JP7195968B2 - Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment - Google Patents

Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment Download PDF

Info

Publication number
JP7195968B2
JP7195968B2 JP2019027945A JP2019027945A JP7195968B2 JP 7195968 B2 JP7195968 B2 JP 7195968B2 JP 2019027945 A JP2019027945 A JP 2019027945A JP 2019027945 A JP2019027945 A JP 2019027945A JP 7195968 B2 JP7195968 B2 JP 7195968B2
Authority
JP
Japan
Prior art keywords
tank
aerobic
organic wastewater
anoxic
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019027945A
Other languages
Japanese (ja)
Other versions
JP2020075233A (en
Inventor
壮一郎 矢次
信也 永江
仁志 柳瀬
亮輔 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Publication of JP2020075233A publication Critical patent/JP2020075233A/en
Application granted granted Critical
Publication of JP7195968B2 publication Critical patent/JP7195968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、有機性排水処理装置の運転方法及び有機性排水処理装置に関する。 TECHNICAL FIELD The present invention relates to a method of operating an organic wastewater treatment apparatus and an organic wastewater treatment apparatus.

都市部で多く採用されている合流式下水処理設備は、雨水と汚水の双方を共用の下水管渠で搬送する設備であり、原水である汚水が流入する最初沈殿池と、嫌気槽と無酸素槽と好気槽を備えて嫌気無酸素好気法が行なわれる生物処理槽と、生物処理後の処理水から活性汚泥を沈殿分離する最終沈殿池を備えた活性汚泥法(UCT法またはA2O法と称される。)による有機性排水処理装置が設けられていた。 The combined sewage treatment system, which is often used in urban areas, transports both rainwater and sewage through a shared sewer system. An activated sludge process (UCT method or A2O method) equipped with a biological treatment tank equipped with a tank and an aerobic tank in which an anaerobic-anoxic-aerobic process is performed, and a final sedimentation tank for precipitating and separating activated sludge from the treated water after biological treatment. was installed with organic wastewater treatment equipment.

従来の有機性排水処理装置では、雨天時に生物処理槽及び最終沈殿池の処理能力を超えた大量の汚水が一時に流入すると、最初沈殿池で固形分を沈殿除去した汚水を、その後の生物処理槽での処理を経ることなく簡易放流するように運転されていた。 In conventional organic wastewater treatment equipment, when a large amount of sewage that exceeds the treatment capacity of the biological treatment tank and final sedimentation tank flows in at one time during rainy weather, the wastewater that has settled and removed the solid content in the primary sedimentation tank is used for subsequent biological treatment. It was operated for simple discharge without treatment in the tank.

特許文献1には、窒素濃度の高い有機性汚水を、浸漬型膜分離装置を設置した反応槽内で生物処理する膜分離活性汚泥法(MBR:Membrane Bio Reactor)を採用した有機性排水処理装置が開示されている。 Patent Document 1 discloses an organic wastewater treatment system that employs a membrane bioreactor (MBR) method, in which organic sewage with a high nitrogen concentration is biologically treated in a reaction tank equipped with an immersion membrane separator. is disclosed.

当該有機性排水処理装置は、従来の最終沈殿池に替えて浸漬型膜分離装置を用いることにより、晴天または雨天の何れであっても処理水の水質の向上を図ることができ、さらに設備の小型化を図ることができる有機性排水処理装置として注目されている。 By using an immersion type membrane separation device instead of the conventional final sedimentation tank, the organic wastewater treatment device can improve the quality of the treated water regardless of whether it is sunny or rainy, and furthermore, the equipment can be improved. It is attracting attention as an organic wastewater treatment system that can be miniaturized.

特許文献2には、最初沈殿池と、反応タンクと、最終沈殿池と、最初沈殿池と反応タンクを接続する第1の流路と、反応タンクと最終沈殿池を接続する第2の流路を含む反応系列を複数備える廃水処理システムであって、複数の反応系列中の一種の反応系列は、反応タンクが担体と膜ユニットと活性汚泥とを有し、MLSS濃度が500mg/L~7000mg/Lに調整された膜分離槽を備え、第1の流路を介して反応タンクに廃水が供給され、反応タンクの処理能力を超える廃水が第2の流路を介して最終沈殿池に供給される廃水処理システムが開示されている。 In Patent Document 2, a primary sedimentation tank, a reaction tank, a final sedimentation tank, a first flow path that connects the primary sedimentation tank and the reaction tank, and a second flow path that connects the reaction tank and the final sedimentation tank A wastewater treatment system comprising a plurality of reaction trains containing L, wastewater is supplied to the reaction tank through the first channel, and wastewater exceeding the processing capacity of the reaction tank is supplied to the final sedimentation tank through the second channel. A wastewater treatment system is disclosed.

特開2001-62481号公報Japanese Patent Application Laid-Open No. 2001-62481 特開2011-147868号公報JP 2011-147868 A

ところで、膜分離活性汚泥法は膜の単位面積当たりのろ過水量に上限があるため、雨天時などの流量が急増するピークに合わせて全量をろ過可能なように施設設計を行うと過剰な設備投資となり費用対効果が低くなるという問題があった。 By the way, the membrane separation activated sludge method has an upper limit on the amount of filtered water per unit area of the membrane, so if the facility is designed so that the entire amount can be filtered according to the peak of the flow rate, such as during rainy weather, excessive capital investment will be required. As a result, there is a problem that the cost-effectiveness is low.

このような場合に、図9に示すように、膜分離活性汚泥法を採用した有機性排水処理装置と、上述した従来の活性汚泥法を採用した有機性排水処理装置とを混在させた有機性排水処理装置を構成しておき、汚水の流入量が増加したときに従来法の有機性排水処理装置を稼働させて流入汚水のピーク流量を処理すれば、膜分離活性汚泥法を採用した有機性排水処理装置の施設容量を抑制できるようになるのであるが、以下の問題があった。 In such a case, as shown in FIG. 9, an organic wastewater treatment apparatus employing a membrane separation activated sludge method and an organic wastewater treatment apparatus employing the above-described conventional activated sludge method are mixed. If the wastewater treatment equipment is configured and the conventional organic wastewater treatment equipment is operated when the inflow of wastewater increases to treat the peak flow rate of the inflow wastewater, organic wastewater using the membrane separation activated sludge method can be Although the facility capacity of the wastewater treatment equipment can be suppressed, there are the following problems.

即ち、従来の活性汚泥法は膜分離活性汚泥法よりも処理水質が劣るため、平時は膜分離活性汚泥法のみで処理を行う方が望ましいが、雨天時などの特定の期間だけ短時間で従来の活性汚泥法を採用した有機性排水処理装置を立ち上げて処理することはできないため、常に膜分離活性汚泥法を採用した有機性排水処理装置と従来法を採用した有機性排水処理装置を並列で運転することが求められ、各系列への流入汚水の分配量を決める作業が煩雑であった。 In other words, since the conventional activated sludge method is inferior to the membrane separation activated sludge method in treated water quality, it is desirable to treat only with the membrane separation activated sludge method in normal times, but the conventional method can be used in a short time during a specific period such as rainy weather. Since it is not possible to start up an organic wastewater treatment system that employs the activated sludge method for treatment, the organic wastewater treatment system that employs the membrane separation activated sludge method and the organic wastewater treatment system that employs the conventional method are always installed in parallel. Therefore, it was complicated to determine the amount of inflow wastewater to be distributed to each system.

また、従来法では一般的に固液分離が沈殿池で行なわれることになるが、良好に固液分離するために沈殿池のMLSS濃度を3000mg/L以下に抑えることが必要であった。そのため、MLSS濃度が8000~10000mg/Lと従来法に比して高い膜分離活性汚泥法を採用した好気槽からの汚泥を沈殿池に導いても良好に固液分離することができず、汚泥が処理水側に流出してしまうという問題もあった。 In the conventional method, solid-liquid separation is generally performed in a sedimentation tank, and in order to achieve good solid-liquid separation, it is necessary to suppress the MLSS concentration in the sedimentation tank to 3000 mg/L or less. Therefore, even if the sludge from the aerobic tank adopting the membrane separation activated sludge method, which has a MLSS concentration of 8000 to 10000 mg / L, which is higher than the conventional method, is led to the sedimentation tank, solid-liquid separation cannot be performed well. There was also a problem that the sludge flowed out to the treated water side.

そこで、膜分離活性汚泥法を採用しながらもMLSS濃度を下げて沈澱池での固液分離性能を確保するために、特許文献2に記載されたように、担体を添加して処理能力を維持する方法を採用すると、流量が増加した際に担体の沈殿池への流出を防止するスクリーンが担体で閉塞されてしてしまうという問題があった。 Therefore, in order to reduce the MLSS concentration and secure the solid-liquid separation performance in the sedimentation tank while adopting the membrane separation activated sludge method, as described in Patent Document 2, a carrier is added to maintain the treatment capacity. However, there is a problem that the screen for preventing the carrier from flowing out to the sedimentation tank is clogged with the carrier when the flow rate increases.

また、既設の従来法を採用する有機性排水処理装置を、その土木躯体を用いて膜分離活性汚泥法を採用する新たな有機性排水処理装置に改築する場合、膜分離活性汚泥法では不要となる最終沈殿池の土木躯体も有効に活用することが望まれるが、一般的に最終沈殿池の池水深は比較的浅く、また縦に長い水槽形状であるために、膜分離装置を浸漬配置するMBRの反応タンクとしては活用し難く、活用したとしてもそれほど大きく処理水量を増やすことができなかった。 In addition, when the existing organic wastewater treatment system adopting the conventional method is rebuilt into a new organic wastewater treatment system adopting the membrane separation activated sludge method using the civil engineering framework, the membrane separation activated sludge method is unnecessary. Although it is desired to effectively utilize the civil engineering framework of the final sedimentation tank, generally the water depth of the final sedimentation tank is relatively shallow and the tank shape is vertically long, so the membrane separator is placed submerged. It was difficult to use as a reaction tank for MBR, and even if it was used, it was not possible to increase the amount of treated water so much.

本発明の目的は、上述した問題点に鑑み、有機性排水の流入量や処理負荷の変動にかかわらず、膜分離活性汚泥法を採用した有機性排水処理装置の施設容量を抑制しながら、適切に処理された処理水を放流可能な有機性排水処理装置の運転方法及び有機性排水処理装置を提供する点にある。 In view of the above-mentioned problems, the object of the present invention is to suppress the facility capacity of an organic wastewater treatment apparatus that employs a membrane separation activated sludge method, regardless of fluctuations in the amount of inflow of organic wastewater and the treatment load. Another object of the present invention is to provide a method for operating an organic wastewater treatment apparatus and an organic wastewater treatment apparatus capable of discharging treated water that has been thoroughly treated.

上述の目的を達成するため、本発明による有機性排水処理装置の運転方法の第一の特徴構成は、無酸素槽と第1好気槽と第2好気槽と沈殿槽とを備える有機性排水処理装置の運転方法であって、有機性排水を前記無酸素槽に供給し、前記無酸素槽と前記第1好気槽との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、前記第1好気槽に配置された膜分離装置からの膜透過液を処理水として取り出すとともに、前記無酸素槽から前記第2好気槽へ混合液を送液し、さらに前記第2好気槽から前記沈殿槽へ混合液を送液し、前記沈殿槽からの固液分離液を処理水として取り出す点にある。 In order to achieve the above object, the first characteristic configuration of the method for operating an organic wastewater treatment apparatus according to the present invention is an organic A method of operating a wastewater treatment apparatus, wherein organic wastewater is supplied to the anoxic tank, and a mixture of organic wastewater and activated sludge is circulated between the anoxic tank and the first aerobic tank. While performing nitrification and denitrification treatment, the membrane permeated liquid from the membrane separation device arranged in the first aerobic tank is taken out as treated water, and the mixed liquid is sent from the anoxic tank to the second aerobic tank. Further, the liquid mixture is sent from the second aerobic tank to the sedimentation tank, and the solid-liquid separation liquid from the sedimentation tank is taken out as treated water.

