JP4082556B2 - Nitrogen removal equipment in membrane separation type oxidation ditch - Google Patents

Nitrogen removal equipment in membrane separation type oxidation ditch Download PDF

Info

Publication number
JP4082556B2
JP4082556B2 JP2001191286A JP2001191286A JP4082556B2 JP 4082556 B2 JP4082556 B2 JP 4082556B2 JP 2001191286 A JP2001191286 A JP 2001191286A JP 2001191286 A JP2001191286 A JP 2001191286A JP 4082556 B2 JP4082556 B2 JP 4082556B2
Authority
JP
Japan
Prior art keywords
oxidation ditch
water
membrane
membrane separation
anaerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001191286A
Other languages
Japanese (ja)
Other versions
JP2003001293A (en
Inventor
輝久 吉田
英明 浜田
耕市 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2001191286A priority Critical patent/JP4082556B2/en
Publication of JP2003001293A publication Critical patent/JP2003001293A/en
Application granted granted Critical
Publication of JP4082556B2 publication Critical patent/JP4082556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、膜分離式オキシデーションディッチにおける窒素除去装置、特に窒素を含む下水等の汚水を、膜分離装置を設置したオキシデーションディッチを用いて、浸漬膜の洗浄を行いつつ生物処理し、活性汚泥中の硝化細菌と脱窒細菌の作用で、生物学的に窒素を除去するようにした膜分離式オキシデーションディッチにおける窒素除去装置に関するものである。
【0002】
【従来の技術】
従来、中小規模の下水処理場等に流入する汚水を処理するために、活性汚泥の曝気槽に汚水を流入し、これを曝気、攪拌して生物処理を行う活性汚泥法、中でもオキシデーションディッチ法が多く採用されている。
また、近年開発された浸漬膜を用いた膜分離活性汚泥法は、反応槽内に膜分離装置を浸漬させて、吸引ポンプで処理水を排出するようにしているため、従来の膜分離法のように高圧ポンプを使用せず、ランニングコストが安価であり、オキシデーションディッチ法よりも清澄な処理水が得られる。
【0003】
【発明が解決しようとする課題】
しかしながら、浸漬膜を配設する場合、膜表面に汚泥が付着するのを防止するため、浸漬膜の下部に配設した散気管から空気を吹き込み、膜面を洗浄する必要があり、さらにこの洗浄用の空気を止めると浸漬膜による吸引濾過を行えないことから、通常はほぼ連続的に散気を行っている。
このため、オキシデーションディッチのような単槽式反応槽に浸漬膜を用いた場合は、洗浄用の空気によって常時曝気が行われることとなり、同一槽内にて嫌気状態を作るのは難しく、好気条件での硝化と嫌気条件での脱窒の組合せによって汚水中の窒素を除去する従来の単一槽を用いての処理方法では窒素の除去が難しいという問題があった。
【0004】
本発明は、上記従来の膜分離式における窒素除去方法の有する問題点に鑑み、膜分離式オキシデーションディッチを用い、しかも循環水路内に好気状態と嫌気状態とを生成し、この好気状態と嫌気状態との組合せにより、オキシデーションディッチ内にて硝化と脱窒とを行えるようにした膜分離式オキシデーションディッチにおける窒素除去装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の膜分離式オキシデーションディッチにおける窒素除去装置は、循環水路内を時間的に好気状態と嫌気状態とに切り替えるようにした短い循環水路を持つオキシデーションディッチにおいて、槽の中央部に配設した水流調整壁と、該水流調整壁内に設置した膜分離装置及び膜分離装置の膜洗浄用の散気管と、循環水路の汚水を攪拌曝気を行いつつ水流を発生するように配設した曝気攪拌機とよりなり、水流調整壁には底部の一部に汚泥混合液の取込口を、上部には曝気攪拌機による嫌気運転と好気運転に同期して開閉するようにした汚泥混合液の排出口を設け、嫌気運転時は前記排出口を閉じ、好気運転時は前記排出口を開放するようにしたことを特徴とする。
【0006】
本発明の膜分離式オキシデーションディッチにおける窒素除去装置は、槽の中央部に膜分離装置を浸漬させ、膜分離装置の底部に配設した散気管からの散気により膜は洗浄され、水流調整壁の底部の一部分に設けた取込口より汚泥混合液を取り込み、上部の一部に排出用の開閉装置付排出口を設け、水流調整壁の外側に設けた曝気攪拌機を、嫌気運転と好気運転を交互に繰り返すようにしているので、嫌気運転時は前記排出口を閉じて、曝気攪拌機を用いて攪拌のみ行うことにより、水流調整壁の内部は好気状態であっても、オキシデーションディッチの水路全体は嫌気状態にすることができ、また、好気運転時には、前記排出口を開放することにより、膜洗浄用に散気され、膜分離装置内を上昇する間に汚泥混合液中に溶解した酸素が、水流調整壁上部に設けた排出用の排出口から汚泥混合液とともにオキシデーションディッチの水路部分へと流出し、曝気攪拌機は、酸素の不足分を補うための曝気運転を行っているため、洗浄用と曝気用の酸素が一緒になり、かつ水路が短いため、水路全体が好気状態になり、膜洗浄用空気により溶解した酸素が、オキシデーションディッチの水路に流入するのを調整しているため、好気・嫌気の条件を時間的に変化させることにより、硝化・脱窒を促進して、汚水中の窒素を除去することができる。
【0007】
【発明の実施の形態】
以下、本発明の膜分離式オキシデーションディッチにおける窒素除去装置の実施の形態を図面に基づいて説明する。
【0008】
図1は、水路長の長いオキシデーションディッチを用いて汚水から窒素を除去する参考例を示す。
この参考例においては、オキシデーションディッチ水槽1の中央部に仕切壁となる水流調整壁3を配設し、これによりオキシデーションディッチ水槽1内に端部が接続された長い2本の水路が平行するようにして循環水路11,12を形成するとともに、該水流調整壁3内に、ユニット化された浸漬型の膜分離装置2が1台又は図示の参考例のように複数台を連結して設置される。
この膜分離装置2には、オキシデーションディッチ水槽1の外に吸引ポンプ21が接続され、膜分離装置2にて汚泥混合液を濾過し処理された処理水を排水するようにする。
なお、膜分離装置2には吸引ポンプ21を用いずに、処理水槽(図示省略)を別途設けて、膜分離装置2と処理水槽との間に形成される水位差により、重力濾過により膜分離装置2内の処理水を吸引排水する方法を用いることもできる。
【0009】
また、この膜分離装置2の下部位置には、膜洗浄用の散気管5を配設し、この散気管5からは、常に膜洗浄用の空気を吐出させ、膜分離装置2の膜面に付着する汚泥分を除去するようにする。
【0010】
オキシデーションディッチ水槽1内に形成した端部が接続された長い2本の水路は、その端部で接続されて循環水路11,12を形成するが、その一部を好気ゾーンとなるように、残りを嫌気ゾーンとなるようにする。
なお、上記好気ゾーンと嫌気ゾーンは、主として、曝気機4が設けられる位置によって定まり、本参考例においては、曝気機4が設けることにより、酸素の供給と水流が与えるる水路11の下流側が概ね好気ゾーンとなり、それに続く水路12の下流側が概ね嫌気ゾーンとなる。
また、この曝気機4は、特に限定されるものではないが、図示のようなスクリュー式、その他オキシデーションディッチ法に適した任意の曝気機を適用することができる。
なお、前記膜分離装置2下方の散気管5から吐出される膜洗浄用の空気量が多く、該膜洗浄用空気によって必要な酸素のすべてを供給することが可能な場合には、曝気機に代えて攪拌機を用いることも可能である。
【0011】
オキシデーションディッチ水槽1の中央部に循環水路を形成するために配設される水流調整壁3は、膜分離装置2の周囲を囲むように、かつ循環水路の水面よりも高い位置まで配設され、この水流調整壁3の外側に循環水路が形成されるとともに、水流調整壁3の底部には、汚泥混合液Cの取込口30を、また上部の水面付近で、かつ曝気機4の近傍位置、望ましくは好気ゾーンの上流位置に汚泥混合液の排出口、例えばスリット31をそれぞれ設ける。
これにより、循環水路内より汚泥混合液の一部を水流調整壁3内の底部に取り込み、膜分離装置2にて濾過し、処理水のみを吸引ポンプ21によりオキシデーションディッチ水槽1外へ排水し、汚泥が混合され、かつ散気管にて供給された空気の一部が溶解し曝気された状態の汚泥混合液をスリット31より循環水路内の好気ゾーン内へ排出するようにする。このスリット31は、本参考例においては、好気ゾーンの上流位置の曝気機4の近傍位置に配設するようにしたが、汚泥混合液Cの取込口30は循環水路の底部で、水流調整壁3の底部位置であれば、好気ゾーン、或いは嫌気ゾーンのいずれでもよい。
【0012】
以下、本発明の作用について説明する。オキシデーションディッチ水槽1に流入する汚水Aに含まれる窒素成分は、アンモニア態と有機態であり、窒素を除去するためには、オキシデーションディッチ水槽1においてまず好気ゾーンにて曝気を行って好気状態とし、硝化細菌の作用により、硝酸態に酸化する。この好気ゾーンを経た汚水は嫌気ゾーンへ導かれる。
【0013】
次に、嫌気ゾーン内では、嫌気状態となっているため、脱窒菌が汚水中の有機物をエネルギー源として利用しながら、硝酸態の窒素を窒素分子に還元することにより、窒素ガスとして大気中に放散させる。
この場合、水路長の長いオキシデーションディッチ水槽1においては、水路を流れる間に微生物の呼吸等によって、汚泥混合液Cに含まれる溶存酸素が消費されるため、膜洗浄用の散気管5から散気され、スリット31から曝気機4近傍へと排出された汚泥混合液Cに含まれる溶存酸素は、曝気機4により供給された溶存酸素と混合されるが、好気ゾーンを流れる間に消失する。
したがって、流入した汚水Aは、曝気機4から循環水路内を1周する間に、溶存酸素の多い好気ゾーンと溶存酸素のない嫌気ゾーンを通過し、これを繰り返すため、膜洗浄用の散気管5から常時散気を行っても、同一のオキシデーションディッチ水槽1内において硝化と脱窒の両方を進めることができる。
【0014】
図2〜図3に、本発明の一実施例を示す。この実施例は、循環水路が比較的短いもので、この水路長の短いオキシデーションディッチ水槽10の場合でも、循環水路内を時間的に好気状態と嫌気状態とに切り替えることにより、水路長の長いオキシデーションディッチ水槽1の場合と同様に、同一のオキシデーションディッチ水槽1を用いて汚水より窒素を除去するようにする。
【0015】
オキシデーションディッチ水槽1の中央部に水流調整壁3を配設し、これにより槽内に2本の水路が平行する循環水路11,12を形成するとともに、該水流調整壁3内に、上記参考例と同様に、吸引ポンプ21が接続された浸漬型の膜分離装置2を設置し、該膜分離装置2にて汚泥混合液を濾過し処理された処理水を排水するようにする。
