22 한상배 Advanced Wastewater Treatment Method with Solids Separation between the Reactors, Dynamic Flow and Intermittent Aeration
JP2009522101A (en) * 2006-01-05 2009-06-11 アイ.クルーガー インコーポレイテッド Method and system for nitrifying and denitrifying sewage
KR101046534B1 (en) * 2008-10-22 2011-07-06 주식회사 한화건설 Automatic Control Method of Inflow Flow Control Membrane Activated Sludge Process
JP2018030070A (en) * 2016-08-23 2018-03-01 水ing株式会社 Water treatment apparatus and water treatment method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0531496A (en) * 1991-07-30 1993-02-09 Kawasaki Heavy Ind Ltd Treatment of sludge and sewage of bottom layer and equipment therefor
KR100239887B1 (en) * 1995-10-31 2000-01-15 이종학 Method for removing nutrient salt(N,P)
KR100243565B1 (en) * 1997-06-03 2000-02-01 이상일 Apparatus for purifying wastewater
KR100275563B1 (en) * 1999-04-29 2000-12-15 백갑종 Wastewater treatment methods using anaerobic condition and two stage altering-intermittent aerating condition
KR100398061B1 (en) * 2000-11-08 2003-09-19 한국과학기술연구원 Alternatedly circulated process with alternated aeration to simultaneously remove organics, solids, nitrogen and phosphorus
KR100448305B1 (en) * 2001-05-29 2004-09-10 주식회사 한화건설 The removal method of nutrition salts in waste water
KR100415437B1 (en) * 2001-10-29 2004-01-24 대림산업 주식회사 Advanced sludge reaeration process improving denitrification rate for nutrient removal
KR100581751B1 (en) * 2004-04-29 2006-05-22 한상배 Advanced Wastewater Treatment Method with Solids Separation between the Reactors, Dynamic Flow and Intermittent Aeration
JP2009522101A (en) * 2006-01-05 2009-06-11 アイ.クルーガー インコーポレイテッド Method and system for nitrifying and denitrifying sewage
JP4796631B2 (en) * 2006-01-05 2011-10-19 アイ.クルーガー インコーポレイテッド Method and system for nitrifying and denitrifying sewage
KR101046534B1 (en) * 2008-10-22 2011-07-06 주식회사 한화건설 Automatic Control Method of Inflow Flow Control Membrane Activated Sludge Process
JP2018030070A (en) * 2016-08-23 2018-03-01 水ing株式会社 Water treatment apparatus and water treatment method

Similar Documents

Publication Publication Date Title
US7674380B2 (en) Apparatus for treating sewage using a semi-batch process and associated method
CA2082085A1 (en) Multiple zone batch treatment process
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
JPS63166499A (en) Apparatus for biological denitrification/ dephosphorization treatment of sewage
US5908554A (en) Method and plant for the purification of waste water by the activated sludge method
US20030136732A1 (en) Apparatus and method for purifying wastewater using back overflowed sludge
CN105621805B (en) A kind of garbage burning factory percolate qualified discharge processing system and method
CN110902979A (en) NMP wastewater biological treatment method and device
KR100527172B1 (en) A method and apparatus for nitrogenous waste water of nitrogen and sewage
JP3150506B2 (en) Wastewater treatment method
CN101402488B (en) CAST segmenting water feed reinforced denitrification control method
JPH07241596A (en) Treatment of waste water
CN211770554U (en) A processing apparatus for leachate short cut nitrification denitrification
CN108002537A (en) Oxidation ditch integrated sewage treatment device and system
KR100377947B1 (en) Aqua-composting BNR Device and Method for Clearing Wastewater Employing the Same
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
CN106007224A (en) Denitrifying and dephosphorizing composite device and denitrifying and dephosphorizing method thereof
KR100195903B1 (en) Nitrogen and phosphor removal method and device of organic wastewater
CN110526397A (en) (AO)2Precipitate integrated multi-stage recirculation reactor
KR0129831B1 (en) A process for sewage treatment wsing denitrification and dephosphorization
KR100446107B1 (en) Bioreactor for Treating Wastewater
KR100348500B1 (en) Biological Nutrient Removal Technology for sewage and wastewater by deep pure oxygen Aeration
CN109354192A (en) A kind of method and system of sanitary sewage disposal
CN108726807A (en) A kind of coal-ethylene glycol high-concentration sodium nitrate waste water treatment system integrated technology
JP2000084596A (en) Treatment of sludge