無酸素槽に供給された有機性排水が活性汚泥とともに膜分離装置が配置された第1好気槽との間で循環されることにより硝化脱窒処理され、膜分離装置から混合液の液分が処理水として取り出される。さらに無酸素槽から混合液の一部が第2好気槽へ送液されて第2好気槽で初期吸着処理され、さらに沈殿槽に送られた混合液が沈澱槽で固液分離されて上澄みが処理水として取り出される。無酸素槽を介して第1好気槽と第2好気槽のMLSS濃度を個別に調整することによって、第1好気槽では膜分離に適した高いMLSS濃度に調整しつつ、第2好気槽では沈澱槽での固液分離に適した低いMLSS濃度に調整できる。 The organic wastewater supplied to the anoxic tank is circulated together with the activated sludge to the first aerobic tank in which the membrane separator is arranged, and is subjected to nitrification and denitrification treatment, and the liquid mixture is separated from the membrane separator. is taken out as treated water. Further, part of the mixed liquid is sent from the anoxic tank to the second aerobic tank, where it undergoes initial adsorption treatment, and the mixed liquid sent to the sedimentation tank is subjected to solid-liquid separation in the sedimentation tank. The supernatant is taken out as treated water. By adjusting the MLSS concentrations in the first aerobic tank and the second aerobic tank individually via the anoxic tank, the MLSS concentration in the first aerobic tank is adjusted to a high level suitable for membrane separation, while the second favorable In the gas tank, the MLSS concentration can be adjusted to a low level suitable for solid-liquid separation in the sedimentation tank.

なお、初期吸着とは、活性汚泥中の好気性微生物が分泌する粘着性のゼラチン物質によって有機排水中の微粒子及び溶解性有機物が活性汚泥の表面に物理吸着される現象、及び物理吸着した有機物が速やかに微生物に取り込まれる生物吸着現象をいい、活性汚泥と有機性排水が接触した後、数十分でBODが大きく減少する。 The initial adsorption is a phenomenon in which fine particles and soluble organic matter in organic wastewater are physically adsorbed on the surface of the activated sludge by sticky gelatin substances secreted by aerobic microorganisms in the activated sludge. It refers to a biosorption phenomenon in which microorganisms are quickly taken in, and BOD is greatly reduced in several tens of minutes after activated sludge and organic wastewater come into contact with each other.

この様に、膜に拠る固液分離と従来の沈殿槽に拠る固液分離を混在させることにより、全量をMBRで処理する場合に要する膜分離装置の設置台数を削減して、経済性の良い有機性排水処理装置により効率的に浄化処理できるようになる。 In this way, by combining solid-liquid separation based on membranes and solid-liquid separation based on conventional sedimentation tanks, it is possible to reduce the number of installed membrane separation devices required when all the amount is treated by MBR, and it is economical. The organic waste water treatment equipment enables efficient purification treatment.

同第二の特徴構成は、無酸素槽と第1好気槽と第2好気槽と混合槽と沈殿槽とを備える有機性排水処理装置の運転方法であって、有機性排水を前記混合槽に供給し、前記混合槽と前記無酸素槽との間で有機性排水と活性汚泥との混合液を循環させつつ、前記無酸素槽と前記第1好気槽との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、前記第1好気槽に配置された膜分離装置からの膜透過液を処理水として取り出すとともに、前記混合槽から前記第2好気槽へ混合液を送液し、さらに前記第2好気槽から前記沈殿槽へ混合液を送液し、前記沈殿槽からの固液分離液を処理水として取り出す点にある。 The second characteristic configuration is a method of operating an organic wastewater treatment apparatus comprising an anoxic tank, a first aerobic tank, a second aerobic tank, a mixing tank, and a sedimentation tank, wherein the organic wastewater is mixed with the tank, and while circulating the mixture of organic wastewater and activated sludge between the mixing tank and the anoxic tank, the organic wastewater is circulated between the anoxic tank and the first aerobic tank. and activated sludge are circulated to carry out nitrification and denitrification treatment, and the membrane permeated liquid from the membrane separation device arranged in the first aerobic tank is taken out as treated water from the mixing tank. 2, the mixed liquid is sent to the aerobic tank, the mixed liquid is sent from the second aerobic tank to the sedimentation tank, and the solid-liquid separation liquid from the sedimentation tank is taken out as treated water.

混合槽に供給された有機性排水が活性汚泥とともに無酸素槽を介して膜分離装置が配置された第1好気槽に送液され、混合槽、無酸素槽、第1好気槽の間で循環されることにより硝化脱窒処理され、膜分離装置から混合液の液分が処理水として取り出される。さらに混合槽から混合液の一部が第2好気槽へ送液されて第2好気槽で初期吸着処理され、さらに沈殿槽に送られた混合液が沈澱槽で固液分離されて上澄みが処理水として取り出される。混合槽を介して第1好気槽と第2好気槽のMLSS濃度を個別に調整することによって、第1好気槽では膜分離に適した高いMLSS濃度に調整しつつ、第2好気槽では沈澱槽での固液分離に適した低いMLSS濃度に調整でき、しかも、第1好気槽と無酸素槽の間での混合液の循環量を増すことにより脱窒反応に伴うアルカリ度の回復が図られ、第2好気槽への影響を与えることなく、硝化処理が行なわれる第1好気槽におけるpHの低下を回避できる。 The organic wastewater supplied to the mixing tank is sent to the first aerobic tank in which the membrane separation device is arranged together with the activated sludge through the anoxic tank, and the Nitrification and denitrification treatment is carried out by circulating at , and the liquid portion of the mixed liquid is taken out as treated water from the membrane separator. Further, a part of the mixed liquid is sent from the mixing tank to the second aerobic tank and subjected to initial adsorption treatment in the second aerobic tank. is taken out as treated water. By individually adjusting the MLSS concentrations in the first aerobic tank and the second aerobic tank via the mixing tank, the MLSS concentration in the first aerobic tank is adjusted to a high level suitable for membrane separation, while the second aerobic tank In the tank, the MLSS concentration can be adjusted to a low level suitable for solid-liquid separation in the sedimentation tank. can be recovered, and a decrease in pH in the first aerobic tank where nitrification treatment is performed can be avoided without affecting the second aerobic tank.

同第三の特徴構成は、無酸素槽と第1好気槽と兼用槽と沈殿槽とを備える有機性排水処理装置の運転方法であって、有機性排水を前記無酸素槽に供給し、前記無酸素槽と前記第1好気槽との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、前記第1好気槽に配置された膜分離装置からの膜透過液を処理水として取り出すとともに、前記無酸素槽から好気処理を行なう前記兼用槽へ混合液を送液し、さらに前記兼用槽から前記沈殿槽へ混合液を送液し、前記沈殿槽からの固液分離液を処理水として取り出す第1運転状態と、前記無酸素槽と前記第1好気槽との間で混合液を循環させつつ、前記無酸素槽と無酸素処理を行なう前記兼用槽との間で混合液を循環させて硝化脱窒処理を行いつつ、専ら前記第1好気槽に配置された膜分離装置からの膜透過液を処理水として取り出す第2運転状態と、を備える点にある。 The third characteristic configuration is a method of operating an organic wastewater treatment apparatus comprising an anoxic tank, a first aerobic tank, a combined tank, and a sedimentation tank, wherein organic wastewater is supplied to the anoxic tank, A membrane separator disposed in the first aerobic tank while performing nitrification and denitrification by circulating a mixture of organic wastewater and activated sludge between the anoxic tank and the first aerobic tank. The membrane-permeated liquid from the A first operating state in which a solid-liquid separated liquid from the sedimentation tank is taken out as treated water, and a mixed liquid is circulated between the anoxic tank and the first aerobic tank while the anoxic tank and the anoxic treatment are performed. A second operating state in which the mixed liquid is circulated between the combined liquid and the aerobic tank to perform nitrification and denitrification treatment, and the membrane permeated liquid from the membrane separation device disposed exclusively in the first aerobic tank is taken out as treated water. and is provided.

有機性排水量が十分である場合に、兼用槽が好気槽として機能する第1運転状態で処理され、無酸素槽に供給された有機性排水が活性汚泥とともに膜分離装置が配置された第1好気槽との間で循環されることにより硝化脱窒処理され、膜分離装置から混合液の液分が処理水として取り出される。さらに無酸素槽から混合液の一部が兼用槽へ送液されて好気処理として初期吸着処理され、さらに沈殿槽に送られた混合液が沈澱槽で固液分離されて上澄みが処理水として取り出される。有機性排水量が少ない場合に、兼用槽が無酸素槽として機能する第2運転状態で処理され、無酸素槽と第1好気槽と無酸素処理を行なう兼用槽との間で混合液が循環されて硝化脱窒処理を行ないつつ、専ら第1好気槽に配置された膜分離装置からの膜透過液が処理水として取り出される。 When the amount of organic waste water is sufficient, it is treated in the first operating state in which the combined tank functions as an aerobic tank, and the organic waste water supplied to the anoxic tank is treated together with the activated sludge in the first membrane separation device. Nitrification and denitrification treatment is performed by circulating between the aerobic tanks, and the liquid portion of the mixed liquid is taken out as treated water from the membrane separator. Further, part of the mixed liquid is sent from the anoxic tank to the dual-purpose tank and subjected to initial adsorption treatment as aerobic treatment. taken out. When the amount of organic wastewater is small, the combined liquid is treated in the second operating state in which the combined tank functions as an anoxic tank, and the mixture is circulated between the anoxic tank, the first aerobic tank, and the combined tank performing the anoxic treatment. While the nitrification and denitrification treatment is being carried out, the membrane permeated liquid from the membrane separator arranged exclusively in the first aerobic tank is taken out as treated water.

同第四の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、前記沈殿槽の汚泥を前記第1好気槽へ返送する点にある。 The fourth characteristic configuration is, in addition to any one of the first to third characteristic configurations described above, in that the sludge in the sedimentation tank is returned to the first aerobic tank.

沈殿槽から第1好気槽へ汚泥を返送することにより、膜分離装置が設置された第1好気槽のMLSS濃度の低下を回避することができる。そして、沈殿分離された汚泥はBODを吸着した状態にあるため、初期吸着性能が失われているが、第1好気槽に返送されて低負荷状態で好気処理されることにより、初期吸着されたBODの分解が促進されて、汚泥の初期吸着性能が回復されるようになる。 By returning the sludge from the sedimentation tank to the first aerobic tank, it is possible to avoid a decrease in the MLSS concentration in the first aerobic tank in which the membrane separation device is installed. Since the sedimented and separated sludge is in a state where BOD is adsorbed, the initial adsorption performance is lost. Decomposition of the BOD produced is accelerated, and the initial adsorption performance of the sludge is recovered.

同第五の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、前記沈殿槽の汚泥を前記無酸素槽へ返送する点にある。 The fifth characteristic configuration is, in addition to any one of the first to third characteristic configurations described above, in that the sludge in the sedimentation tank is returned to the anoxic tank.

無酸素槽へ返送された沈殿分離汚泥に残存するBODが脱窒用有機源として有効活用され、さらに当該汚泥が第1好気槽に移送されて低負荷状態で好気処理されることにより、汚泥の初期吸着性能が回復されるようになる。 The BOD remaining in the sedimentation sludge returned to the anoxic tank is effectively used as an organic source for denitrification, and the sludge is transferred to the first aerobic tank and aerobicly treated in a low-load state. The initial adsorption performance of sludge is recovered.