また、この膜分離装置2の下部位置には、膜洗浄用の散気管5を配設し、この散気管5からは、常に膜洗浄用の空気を吐出させ、膜分離装置2の膜面に付着する汚泥分を除去するようにする。
【0016】
水流調整壁3は、膜分離装置2の周囲を囲むように、かつ循環水路の水面よりも高い位置まで配設され、この水流調整壁3の外側に循環水路が形成されるとともに、水流調整壁3の底部には、循環水路内の汚泥混合液Cを水流調整壁3内に取り込むための取込口30を、また上部の水面付近に開閉可能な汚泥混合液の排出口、例えば開閉装置を組み込んだスリット32をそれぞれ設ける。
なお、この汚泥混合液の取込口30は、開閉装置付スリット32からある程度離れた位置であれば、任意の位置に設けることができる。
また、水路11内には、曝気攪拌機4が設けられ、水路内に酸素の供給と水流を与えるよう構成する。この曝気攪拌機4は、特に限定されるものではないが、図示のようなスクリュー式、その他オキシデーションディッチ法に適した任意の曝気攪拌機を適用することができる。
【0017】
水流調整壁3の上部の水面付近で、かつ曝気攪拌機4の側に向けて形成したスリット32は、特に限定されるものではなく、開閉する機構は、スリットを塞ぐ蓋状の板が前後、又は左右にスライドする機構、ルーバーのように格子状の板が回転して、自動的に開閉する機構等を採用することができる。このスリット32に組み込まれた開閉装置は、曝気攪拌機4の運転に連動して自動的にその開閉動作が行えるように構成する。
【0018】
このように、水路長の短いオキシデーションディッチ水槽10で、汚水Aに含まれる窒素を除去するために、循環水路内を時間的に好気時間帯と嫌気時間帯を交互に繰り返すようにして行うようにする。
また、嫌気時間帯においても、オキシデーションディッチ水槽10内の循環水流を保持することが好ましいため、曝気攪拌機4は、嫌気攪拌が可能なもの、又は攪拌機と散気装置で構成される設備を用いることもできる。
【0019】
以下、上記実施例の作用を説明する。オキシデーションディッチ水槽10に流入する汚水Aに含まれる窒素成分は、アンモニア態と有機態であり、窒素を除去するためには、オキシデーションディッチ水槽10において、まず曝気を行って好気状態となった循環水路内を汚水が流下する際、硝化細菌の作用により、硝酸態に酸化かれ、この好気時間帯に処理された汚水を、次に嫌気状態にして、脱窒菌が汚水中の有機物をエネルギー源として利用しながら、硝酸態の窒素を窒素分子に還元することにより、窒素ガスとして大気中に放散させる。
【0020】
オキシデーションディッチ水槽10での好気時間帯での処理は、散気管より散気することにより膜分離装置2の膜面を洗浄すると共に、スリット32に組み込まれた開閉装置を曝気攪拌機の駆動と同期させて解放し、この散気により酸素が溶解した汚水をこの解放されたスリット32より循環水路内へ吐出するようにして行う。これにより曝気攪拌機の駆動と散気管よりの散気とにより水路内に十分の酸素を供給し、好気状態とすることができる。
この好気状態となった循環水路内を汚水が流下する際、硝化細菌の作用により、硝酸態に酸化かれる。
【0021】
しかし、水路長の短いオキシデーションディッチ水槽10で硝化と脱窒を行う場合は、水路を流れる間に溶存酸素が消失しないため、好気時間帯と嫌気時間帯を交互に繰り返す必要がある。
この好気と嫌気の2つの条件は、曝気攪拌機4の運転によって作ることができるが、膜洗浄によって供給された溶存酸素によって、嫌気条件が阻害されないようにするため、嫌気運転時間帯は、開閉装置付スリット32を閉じて運転を行う。
なお、嫌気時間帯においても、膜分離装置2を運転して、膜濾過を継続するため、膜によって濾過された処理水Bに相当する量の汚泥混合液Cが、汚泥混合液の取込口30から水流調整壁3の内部へと流入する。嫌気時間帯にも、膜洗浄は継続されるが、洗浄用の散気によって、水流調整壁3の内部の溶存酸素濃度は徐々に高くなるが、スリット32は閉じているため、オキシデーションディッチ水槽10の水路部分は嫌気状態に保つことができる。
【0022】
このように制御用のタイマー等を用いて所定の時間、嫌気運転を行った後、好気運転に切り替えて曝気を開始するとともに、スリット32の開閉装置を起動させて、スリットを開放させる。
水流調整壁3の内部の汚泥混合液Cは、膜洗浄用空気とともに上昇し、一部はスリット32から外部の水路へと排出され、残りは、水流調整壁3の内部で気泡のない部分を下降して、上下の循環水流を形成する。スリット32から循環水路へと排出された汚泥混合液Cに含まれる溶存酸素は、曝気攪拌機4により供給された溶存酸素と混合され、微生物の呼吸や、有機物の酸化分解に有効に用いられる。
【0023】
以上のように、好気・嫌気の2つのゾーンを形成させることが困難な、水路の短いオキシデーションディッチ水槽10においても、洗浄用の散気によって悪影響を受けることなく、好気時間帯と嫌気時間帯を交互に繰り返すことにより、硝化と脱窒を進め、汚水中の窒素をガス化して、除去することができる。
また、膜洗浄用空気により溶解した酸素が、オキシデーションディッチの水路に流入するのを調整し、好気・嫌気の条件をゾーンで分割、又は時間的に変化させることにより、従来、オキシデーションディッチ法のように単槽式の膜分離活性汚泥法では困難であった硝化と脱窒を効率良く進めることができる。
また、水路長の短いオキシデーションディッチ水槽においても、嫌気時間帯に膜洗浄を停止することなく、膜濾過を継続して行えるため、分離膜の必要枚数を増やす必要がなく、設備費を安価にすることができる。
さらに、膜洗浄用空気により溶解した酸素も、微生物の呼吸や有機物の酸化分解に利用できるため、溶存酸素を無駄に消費することなく、ランニングコストの上昇が抑えられる。
【0024】
【発明の効果】
本発明の膜分離式オキシデーションディッチにおける窒素除去装置によれば、槽の中央部に膜分離装置を浸漬させ、膜分離装置の底部に配設した散気管からの散気により膜は洗浄され、水流調整壁の底部の一部分に設けた取込口より汚泥混合液を取り込み、上部の一部に排出用の開閉装置付排出口を設け、水流調整壁の外側に設けた曝気攪拌機を、嫌気運転と好気運転を交互に繰り返すようにしているので、嫌気運転時は前記排出口を閉じて、曝気攪拌機を用いて攪拌のみ行うことにより、水流調整壁の内部は好気状態であっても、オキシデーションディッチの水路全体は嫌気状態にすることができ、また、好気運転時には、前記排出口を開放することにより、膜洗浄用に散気され、膜分離装置内を上昇する間に汚泥混合液中に溶解した酸素が、水流調整壁上部に設けた排出用の排出口から汚泥混合液とともにオキシデーションディッチの水路部分へと流出し、曝気攪拌機は、酸素の不足分を補うための曝気運転を行っているため、洗浄用と曝気用の酸素が一緒になり、かつ水路が短いため、水路全体が好気状態になり、膜洗浄用空気により溶解した酸素が、オキシデーションディッチの水路に流入するのを調整しているため、好気・嫌気の条件を時間的に変化させることにより、硝化・脱窒を促進して、汚水中の窒素を除去することができる。
【図面の簡単な説明】
【図1】 膜分離式オキシデーションディッチにおける窒素除去方法の参考例を示し、水路長の長いオキシデーションディッチ水槽の平面概略図である。
【図2】 本発明の膜分離式オキシデーションディッチにおける窒素除去方法の一実施例を示し、水路長の短いオキシデーションディッチ水槽の平面概略図である。
【図3】 図2の立面断面図である。
【符号の説明】
1 オキシデーションディッチ水槽
10 オキシデーションディッチ水槽
11 水路
12 水路
2 膜分離装置
3 水流調整壁
4 曝気機
5 散気管
21 吸引ポンプ
30 汚泥混合液の取込口
31 汚泥混合液の排出口(スリット)
32 開閉可能な汚泥混合液の排出口(開閉装置付スリット)
A 汚水
B 処理水
C 汚泥混合液
[0001]
BACKGROUND OF THE INVENTION
The present invention is a nitrogen removal device in a membrane separation type oxidation ditch, in particular, sewage such as sewage containing nitrogen is biologically treated using an oxidation ditch in which a membrane separation device is installed while washing the submerged membrane. The present invention relates to a nitrogen removing apparatus in a membrane separation type oxidation ditch in which nitrogen is biologically removed by the action of nitrifying bacteria and denitrifying bacteria in sludge.
[0002]
[Prior art]
Conventionally, in order to treat sewage flowing into small- and medium-sized sewage treatment plants, sewage flows into an activated sludge aeration tank, and this is aerated and stirred to perform biological treatment, especially the oxidation ditch method. Is often adopted.
In addition, the recently developed membrane separation activated sludge method using a submerged membrane immerses a membrane separator in a reaction tank and discharges treated water with a suction pump. Thus, a high-pressure pump is not used, the running cost is low, and treated water that is clearer than the oxidation ditch method can be obtained.
[0003]
[Problems to be solved by the invention]
However, when an immersion membrane is provided, in order to prevent sludge from adhering to the membrane surface, it is necessary to clean the membrane surface by blowing air from an air diffuser provided below the immersion membrane. Since air filtration cannot be performed with a submerged membrane when the working air is stopped, the air is usually diffused almost continuously.