同第六の特徴構成は、上述の第一から第五の何れかの特徴構成に加えて、前記第2好気槽または前記兼用槽から前記沈殿槽へ混合液を移送する途中または前記沈殿槽に凝集剤を添加する点にある。 The sixth characteristic configuration is, in addition to any one of the above-described first to fifth characteristic configurations, during the transfer of the mixed liquid from the second aerobic tank or the dual-use tank to the sedimentation tank or the sedimentation tank The point is that a flocculant is added to the

第2好気槽または前記兼用槽から沈殿槽へ混合液を移送する途中または沈殿槽に凝集剤を添加することにより、処理水に対するCODや脱リン効果と、汚泥の沈澱分離効果を高めることができる。 By adding a coagulant to the sedimentation tank or during the transfer of the mixed liquid from the second aerobic tank or the above-mentioned dual-use tank to the sedimentation tank, the COD and dephosphorization effects on the treated water and the sedimentation separation effect of the sludge can be enhanced. can.

本発明による有機性排水処理装置の第一の特徴構成は、脱窒処理を行なう無酸素槽と、処理水を膜透過液として取り出す膜分離装置を備え硝化処理を行なう第1好気槽と、初期吸着処理を行なう第2好気槽と、沈殿槽と、前記無酸素槽へ有機性排水を供給する原水供給経路と、前記無酸素槽から前記第1好気槽へ有機性排水と活性汚泥の混合液を送る第1混合液経路と、前記第1好気槽から前記無酸素槽へ混合液を循環させる第1循環経路と、前記第2好気槽から前記沈殿槽へ混合液を送る第2混合液経路と、前記無酸素槽から前記第2好気槽へ混合液を送る第3混合液経路と、を備える点にある。 The first characteristic configuration of the organic wastewater treatment apparatus according to the present invention comprises an anoxic tank for denitrification, a first aerobic tank for nitrification, provided with a membrane separator for extracting treated water as a membrane permeate, A second aerobic tank for performing initial adsorption treatment, a sedimentation tank, a raw water supply route for supplying organic wastewater to the anoxic tank, and organic wastewater and activated sludge from the anoxic tank to the first aerobic tank. a first mixed solution route for sending the mixed solution, a first circulation route for circulating the mixed solution from the first aerobic tank to the anoxic tank, and a mixed solution sent from the second aerobic tank to the sedimentation tank It is provided with a second liquid mixture path and a third liquid mixture path for sending the liquid mixture from the anoxic tank to the second aerobic tank.

同第二の特徴構成は、脱窒処理を行なう無酸素槽と、処理水を膜透過液として取り出す膜分離装置を備え硝化処理を行なう第1好気槽と、初期吸着処理を行なう第2好気槽と、混合槽と、沈殿槽と、有機性排水を前記混合槽に供給する原水供給経路と、前記第1好気槽から前記無酸素槽へ有機性排水と活性汚泥との混合液を循環させる第1循環経路と、前記無酸素槽から前記混合槽へ混合液を循環する第2循環経路と、前記第2好気槽から前記沈殿槽へ混合液を送る第2混合液経路と、前記混合槽から前記第2好気槽へ混合液を送る第4混合液経路とを備える点にある。 The second characteristic configuration includes an anoxic tank for denitrification treatment, a first aerobic tank for nitrification treatment equipped with a membrane separation device for taking out treated water as a membrane permeate, and a second aerobic tank for initial adsorption treatment. An air tank, a mixing tank, a sedimentation tank, a raw water supply path for supplying organic wastewater to the mixing tank, and a mixed solution of organic wastewater and activated sludge from the first aerobic tank to the anoxic tank. a first circulation path for circulation, a second circulation path for circulating the mixed liquid from the anoxic tank to the mixing tank, and a second mixed liquid path for sending the mixed liquid from the second aerobic tank to the sedimentation tank; and a fourth mixed solution path for sending the mixed solution from the mixing tank to the second aerobic tank.

同第三の特徴構成は、脱窒処理を行なう無酸素槽と、処理水を膜透過液として取り出す膜分離装置を備え硝化処理を行なう第1好気槽と、兼用槽と、沈殿槽と、前記無酸素槽へ有機性排水を供給する原水供給経路と、前記無酸素槽から前記第1好気槽へ有機性排水と活性汚泥の混合液を送る第1混合液経路と、前記兼用槽から前記沈殿槽へ混合液を送る第2混合液経路と、前記無酸素槽から前記兼用槽へ混合液を送る第3混合液経路と、第1好気槽から前記無酸素槽へ混合液を循環させる第1循環経路と、前記無酸素槽から前記兼用槽へ混合液を循環させる第循環経路と、を備え、前記第3循環経路を開放して、前記兼用槽を第2好気槽として機能させる第1運転状態と、前記第3循環経路を閉塞して、前記兼用槽を第2無酸素槽として機能させる第2運転状態とに切替可能に構成されている点にある。 The third characteristic configuration includes an anoxic tank for denitrification, a first aerobic tank equipped with a membrane separation device for taking out treated water as a membrane permeated liquid, and performing nitrification, a dual-purpose tank, a sedimentation tank, a raw water supply path for supplying organic wastewater to the anoxic tank; a first mixed solution path for sending a mixed solution of organic wastewater and activated sludge from the anoxic tank to the first aerobic tank; A second mixed solution route for sending the mixed solution to the sedimentation tank, a third mixed solution route for sending the mixed solution from the anoxic tank to the combined tank, and a circulation of the mixed solution from the first aerobic tank to the anoxic tank and a third circulation path for circulating the mixed solution from the anoxic tank to the combined tank, the third circulation path is opened, and the combined tank is used as the second aerobic tank. It is characterized in that it can be switched between a first operating state in which it functions and a second operating state in which the third circulation path is closed and the combined tank functions as a second anoxic tank.

同第四の特徴構成は、上述の第一から第三の何れかの特徴構成に加えて、第1仕切壁を介して上方空間に前記第1好気槽が配置され、下方空間に前記無酸素槽が配置されている点にある。 The fourth characteristic configuration is, in addition to any one of the first to third characteristic configurations described above, the first aerobic tank is arranged in the upper space via the first partition wall, and the non-aerobic tank is arranged in the lower space. It is in the point where the oxygen tank is arranged.

無酸素槽が配置された敷地の上方空間に第1好気槽が配置されることにより、空間利用率が高まり、有機性排水処理装置の敷地を効率的に活用できるようになる。 By arranging the first aerobic tank in the upper space of the site where the anoxic tank is arranged, the space utilization rate is increased, and the site of the organic wastewater treatment apparatus can be efficiently utilized.

同第五の特徴構成は、上述の第四の特徴構成に加えて、第2仕切壁を介して前記無酸素槽の下方空間に前記沈殿槽が配置されている点にある。 The fifth characteristic configuration is that, in addition to the above-described fourth characteristic configuration, the sedimentation tank is arranged in the lower space of the anoxic tank via a second partition wall.

さらに、空間利用率を高めることができる。 Furthermore, space utilization can be increased.

同第六の特徴構成は、上述の第一から第五の何れかの特徴構成に加えて、前記沈殿槽の汚泥を前記第1好気槽へ返送する、汚泥返送経路を備える点にある。 The sixth characteristic configuration is that, in addition to any one of the first to fifth characteristic configurations, a sludge return path is provided for returning the sludge from the sedimentation tank to the first aerobic tank.

以上説明した通り、本発明によれば、有機性排水の流入量や処理負荷の変動にかかわらず、膜分離活性汚泥法を採用した有機性排水処理装置の施設容量を抑制しながら、適切に処理された処理水を放流可能な有機性排水処理装置の運転方法及び有機性排水処理装置を提供することができるようになった。 As described above, according to the present invention, regardless of fluctuations in the amount of inflow of organic wastewater and the treatment load, the organic wastewater treatment apparatus adopting the membrane separation activated sludge method can be appropriately treated while suppressing the facility capacity. It is now possible to provide an operating method of an organic wastewater treatment apparatus and an organic wastewater treatment apparatus capable of discharging the treated water treated by the method.

本発明による有機性排水処理装置の全体構成の説明図Explanatory drawing of the overall configuration of the organic wastewater treatment apparatus according to the present invention 第1の実施形態による有機性排水処理装置の説明図Explanatory drawing of the organic wastewater treatment apparatus according to the first embodiment 第2の実施形態による有機性排水処理装置の説明図Explanatory drawing of the organic wastewater treatment apparatus according to the second embodiment 第2の実施形態の他の態様を示す有機性排水処理装置の説明図Explanatory drawing of the organic wastewater treatment device showing another aspect of the second embodiment 第3の実施形態による有機性排水処理装置の説明図Explanatory drawing of the organic wastewater treatment apparatus according to the third embodiment 第4の実施形態による有機性排水処理装置の説明図Explanatory drawing of the organic wastewater treatment apparatus according to the fourth embodiment 第5の実施形態による有機性排水処理装置の説明図Explanatory drawing of the organic wastewater treatment apparatus according to the fifth embodiment 第6の実施形態による有機性排水処理装置の説明図Explanatory drawing of the organic wastewater treatment apparatus according to the sixth embodiment (a)は、第7の実施形態による有機性排水処理装置の説明図、(b)は循環式MBRの説明図(a) is an explanatory diagram of an organic wastewater treatment apparatus according to a seventh embodiment, and (b) is an explanatory diagram of a circulating MBR. 従来の有機性排水処理設備の運転方法の説明図Explanatory diagram of the operation method of conventional organic wastewater treatment equipment

以下、本発明による有機性排水処理装置の運転方法及び有機性排水処理装置を、図面に基づいて説明する。
図1に示すように、有機性排水処理装置100は、下水などの有機性排水を原水として導入して生物処理により浄化して河川などに放流するための装置であり、最初沈澱池10と、MBRを採用した6系統の生物処理槽20,40,50と、最終沈澱池70と、消毒槽90などを備えている。
Hereinafter, a method for operating an organic wastewater treatment apparatus and an organic wastewater treatment apparatus according to the present invention will be described with reference to the drawings.
As shown in FIG. 1, an organic wastewater treatment device 100 is a device for introducing organic wastewater such as sewage as raw water, purifying it by biological treatment, and discharging it into a river or the like. It is equipped with 6 systems of biological treatment tanks 20, 40, 50 employing MBR, a final sedimentation tank 70, a disinfection tank 90, and the like.

5系統の最初沈澱池10の沈後水が、スクリーン機構を備えたスクリーン井11に送られて夾雑物が除去された後に、活性汚泥が充填された各生物処理槽20,40,50に均等に送水される。各系統の生物処理槽20,40,50では、MBRと従来の活性汚泥法が併用されるように構成されている。 The post-sedimentation water from the five primary sedimentation tanks 10 is sent to the screen wells 11 equipped with a screen mechanism to remove contaminants, and then evenly sent to the biological treatment tanks 20, 40, 50 filled with activated sludge. be done. The biological treatment tanks 20, 40, 50 of each system are configured to use both MBR and the conventional activated sludge method.

[第1の実施形態]
図2には、図1で示した生物処理槽の1系統の構成が示されている。
当該有機性排水処理装置100は、最初沈澱池10と、脱窒処理を行なう無酸素槽40と、処理水を膜透過液として取り出す膜分離装置30を備え硝化処理を行なう第1好気槽20と、初期吸着処理を行なう第2好気槽50と、最終沈澱池70を備えている。
[First embodiment]
FIG. 2 shows the configuration of one system of the biological treatment tank shown in FIG.
The organic wastewater treatment apparatus 100 includes a primary sedimentation tank 10, an anoxic tank 40 for denitrification, and a membrane separator 30 for taking out treated water as a membrane permeate, and a first aerobic tank 20 for nitrification. , a second aerobic tank 50 for initial adsorption treatment, and a final sedimentation tank 70 .