For this reason, when an immersion membrane is used in a single tank type reaction vessel such as an oxidation ditch, aeration is always performed with cleaning air, and it is difficult to create an anaerobic state in the same tank. There is a problem that it is difficult to remove nitrogen by a conventional treatment method using a single tank that removes nitrogen in wastewater by a combination of nitrification under anaerobic conditions and denitrification under anaerobic conditions.
[0004]
In view of the problem of the nitrogen removal method in the conventional membrane separation type, the present invention uses a membrane separation type oxidation ditch and generates an aerobic state and an anaerobic state in the circulation channel, and this aerobic state An object of the present invention is to provide a nitrogen removal apparatus in a membrane separation type oxidation ditch in which nitrification and denitrification can be performed in the oxidation ditch by a combination of an anaerobic state.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the nitrogen removing apparatus in the membrane separation type oxidation ditch according to the present invention is an oxidation ditch having a short circulation channel in which the circulation channel is temporally switched between an aerobic state and an anaerobic state . The water flow adjusting wall disposed in the center of the tank, the membrane separation device installed in the water flow adjusting wall, the aeration pipe for cleaning the membrane of the membrane separation device, and the water flow while stirring and aeration of the sewage in the circulation channel It consists of an aeration stirrer arranged to generate, and the water flow control wall opens and closes the sludge mixture intake at a part of the bottom, and the upper part opens and closes in synchronization with anaerobic operation and aerobic operation by the aeration stirrer A discharge port for the sludge mixed liquid is provided , and the discharge port is closed during anaerobic operation, and the discharge port is opened during an aerobic operation .
[0006]
The nitrogen removing device in the membrane separation type oxidation ditch of the present invention has a membrane separation device immersed in the central part of the tank, and the membrane is washed by air diffused from an air diffuser provided at the bottom of the membrane separation device, thereby adjusting the water flow. The sludge mixed liquid is taken in from the inlet provided at a part of the bottom of the wall, the outlet with opening / closing device for discharging is provided at a part of the upper part, and the aeration stirrer provided outside the water flow adjusting wall is preferred for anaerobic operation. Since the air operation is repeated alternately, by closing the discharge port during anaerobic operation and performing only agitation using an aeration stirrer, even if the inside of the water flow adjusting wall is in an aerobic state, oxidation is performed. The entire channel of the ditch can be anaerobic, and during aerobic operation, by opening the outlet, it is diffused for membrane cleaning, and in the sludge mixture while rising in the membrane separator. Oxygen dissolved in water It flows out from the discharge outlet provided at the upper part of the adjustment wall to the water channel part of the oxidation ditch together with the sludge mixture, and the aeration stirrer performs aeration operation to make up for the lack of oxygen. Since aeration oxygen is combined and the water channel is short, the whole water channel becomes aerobic, and the oxygen dissolved by the membrane cleaning air is adjusted to flow into the oxidation ditch water channel, By changing the conditions of aerobic / anaerobic over time, nitrification / denitrification can be promoted and nitrogen in the sewage can be removed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a nitrogen removing device in a membrane separation type oxidation ditch of the present invention will be described based on the drawings.
[0008]
FIG. 1 shows a reference example in which nitrogen is removed from sewage using an oxidation ditch having a long channel length.
In this reference example, a water flow adjusting wall 3 serving as a partition wall is disposed at the center of the oxidation ditch water tank 1, whereby two long water channels whose ends are connected in the oxidation ditch water tank 1 are parallel to each other. In this way, the circulating water channels 11 and 12 are formed, and in the water flow adjusting wall 3, one united immersion type membrane separation device 2 is connected or a plurality of units are connected as in the illustrated reference example. Installed.
A suction pump 21 is connected to the membrane separation apparatus 2 outside the oxidation ditch water tank 1, and the treated water that has been treated by filtering the sludge mixed solution in the membrane separation apparatus 2 is drained.
The membrane separation device 2 is not provided with the suction pump 21 and is provided with a treatment water tank (not shown), and the membrane separation is performed by gravity filtration due to the water level difference formed between the membrane separation device 2 and the treatment water tank. A method of sucking and draining the treated water in the apparatus 2 can also be used.
[0009]
A membrane cleaning air diffuser 5 is disposed at a lower position of the membrane separator 2, and the membrane cleaning air is always discharged from the air diffuser 5 to the membrane surface of the membrane separator 2. Remove adhering sludge.
[0010]
The two long water channels connected in the end portion formed in the oxidation ditch water tank 1 are connected at the end portions to form the circulation water channels 11 and 12, but a part of them becomes an aerobic zone. Make the rest into an anaerobic zone.
The aerobic zone and the anaerobic zone are mainly determined by the position where the aerator 4 is provided. In the present reference example, the aerator 4 is provided so that the downstream side of the water channel 11 provided by the supply of oxygen and water flow is The aerobic zone is generally formed, and the downstream side of the water channel 12 that follows is generally an anaerobic zone.
In addition, the aerator 4 is not particularly limited, but any aerator suitable for the screw type and other oxidation ditch methods as illustrated can be applied.
When the amount of air for membrane cleaning discharged from the air diffuser 5 below the membrane separation device 2 is large and all of the necessary oxygen can be supplied by the air for membrane cleaning, the aerator is supplied. It is also possible to use a stirrer instead.
[0011]
The water flow adjusting wall 3 disposed to form a circulation channel in the center of the oxidation ditch water tank 1 is disposed so as to surround the periphery of the membrane separation device 2 and to a position higher than the water surface of the circulation channel. A circulation channel is formed outside the water flow adjusting wall 3, and a sludge mixed liquid C intake port 30 is formed at the bottom of the water flow adjusting wall 3, near the upper water surface, and in the vicinity of the aerator 4. A sludge mixed liquid outlet, for example, a slit 31 is provided at a position, preferably upstream of the aerobic zone.
As a result, a part of the sludge mixed solution is taken into the bottom of the water flow adjusting wall 3 from the inside of the circulation channel, filtered by the membrane separation device 2, and only the treated water is discharged outside the oxidation ditch water tank 1 by the suction pump 21. The sludge mixed liquid in a state where sludge is mixed and a part of the air supplied through the air diffuser is dissolved and aerated is discharged from the slit 31 into the aerobic zone in the circulation channel. In this reference example, the slit 31 is disposed in the vicinity of the aerator 4 upstream of the aerobic zone, but the intake 30 for the sludge mixture C is at the bottom of the circulation channel, Any aerobic zone or anaerobic zone may be used as long as it is at the bottom of the adjustment wall 3.
[0012]
The operation of the present invention will be described below. Nitrogen components contained in the sewage A flowing into the oxidation ditch water tank 1 are in an ammonia state and an organic state. In order to remove nitrogen, the aeration zone in the oxidation ditch water tank 1 is first aerated in an aerobic zone. It is oxidised to nitrate by the action of nitrifying bacteria. Sewage that has passed through the aerobic zone is guided to the anaerobic zone.
[0013]
Next, because the anaerobic zone is in an anaerobic state, denitrifying bacteria use the organic matter in the sewage as an energy source, while reducing nitrate nitrogen to nitrogen molecules, so that nitrogen gas is released into the atmosphere. Dissipate.
In this case, in the oxidation ditch water tank 1 having a long water channel length, dissolved oxygen contained in the sludge mixed solution C is consumed by respiration of microorganisms while flowing through the water channel. The dissolved oxygen contained in the sludge mixed liquid C that is vaporized and discharged from the slit 31 to the vicinity of the aerator 4 is mixed with the dissolved oxygen supplied by the aerator 4, but disappears while flowing through the aerobic zone. .
Therefore, the sewage A that has flowed in passes through the aerobic zone with a lot of dissolved oxygen and the anaerobic zone without the dissolved oxygen during one round of the circulation channel from the aerator 4 and repeats this. Even if air is constantly diffused from the trachea 5, both nitrification and denitrification can proceed in the same oxidation ditch water tank 1.
[0014]
2 to 3 show an embodiment of the present invention . In this embodiment, the circulation channel is relatively short, and even in the case of the oxidation ditch water tank 10 having a short channel length, by switching the circulation channel between an aerobic state and an anaerobic state in time, Similarly to the case of the long oxidation ditch water tank 1, nitrogen is removed from the sewage using the same oxidation ditch water tank 1.
[0015]
A water flow adjusting wall 3 is disposed in the center of the oxidation ditch water tank 1, thereby forming circulation water channels 11 and 12 in which two water channels are parallel to each other in the tank. Similarly to the example, the immersion type membrane separation apparatus 2 connected with the suction pump 21 is installed, and the sludge mixed solution is filtered by the membrane separation apparatus 2 to drain the treated water.