最終沈澱池70が本発明の沈殿槽70として機能し、当該沈殿槽70には沈澱効率の向上のために傾斜板71を備えている。また、無酸素槽40には槽内の活性汚泥と有機性排水とを撹拌するための撹拌機構が設けられ、第2好気槽50には好気処理を行なうための散気装置が設けられている。なお、図2には、図1で示したスクリーン井が省略されている。なお、沈澱効率の向上のために沈殿槽70に傾斜板71を備える点は、後述する図3から図6、図8から図9に示す沈殿槽70でも同様である。 A final sedimentation tank 70 functions as the sedimentation tank 70 of the present invention, and the sedimentation tank 70 is equipped with an inclined plate 71 for improving the sedimentation efficiency. Further, the anoxic tank 40 is provided with a stirring mechanism for stirring the activated sludge and the organic waste water in the tank, and the second aerobic tank 50 is provided with an air diffuser for aerobic treatment. ing. 2, the screen well shown in FIG. 1 is omitted. The sedimentation tank 70 shown in Figs. 3 to 6 and Figs. 8 to 9, which will be described later, is also provided with an inclined plate 71 in order to improve the sedimentation efficiency.

そして、無酸素槽40へ沈後水である有機性排水を供給する原水供給経路1と、無酸素槽40から第1好気槽20へ有機性排水と活性汚泥の混合液を送る第1混合液経路2と、第1好気槽20から無酸素槽へ混合液を循環させる第1循環経路3と、第2好気槽50から沈殿槽70へ混合液を送る第混合液経路4と、無酸素槽40から第2好気槽へ混合液を送る第混合液経路5と、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6を備えている。 A raw water supply route 1 for supplying organic waste water, which is water after sedimentation, to the anoxic tank 40, and a first mixed solution route for sending a mixed solution of organic waste water and activated sludge from the anoxic tank 40 to the first aerobic tank 20. 2, a first circulation route 3 for circulating the mixed solution from the first aerobic tank 20 to the anoxic tank, a second mixed solution route 4 for sending the mixed solution from the second aerobic tank 50 to the sedimentation tank 70, A third mixed solution route 5 for sending the mixed solution from the oxygen tank 40 to the second aerobic tank and a sludge return route 6 for returning the sludge from the sedimentation tank 70 to the first aerobic tank 20 are provided.

当該有機性排水処理装置100では、有機性排水を無酸素槽40に供給し、無酸素槽40と第1好気槽20との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、第1好気槽20に配置された膜分離装置30からの膜透過液を処理水として取り出すとともに、無酸素槽40から第2好気槽50へ混合液を送液し、さらに第2好気槽50から沈殿槽70へ混合液を送液し、沈殿槽70からの固液分離液を処理水として取り出すように運転される。 In the organic wastewater treatment apparatus 100, organic wastewater is supplied to the anoxic tank 40, and a mixture of organic wastewater and activated sludge is circulated between the anoxic tank 40 and the first aerobic tank 20. While performing the nitrification and denitrification treatment, the membrane permeated liquid from the membrane separation device 30 arranged in the first aerobic tank 20 is taken out as treated water, and the mixed liquid is sent from the anoxic tank 40 to the second aerobic tank 50. Further, the mixed liquid is sent from the second aerobic tank 50 to the sedimentation tank 70, and the solid-liquid separation liquid from the sedimentation tank 70 is taken out as treated water.

無酸素槽40に供給された有機性排水が活性汚泥とともに膜分離装置30が配置された第1好気槽20との間で第1混合液経路2及び第1循環経路3を介して循環されることにより、第1好気槽20でアンモニア性窒素が硝酸性窒素に硝化処理されるとともに無酸素槽40で硝酸性窒素が窒素に還元される脱窒処理が実行され、膜分離装置30から混合液の液分が処理水として取り出される。 The organic wastewater supplied to the anoxic tank 40 is circulated together with the activated sludge through the first liquid mixture path 2 and the first circulation path 3 between the first aerobic tank 20 in which the membrane separation device 30 is arranged. As a result, ammonium nitrogen is nitrified to nitrate nitrogen in the first aerobic tank 20, and denitrification treatment is performed in which the nitrate nitrogen is reduced to nitrogen in the anoxic tank 40. A liquid component of the mixed liquid is taken out as treated water.

さらに無酸素槽40から混合液の一部が第2好気槽50へ送液されて第2好気槽50で初期吸着処理され、さらに沈殿槽70に送られた混合液が沈澱槽70で固液分離されて上澄みが処理水として取り出される。 Further, part of the mixed liquid is sent from the anoxic tank 40 to the second aerobic tank 50 and is subjected to initial adsorption treatment in the second aerobic tank 50, and the mixed liquid sent to the sedimentation tank 70 is After solid-liquid separation, the supernatant is taken out as treated water.

なお、初期吸着とは、活性汚泥中の好気性微生物が分泌する粘着性のゼラチン物質によって有機排水中の微粒子及び溶解性有機物が活性汚泥の表面に物理吸着される現象、及び、物理吸着した有機物が速やかに微生物に取り込まれる生物吸着現象をいい、活性汚泥と有機性排水が接触した後、数十分でBODが大きく減少する。 The initial adsorption is a phenomenon in which fine particles and soluble organic matter in organic wastewater are physically adsorbed on the surface of the activated sludge by sticky gelatin substances secreted by aerobic microorganisms in the activated sludge. BOD is rapidly absorbed by microorganisms, and BOD is greatly reduced in several tens of minutes after the activated sludge and organic wastewater come into contact with each other.

沈殿槽70の汚泥界面を汚泥界面計でモニタリングしておき、汚泥界面の上昇により固液分離に障害が出る懸念が出てきた場合は、膜ろ過装置30の流量を引き上げて沈殿槽70への配水量を抑制するように制御される。沈殿槽70からの汚泥の流出が防止され、処理水質が良好に保たれる。この様に沈殿槽70による固液分離の活用により膜ろ過装置30の高Flux運転時間が短縮されるようになり、膜の閉塞スピードが抑制され、薬液洗浄頻度も低減される。 The sludge interface of the sedimentation tank 70 is monitored with a sludge interface meter, and if there is a concern that solid-liquid separation will be hindered due to the rise of the sludge interface, the flow rate of the membrane filtration device 30 is increased to allow the flow to the sedimentation tank 70. It is controlled to suppress the amount of water distributed. The outflow of sludge from the sedimentation tank 70 is prevented, and the treated water quality is kept good. In this way, by utilizing the solid-liquid separation by the sedimentation tank 70, the high-flux operation time of the membrane filtration device 30 can be shortened, the clogging speed of the membrane can be suppressed, and the frequency of chemical cleaning can be reduced.

無酸素槽40を介して第1好気槽20と第2好気槽50のMLSS濃度を個別に調整することによって、第1好気槽20では膜分離に適した高いMLSS濃度に調整しつつ、第2好気槽50では沈澱槽での固液分離に適した低いMLSS濃度に調整できる。 By individually adjusting the MLSS concentrations of the first aerobic tank 20 and the second aerobic tank 50 via the anoxic tank 40, the first aerobic tank 20 is adjusted to a high MLSS concentration suitable for membrane separation. , the second aerobic tank 50 can be adjusted to a low MLSS concentration suitable for solid-liquid separation in the sedimentation tank.

本実施形態では、原水である有機性排水の流入量1Qに対して、第1好気槽20で0.5Qの処理水量に設定し、沈殿槽70から第1好気槽20への返送量を0.5Qに設定し、第1好気槽20から無酸素槽40への循環量を0.4Qに設定することにより、第1好気槽20のMLSS濃度を10,000mg/L、無酸素槽40のMLSS濃度を3,000mg/L、第2好気槽50のMLSS濃度を3,000mg/Lに調整し、沈殿槽70での固液分離性能を確保している。 In this embodiment, the amount of treated water in the first aerobic tank 20 is set to 0.5 Q with respect to the inflow amount of organic wastewater, which is raw water, 1 Q, and the amount of return from the sedimentation tank 70 to the first aerobic tank 20 is set to 0.5Q, and the circulation amount from the first aerobic tank 20 to the anoxic tank 40 is set to 0.4Q, so that the MLSS concentration in the first aerobic tank 20 is 10,000 mg / L, The MLSS concentration in the oxygen tank 40 is adjusted to 3,000 mg/L, and the MLSS concentration in the second aerobic tank 50 is adjusted to 3,000 mg/L to ensure solid-liquid separation performance in the sedimentation tank 70 .

その結果、膜分離装置30による膜ろ過が必要な水量が引き下げられ、膜分離装置30の台数の削減、ひいてはコストの低減効果が得られるようになる。また、MBR単独で運転する場合に問題となる低水温期に汚泥中に蓄積する難分解の溶解性CODが沈澱槽70から処理水として流出することで、汚泥の膜ろ過性が改善し設計Fluxを引き上げられるようになる。 As a result, the amount of water required for membrane filtration by the membrane separation device 30 can be reduced, and the number of membrane separation devices 30 can be reduced, resulting in a cost reduction effect. In addition, the difficultly decomposed soluble COD that accumulates in the sludge during the low water temperature period, which is a problem when the MBR is operated alone, flows out from the sedimentation tank 70 as treated water, thereby improving the membrane filtration performance of the sludge. can be raised.

なお、上述した各槽のMLSS濃度は例示であり、この値に制限されるものではない。また、第2好気槽50で処理される水量は基本的には成り行きで決定されればよく、細かい流量の制御が不要となる点で、図8に示した従来の有活性汚泥法と膜分離活性汚泥法とを混在させた有機性排水処理装置よりも維持管理の手間が軽減される。 Note that the MLSS concentration in each tank described above is an example, and is not limited to this value. In addition, the amount of water to be treated in the second aerobic tank 50 can basically be determined according to circumstances, and detailed control of the flow rate is not required. The labor for maintenance and management is reduced compared to the organic wastewater treatment equipment mixed with the separated activated sludge method.

さらに、既設の有機性排水処理装置100をMBRに改築する際に、既設の構造躯体に備えた梁やYウォールなどの影響で、膜分離装置30の設置に空間的な制約が生じる場合がある。そのような場合に有機性排水の全量をMBRで処理するよりも処理能力を増加できるようになる。 Furthermore, when the existing organic wastewater treatment device 100 is remodeled into an MBR, there may be spatial restrictions on the installation of the membrane separation device 30 due to the influence of beams, Y walls, etc. provided in the existing structural frame. . In such a case, the treatment capacity can be increased compared to treating the entire amount of organic wastewater with MBR.

ところで、第2好気槽50から沈殿槽70を経て放流される処理水は脱窒作用が見込まれないため、膜分離装置30で膜ろ過される処理水が十分に脱窒処理されている必要がある。そして、無酸素槽40と第1好気槽20との間で循環され、膜分離装置30で膜ろ過される被処理水が良好に脱窒処理されるためには、充分な量のBODが必要となる。しかし、有機性排水のBOD濃度が窒素濃度に対して相対的に低い場合(理論上では、BOD/N≦2.86)には、十分な脱窒処理を行なうことができない。 By the way, since the treated water discharged from the second aerobic tank 50 through the sedimentation tank 70 is not expected to denitrify, the treated water to be membrane-filtered by the membrane separator 30 must be sufficiently denitrified. There is In order for the water to be treated to be circulated between the anoxic tank 40 and the first aerobic tank 20 and membrane-filtered by the membrane separator 30 to be satisfactorily denitrified, a sufficient amount of BOD is required. necessary. However, when the BOD concentration of the organic wastewater is relatively low with respect to the nitrogen concentration (theoretically, BOD/N≤2.86), sufficient denitrification treatment cannot be performed.