A membrane cleaning air diffuser 5 is disposed at a lower position of the membrane separator 2, and the membrane cleaning air is always discharged from the air diffuser 5 to the membrane surface of the membrane separator 2. Remove adhering sludge.
[0016]
The water flow adjusting wall 3 is disposed so as to surround the periphery of the membrane separation device 2 and to a position higher than the water surface of the circulating water channel. A circulating water channel is formed outside the water flow adjusting wall 3, and the water flow adjusting wall is provided. 3 is provided with an intake port 30 for taking the sludge mixed liquid C in the circulation channel into the water flow adjusting wall 3, and a sludge mixed liquid discharge port that can be opened and closed near the upper water surface, for example, an opening / closing device. Each incorporated slit 32 is provided.
The sludge mixed-solution inlet 30 can be provided at an arbitrary position as long as it is located at some distance from the slit 32 with an opening / closing device.
Further, an aeration stirrer 4 is provided in the water channel 11, and is configured to supply oxygen and a water flow into the water channel. The aeration stirrer 4 is not particularly limited, but any aeration stirrer suitable for the screw type and other oxidation ditch methods as illustrated can be applied.
[0017]
The slit 32 formed near the water surface near the upper part of the water flow adjusting wall 3 and toward the aeration stirrer 4 side is not particularly limited, and the mechanism for opening and closing is a front and rear of a lid-like plate that closes the slit, or A mechanism that slides left and right, a mechanism that automatically opens and closes by rotating a grid-like plate such as a louver, and the like can be employed. The opening / closing device incorporated in the slit 32 is configured to automatically perform the opening / closing operation in conjunction with the operation of the aeration stirrer 4.
[0018]
As described above, in the oxidation ditch water tank 10 having a short water channel length, the aerobic time zone and the anaerobic time zone are alternately repeated in the circulation water channel in order to remove nitrogen contained in the sewage A. Like that.
Moreover, since it is preferable to maintain the circulating water flow in the oxidation ditch water tank 10 even in the anaerobic time zone, the aeration stirrer 4 uses an apparatus capable of anaerobic stirring, or a facility configured with a stirrer and a diffuser. You can also.
[0019]
The operation of the above embodiment will be described below. Nitrogen components contained in the sewage A flowing into the oxidation ditch water tank 10 are in an ammonia state and an organic state. In order to remove nitrogen, the oxidation ditch water tank 10 is first aerated by being aerated. When sewage flows down through the circulation channel, it is oxidized to nitrate by the action of nitrifying bacteria, and the sewage treated in this aerobic time zone is then anaerobic, and denitrifying bacteria remove organic matter in the sewage. While being used as an energy source, nitrate nitrogen is reduced to nitrogen molecules, which are then diffused into the atmosphere as nitrogen gas.
[0020]
The treatment in the aerobic time zone in the oxidation ditch water tank 10 is to clean the membrane surface of the membrane separation device 2 by aeration from the diffusion tube, and to operate the aeration stirrer with the opening / closing device incorporated in the slit 32. The operation is performed in such a manner that the sewage in which oxygen is dissolved by this aeration is discharged into the circulation channel through the released slit 32. Thereby, sufficient oxygen can be supplied into the water channel by driving the aeration stirrer and aeration from the aeration tube, and an aerobic state can be obtained.
When sewage flows down through the aerobic circulation channel, it is oxidized to nitrate by the action of nitrifying bacteria.
[0021]
However, when nitrification and denitrification are performed in the oxidation ditch water tank 10 having a short channel length, it is necessary to alternately repeat the aerobic time zone and the anaerobic time zone because dissolved oxygen does not disappear while flowing through the water channel.
The two conditions of aerobic and anaerobic can be created by the operation of the aeration stirrer 4, but the anaerobic operation time zone is opened and closed to prevent the anaerobic condition from being hindered by the dissolved oxygen supplied by the membrane cleaning. The operation is performed by closing the slit 32 with the device.
In addition, in order to continue the membrane filtration by operating the membrane separation device 2 even in the anaerobic time zone, an amount of the sludge mixed solution C corresponding to the treated water B filtered by the membrane is the inlet of the sludge mixed solution. 30 flows into the interior of the water flow adjusting wall 3. Although the membrane cleaning is continued even during the anaerobic time zone, the dissolved oxygen concentration inside the water flow adjusting wall 3 gradually increases due to the aeration for cleaning, but the slit 32 is closed, so the oxidation ditch water tank Ten waterway portions can be kept in an anaerobic state.