そのような場合には、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6に代えて、沈殿槽70の汚泥を無酸素槽40へ返送する汚泥返送経路6Aを備えることが好ましい(図2中、破線で示す。)。 In such a case, instead of the sludge return route 6 for returning the sludge in the sedimentation tank 70 to the first aerobic tank 20, a sludge return route 6A for returning the sludge in the sedimentation tank 70 to the anoxic tank 40 should be provided. is preferred (indicated by a dashed line in FIG. 2).

無酸素槽40へ返送された沈殿分離汚泥に残存するBODが脱窒用有機源として有効活用され、さらに当該汚泥が第1好気槽20に移送されて低負荷状態で好気処理されることにより、初期吸着性能が回復された汚泥が第2好気槽50に供給されるようになる。結果的に、BOD濃度が窒素濃度に対して相対的に低い場合であっても放流される処理水の窒素濃度の低下を実現できるようになる。 The BOD remaining in the sedimentation sludge returned to the anoxic tank 40 is effectively used as an organic source for denitrification, and the sludge is transferred to the first aerobic tank 20 and aerobicly treated in a low-load state. As a result, the sludge whose initial adsorption performance has been recovered is supplied to the second aerobic tank 50 . As a result, even when the BOD concentration is relatively low with respect to the nitrogen concentration, it is possible to reduce the nitrogen concentration of the discharged treated water.

[第2の実施形態]
図3には、図1で示した生物処理槽の1系統の構成が示されている。図3には、有機性排水の流入量Qを基準とする各部の流量が示されている。
当該有機性排水処理装置100は、最初沈澱池10と、脱窒処理を行なう無酸素槽40と、処理水を膜透過液として取り出す膜分離装置30を備え硝化処理を行なう第1好気槽20と、初期吸着処理を行なう第2好気槽50と、混合槽60と、最終沈澱池(沈殿槽)70を備えている。
[Second embodiment]
FIG. 3 shows the configuration of one system of the biological treatment tank shown in FIG. FIG. 3 shows the flow rate of each part based on the inflow amount Q of the organic waste water.
The organic wastewater treatment apparatus 100 includes a primary sedimentation tank 10, an anoxic tank 40 for denitrification, and a membrane separator 30 for taking out treated water as a membrane permeate, and a first aerobic tank 20 for nitrification. , a second aerobic tank 50 for initial adsorption treatment, a mixing tank 60 and a final sedimentation tank (sedimentation tank) 70 .

有機性排水を混合槽60に供給する原水供給経路1と、混合槽60から無酸素槽40に有機性排水と活性汚泥の混合液を送る第8混合経路9と、無酸素槽40から第1好気槽20へ有機性排水と活性汚泥の混合液を送る第1混合液経路2と、第1好気槽20から無酸素槽40へ有機性排水と活性汚泥との混合液を循環させる第1循環経路3と、無酸素槽40から混合槽60へ混合液を循環する第2循環経路7と、第2好気槽50から沈殿槽70へ混合液を送る第混合液経路4と、混合槽60から第2好気槽へ混合液を送る第混合液経路8と、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6を備えている。 A raw water supply route 1 that supplies organic wastewater to the mixing tank 60, an eighth mixing route 9 that sends a mixed liquid of organic wastewater and activated sludge from the mixing tank 60 to the anoxic tank 40, A first mixed solution path 2 for sending a mixed solution of organic wastewater and activated sludge to the aerobic tank 20, and a second route for circulating the mixed solution of organic wastewater and activated sludge from the first aerobic tank 20 to the anoxic tank 40. 1 circulation path 3, a second circulation path 7 that circulates the mixture from the anoxic tank 40 to the mixing tank 60, a second mixture path 4 that sends the mixture from the second aerobic tank 50 to the sedimentation tank 70, A fourth mixed solution route 8 for sending the mixed solution from the mixing tank 60 to the second aerobic tank and a sludge return route 6 for returning the sludge from the sedimentation tank 70 to the first aerobic tank 20 are provided.

当該有機性排水処理装置100では、有機性排水を混合槽60に供給し、混合槽60と無酸素槽40と第1好気槽20との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、第1好気槽20に配置された膜分離装置30からの膜透過液を処理水として取り出すとともに、混合槽60から第2好気槽50へ混合液を送液し、さらに第2好気槽50から沈殿槽70へ混合液を送液し、沈殿槽70からの固液分離液を処理水として取り出すように運転される。 In the organic wastewater treatment apparatus 100, organic wastewater is supplied to the mixing tank 60, and a mixture of organic wastewater and activated sludge is produced between the mixing tank 60, the anoxic tank 40, and the first aerobic tank 20. While performing nitrification and denitrification treatment by circulating, the membrane permeated liquid from the membrane separation device 30 arranged in the first aerobic tank 20 is taken out as treated water, and the mixed liquid is transferred from the mixing tank 60 to the second aerobic tank 50. and the mixed liquid from the second aerobic tank 50 to the sedimentation tank 70, and the solid-liquid separated liquid from the sedimentation tank 70 is taken out as treated water.

混合槽60に供給された有機性排水が活性汚泥とともに無酸素槽40を介して膜分離装置30が配置された第1好気槽20に送液され、混合槽60、無酸素槽40、第1好気槽20の間で循環されることにより硝化脱窒処理され、膜分離装置30から混合液の液分が処理水として取り出される。 The organic wastewater supplied to the mixing tank 60 is sent together with the activated sludge through the anoxic tank 40 to the first aerobic tank 20 in which the membrane separation device 30 is arranged. Nitrification and denitrification treatment is performed by circulating between the aerobic tanks 20, and the liquid portion of the mixed liquid is taken out from the membrane separator 30 as treated water.

さらに混合槽60から混合液の一部が第2好気槽50へ送液されて第2好気槽50で初期吸着処理され、さらに沈殿槽70に送られた混合液が沈澱槽70で固液分離されて上澄みが処理水として取り出される。 Further, part of the mixed liquid is sent from the mixing tank 60 to the second aerobic tank 50 and subjected to initial adsorption treatment in the second aerobic tank 50, and the mixed liquid sent to the sedimentation tank 70 is solidified in the sedimentation tank 70. After liquid separation, the supernatant is taken out as treated water.

上述した第1の実施形態では、第2好気槽50のMLSS濃度を沈殿槽70による固液分離に適した値に調整するために、第1好気槽20から無酸素槽40に返送される汚泥の量が制限される結果、充分なアルカリ度の回復がなされず、硝化処理が行なわれる第1好気槽20のpH値が下がる。 In the first embodiment described above, in order to adjust the MLSS concentration in the second aerobic tank 50 to a value suitable for solid-liquid separation by the sedimentation tank 70, the As a result of limiting the amount of sludge to be drawn, sufficient alkalinity recovery is not achieved and the pH value of the first aerobic tank 20 where the nitrification process is carried out is lowered.

しかし、第2の実施形態では、混合槽60を設けているため、第1好気槽20から無酸素槽40への混合液の循環量を増しても、第2好気槽50への影響を与えることなく(MLSS濃度の上昇を来すことなく)、第1好気槽20におけるpHの異常な低下を回避することができるようになる。 However, in the second embodiment, since the mixing tank 60 is provided, even if the amount of mixed liquid circulated from the first aerobic tank 20 to the anoxic tank 40 is increased, the second aerobic tank 50 is affected. (without increasing the MLSS concentration), it is possible to avoid an abnormal decrease in pH in the first aerobic tank 20.

本実施形態では、原水である有機性排水の流入量1Qに対して、第1好気槽20で0.6Qの処理水量に設定し、沈殿槽70から第1好気槽20への返送量を0.2Qに設定し、第1好気槽20から無酸素槽40への循環量を2Qに設定し、無酸素槽40から混合槽60への循環量を0.35Qに設定することにより、第1好気槽20のMLSS濃度を10,000mg/L、無酸素槽40のMLSS濃度を7,800mg/L、第2好気槽50のMLSS濃度を2,000mg/Lに調整し、沈殿槽70での固液分離性能を確保している。 In this embodiment, the amount of treated water in the first aerobic tank 20 is set to 0.6Q with respect to the inflow of organic wastewater, which is raw water, 1Q, and the amount of return from the sedimentation tank 70 to the first aerobic tank 20 is set to 0.2Q, the circulation amount from the first aerobic tank 20 to the anaerobic tank 40 is set to 2Q, and the circulation amount from the anaerobic tank 40 to the mixing tank 60 is set to 0.35Q , Adjust the MLSS concentration of the first aerobic tank 20 to 10,000 mg / L, the MLSS concentration of the anoxic tank 40 to 7,800 mg / L, and the MLSS concentration of the second aerobic tank 50 to 2,000 mg / L, Solid-liquid separation performance in the sedimentation tank 70 is ensured.

第1の実施形態と同様に、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6に代えて、沈殿槽70の汚泥を無酸素槽40へ返送する汚泥返送経路6Aを備えることが好ましい(図3中、破線で示す。)。 As in the first embodiment, instead of the sludge return route 6 for returning the sludge in the sedimentation tank 70 to the first aerobic tank 20, a sludge return route 6A for returning the sludge in the sedimentation tank 70 to the anoxic tank 40 is provided. It is preferable to have it (indicated by a dashed line in FIG. 3).

無酸素槽40へ返送された沈殿分離汚泥に残存するBODが脱窒用有機源として有効活用され、さらに当該汚泥が第1好気槽20に移送されて低負荷状態で好気処理されることにより、初期吸着性能が回復された汚泥が第2好気槽50に供給されるようになる。 The BOD remaining in the sedimentation sludge returned to the anoxic tank 40 is effectively used as an organic source for denitrification, and the sludge is transferred to the first aerobic tank 20 and aerobicly treated in a low-load state. As a result, the sludge whose initial adsorption performance has been recovered is supplied to the second aerobic tank 50 .

図4には、混合槽60を設けることなく、第1好気槽20におけるpHの異常な低下を回避することができる有機性排水処理装置100が示されている。図3に示した有機性排水処理装置100との違いは、混合槽60を設けずに混合槽60の機能を発揮するような混合機構41を無酸素槽40に備えた点にある。 FIG. 4 shows an organic wastewater treatment apparatus 100 capable of avoiding an abnormal decrease in pH in the first aerobic tank 20 without providing the mixing tank 60 . The difference from the organic waste water treatment apparatus 100 shown in FIG.

混合機構41として、第1混合液経路2及び第混合液経路5を備えたエアリフトポンプが用いられている。逆U字状の給気管の端部から気泡を供給して活性汚泥の上昇流を生起させ、給気管内部で活性汚泥と有機性排水を混合して、逆U字状の給気管に連結され第1混合液経路2として機能する送液管により混合液を第1好気槽20に送液するとともに、逆U字状の給気管に連結され第混合液経路5として機能する送液管により混合液を第2好気槽50に直接送液するように構成されている。そして、第1循環経路3を介した第1好気槽20から無酸素槽40への混合液の循環量を2Qに設定することで、脱窒反応に伴うアルカリ度の回復がなされ、第1好気槽20におけるpHの異常な低下を回避している。 As the mixing mechanism 41, an air lift pump provided with the first liquid mixture path 2 and the third liquid mixture path 5 is used. Air bubbles are supplied from the end of the inverted U-shaped air supply pipe to generate an upward flow of activated sludge, the activated sludge and organic wastewater are mixed inside the air supply pipe, and connected to the inverted U-shaped air supply pipe. The mixed liquid is sent to the first aerobic tank 20 by the liquid-sending pipe functioning as the first mixed-solution path 2, and the liquid-sending pipe connected to the inverted U-shaped air supply pipe and functioning as the third mixed-solution path 5. is configured to directly feed the mixed liquid to the second aerobic tank 50. Then, by setting the circulation amount of the mixed solution from the first aerobic tank 20 to the anoxic tank 40 via the first circulation path 3 to 2Q, the alkalinity accompanying the denitrification reaction is recovered, and the first Abnormal pH drop in the aerobic tank 20 is avoided.

第1の実施形態と同様に、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6に代えて、沈殿槽70の汚泥を無酸素槽40へ返送する汚泥返送経路6Aを備えることが好ましい(図4中、破線で示す。)。 As in the first embodiment, instead of the sludge return route 6 for returning the sludge in the sedimentation tank 70 to the first aerobic tank 20, a sludge return route 6A for returning the sludge in the sedimentation tank 70 to the anoxic tank 40 is provided. It is preferable to have it (indicated by a dashed line in FIG. 4).

無酸素槽40へ返送された沈殿分離汚泥に残存するBODが脱窒用有機源として有効活用され、さらに当該汚泥が第1好気槽20に移送されて低負荷状態で好気処理されることにより、初期吸着性能が回復された汚泥が第2好気槽50に供給されるようになる。 The BOD remaining in the sedimentation sludge returned to the anoxic tank 40 is effectively used as an organic source for denitrification, and the sludge is transferred to the first aerobic tank 20 and aerobicly treated in a low-load state. As a result, the sludge whose initial adsorption performance has been recovered is supplied to the second aerobic tank 50 .

[第3の実施形態]
図5(a),(b)には、図1で示した生物処理槽の1系統の構成が示されている。図5(a),(b)には、有機性排水の流入量Qを基準とする各部の流量が示されている。
当該有機性排水処理装置100は、最初沈澱池10と、脱窒処理を行なう無酸素槽40と、処理水を膜透過液として取り出す膜分離装置30を備え硝化処理を行なう第1好気槽20と、上述した初期吸着処理を行なう第2好気槽または第2無酸素槽として機能が切替可能な兼用槽50と、最終沈澱池(沈殿槽)70を備えている。
[Third Embodiment]
5(a) and 5(b) show the configuration of one system of the biological treatment tank shown in FIG. FIGS. 5(a) and 5(b) show the flow rate of each part based on the inflow amount Q of the organic waste water.
The organic wastewater treatment apparatus 100 includes a primary sedimentation tank 10, an anoxic tank 40 for denitrification, and a membrane separator 30 for taking out treated water as a membrane permeate, and a first aerobic tank 20 for nitrification. , a dual-use tank 50 whose function can be switched as a second aerobic tank or a second anoxic tank for performing the above-mentioned initial adsorption treatment, and a final sedimentation tank (sedimentation tank) 70 are provided.

さらに、無酸素槽40へ有機性排水を供給する原水供給経路1と、無酸素槽40から第1好気槽20へ有機性排水と活性汚泥の混合液を送る第1混合液経路2と、兼用槽50から沈殿槽70へ混合液を送る第混合液経路4と、無酸素槽40から兼用槽50へ混合液を送る第混合液経路5と、第1好気槽20から無酸素槽40へ混合液を循環させる第1循環経路3と、無酸素槽40から兼用槽50へ混合液を循環させる第3循環経路31と、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6を備えている。 Furthermore, a raw water supply route 1 that supplies organic wastewater to the anoxic tank 40, a first mixed solution route 2 that sends a mixed solution of organic wastewater and activated sludge from the anoxic tank 40 to the first aerobic tank 20, A second mixed solution route 4 for sending the mixed solution from the dual-use tank 50 to the sedimentation tank 70, a third mixed solution route 5 for sending the mixed solution from the anoxic tank 40 to the dual-purpose tank 50, and an oxygen-free from the first aerobic tank 20 A first circulation path 3 that circulates the mixed liquid to the tank 40, a third circulation path 31 that circulates the mixed liquid from the anoxic tank 40 to the combined tank 50, and the sludge of the sedimentation tank 70 is returned to the first aerobic tank 20. It has a sludge return route 6 to do.

そして、第3循環経路31を閉鎖して、兼用槽50を初期吸着処理を行なう第2好気槽として機能させる第1運転状態と、第3循環経路31を開放して、兼用槽50を第2無酸素槽として機能させる第2運転状態とに切替可能に構成されている。 Then, the third circulation path 31 is closed and the combined tank 50 functions as a second aerobic tank for performing the initial adsorption treatment in a first operating state, and the third circulation path 31 is opened to turn the combined tank 50 into the second aerobic tank. It is configured to be switchable to a second operating state in which it functions as 2 anoxic tanks.

当該有機性排水処理装置100では、図5(a)に示すように、有機性排水を無酸素槽40に供給し、無酸素槽40と第1好気槽20との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、第1好気槽20に配置された膜分離装置30からの膜透過液を処理水として取り出すとともに、無酸素槽40から好気処理を行なう兼用槽50へ混合液を送液し、さらに兼用槽50から沈殿槽70へ混合液を送液し、沈殿槽70からの固液分離液を処理水として取り出す第1運転状態と、図5(b)に示すように、無酸素槽40と第1好気槽20と無酸素処理を行なう兼用槽50との間で混合液を循環させて硝化脱窒処理を行いつつ、専ら第1好気槽20に配置された膜分離装置30からの膜透過液を処理水として取り出す第2運転状態とを備え、第1運転状態と第2運転状態を切り替えるように運転される。 In the organic wastewater treatment apparatus 100, as shown in FIG. 5A, organic wastewater is supplied to the anoxic tank 40, and the organic wastewater and While performing nitrification and denitrification treatment by circulating the mixed liquid with activated sludge, the membrane permeated liquid from the membrane separation device 30 arranged in the first aerobic tank 20 is taken out as treated water, and the oxygen-free tank 40 and a first operating state in which the mixed liquid is sent to the dual-purpose tank 50 for gas treatment, the mixed liquid is further sent from the dual-purpose tank 50 to the sedimentation tank 70, and the solid-liquid separated liquid from the sedimentation tank 70 is taken out as treated water. As shown in FIG. 5(b), the mixture is circulated between the anoxic tank 40, the first aerobic tank 20, and the combined tank 50 for anoxic treatment to perform nitrification and denitrification treatment, while A second operating state is provided in which the membrane permeated liquid from the membrane separation device 30 arranged in the first aerobic tank 20 is taken out as treated water, and the operation is performed so as to switch between the first operating state and the second operating state.

有機性排水量が十分な量である場合に、兼用槽50が初期吸着処理を行なう第2好気槽として機能する第1運転状態で処理され、無酸素槽40に供給された有機性排水が活性汚泥とともに膜分離装置30が配置された第1好気槽20との間で循環されることにより硝化脱窒処理され、膜分離装置30から混合液の液分が処理水として取り出される。 When the amount of organic wastewater is sufficient, the organic wastewater supplied to the anoxic tank 40 is treated in the first operating state in which the combined tank 50 functions as a second aerobic tank for initial adsorption treatment, and the organic wastewater supplied to the anoxic tank 40 is activated. The sludge is circulated with the first aerobic tank 20 in which the membrane separator 30 is arranged to undergo nitrification and denitrification, and the liquid component of the mixed liquid is taken out from the membrane separator 30 as treated water.

さらに無酸素槽40から混合液の一部が兼用槽50へ送液されて好気処理として初期吸着処理され、さらに沈殿槽に送られた混合液が沈澱槽で固液分離されて上澄みが処理水として取り出される。 Further, part of the mixed liquid is sent from the anoxic tank 40 to the dual-use tank 50 and subjected to initial adsorption treatment as aerobic treatment, and the mixed liquid sent to the sedimentation tank is subjected to solid-liquid separation in the sedimentation tank to treat the supernatant. extracted as water.

有機性排水量が少ない場合に、兼用槽50が第2無酸素槽として機能する第2運転状態で処理され、無酸素槽40と第1好気槽20と無酸素処理を行なう兼用槽50との間で混合液が循環されて硝化脱窒処理を行ないつつ、専ら第1好気槽20に配置された膜分離装置30からの膜透過液が処理水として取り出される。従って、第2運転状態では沈殿槽70から処理水が取り出されることはない。 When the amount of organic waste water is small, the combined tank 50 is treated in the second operating state functioning as the second anaerobic tank, and the anaerobic tank 40, the first aerobic tank 20, and the combined tank 50 performing the anaerobic treatment are treated. While the mixed solution is circulated between the tanks to perform nitrification and denitrification, the membrane permeated liquid from the membrane separator 30 arranged exclusively in the first aerobic tank 20 is taken out as treated water. Therefore, no treated water is taken out from the sedimentation tank 70 in the second operating state.

第1運転状態では、第1の実施形態と同様に、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6に代えて、沈殿槽70の汚泥を無酸素槽40へ返送する汚泥返送経路6Aを備えることが好ましい(図5(a)中、破線で示す。)。 In the first operating state, as in the first embodiment, the sludge in the sedimentation tank 70 is returned to the anoxic tank 40 instead of the sludge return route 6 for returning the sludge in the sedimentation tank 70 to the first aerobic tank 20. It is preferable to provide a sludge return route 6A (indicated by a dashed line in FIG. 5(a)).

無酸素槽40へ返送された沈殿分離汚泥に残存するBODが脱窒用有機源として有効活用され、さらに当該汚泥が第1好気槽20に移送されて低負荷状態で好気処理されることにより、初期吸着性能が回復された汚泥が第2好気槽50に供給されるようになる。 The BOD remaining in the sedimentation sludge returned to the anoxic tank 40 is effectively used as an organic source for denitrification, and the sludge is transferred to the first aerobic tank 20 and aerobicly treated in a low-load state. As a result, the sludge whose initial adsorption performance has been recovered is supplied to the second aerobic tank 50 .

[その他の実施形態]
上述した各実施形態において、第2好気槽50または兼用槽50から沈殿槽70へ混合液を移送する途中または沈殿槽70に凝集剤を添加する凝集剤添加装置80を備えていることが好ましく、凝集剤を添加することにより処理水に対するCODや脱リン効果と、汚泥の沈澱分離効果を高めることができる。
[Other embodiments]
In each of the above-described embodiments, it is preferable to include a flocculant addition device 80 that adds a flocculant to the sedimentation tank 70 or during transfer of the mixed liquid from the second aerobic tank 50 or the dual-use tank 50 to the sedimentation tank 70. By adding a flocculant, the COD and phosphorus removal effect on the treated water and the sludge sedimentation separation effect can be enhanced.

図6に示すように、上述した第1の実施形態に関して、第1仕切壁24を介して上方空間に第1好気槽20を配置し、下方空間に無酸素槽40を配置するように有機性排水処理装置100を構成してもよい。無酸素槽40が配置された敷地の上方空間に第1好気槽20が配置されることにより、空間利用率が高まり、有機性排水処理装置の敷地を効率的に活用できるようになる。上述した第2または第3の実施形態においても、同様の構成を採用することが可能である。第2の実施形態では、第1好気槽20の下方空間に無酸素槽40及び混合槽60を配置し、或いは、第1好気槽20の下方空間に無酸素槽40のみを配置することができる。 As shown in FIG. 6, with respect to the above-described first embodiment, the first aerobic tank 20 is arranged in the upper space via the first partition wall 24, and the organic tank 40 is arranged in the lower space. Alternatively, the toxic wastewater treatment device 100 may be constructed. By arranging the first aerobic tank 20 in the upper space of the site where the anoxic tank 40 is arranged, the space utilization rate is increased, and the site of the organic wastewater treatment apparatus can be efficiently utilized. A similar configuration can also be employed in the second or third embodiment described above. In the second embodiment, the anaerobic tank 40 and the mixing tank 60 are arranged in the space below the first aerobic tank 20, or only the anaerobic tank 40 is arranged in the space below the first aerobic tank 20. can be done.

第1の実施形態と同様に、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6に代えて、沈殿槽70の汚泥を無酸素槽40へ返送する汚泥返送経路6Aを備えることが好ましい(図6中、破線で示す。)。 As in the first embodiment, instead of the sludge return route 6 for returning the sludge in the sedimentation tank 70 to the first aerobic tank 20, a sludge return route 6A for returning the sludge in the sedimentation tank 70 to the anoxic tank 40 is provided. It is preferable to have it (indicated by a dashed line in FIG. 6).

無酸素槽40へ返送された沈殿分離汚泥に残存するBODが脱窒用有機源として有効活用され、さらに当該汚泥が第1好気槽20に移送されて低負荷状態で好気処理されることにより、初期吸着性能が回復された汚泥が第2好気槽50に供給されるようになる。 The BOD remaining in the sedimentation sludge returned to the anoxic tank 40 is effectively used as an organic source for denitrification, and the sludge is transferred to the first aerobic tank 20 and aerobicly treated in a low-load state. As a result, the sludge whose initial adsorption performance has been recovered is supplied to the second aerobic tank 50 .

図7には、さらに他の有機性排水処理装置100が示されている。上述した図6の構成に加えて、第2仕切壁26を介して無酸素槽40の下方空間に沈殿槽70を配置してもよく、このような構成を採用することにより、さらに、空間利用率を高めることができる。この場合、第2仕切壁26を介して上方空間に設置された第1好気槽20及び無酸素槽40の側方に第2好気槽50を配することが好ましい。 Still another organic wastewater treatment device 100 is shown in FIG. In addition to the above-described configuration of FIG. rate can be increased. In this case, it is preferable to arrange the second aerobic tank 50 beside the first aerobic tank 20 and the anoxic tank 40 which are installed in the upper space via the second partition wall 26 .

第1の実施形態と同様に、沈殿槽70の汚泥を第1好気槽20へ返送する汚泥返送経路6に代えて、沈殿槽70の汚泥を無酸素槽40へ返送する汚泥返送経路6Aを備えることが好ましい(図7中、破線で示す。)。 As in the first embodiment, instead of the sludge return route 6 for returning the sludge in the sedimentation tank 70 to the first aerobic tank 20, a sludge return route 6A for returning the sludge in the sedimentation tank 70 to the anoxic tank 40 is provided. It is preferable to have it (indicated by a dashed line in FIG. 7).

無酸素槽40へ返送された沈殿分離汚泥に残存するBODが脱窒用有機源として有効活用され、さらに当該汚泥が第1好気槽20に移送されて低負荷状態で好気処理されることにより、初期吸着性能が回復された汚泥が第2好気槽50に供給されるようになる。 The BOD remaining in the sedimentation sludge returned to the anoxic tank 40 is effectively used as an organic source for denitrification, and the sludge is transferred to the first aerobic tank 20 and aerobicly treated in a low-load state. As a result, the sludge whose initial adsorption performance has been recovered is supplied to the second aerobic tank 50 .

図8には、図3に示した有機性排水処理装置100で、沈殿槽70の汚泥を無酸素槽40へ返送する汚泥返送経路6Aを備えて構成され、T-N除去率が90%となるように、第1好気槽20から無酸素槽40への循環流量が7Qに設定された有機性排水処理装置100が示されている。 FIG. 8 shows the organic wastewater treatment apparatus 100 shown in FIG. The organic waste water treatment apparatus 100 is shown in which the circulation flow rate from the first aerobic tank 20 to the anoxic tank 40 is set to 7Q so as to be.

図9(a)には、さらに他の有機性排水処理装置100が示されている。図8に示したように、T-N除去率を90%とするためには第1好気槽20から無酸素槽40への循環流量を7Qと大きな値に設定する必要があるために、第1好気槽20と無酸素槽40の一対に代えて循環式MBRを採用し、沈殿槽70の汚泥を各無酸素槽40へ返送する汚泥搬送経路を備えることで循環流量を抑えることができる。 Still another organic wastewater treatment apparatus 100 is shown in FIG. 9(a). As shown in FIG. 8, in order to achieve a TN removal rate of 90%, it is necessary to set the circulation flow rate from the first aerobic tank 20 to the anoxic tank 40 to a large value of 7Q. By adopting a circulation type MBR instead of the pair of the first aerobic tank 20 and the anoxic tank 40 and providing a sludge transport route for returning the sludge of the sedimentation tank 70 to each anoxic tank 40, the circulation flow rate can be suppressed. can.

図9(b)に示すように、循環式MBRは、第1好気槽20と無酸素槽40を一対の生物処理単位とする複数対の生物処理単位が汚泥の移送方向に直列に接続され、最下流に位置する第1好気槽20から最上流に位置する無酸素槽40に汚泥を返送するように構成されている。 As shown in FIG. 9(b), in the circulating MBR, a plurality of pairs of biological treatment units each including a first aerobic tank 20 and an anoxic tank 40 are connected in series in the sludge transfer direction. , the sludge is returned from the first aerobic tank 20 positioned most downstream to the anoxic tank 40 positioned most upstream.

原水供給経路1から混合槽60に供給された有機性排水が第8混合液経路9を介して活性汚泥とともに各無酸素槽40へ供給され、混合液は第1混合液経路2を介して各無酸素槽40から下流側の第1好気槽20に供給されて好気処理された後に、第2混合液経路3を介して各第1好気槽20か下流側の各無酸素槽40に供給されて脱窒処理され、さらに各無酸素槽40から第6混合液経路7を介して混合槽60に循環供給されるように構成されている。 The organic wastewater supplied to the mixing tank 60 from the raw water supply route 1 is supplied to each anoxic tank 40 together with the activated sludge through the eighth mixed solution route 9, and the mixed solution is supplied through the first mixed solution route 2 to each After being supplied from the anaerobic tank 40 to the first aerobic tank 20 on the downstream side and subjected to aerobic treatment, each first aerobic tank 20 or each anaerobic tank 40 on the downstream side through the second mixed liquid path 3 , denitrification treatment, and further circulated from each anoxic tank 40 to the mixing tank 60 via the sixth mixed solution path 7 .

このような有機性排水処理装置100は、処理水の窒素濃度規制が比較的緩やかな、例えばT-N<10mg/L程度の窒素濃度規制となる処理場に適用される。 Such an organic wastewater treatment apparatus 100 is applied to a treatment plant where nitrogen concentration regulation of treated water is relatively loose, for example, TN<10 mg/L.

上述した実施形態は本発明の一態様であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。 The above-described embodiment is one aspect of the present invention, and the present invention is not limited by the description, and the specific configuration of each part can be appropriately changed and designed within the scope of the effects of the present invention. Needless to say.

1:原水供給経路
2:第1混合液経路
3:第1循環経路
4:第混合液経路
5:第混合液経路
6,6A:汚泥返送経路
7:第2循環経路
8:第混合液経路
9:第8混合液経路
10:最初沈澱池
20:好気槽、第1好気槽
30:膜分離装置
31:第3循環経路
40:無酸素槽
50:兼用槽、第2好気槽
60:混合槽
70:沈殿槽(最終沈澱池)
71:傾斜板
80:凝集剤添加手段
90:消毒槽
100:有機性排水処理装置
1: raw water supply route 2: first mixed solution route 3: first circulation route
4: Second liquid mixture path 5: Third liquid mixture path 6, 6A: Sludge return path 7: Second circulation path
8: Fourth Mixed Solution Path 9: Eighth Mixed Solution Path 10: Primary Sedimentation Tank 20: Aerobic Tank, First Aerobic Tank 30: Membrane Separator
31: Third circulation route
40: Anoxic tank 50: Combined tank, second aerobic tank 60: Mixing tank 70: Sedimentation tank (final sedimentation tank)
71: Inclined plate
80: Flocculant addition means 90: Disinfection tank 100: Organic waste water treatment device

Claims (12)

無酸素槽と第1好気槽と第2好気槽と沈殿槽とを備える有機性排水処理装置の運転方法であって、
有機性排水を前記無酸素槽に供給し、前記無酸素槽と前記第1好気槽との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、前記第1好気槽に配置された膜分離装置からの膜透過液を処理水として取り出すとともに、
前記無酸素槽から前記第2好気槽へ混合液を送液し、さらに前記第2好気槽から前記沈殿槽へ混合液を送液し、前記沈殿槽からの固液分離液を処理水として取り出す、ことを特徴とする有機性排水処理装置の運転方法。
A method of operating an organic wastewater treatment apparatus comprising an anoxic tank, a first aerobic tank, a second aerobic tank and a sedimentation tank, comprising:
Organic wastewater is supplied to the anoxic tank, and a mixed solution of organic wastewater and activated sludge is circulated between the anoxic tank and the first aerobic tank to perform nitrification and denitrification treatment. While taking out the membrane permeated liquid from the membrane separation device arranged in the first aerobic tank as treated water,
The mixed liquid is sent from the anoxic tank to the second aerobic tank, and the mixed liquid is sent from the second aerobic tank to the sedimentation tank, and the solid-liquid separation liquid from the sedimentation tank is treated water. A method of operating an organic wastewater treatment system, characterized in that the water is taken out as
無酸素槽と第1好気槽と第2好気槽と混合槽と沈殿槽とを備える有機性排水処理装置の運転方法であって、
有機性排水を前記混合槽に供給し、前記混合槽と前記無酸素槽との間で有機性排水と活性汚泥との混合液を循環させつつ、前記無酸素槽と前記第1好気槽との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、前記第1好気槽に配置された膜分離装置からの膜透過液を処理水として取り出すとともに、
前記混合槽から前記第2好気槽へ混合液を送液し、さらに前記第2好気槽から前記沈殿槽へ混合液を送液し、前記沈殿槽からの固液分離液を処理水として取り出す、ことを特徴とする有機性排水処理装置の運転方法。
A method of operating an organic wastewater treatment apparatus comprising an anoxic tank, a first aerobic tank, a second aerobic tank, a mixing tank and a sedimentation tank, comprising:
While supplying organic wastewater to the mixing tank and circulating a mixed liquid of organic wastewater and activated sludge between the mixing tank and the anoxic tank, the anoxic tank and the first aerobic tank While performing nitrification and denitrification treatment by circulating a mixed liquid of organic wastewater and activated sludge between the
The mixed liquid is sent from the mixing tank to the second aerobic tank, the mixed liquid is further sent from the second aerobic tank to the sedimentation tank, and the solid-liquid separated liquid from the sedimentation tank is used as treated water. A method for operating an organic wastewater treatment system, characterized by removing the water.
無酸素槽と第1好気槽と兼用槽と沈殿槽とを備える有機性排水処理装置の運転方法であって、
有機性排水を前記無酸素槽に供給し、前記無酸素槽と前記第1好気槽との間で有機性排水と活性汚泥との混合液を循環させて硝化脱窒処理を行ないつつ、前記第1好気槽に配置された膜分離装置からの膜透過液を処理水として取り出すとともに、前記無酸素槽から好気処理を行なう前記兼用槽へ混合液を送液し、さらに前記兼用槽から前記沈殿槽へ混合液を送液し、前記沈殿槽からの固液分離液を処理水として取り出す第1運転状態と、
前記無酸素槽と前記第1好気槽との間で混合液を循環させつつ、前記無酸素槽と無酸素処理を行なう前記兼用槽との間で混合液を循環させて硝化脱窒処理を行いつつ、専ら前記第1好気槽に配置された膜分離装置からの膜透過液を処理水として取り出す第2運転状態と、
を備える、ことを特徴とする有機性排水処理装置の運転方法。
A method of operating an organic wastewater treatment apparatus comprising an anoxic tank, a first aerobic tank, a combined tank and a sedimentation tank, comprising:
Organic wastewater is supplied to the anoxic tank, and a mixed solution of organic wastewater and activated sludge is circulated between the anoxic tank and the first aerobic tank to perform nitrification and denitrification treatment. The membrane permeated liquid from the membrane separation device arranged in the first aerobic tank is taken out as treated water, and the mixed liquid is sent from the anoxic tank to the combined tank for aerobic treatment, and further from the combined tank. a first operating state in which the liquid mixture is sent to the sedimentation tank and the solid-liquid separation liquid from the sedimentation tank is taken out as treated water;
While circulating the mixed solution between the anoxic tank and the first aerobic tank, the mixed solution is circulated between the anoxic tank and the combined tank for performing the anoxic treatment to perform nitrification and denitrification treatment. a second operating state in which the membrane permeated liquid from the membrane separation device arranged in the first aerobic tank is exclusively taken out as treated water while performing
A method of operating an organic wastewater treatment system, comprising:
前記沈殿槽の汚泥を前記第1好気槽へ返送する、ことを特徴とする請求項1から3の何れかに記載の有機性排水処理装置の運転方法。 4. The method of operating an organic wastewater treatment apparatus according to any one of claims 1 to 3, wherein sludge in said sedimentation tank is returned to said first aerobic tank. 前記沈殿槽の汚泥を前記無酸素槽へ返送する、ことを特徴とする請求項1から3の何れかに記載の有機性排水処理装置の運転方法。 4. The method of operating an organic wastewater treatment system according to any one of claims 1 to 3, wherein the sludge in said sedimentation tank is returned to said anoxic tank. 前記第2好気槽または前記兼用槽から前記沈殿槽へ混合液を移送する途中または前記沈殿槽に凝集剤を添加する、ことを特徴とする請求項1から5の何れかに記載の有機性排水処理装置の運転方法。 6. The organic organic material according to any one of claims 1 to 5, wherein a flocculant is added to the sedimentation tank or during transfer of the mixed liquid from the second aerobic tank or the combined tank to the sedimentation tank. A method of operating a wastewater treatment system. 脱窒処理を行なう無酸素槽と、処理水を膜透過液として取り出す膜分離装置を備え硝化処理を行なう第1好気槽と、初期吸着処理を行なう第2好気槽と、沈殿槽と、前記無酸素槽へ有機性排水を供給する原水供給経路と、前記無酸素槽から前記第1好気槽へ有機性排水と活性汚泥の混合液を送る第1混合液経路と、前記第1好気槽から前記無酸素槽へ混合液を循環させる第1循環経路と、前記第2好気槽から前記沈殿槽へ混合液を送る第2混合液経路と、前記無酸素槽から前記第2好気槽へ混合液を送る第3混合液経路とを備える、ことを特徴とする有機性排水処理装置。 An anoxic tank for denitrification, a first aerobic tank for nitrification, equipped with a membrane separator for extracting treated water as membrane permeate, a second aerobic tank for initial adsorption, a sedimentation tank, a raw water supply path for supplying organic wastewater to the anoxic tank; a first mixed solution path for sending a mixture of organic wastewater and activated sludge from the anoxic tank to the first aerobic tank; a first circulation route for circulating the mixed solution from the air tank to the anoxic tank; a second mixed solution route for sending the mixed solution from the second aerobic tank to the sedimentation tank; and a third liquid mixture path for sending the liquid mixture to the gas tank. 脱窒処理を行なう無酸素槽と、処理水を膜透過液として取り出す膜分離装置を備え硝化処理を行なう第1好気槽と、初期吸着処理を行なう第2好気槽と、混合槽と、沈殿槽と、有機性排水を前記混合槽に供給する原水供給経路と、前記第1好気槽から前記無酸素槽へ有機性排水と活性汚泥との混合液を循環させる第1循環経路と、前記無酸素槽から前記混合槽へ混合液を循環する第2循環経路と、前記第2好気槽から前記沈殿槽へ混合液を送る第2混合液経路と、前記混合槽から前記第2好気槽へ混合液を送る第4混合液経路とを備える、ことを特徴とする有機性排水処理装置。 An anoxic tank for denitrification, a first aerobic tank for nitrification provided with a membrane separator for taking out treated water as membrane permeate, a second aerobic tank for initial adsorption, a mixing tank, a sedimentation tank, a raw water supply route for supplying organic wastewater to the mixing tank, a first circulation route for circulating a mixture of organic wastewater and activated sludge from the first aerobic tank to the anoxic tank; a second circulation route for circulating the mixed solution from the anoxic tank to the mixing tank; a second mixed solution route for sending the mixed solution from the second aerobic tank to the sedimentation tank; and a fourth liquid mixture path for sending the liquid mixture to the gas tank. 脱窒処理を行なう無酸素槽と、処理水を膜透過液として取り出す膜分離装置を備え硝化処理を行なう第1好気槽と、兼用槽と、沈殿槽と、前記無酸素槽へ有機性排水を供給する原水供給経路と、前記無酸素槽から前記第1好気槽へ有機性排水と活性汚泥の混合液を送る第1混合液経路と、前記兼用槽から前記沈殿槽へ混合液を送る第2混合液経路と、前記無酸素槽から前記兼用槽へ混合液を送る第3混合液経路と、第1好気槽から前記無酸素槽へ混合液を循環させる第1循環経路と、前記無酸素槽から前記兼用槽へ混合液を循環させる第循環経路と、を備え、
前記第3循環経路を開放して、前記兼用槽を第2好気槽として機能させる第1運転状態と、前記第3循環経路を閉塞して、前記兼用槽を第2無酸素槽として機能させる第2運転状態とに切替可能に構成されている、ことを特徴とする有機性排水処理装置。
An anoxic tank for denitrification, a first aerobic tank for nitrification, equipped with a membrane separation device for taking out treated water as a membrane permeate, a combined tank, a sedimentation tank, and organic wastewater to the anoxic tank. a first mixed solution route for sending a mixed solution of organic wastewater and activated sludge from the anoxic tank to the first aerobic tank; and a mixed solution for sending the mixed solution from the combined tank to the sedimentation tank. a second mixed solution route, a third mixed solution route for sending the mixed solution from the anoxic tank to the combined tank, a first circulation route for circulating the mixed solution from the first aerobic tank to the anoxic tank, a third circulation path for circulating the mixed liquid from the anoxic tank to the dual-purpose tank;
A first operating state in which the third circulation path is opened and the combined tank functions as a second aerobic tank, and the third circulation path is closed and the combined tank functions as a second anoxic tank. An organic wastewater treatment apparatus characterized by being configured to be switchable to and from a second operating state.
第1仕切壁を介して上方空間に前記第1好気槽が配置され、下方空間に前記無酸素槽が配置されている請求項7から9の何れかに記載の有機性排水処理装置。 10. The organic wastewater treatment apparatus according to any one of claims 7 to 9, wherein said first aerobic tank is arranged in an upper space via a first partition wall, and said anoxic tank is arranged in a lower space. 第2仕切壁を介して前記無酸素槽の下方空間に前記沈殿槽が配置されている請求項10記載の有機性排水処理装置。 11. The organic wastewater treatment apparatus according to claim 10, wherein said sedimentation tank is arranged in a space below said anoxic tank via a second partition wall. 前記沈殿槽の汚泥を前記第1好気槽へ返送する、汚泥返送経路を備えることを特徴とする請求項から11の何れかに記載の有機性排水処理装置。
12. The organic wastewater treatment apparatus according to any one of claims 7 to 11, further comprising a sludge return route for returning sludge from said sedimentation tank to said first aerobic tank.
JP2019027945A 2018-11-01 2019-02-20 Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment Active JP7195968B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018206586 2018-11-01
JP2018206586 2018-11-01

Publications (2)

Publication Number Publication Date
JP2020075233A JP2020075233A (en) 2020-05-21
JP7195968B2 true JP7195968B2 (en) 2022-12-26

Family

ID=70723134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019027945A Active JP7195968B2 (en) 2018-11-01 2019-02-20 Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP7195968B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325992A (en) 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp Waste water treatment apparatus with sludge concentrating means
JP2006223921A (en) 2005-02-15 2006-08-31 Toray Ind Inc Water treatment method
JP2010207657A (en) 2009-03-06 2010-09-24 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and wastewater treatment method
JP2011147868A (en) 2010-01-20 2011-08-04 Hitachi Plant Technologies Ltd Waste water treatment system and method
CN104402170A (en) 2014-11-05 2015-03-11 天津市艾德仪环保能源科技发展有限公司 Landfill leachate treatment method and system thereof
JP2020049432A (en) 2018-09-27 2020-04-02 株式会社クボタ Operating method of organic wastewater treatment device and organic wastewater treatment device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221168B2 (en) * 1993-07-28 2001-10-22 日立プラント建設株式会社 Wastewater nitrogen removal method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000325992A (en) 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp Waste water treatment apparatus with sludge concentrating means
JP2006223921A (en) 2005-02-15 2006-08-31 Toray Ind Inc Water treatment method
JP2010207657A (en) 2009-03-06 2010-09-24 Hitachi Plant Technologies Ltd Wastewater treatment apparatus and wastewater treatment method
JP2011147868A (en) 2010-01-20 2011-08-04 Hitachi Plant Technologies Ltd Waste water treatment system and method
CN104402170A (en) 2014-11-05 2015-03-11 天津市艾德仪环保能源科技发展有限公司 Landfill leachate treatment method and system thereof
JP2020049432A (en) 2018-09-27 2020-04-02 株式会社クボタ Operating method of organic wastewater treatment device and organic wastewater treatment device

Also Published As

Publication number Publication date
JP2020075233A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
EP3747836B1 (en) Anaerobic ammonia oxidation-based sewage treatment process using mbr
US6517723B1 (en) Method and apparatus for treating wastewater using membrane filters
AU2007238520B2 (en) Method and system for nitrifying and denitrifying wastewater
JP7110052B2 (en) Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment
KR100784933B1 (en) Apparatus for treating organic matter and nitrogen of high density organic wastewater
JP2659167B2 (en) Sewage denitrification dephosphorization method and apparatus
CN105621814A (en) High-quality regenerated recycle water treatment system and method
KR101721251B1 (en) SBR Process coupled with Membrane Process
US20120012524A1 (en) Membrane bioreactor process
KR100926268B1 (en) Process and apparatus of four stages biological treatment including combination of pre oxic and post denitrification through none driven internal recycles and submerged membrane filtration for treating sewage and waste water
KR101133330B1 (en) Advanced wastwater treatment system for membrane water through eliminating phosphorus and membrane fouling materials of sidestream
JP2020040048A (en) Organic wastewater treatment method and organic wastewater treatment device
JP2010253428A (en) Wastewater treatment apparatus and wastewater treatment method
KR100489728B1 (en) Wastewater treatment system by multiple sequencing batch reactor and its operation methods
JP2006205155A (en) Anaerobic tank and waste water treatment system including the same
KR101044826B1 (en) An operation method to increase advanced treatment efficiency in membrane bio reacter and an advanced treatment appartus there of
KR100839035B1 (en) Biological wastewater treatment apparatus using diffuser-mediated sludge flotation and treatment method using the same
JP7195968B2 (en) Method for operating organic wastewater treatment equipment and organic wastewater treatment equipment
JPH11244891A (en) Method for denitrification treating waste water and treating system
KR20040011147A (en) advanced wastwater treatment system using a submerged type membrane
KR100911443B1 (en) System for treatment of wastewater and method for treatment of wastewater using the same
CN210030310U (en) Treatment and recycling device for coking wastewater
JP2000140886A (en) Equipment for treatment of nitrogen-containing drainage
RU2644904C1 (en) Method of biological purification of wastewater from nitrogen phosphoric and organic compounds
JP3807945B2 (en) Method and apparatus for treating organic wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221214

R150 Certificate of patent or registration of utility model

Ref document number: 7195968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150