[0022]
After performing anaerobic operation for a predetermined time using a control timer or the like in this way, the aerobic operation is started to start aeration, and the opening / closing device of the slit 32 is activated to open the slit.
The sludge mixed liquid C inside the water flow adjusting wall 3 rises together with the membrane cleaning air, a part is discharged from the slit 32 to the external water channel, and the rest is a part free of bubbles inside the water flow adjusting wall 3. It descends to form an upper and lower circulating water stream. The dissolved oxygen contained in the sludge mixed liquid C discharged from the slit 32 to the circulation channel is mixed with the dissolved oxygen supplied by the aeration stirrer 4 and effectively used for respiration of microorganisms and oxidative decomposition of organic matter.
[0023]
As described above, even in the oxidation ditch water tank 10 having a short water channel, which is difficult to form two aerobic and anaerobic zones, the aerobic time zone and anaerobic are not adversely affected by the aeration for cleaning. By repeating the time zone alternately, nitrification and denitrification can be advanced, and nitrogen in the sewage can be gasified and removed.
In addition, by adjusting the oxygen dissolved by the membrane cleaning air to flow into the water channel of the oxidation ditch, the aerobic / anaerobic conditions are divided into zones or changed over time, so that Nitrification and denitrification, which was difficult with the single tank membrane separation activated sludge method as in the method, can be carried out efficiently.
In addition, even in an oxidation ditch water tank with a short channel length, membrane filtration can be continued without stopping the membrane cleaning during anaerobic times, so there is no need to increase the required number of separation membranes and the equipment cost can be reduced. can do.
Furthermore, since oxygen dissolved by the membrane cleaning air can also be used for respiration of microorganisms and oxidative decomposition of organic substances, an increase in running cost can be suppressed without wasting dissolved oxygen.
[0024]
【The invention's effect】
According to the nitrogen removing device in the membrane separation type oxidation ditch of the present invention, the membrane is immersed in the central part of the tank, and the membrane is washed by the air diffused from the air diffuser provided at the bottom of the membrane separating device. The sludge mixed liquid is taken in from the intake port provided at a part of the bottom of the water flow adjustment wall, the discharge port with a switch for discharge is provided at a part of the upper part, and the aeration stirrer provided outside the water flow adjustment wall is operated anaerobically. Since the aerobic operation is repeated alternately, by closing the discharge port during anaerobic operation and performing only agitation using an aeration stirrer, even if the inside of the water flow adjustment wall is in an aerobic state, The entire channel of the oxidation ditch can be anaerobic, and during aerobic operation, by opening the outlet, it is diffused for membrane cleaning and mixed with sludge while rising in the membrane separator. Oxygen dissolved in liquid , It flows out from the discharge outlet provided on the upper part of the water flow control wall to the water channel part of the oxidation ditch together with the sludge mixture, and the aeration stirrer performs aeration operation to make up for the shortage of oxygen, so cleaning Since the water for aeration and aeration are combined and the water channel is short, the entire water channel is in an aerobic state, and the oxygen dissolved by the membrane cleaning air is adjusted to flow into the water channel of the oxidation ditch. Therefore, nitrification / denitrification can be promoted and nitrogen in wastewater can be removed by changing the aerobic / anaerobic conditions over time.
[Brief description of the drawings]
FIG. 1 is a schematic plan view of an oxidation ditch water tank having a long channel length, showing a reference example of a nitrogen removal method in a membrane separation type oxidation ditch.
FIG. 2 is a schematic plan view of an oxidation ditch water tank having a short channel length, showing an embodiment of a nitrogen removal method in the membrane separation type oxidation ditch of the present invention.
3 is an elevational sectional view of FIG. 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Oxidation ditch water tank 10 Oxidation ditch water tank 11 Water channel 12 Water channel 2 Membrane separation device 3 Water flow control wall 4 Aeration machine 5 Aeration pipe 21 Suction pump 30 Sludge mixed liquid inlet 31 Sludge mixed liquid outlet (slit)
32 Sludge mixture discharge port that can be opened and closed (Slit with switchgear)
A Wastewater B Treated water C Sludge mixture

Claims (1)

循環水路内を時間的に好気状態と嫌気状態とに切り替えるようにした短い循環水路を持つオキシデーションディッチにおいて、槽の中央部に配設した水流調整壁と、該水流調整壁内に設置した膜分離装置及び膜分離装置の膜洗浄用の散気管と、循環水路の汚水を攪拌曝気を行いつつ水流を発生するように配設した曝気攪拌機とよりなり、水流調整壁には底部の一部に汚泥混合液の取込口を、上部には曝気攪拌機による嫌気運転と好気運転に同期して開閉するようにした汚泥混合液の排出口を設け、嫌気運転時は前記排出口を閉じ、好気運転時は前記排出口を開放するようにしたことを特徴とする膜分離式オキシデーションディッチにおける窒素除去装置。 In the oxidation ditch having a short circulation channel that switches the circulation channel between an aerobic state and an anaerobic state in time, a water flow adjusting wall disposed in the center of the tank, and installed in the water flow adjusting wall The membrane separation device and the membrane cleaning air diffuser pipe and the aeration stirrer arranged to generate the water flow while agitating and agitating the sewage in the circulating water channel, the water flow adjusting wall is part of the bottom In the upper part, an inlet for the sludge mixed liquid is provided, and an upper part is provided with an outlet for the sludge mixed liquid that is opened and closed in synchronization with anaerobic operation and aerobic operation by an aeration stirrer . The apparatus for removing nitrogen in a membrane separation type oxidation ditch, wherein the exhaust port is opened during aerobic operation .
JP2001191286A 2001-06-25 2001-06-25 Nitrogen removal equipment in membrane separation type oxidation ditch Expired - Fee Related JP4082556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001191286A JP4082556B2 (en) 2001-06-25 2001-06-25 Nitrogen removal equipment in membrane separation type oxidation ditch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001191286A JP4082556B2 (en) 2001-06-25 2001-06-25 Nitrogen removal equipment in membrane separation type oxidation ditch

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007197118A Division JP2007275895A (en) 2007-07-30 2007-07-30 Method for removing nitrogen in membrane separation type oxidation ditch and device therefor

Publications (2)

Publication Number Publication Date
JP2003001293A JP2003001293A (en) 2003-01-07
JP4082556B2 true JP4082556B2 (en) 2008-04-30

Family

ID=19029935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001191286A Expired - Fee Related JP4082556B2 (en) 2001-06-25 2001-06-25 Nitrogen removal equipment in membrane separation type oxidation ditch

Country Status (1)

Country Link
JP (1) JP4082556B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145245A (en) * 2013-03-05 2013-06-12 中国电子工程设计院 Membrane biological reactor
US9346371B2 (en) 2009-01-23 2016-05-24 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
US9771000B2 (en) 2009-01-23 2017-09-26 Magnemotion, Inc. Short block linear synchronous motors and switching mechanisms
US9802507B2 (en) 2013-09-21 2017-10-31 Magnemotion, Inc. Linear motor transport for packaging and other uses

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231206A (en) * 2005-02-25 2006-09-07 Kochi Univ Waste water treatment method and equipment
CN100467401C (en) * 2006-01-26 2009-03-11 宜兴市凌志环保有限公司 Integrated oxidation ditch of Orbal
CN105293713A (en) * 2014-05-29 2016-02-03 上海安赐机械设备有限公司 Device and method for carrying out enhanced biological treatment on nitrobenzene wastewater
CN107651753B (en) * 2017-11-08 2023-06-02 中机国际工程设计研究院有限责任公司 Sewage denitrification and dephosphorization device
GB201913515D0 (en) * 2019-09-19 2019-11-06 Xylem Water Solutions Ltd Influent treatment improvement
CN114772852B (en) * 2022-04-25 2023-06-16 北京华宇辉煌生态环保科技股份有限公司 Sewage treatment device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9346371B2 (en) 2009-01-23 2016-05-24 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
US9771000B2 (en) 2009-01-23 2017-09-26 Magnemotion, Inc. Short block linear synchronous motors and switching mechanisms
US10112777B2 (en) 2009-01-23 2018-10-30 Magnemotion, Inc. Transport system powered by short block linear synchronous motors
CN103145245A (en) * 2013-03-05 2013-06-12 中国电子工程设计院 Membrane biological reactor
US9802507B2 (en) 2013-09-21 2017-10-31 Magnemotion, Inc. Linear motor transport for packaging and other uses

Also Published As

Publication number Publication date
JP2003001293A (en) 2003-01-07

Similar Documents

Publication Publication Date Title
JP2011110520A (en) Apparatus for treating organic waste water and method of treating organic waste water
JP4082556B2 (en) Nitrogen removal equipment in membrane separation type oxidation ditch
JPH1076264A (en) Sewage treatment apparatus using immersion type membrane separator
JP4409532B2 (en) Apparatus for treating wastewater containing high-concentration nitrogen such as livestock wastewater and manure, and its treatment method
JPH0461998A (en) Discharged water treatment device
JP2007275895A (en) Method for removing nitrogen in membrane separation type oxidation ditch and device therefor
JP3600947B2 (en) Operating method of wastewater treatment equipment
JP2014113511A (en) Membrane separation apparatus, and operation method of membrane separation apparatus
JP3830026B2 (en) Membrane separation type oxidation ditch
JPH09314156A (en) Ozone treatment apparatus in which biological filter device is incorporated
JP3865207B2 (en) Membrane separation type oxidation ditch
JP4374885B2 (en) Membrane separator
JP2004321908A (en) Sewage treatment apparatus and sewage treatment method
JP5456238B2 (en) Membrane separator
JP3278560B2 (en) Water treatment equipment
JP2004351266A (en) Sewage treatment system
JPH07256294A (en) Living waste water treatment apparatus
JP2006035138A (en) Activated sludge processing equipment
JP4689007B2 (en) Wastewater purification method
JP2004216353A5 (en)
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JPH10337584A (en) Sewage treatment tank
CN211595182U (en) Anaerobic-anoxic-aerobic composite filter tank system
JP2004216353A (en) Waste water treatment apparatus
JP2000000593A (en) Sewage treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051226

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees