JP6181003B2 - Membrane separation activated sludge treatment apparatus and operation method thereof - Google Patents

Membrane separation activated sludge treatment apparatus and operation method thereof Download PDF

Info

Publication number
JP6181003B2
JP6181003B2 JP2014123709A JP2014123709A JP6181003B2 JP 6181003 B2 JP6181003 B2 JP 6181003B2 JP 2014123709 A JP2014123709 A JP 2014123709A JP 2014123709 A JP2014123709 A JP 2014123709A JP 6181003 B2 JP6181003 B2 JP 6181003B2
Authority
JP
Japan
Prior art keywords
biological reaction
tank
membrane separation
reaction tank
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014123709A
Other languages
Japanese (ja)
Other versions
JP2016002514A (en
Inventor
陽介 花本
陽介 花本
穣 森田
穣 森田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2014123709A priority Critical patent/JP6181003B2/en
Publication of JP2016002514A publication Critical patent/JP2016002514A/en
Application granted granted Critical
Publication of JP6181003B2 publication Critical patent/JP6181003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、膜分離活性汚泥法を利用して水処理を行う膜分離活性汚泥処理装置及びその運転方法に関する。   The present invention relates to a membrane separation activated sludge treatment apparatus for performing water treatment using a membrane separation activated sludge method and an operation method thereof.
活性汚泥を用いた排水処理方法として、膜分離活性汚泥法が利用されている。膜分離活性汚泥法は、活性汚泥を用いて生物反応処理を行った後、その処理水を限外濾過膜、精密濾過膜等を用いた濾過処理に供することで活性汚泥を分離回収する処理方法である。膜分離活性汚泥法を利用して水処理を行う膜分離活性汚泥処理装置としては、無酸素条件下において脱窒処理を行う無酸素槽と、好気条件下において硝化処理、有機物処理、脱リン処理等を行う好気槽とを順に備えると共に、好気槽で処理された処理水と活性汚泥とを固液分離する膜分離器と、好気槽で処理された処理水の一部を無酸素槽に返流させる返流流路とを有する処理装置が知られている。   A membrane separation activated sludge method is used as a wastewater treatment method using activated sludge. Membrane separation activated sludge method is a treatment method that separates and recovers activated sludge by performing biological reaction treatment using activated sludge and then subjecting the treated water to filtration treatment using ultrafiltration membrane, microfiltration membrane, etc. It is. Membrane separation activated sludge treatment equipment that performs water treatment using the membrane separation activated sludge method includes an oxygen-free tank that performs denitrification treatment under anaerobic conditions, and nitrification treatment, organic matter treatment, dephosphorization under aerobic conditions. An aerobic tank for treatment, etc. in order, a membrane separator for solid-liquid separation of the treated water and activated sludge treated in the aerobic tank, and a portion of the treated water treated in the aerobic tank 2. Description of the Related Art A processing apparatus having a return flow path for returning to an oxygen tank is known.
この種の膜分離活性汚泥処理装置では、排水処理方法の一種である嫌気好気法(AO法)に基いた生物反応処理が行われている。無酸素槽では、活性汚泥に含まれるポリリン酸蓄積細菌に、菌体内に蓄積しているリンをあらかじめ放出させる処理が行われ、好気槽では、ポリリン酸蓄積細菌に放出させた以上のリンを採り込ませて蓄積させる。その後、このようなポリリン酸蓄積細菌を余剰汚泥として引き抜くことで脱リン処理がなされている。また、好気槽では、活性汚泥による有機物の好気分解処理が行われると共に、活性汚泥に含まれる硝化菌の作用で、被処理水に含まれているアンモニア態窒素(NH−N)を硝酸態窒素(NO−N)にまで酸化する硝化処理も行われる。そして、硝酸態窒素を含む処理水が無酸素槽に返送され、無酸素槽において、活性汚泥に含まれる脱窒菌の作用で、硝酸態窒素を分子状窒素(N)にまで還元する脱窒処理が行われて窒素除去がなされている。 In this type of membrane separation activated sludge treatment apparatus, biological reaction treatment based on an anaerobic aerobic method (AO method) which is a kind of wastewater treatment method is performed. In the anaerobic tank, the polyphosphate-accumulating bacteria contained in the activated sludge are treated in advance to release the phosphorus accumulated in the cells. In the aerobic tank, more phosphorus than the polyphosphate-accumulating bacteria is released. Incorporate and accumulate. Thereafter, such polyphosphoric acid accumulating bacteria are extracted as surplus sludge and dephosphorized. In the aerobic tank, the aerobic decomposition treatment of the organic matter by the activated sludge is performed, and ammonia nitrogen (NH 4 -N) contained in the water to be treated is removed by the action of nitrifying bacteria contained in the activated sludge. nitrification process which oxidizes to a nitrate nitrogen (NO 3 -N) is also performed. Then, treated water containing nitrate nitrogen is returned to the oxygen-free tank, and in the oxygen-free tank, denitrification that reduces nitrate nitrogen to molecular nitrogen (N 2 ) by the action of denitrifying bacteria contained in the activated sludge. Treatment is performed to remove nitrogen.
膜分離活性汚泥処理装置に備えられる膜分離器は、処理水に含まれる活性汚泥を分離回収する機能を有しており、活性汚泥濃度の向上や、これに伴う処理装置の簡略化、小型化を実現する手段として有効であるとされている。膜分離器には、分離膜の目詰まりを防止するために、分離膜を曝気洗浄する散気装置が併設されることが多く、このような膜分離器が設置された処理槽を好気槽として機能させる形態の膜分離活性汚泥処理装置の開発が進められている。   The membrane separator provided in the membrane separation activated sludge treatment device has the function of separating and recovering the activated sludge contained in the treated water, improving the activated sludge concentration, and simplification and miniaturization of the treatment device associated therewith. It is said that it is effective as means for realizing the above. In order to prevent clogging of the separation membrane, the membrane separator is often provided with an air diffuser for aeration cleaning of the separation membrane, and the treatment tank in which such a membrane separator is installed is an aerobic tank. Development of a membrane-separated activated sludge treatment device that can function as a device is underway.
こうした形態の膜分離活性汚泥処理装置では、活性汚泥の分離回収に伴う活性汚泥濃度の上昇に起因して、微生物による溶存酸素消費量が増大したり、被処理水の粘度の増大によって水相への酸素移動速度が低下し、散気量に対する酸素溶解効率が悪化したりする。そのため、必要とされる溶存酸素濃度を維持するための散気量が増加する傾向があり、運転動力を抑制することは容易ではない。   In such a form of membrane-separated activated sludge treatment apparatus, the dissolved oxygen consumption by microorganisms increases due to an increase in the activated sludge concentration accompanying the separation and recovery of activated sludge, or the viscosity of water to be treated increases to the water phase. The oxygen transfer rate of the gas decreases, and the oxygen dissolution efficiency with respect to the amount of air diffused deteriorates. Therefore, the amount of aeration for maintaining the required dissolved oxygen concentration tends to increase, and it is not easy to suppress the driving power.
そこで、運転動力の削減を可能とした膜分離活性汚泥処理装置が提案されている。例えば、特許文献1には、活性汚泥によって被処理水を処理する好気槽を複数に分割し、前記被処理水を好気的に処理する第一好気槽と、前記第一好気槽からの前記被処理水が流入し、前記活性汚泥を膜分離する膜ユニットを備えて、活性汚泥濃度が前記第一好気槽よりも高く設定された第二好気槽と、を備え、前記第二好気槽には、少なくとも前記第一好気槽よりも上流側に硝化液を循環させる循環ラインを設けたことを特徴とする膜分離活性汚泥処理装置が開示されている。   Therefore, a membrane separation activated sludge treatment apparatus that can reduce operating power has been proposed. For example, Patent Document 1 discloses that an aerobic tank for treating treated water with activated sludge is divided into a plurality of parts, and a first aerobic tank for treating the treated water aerobically and the first aerobic tank. A second aerobic tank having an activated sludge concentration set higher than the first aerobic tank. A membrane separation activated sludge treatment apparatus is disclosed in which the second aerobic tank is provided with a circulation line for circulating the nitrification liquid at least upstream of the first aerobic tank.
特開2012−076081号公報JP 2012-076081 A
図5は、比較例に係る膜分離活性汚泥処理装置の概略構成を示す図である。特許文献1に開示されるような従来の膜分離活性汚泥処理装置(比較例に係る膜分離活性汚泥処理装置)100は、撹拌手段32が設置された無酸素槽20Cと、微細気泡を散気する第1散気手段(22,24)が設置された第1好気槽30Cと、膜分離器41及び粗大気泡を散気する第2散気手段(42,44)が設置された第2好気槽40Cと、第2好気槽40Cにおける処理水を無酸素槽20Cに返流させる返流流路150Cとを備えている。   FIG. 5 is a diagram showing a schematic configuration of a membrane separation activated sludge treatment apparatus according to a comparative example. A conventional membrane separation activated sludge treatment apparatus (a membrane separation activated sludge treatment apparatus according to a comparative example) 100 as disclosed in Patent Document 1 diffuses fine bubbles with an oxygen-free tank 20C in which stirring means 32 is installed. The first aerobic tank 30C in which the first air diffuser means (22, 24) is installed, and the second air diffuser (42, 44) in which the membrane separator 41 and the second air diffuser means (42, 44) to diffuse coarse bubbles are installed. An aerobic tank 40C and a return flow path 150C for returning the treated water in the second aerobic tank 40C to the anoxic tank 20C are provided.
この膜分離活性汚泥処理装置100では、返流流路150Cによって、膜分離器41で濃縮された活性汚泥を処理水と共に無酸素槽20Cに返流させており、粗大気泡を散気する第2散気手段(42,44)を第2好気槽40Cに設置されている膜分離器41の曝気洗浄に用いることができる。その一方で、微細気泡を散気する第1散気手段(22,24)を第1好気槽30Cに設置することによって、第1好気槽30Cを、第2好気槽40Cと比較して、被処理水中へ酸素が溶け込み易い状態とし、散気量を抑制させることで、装置全体の運転動力の低減を図っている。   In the membrane separation activated sludge treatment apparatus 100, the activated sludge concentrated in the membrane separator 41 is returned to the anoxic tank 20C together with the treated water by the return flow channel 150C, and the second bubble diffuses coarse bubbles. The aeration means (42, 44) can be used for aeration cleaning of the membrane separator 41 installed in the second aerobic tank 40C. On the other hand, the first aerobic tank 30C is compared with the second aerobic tank 40C by installing the first air diffuser (22, 24) for diffusing fine bubbles in the first aerobic tank 30C. Thus, the operation power of the entire apparatus is reduced by setting the state where oxygen is easily dissolved into the water to be treated and suppressing the amount of air diffused.
一般には、排水処理装置では、処理水質の向上を図るためには、処理される被処理水の水質や、処理によって適合させようとする水質基準に応じて最適な運転形式を選択することが望まれる。例えば、膜分離活性汚泥処理装置100では、被処理水の窒素負荷が小さい場合には、粗大気泡を散気する第2散気手段(42,44)のみであっても、好気処理に必要な溶存酸素濃度を維持することが可能な場合があるため、微細気泡を散気する第1散気手段(22,24)の作動を停止させて運転動力を削減しつつ、第1好気槽30Cをバイパスさせたり、第1好気槽30Cを無酸素槽として使用したりする運転形式が効率的である。また、リンに係る水質基準が厳しい場合には、好気槽30C,40Cや無酸素槽20Cよりも前段で、嫌気条件下の生物反応処理を行うことで、ポリリン酸蓄積細菌にあらかじめリンを放出させておく運転形式が適切である。   In general, in order to improve the quality of treated water in wastewater treatment equipment, it is desirable to select the optimum operation format according to the quality of the treated water to be treated and the water quality standards to be adapted by the treatment. It is. For example, in the membrane separation activated sludge treatment apparatus 100, when the nitrogen load of the water to be treated is small, even the second aeration means (42, 44) that diffuses coarse bubbles is necessary for the aerobic treatment. Since it may be possible to maintain a high dissolved oxygen concentration, the first aerobic tank is provided while stopping the operation of the first aeration means (22, 24) for aeration of fine bubbles to reduce the operating power. An operation mode in which 30C is bypassed or the first aerobic tank 30C is used as an oxygen-free tank is efficient. In addition, when water quality standards related to phosphorus are strict, phosphorus is released in advance to polyphosphate-accumulating bacteria by performing biological reaction treatment under anaerobic conditions before the aerobic tanks 30C and 40C and the anoxic tank 20C. The type of operation to be allowed is appropriate.
しかしながら、図5に示されるような膜分離活性汚泥処理装置100では、第1好気槽30Cをバイパスさせる場合には、無酸素槽20Cと第2好気槽40Cとの間で活性汚泥を移送するための運転動力が別途必要となる。例えば、図5に示すように、無酸素槽20Cにおける処理水を活性汚泥と共に第2好気槽40Cに移送する移送流路140Cを設ける形態とすると、この流路上に設置される移送ポンプ54の運転動力が別途必要になる。また、第1好気槽30Cを無酸素槽として使用する場合には、無酸素条件下の生物反応処理が行われる処理槽(20C,30C)の総容積が拡大されるため、それに応じて滞留時間が影響を受けたり余剰汚泥が増加したりする場合がある。また、無酸素槽として使用する第1好気槽30Cに第1散気手段(22,24)による散気撹拌に代わる撹拌装置を設置する形態とすると、その運転動力が別途必要になる。また、好気槽30C,40Cや無酸素槽20Cよりも前段で、嫌気条件下の生物反応処理を行う場合には、その生物反応処理が行われる処理槽との間で処理水や活性汚泥を移送するポンプ等の運転動力が別途必要になる。   However, in the membrane separation activated sludge treatment apparatus 100 as shown in FIG. 5, when bypassing the first aerobic tank 30C, the activated sludge is transferred between the anaerobic tank 20C and the second aerobic tank 40C. Driving power is required separately. For example, as shown in FIG. 5, when a transfer flow path 140C for transferring the treated water in the anoxic tank 20C to the second aerobic tank 40C together with the activated sludge is provided, the transfer pump 54 installed on this flow path Driving power is required separately. In addition, when the first aerobic tank 30C is used as an anaerobic tank, the total volume of the processing tanks (20C, 30C) in which a biological reaction process under anoxic conditions is performed is increased, so that the residence occurs accordingly. Time may be affected or excess sludge may increase. Further, if the first aerobic tank 30C used as an anaerobic tank is provided with a stirring device that replaces the aeration stirring by the first aeration means (22, 24), the driving power is required separately. In addition, when performing a biological reaction treatment under anaerobic conditions before the aerobic tanks 30C and 40C and the anoxic tank 20C, treated water and activated sludge are exchanged with the treatment tank in which the biological reaction treatment is performed. Separate driving power is required for the pump to be transferred.
そこで、本発明は、処理水質の向上と運転動力の抑制とを図ることを可能とした膜分離活性汚泥処理装置及びその運転方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a membrane separation activated sludge treatment apparatus and an operation method thereof capable of improving the quality of treated water and suppressing operation power.
前記課題を解決するために本発明に係る膜分離活性汚泥処理装置は、被処理水の曝気を行う第1散気手段を有し、活性汚泥を用いて前記被処理水の生物反応処理を行う第1生物反応槽と、被処理水を撹拌する撹拌手段を有し、活性汚泥を用いて無酸素条件下で前記被処理水の生物反応処理を行う第2生物反応槽と、前記第2生物反応槽に隣接して備えられ、前記第1生物反応槽及び前記第2生物反応槽の少なくとも一方において生物反応処理された処理水と活性汚泥とを固液分離する膜分離器及び前記膜分離器を曝気洗浄すると共に前記処理水の曝気を行う第2散気手段を有し、活性汚泥を用いて好気条件下で前記処理水の生物反応処理を行う膜分離槽と、前記第1生物反応槽と前記膜分離槽とを接続し、前記第1生物反応槽における処理水を前記膜分離槽に流入させる第1処理水流路と、前記第2生物反応槽と前記第1生物反応槽とを接続し、前記第1生物反応槽及び前記第2生物反応槽のいずれか一方における処理水を他方の生物反応槽に流入させる連結流路と、前記第2生物反応槽と前記膜分離槽とを接続し、前記第2生物反応槽における処理水を前記膜分離槽に流入させる第2処理水流路と、前記膜分離槽と前記第2生物反応槽とを接続し、前記第2生物反応槽と前記膜分離槽との間に前記第2処理水流路と共に循環路を形成して、前記膜分離槽における処理水を前記第2生物反応槽に返流させる返流流路とを備えることを特徴とする。   In order to solve the above problems, a membrane separation activated sludge treatment apparatus according to the present invention has a first air diffuser for aeration of treated water, and performs biological reaction treatment of the treated water using activated sludge. A first biological reaction tank, a second biological reaction tank having a stirring means for stirring the water to be treated, and performing a biological reaction treatment of the water to be treated under oxygen-free conditions using activated sludge; A membrane separator that is provided adjacent to a reaction tank and separates the treated water and activated sludge that have been subjected to biological reaction treatment in at least one of the first biological reaction tank and the second biological reaction tank, and the membrane separator. A membrane separation tank for performing a biological reaction treatment of the treated water under an aerobic condition using activated sludge, and a first biological reaction. Treated water in the first biological reaction tank by connecting the tank and the membrane separation tank The first treated water flow path that flows into the membrane separation tank, the second biological reaction tank, and the first biological reaction tank are connected to each other in either the first biological reaction tank or the second biological reaction tank. A connection channel for allowing treated water to flow into the other biological reaction tank, a second biological reaction tank and the membrane separation tank are connected, and the treated water in the second biological reaction tank is allowed to flow into the membrane separation tank. Two treatment water flow paths, the membrane separation tank and the second biological reaction tank are connected, and a circulation path is formed with the second treatment water flow path between the second biological reaction tank and the membrane separation tank. And a return flow path for returning treated water in the membrane separation tank to the second biological reaction tank.
また、本発明に係る膜分離活性汚泥処理装置の運転方法は、前記連結流路弁及び前記第2処理水流路弁を開弁、且つ、前記第1処理水流路弁を閉弁させると共に、前記第1生物反応槽に系外から被処理水を流入させて、前記第1生物反応槽、前記第2生物反応槽、前記膜分離槽の順に前記被処理水の生物反応処理を行うことを特徴とする。または、前記第1処理水流路弁及び前記連結流路弁を開弁、且つ、前記第2処理水流路弁を閉弁させると共に、前記第1生物反応槽に系外から被処理水を流入させて、前記第1生物反応槽、前記第2生物反応槽、前記膜分離槽の順に前記被処理水の生物反応処理を行うことを特徴とする。または、前記第1散気手段を作動させて前記第1生物反応槽を好気槽として機能させる運転形式と、前記第1散気手段を停止させて前記第1生物反応槽を嫌気槽として機能させる運転形式とを切り替えて生物反応処理を行うことを特徴とする   Further, the operation method of the membrane separation activated sludge treatment apparatus according to the present invention is to open the connection flow path valve and the second treated water flow path valve, and close the first treated water flow path valve, Water to be treated is introduced into the first biological reaction tank from outside the system, and the biological reaction treatment of the treated water is performed in the order of the first biological reaction tank, the second biological reaction tank, and the membrane separation tank. And Alternatively, the first treated water flow path valve and the connection flow path valve are opened, the second treated water flow path valve is closed, and the treated water is allowed to flow into the first biological reaction tank from outside the system. Then, the biological reaction treatment of the water to be treated is performed in the order of the first biological reaction tank, the second biological reaction tank, and the membrane separation tank. Alternatively, the first aeration unit is operated to operate the first biological reaction tank as an aerobic tank, and the first aeration unit is stopped to function as the anaerobic tank. The biological reaction process is performed by switching the operation mode
本発明によれば、処理水質の向上と運転動力の抑制とを図ることを可能とした膜分離活性汚泥処理装置及びその運転方法を提供することができる。   According to the present invention, it is possible to provide a membrane separation activated sludge treatment apparatus and an operation method thereof capable of improving the quality of treated water and suppressing operation power.
本発明の一実施形態に係る膜分離活性汚泥処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the membrane separation activated sludge processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る膜分離活性汚泥処理装置の運転方法毎に被処理水の通流経路を示した概要図である。It is the schematic which showed the flow path of the to-be-processed water for every operating method of the membrane separation activated sludge processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る膜分離活性汚泥処理装置における運転形式の選択処理の一例を示す流れ図である。It is a flowchart which shows an example of the selection process of the operation type in the membrane separation activated sludge processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る膜分離活性汚泥処理装置における運転形式の変更処理の一例を示す流れ図である。It is a flowchart which shows an example of the change process of the operation format in the membrane separation activated sludge processing apparatus which concerns on one Embodiment of this invention. 比較例に係る膜分離活性汚泥処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the membrane separation activated sludge processing apparatus which concerns on a comparative example.
以下に本発明の一実施形態に係る膜分離活性汚泥処理装置及びその運転方法について説明する。なお、各図において共通する部分には同一の符号を付し、重複する部分についての説明は省略する。   Hereinafter, a membrane separation activated sludge treatment apparatus and an operation method thereof according to an embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the common part in each figure, and description about the overlapping part is abbreviate | omitted.
図1は、本発明の一実施形態に係る膜分離活性汚泥処理装置の概略構成を示す図である。   FIG. 1 is a diagram showing a schematic configuration of a membrane separation activated sludge treatment apparatus according to an embodiment of the present invention.
本実施形態に係る膜分離活性汚泥処理装置1は、膜分離活性汚泥法を利用した排水処理装置であって、活性汚泥を用いた生物反応処理によって排水処理(廃水処理)を行うと共に、限外濾過膜、精密濾過膜等を用いた濾過処理によって、処理に用いた活性汚泥を処理水から分離回収して再利用する装置である。   A membrane separation activated sludge treatment apparatus 1 according to the present embodiment is a wastewater treatment apparatus using a membrane separation activated sludge method, and performs wastewater treatment (wastewater treatment) by biological reaction treatment using activated sludge. It is an apparatus that separates and recovers activated sludge used for the treatment from the treated water by filtration using a filtration membrane, a microfiltration membrane, or the like.
図1に示すように、本実施形態に係る膜分離活性汚泥処理装置1は、第1生物反応槽20と、第2生物反応槽30と、膜分離槽40とを備えている。また、第1処理水配管110と合流配管140とによって形成される第1処理水流路、連結配管120によって形成される連結流路、第2処理水配管130と合流配管140とによって形成される第2処理水流路、及び、越流堰150によって形成される返流流路を備えている。この膜分離活性汚泥処理装置1では、生物反応処理が行われる第1生物反応槽20と、第2生物反応槽30と、膜分離槽40とは、直列に配列しており、仕切板によって互いに分割されている。そして、第2生物反応槽30と膜分離槽40との間については越流堰150の上方において連通した状態となっている。   As shown in FIG. 1, the membrane separation activated sludge treatment apparatus 1 according to this embodiment includes a first biological reaction tank 20, a second biological reaction tank 30, and a membrane separation tank 40. Further, the first treated water flow path formed by the first treated water pipe 110 and the merged pipe 140, the connected flow path formed by the connected pipe 120, the second treated water pipe 130 and the merged pipe 140 formed by the second line. 2 The process water flow path and the return flow path formed by the overflow weir 150 are provided. In the membrane separation activated sludge treatment apparatus 1, the first biological reaction tank 20, the second biological reaction tank 30, and the membrane separation tank 40 in which biological reaction processing is performed are arranged in series, and are separated from each other by a partition plate. It is divided. The second biological reaction tank 30 and the membrane separation tank 40 are in communication with each other above the overflow weir 150.
膜分離活性汚泥処理装置1で処理される被処理水(原水)は、取水ポンプ5によって下水処理施設の最初沈殿池等(膜分離活性汚泥処理装置1の系外)から引き込まれ、スクリーン槽10に導入される。スクリーン槽10には、固液分離を行うためのスクリーン12が備えられており、原水がスクリーン12を通過する際に、粗大な固形浮遊物、混入異物等が分離除去されるようになっている。なお、膜分離活性汚泥処理装置1に引き込まれる原水は、不図示の流量計測手段によって負荷水量が計測される。   The treated water (raw water) to be treated by the membrane separation activated sludge treatment apparatus 1 is drawn from the first sedimentation basin of the sewage treatment facility by the intake pump 5 (outside the system of the membrane separation activated sludge treatment apparatus 1), and the screen tank 10 To be introduced. The screen tank 10 is provided with a screen 12 for performing solid-liquid separation, and when the raw water passes through the screen 12, coarse solid suspended matters, mixed foreign matters, and the like are separated and removed. . The raw water drawn into the membrane separation activated sludge treatment apparatus 1 is measured for the amount of load water by a flow rate measuring means (not shown).
スクリーン槽10において処理された原水は、はじめに第1生物反応槽20及び第2生物反応槽30のいずれかに導入される。系外から第1生物反応槽20に接続される第1原水流路には、第1原水流路弁V4が備えられており、第1原水流路弁V4が開状態のとき、スクリーン槽10において処理された原水が、第1原水流路を通流して第1生物反応槽20に導入され、第1原水流路弁V4が閉状態のとき、原水の通流が遮断されるようになっている。また、系外から第2生物反応槽30に接続される第2原水流路には、第2原水流路弁V5が備えられており、第2原水流路弁V5が開状態のとき、スクリーン槽10において処理された原水が、第2原水流路を通流して第2生物反応槽30に導入され、第2原水流路弁V5が閉状態のとき、原水の通流が遮断される。   The raw water treated in the screen tank 10 is first introduced into either the first biological reaction tank 20 or the second biological reaction tank 30. The first raw water flow path connected to the first biological reaction tank 20 from outside the system is provided with a first raw water flow path valve V4. When the first raw water flow path valve V4 is open, the screen tank 10 When the raw water treated in step 1 is introduced into the first biological reaction tank 20 through the first raw water flow path and the first raw water flow path valve V4 is closed, the flow of the raw water is blocked. ing. Further, the second raw water flow path connected to the second biological reaction tank 30 from outside the system is provided with a second raw water flow path valve V5, and when the second raw water flow path valve V5 is in an open state, the screen The raw water treated in the tank 10 is introduced into the second biological reaction tank 30 through the second raw water flow path, and when the second raw water flow path valve V5 is closed, the flow of the raw water is blocked.
第1生物反応槽20は、活性汚泥を用いて被処理水の生物反応処理を行う処理槽となっている。第1生物反応槽20における生物反応処理は、第1散気手段(22,24)の作動と停止及び各弁の開閉にしたがって、無酸素条件下の処理、嫌気条件下の処理及び好気条件下の処理のいずれかとされる。なお、本明細書において、被処理水の用語は、生物反応処理等によって処理される排水等の液体を意味し、各処理毎の処理対象を指称するために用いられることがある。各処理槽毎において処理される排水、膜分離活性汚泥処理装置全体において処理される排水のそれぞれが、その処理における被処理水となる。   The first biological reaction tank 20 is a treatment tank that performs biological reaction treatment of water to be treated using activated sludge. The biological reaction process in the first biological reaction tank 20 is performed under the anaerobic condition, the anaerobic condition, and the aerobic condition in accordance with the operation and stop of the first air diffuser (22, 24) and the opening and closing of each valve. One of the following processes. In addition, in this specification, the term of to-be-processed water means liquids, such as waste water processed by a biological reaction process, etc., and may be used in order to designate the process target for each process. The waste water treated in each treatment tank and the waste water treated in the entire membrane separation activated sludge treatment apparatus are treated water in the treatment.
無酸素条件下の処理は、酸素の曝気が行われず実質的に分子状酸素が無い一方で、硝酸態窒素の供給が行われ硝酸態としての結合性酸素がある雰囲気で行われる。無酸素条件の処理では、活性汚泥に含まれる脱窒菌の作用で、被処理水に含まれている硝酸態窒素(NO−N)が窒素ガス(N)にまで還元される脱窒処理が行われる。 The treatment under anoxic conditions is performed in an atmosphere in which oxygen is not aerated and substantially no molecular oxygen is present, while nitrate nitrogen is supplied and there is bound oxygen as nitrate. In the treatment under oxygen-free conditions, denitrification treatment is performed in which nitrate nitrogen (NO 3 -N) contained in the water to be treated is reduced to nitrogen gas (N 2 ) by the action of denitrifying bacteria contained in the activated sludge. Is done.
嫌気条件下の処理は、酸素の曝気及び硝酸態窒素の供給が行われず実質的に分子状酸素や結合性酸素が無い雰囲気で行われる。嫌気条件下の処理では、活性汚泥に含まれるポリリン酸蓄積細菌に、蓄積させているリンを放出させる一方で、有機物の取り込みを行わせる。このような処理を行うことによって、その後の好気条件下の処理では、ポリリン酸蓄積細菌に放出させた以上のリンを蓄積させることが可能となり、効率的な脱リン処理が行われるようになっている。   The treatment under anaerobic conditions is carried out in an atmosphere substantially free of molecular oxygen and binding oxygen without aeration of oxygen and supply of nitrate nitrogen. In the treatment under anaerobic conditions, polyphosphate-accumulating bacteria contained in the activated sludge are allowed to release accumulated phosphorus and to take up organic substances. By performing such treatment, it becomes possible to accumulate more phosphorus than that released to the polyphosphate-accumulating bacteria in the subsequent treatment under aerobic conditions, and efficient dephosphorization treatment is performed. ing.
好気条件下の処理は、酸素の曝気の下で行われる。好気条件の処理では、活性汚泥に含まれるポリリン酸蓄積細菌に被処理水に含まれているリンを摂取蓄積させる脱リン処理が行われる。また、活性汚泥に含まれる硝化菌の作用で、被処理水に含まれているアンモニア態窒素(NH−N)を、硝酸態窒素(NO−N)にまで酸化する硝化処理が行われる。また、活性汚泥によって各種有機物の好気分解処理が行われる。 Treatment under aerobic conditions is performed under oxygen aeration. In the treatment under aerobic conditions, a dephosphorization treatment is performed in which polyphosphate-accumulating bacteria contained in activated sludge ingest and accumulate phosphorus contained in water to be treated. Further, by the action of nitrifying bacteria contained in activated sludge, ammonia nitrogen contained in the treated water (NH 4 -N), nitrification treatment to oxidize up to nitrate nitrogen (NO 3 -N) is performed . Moreover, aerobic decomposition treatment of various organic substances is performed by activated sludge.
第1生物反応槽20は、生物反応処理される被処理水の曝気を行う第1散気手段を有している。第1散気手段としては、例えば、酸素ガスや空気の微細気泡を散気する散気管22とブロワ24とで構成される散気装置が挙げられる。微細気泡は、第2散気手段による粗大気泡よりも気泡径が小さく、比表面積が大きい特徴を有するものである。そのため、第1散気手段(22,24)による散気では、溶存酸素濃度を増大させる効率的な散気が行われるようになっている。第1散気手段としては、散気式撹拌装置を設置してもよい。散気式撹拌装置で無酸素ガスを散気することによって、無酸素槽や嫌気槽として機能させる酸素非散気時においても被処理水を撹拌することができるためである。   The 1st biological reaction tank 20 has the 1st aeration means which performs the aeration of the to-be-processed water by which a biological reaction process is carried out. Examples of the first air diffuser include an air diffuser configured by an air diffuser 22 and a blower 24 that diffuse oxygen gas or fine air bubbles. The fine bubbles are characterized in that the bubble diameter is smaller and the specific surface area is larger than the coarse bubbles produced by the second air diffuser. For this reason, in the aeration by the first aeration means (22, 24), efficient aeration for increasing the dissolved oxygen concentration is performed. As the first air diffuser, an air diffuser agitator may be installed. This is because the water to be treated can be agitated even when oxygen is not diffused by functioning as an anaerobic tank or an anaerobic tank by aeration of oxygen-free gas with a diffused stirrer.
また、第1生物反応槽20には、不図示の溶存酸素濃度計測手段、窒素(アンモニア態窒素等)濃度計測手段、酸化還元電位計測手段等の各種計測手段が備えられるようにしてもよい。溶存酸素濃度計測手段による溶存酸素濃度の計測の下で第1散気手段(22,24)の散気量を制御し、被処理水の溶存酸素濃度を所定濃度範囲に維持することで、適切な硝化処理を行うことが可能である。また、窒素(アンモニア態窒素等)濃度計測手段によって、アンモニア態窒素濃度を把握することによって、窒素負荷に応じて第1散気手段(22,24)の散気量を制御することが可能となる。   Further, the first biological reaction tank 20 may be provided with various measuring means such as a dissolved oxygen concentration measuring means (not shown), a nitrogen (ammonia nitrogen etc.) concentration measuring means, and an oxidation-reduction potential measuring means. Appropriate by controlling the amount of air diffused by the first air diffuser (22, 24) under the measurement of the dissolved oxygen concentration by the dissolved oxygen concentration measuring means, and maintaining the dissolved oxygen concentration of the water to be treated in the predetermined concentration range. Nitrification treatment can be performed. Further, by grasping the ammonia nitrogen concentration by the nitrogen (ammonia nitrogen etc.) concentration measuring means, it is possible to control the amount of air diffused by the first air diffuser (22, 24) according to the nitrogen load. Become.
第1生物反応槽20と膜分離槽40とは、第1処理水配管110と第1処理水配管110に接続された合流配管140とを介して連通され、第1処理水配管110と合流配管140とによって第1処理水流路が形成されている。第1処理水流路は、第1生物反応槽20と膜分離槽40とを接続し、第1生物反応槽20における処理水を膜分離槽40に流入させる流路を形成している。   The first biological reaction tank 20 and the membrane separation tank 40 are communicated with each other via a first treated water pipe 110 and a joining pipe 140 connected to the first treated water pipe 110, and the first treated water pipe 110 and the joining pipe are connected. 140 forms a first treated water flow path. The first treated water flow path connects the first biological reaction tank 20 and the membrane separation tank 40 to form a flow path for allowing treated water in the first biological reaction tank 20 to flow into the membrane separation tank 40.
第1処理水流路には、第1処理水流路弁V1が備えられており、第1処理水流路弁V1が開状態のとき、第1生物反応槽20における処理水が第1処理水流路を通流して膜分離槽40に導入され、第1処理水流路弁V1が閉状態のとき、処理水の通流が遮断されるようになっている。   The first treated water flow path is provided with a first treated water flow path valve V1, and when the first treated water flow path valve V1 is in an open state, treated water in the first biological reaction tank 20 passes through the first treated water flow path. When the first treated water passage valve V1 is closed and introduced into the membrane separation tank 40, the treated water flow is blocked.
また、第1生物反応槽20と第2生物反応槽30とは、連結配管120を介して連通され、連結配管120によって連結流路が形成されている。連結流路は、第1生物反応槽20と第2生物反応槽30とを接続し、各弁の開閉に応じて、第1生物反応槽20における処理水を第2生物反応槽30に、又は、第2生物反応槽30における処理水を第1生物反応槽20に流入させる流路を形成している。   The first biological reaction tank 20 and the second biological reaction tank 30 are communicated with each other via a connection pipe 120, and a connection flow path is formed by the connection pipe 120. The connection channel connects the first biological reaction tank 20 and the second biological reaction tank 30, and treats treated water in the first biological reaction tank 20 to the second biological reaction tank 30 according to the opening / closing of each valve, or A flow path for allowing the treated water in the second biological reaction tank 30 to flow into the first biological reaction tank 20 is formed.
連結流路には、連結流路弁V2が備えられており、連結流路弁V2が開状態のとき、第1生物反応槽20における処理水が連結流路を通流して第2生物反応槽30に、又は、第2生物反応槽30における処理水が連結流路を通流して第1生物反応槽20に導入され、連結流路弁V2が閉状態のとき、処理水の通流が遮断されるようになっている。   The connection flow path is provided with a connection flow path valve V2, and when the connection flow path valve V2 is open, the treated water in the first biological reaction tank 20 flows through the connection flow path and the second biological reaction tank. 30 or when the treated water in the second biological reaction tank 30 is introduced into the first biological reaction tank 20 through the connection flow path and the connection flow path valve V2 is closed, the flow of the treated water is blocked. It has come to be.
第2生物反応槽30は、活性汚泥を用いて無酸素条件下で被処理水の生物反応処理を行う処理槽となっている。第2生物反応槽30における生物反応処理は、膜分離槽40から返流される硝酸態窒素の存在の下で行われる無酸素条件下の処理とされ、硝酸態窒素の脱窒処理によって窒素除去がなされる。   The 2nd biological reaction tank 30 is a processing tank which performs the biological reaction process of to-be-processed water on oxygen-free conditions using activated sludge. The biological reaction process in the second biological reaction tank 30 is an anoxic condition process performed in the presence of nitrate nitrogen returned from the membrane separation tank 40, and nitrogen removal is performed by denitrification of nitrate nitrogen. Is made.
第2生物反応槽30は、生物反応処理される被処理水を撹拌する撹拌手段32を有している。撹拌手段32としては、例えば、撹拌子等を回転させて撹拌する機械撹拌装置や、無酸素ガスを散気させて撹拌する散気撹拌装置等が挙げられる。撹拌手段32によって、被処理水中の活性汚泥が均一化され、沈降による堆積が抑制されるようになっている。   The 2nd biological reaction tank 30 has the stirring means 32 which stirs the to-be-processed water by which a biological reaction process is carried out. Examples of the stirring means 32 include a mechanical stirring device that rotates and stirs a stirrer and the like, and a diffused stirring device that diffuses and stirs oxygen-free gas. The agitation means 32 makes the activated sludge in the water to be treated uniform and suppresses sedimentation due to sedimentation.
第2生物反応槽30と膜分離槽40とは、第2処理水配管130と第2処理水配管130に接続された合流配管140とを介して連通され、第2処理水配管130と合流配管140とによって第2処理水流路が形成されている。第2処理水流路は、第2生物反応槽30と膜分離槽40とを接続し、第2生物反応槽30における処理水を膜分離槽40に流入させる流路を形成している。   The second biological reaction tank 30 and the membrane separation tank 40 are communicated with each other via a second treated water pipe 130 and a joining pipe 140 connected to the second treated water pipe 130, and the second treated water pipe 130 and the joining pipe are connected. 140 forms a second treated water flow path. The second treated water flow path connects the second biological reaction tank 30 and the membrane separation tank 40, and forms a flow path through which treated water in the second biological reaction tank 30 flows into the membrane separation tank 40.
第2処理水流路には、第2処理水流路弁V3が備えられており、第2処理水流路弁V3が開状態のとき、第2生物反応槽30における処理水が第2処理水流路を通流して膜分離槽40に導入され、第2処理水流路弁V3が閉状態のとき、処理水の通流が遮断されるようになっている。   The second treated water flow path is provided with a second treated water flow path valve V3. When the second treated water flow path valve V3 is in an open state, treated water in the second biological reaction tank 30 passes through the second treated water flow path. When flowing and introduced into the membrane separation tank 40 and the second treated water flow path valve V3 is closed, the flow of treated water is blocked.
合流配管140には移送ポンプ54が備えられている。移送ポンプ54が作動することによって、第1処理水流路弁V1が開状態のとき、第1生物反応槽20における処理水が膜分離槽40に移送され、第2処理水流路弁V3が開状態のとき、第2生物反応槽30における処理水が膜分離槽40に移送される。   The merge pipe 140 is provided with a transfer pump 54. By operating the transfer pump 54, when the first treated water flow path valve V1 is open, the treated water in the first biological reaction tank 20 is transferred to the membrane separation tank 40, and the second treated water flow path valve V3 is opened. At this time, the treated water in the second biological reaction tank 30 is transferred to the membrane separation tank 40.
膜分離槽40は、生物反応処理された処理水と活性汚泥とを固液分離すると共に、活性汚泥を用いて好気条件下で被処理水の生物反応処理を行う処理槽となっている。膜分離槽40における生物反応処理は、酸素の曝気の下で行われる好気条件下の処理とされ、脱リン処理、硝化処理等がなされる。   The membrane separation tank 40 is a treatment tank that performs biological reaction treatment of water to be treated under aerobic conditions using activated sludge while solid-liquid separating the treated water and activated sludge subjected to biological reaction treatment. The biological reaction process in the membrane separation tank 40 is a process under aerobic conditions performed under aeration of oxygen, and a dephosphorization process, a nitrification process, and the like are performed.
膜分離槽40は、生物反応処理された処理水と活性汚泥とを固液分離する膜分離器41を有している。膜分離器41の分離膜に隔てられた一次側は、被処理水に浸漬され、二次側は膜分離器41から引き出される排水配管160と連通している。排水配管160には、吸引ポンプ56が備えられ、この吸引ポンプ56が作動することによって、二次側が負圧とされて活性汚泥を含む処理水が吸引されるようになっている。そして、活性汚泥の移動が分離膜で阻止される一方で、分離膜を透過した処理水が排水配管160に排水される。   The membrane separation tank 40 has a membrane separator 41 for solid-liquid separation of the biological reaction treated treated water and activated sludge. The primary side separated by the separation membrane of the membrane separator 41 is immersed in the water to be treated, and the secondary side communicates with the drainage pipe 160 drawn from the membrane separator 41. The drainage pipe 160 is provided with a suction pump 56, and when this suction pump 56 is operated, the secondary side is set to a negative pressure and the treated water containing activated sludge is sucked. And while the movement of activated sludge is blocked | prevented by a separation membrane, the treated water which permeate | transmitted the separation membrane is drained by the drain piping 160. FIG.
膜分離器41としては、限外濾過膜、精密濾過膜等の分離膜を備えた膜分離器(膜分離装置)であって、例えば、平膜型の分離膜エレメントを水平方向に複数枚並列させて膜モジュールとし、その膜モジュールを復数段鉛直方向に積層させた構成の平膜型膜分離器が挙げられる。このような平膜型膜分離器であれば、分離膜の膜面が鉛直方向に配列し、せん断力を及ぼす気液二相流の流速が高められるため、散気による膜面洗浄(曝気洗浄)をより効率的に行うことが可能である。   The membrane separator 41 is a membrane separator (membrane separation device) provided with a separation membrane such as an ultrafiltration membrane or a microfiltration membrane. For example, a plurality of flat membrane-type separation membrane elements are arranged in parallel in the horizontal direction. A flat membrane type membrane separator having a configuration in which the membrane module is laminated in the vertical direction of the number of return stages can be given. In such a flat membrane type membrane separator, the membrane surface of the separation membrane is arranged in the vertical direction, and the flow velocity of the gas-liquid two-phase flow that exerts a shear force is increased. ) Can be performed more efficiently.
また、膜分離槽40は、膜分離器41を曝気洗浄すると共に生物反応処理される処理水の曝気を行う第2散気手段を有している。第2散気手段としては、例えば、気泡径(直径)が100μm以上の酸素ガスや空気の粗大気泡を散気する散気管42とブロワ44とで構成される散気装置が挙げられる。粗大気泡は、浮力によって浮上する際に、分離膜の膜面に対して、クロスフローの気液二相流を形成する。この気液二相流によるせん断力によって、分離膜の膜面に付着、堆積した被処理水成分、微生物による代謝物、混入異物等が曝気洗浄される。また、粗大気泡は、比表面積が微細気泡よりも小さく、酸素を供給する効率は低いものの、浮力によって浮上する際にエアリフト効果による被処理水の循環流を形成し易い。そのため、第2散気手段(42,44)による散気では、供給される酸素ガスと被処理水との混合撹拌が促進され、好気的雰囲気が形成される。   Further, the membrane separation tank 40 has a second aeration means for aeration cleaning of the membrane separator 41 and aeration of treated water subjected to biological reaction treatment. Examples of the second air diffuser include an air diffuser configured by an air diffuser 42 and a blower 44 that diffuse oxygen gas having a bubble diameter (diameter) of 100 μm or larger and air coarse bubbles. Coarse bubbles form a cross-flow gas-liquid two-phase flow with respect to the membrane surface of the separation membrane when rising due to buoyancy. By the shearing force generated by the gas-liquid two-phase flow, the water component to be treated, the metabolite by the microorganisms, the contaminated foreign matter, and the like attached and deposited on the membrane surface of the separation membrane are aerated and washed. Coarse bubbles have a specific surface area smaller than that of fine bubbles and are less efficient in supplying oxygen, but they tend to form a circulation flow of water to be treated by the air lift effect when they rise by buoyancy. Therefore, in the aeration by the second aeration means (42, 44), the mixing and stirring of the supplied oxygen gas and the water to be treated is promoted, and an aerobic atmosphere is formed.
また、膜分離槽40には、不図示の溶存酸素濃度計測手段、窒素(アンモニア態窒素等)濃度計測手段、酸化還元電位計測手段等の各種計測手段が備えられるようにしてもよい。溶存酸素濃度計測手段や窒素(アンモニア態窒素等)濃度計測手段を設置することによって、膜分離槽40における硝化処理や窒素成分濃度を独立に監視することができ、適切な運転形式を選択することが可能になる。   Further, the membrane separation tank 40 may be provided with various measuring means such as a dissolved oxygen concentration measuring means (not shown), a nitrogen (ammonia nitrogen etc.) concentration measuring means, and an oxidation-reduction potential measuring means. By installing dissolved oxygen concentration measurement means and nitrogen (ammonia nitrogen etc.) concentration measurement means, the nitrification treatment and nitrogen component concentration in the membrane separation tank 40 can be monitored independently, and an appropriate operation mode is selected. Is possible.
膜分離槽40における活性汚泥濃度は、第1生物反応槽20や第2生物反応槽30よりも高くなるように設計される。すなわち、膜分離槽40における活性汚泥濃度は、無酸素槽として機能する第2生物反応槽30や好気槽として機能させた第1生物反応槽20よりも高い濃度範囲とされる。膜分離槽40における活性汚泥濃度がこのような濃度範囲である場合には、活性汚泥の液粘性が低すぎず、気液二相流の流速やせん断力が高い領域が膜分離器の膜間流路内の抵抗が低い中央部に集中して洗浄効果が低下することが少ない。   The activated sludge concentration in the membrane separation tank 40 is designed to be higher than that of the first biological reaction tank 20 and the second biological reaction tank 30. That is, the activated sludge concentration in the membrane separation tank 40 is set to a higher concentration range than the second biological reaction tank 30 that functions as an anoxic tank or the first biological reaction tank 20 that functions as an aerobic tank. When the activated sludge concentration in the membrane separation tank 40 is in such a concentration range, the liquid viscosity of the activated sludge is not too low, and the region where the gas-liquid two-phase flow velocity and shearing force are high is between the membranes of the membrane separator. The cleaning effect is less likely to concentrate in the central portion where the resistance in the flow path is low.
膜分離槽40は、第2生物反応槽30に隣接して備えられている。膜分離槽40と第2生物反応槽30とは仕切板の上方において連通し、膜分離槽40と第2生物反応槽30との間には越流堰150が設けられ、越流堰150によって、仕切板に跨って返流流路が形成されている。返流流路は、膜分離槽40と第2生物反応槽30とを接続し、第2生物反応槽30と膜分離槽40との間に第2処理水流路と共に循環路を形成して、膜分離槽40における処理水を第2生物反応槽30に流入させる流路を形成している。膜分離槽40における最高水位は、第2生物反応槽30における最高水位よりも高くなるように設計されており、移送ポンプ54の作動によって被処理水が膜分離槽40に移送され生物反応処理された後、越流堰150を自然流下によって越流して第2生物反応槽30へ返流されるようになっている。このように膜分離槽40において生物反応処理された処理水が、越流堰150を越流して第2生物反応槽30へ返流されるようにすることで、移送ポンプ54を除いて硝化脱窒処理の循環を行うためのポンプが省略化されている。   The membrane separation tank 40 is provided adjacent to the second biological reaction tank 30. The membrane separation tank 40 and the second biological reaction tank 30 communicate with each other above the partition plate, and an overflow weir 150 is provided between the membrane separation tank 40 and the second biological reaction tank 30. A return flow channel is formed across the partition plate. The return flow path connects the membrane separation tank 40 and the second biological reaction tank 30, forms a circulation path together with the second treated water flow path between the second biological reaction tank 30 and the membrane separation tank 40, A flow path through which treated water in the membrane separation tank 40 flows into the second biological reaction tank 30 is formed. The highest water level in the membrane separation tank 40 is designed to be higher than the highest water level in the second biological reaction tank 30, and the water to be treated is transferred to the membrane separation tank 40 by the operation of the transfer pump 54 and subjected to biological reaction treatment. After that, the overflow weir 150 is overflowed by natural flow and returned to the second biological reaction tank 30. The treated water that has been subjected to the biological reaction treatment in the membrane separation tank 40 thus flows over the overflow weir 150 and is returned to the second biological reaction tank 30, so that the nitrification dehydration can be performed except for the transfer pump 54. A pump for circulating the nitrogen treatment is omitted.
膜分離槽40には、汚泥引抜配管170を介して汚泥引抜ポンプ58が接続されている。汚泥引抜ポンプ58によって、膜分離器41によって濃縮された活性汚泥の一部が膜分離槽40から引き抜かれ、ポリリン酸蓄積細菌に蓄積されたリン、窒素成分等を含む余剰汚泥が系外に排出されるようになっている。   A sludge extraction pump 58 is connected to the membrane separation tank 40 via a sludge extraction pipe 170. Part of the activated sludge concentrated by the membrane separator 41 is extracted from the membrane separation tank 40 by the sludge extraction pump 58, and excess sludge containing phosphorus, nitrogen components, etc. accumulated in the polyphosphate accumulating bacteria is discharged out of the system. It has come to be.
膜分離活性汚泥処理装置1には、不図示の制御装置(コントローラ)が備えられている。制御装置には、第1処理水流路弁V1、連結流路弁V2、第2処理水流路弁V3や、ブロワ24,44等の機器類が、信号線を介して電気的に接続される。制御装置は、流量計測手段の計測に基いて第1処理水流路弁V1、連結流路弁V2、第2処理水流路弁V3の開閉を制御したり、溶存酸素濃度計測手段に基いて第2散気手段の(42,44)の散気量を制御したり、窒素濃度計測手段の計測に基いて、第1散気手段(22,24)の作動と停止、散気量を制御したりする機能を有している。そして、処理水質や負荷水量に基いて運転形式の選択処理や変更処理を実行する。なお、制御装置に、さらに第1原水流路弁V4及び第2原水流路弁V5を電気的に接続し、制御装置が、第1原水流路弁V4及び第2原水流路弁V5の開閉を制御するようにしてもよいし、第1原水流路又は第2原水流路に設置される流量計測手段、第1生物反応槽20や膜分離槽40に設置される酸化還元電位計測手段、溶存酸素濃度計測手段、第1生物反応槽20に設置される窒素(アンモニア態窒素等)濃度計測手段等の各種計測手段をさらに接続させて、これらによる計測に基いて制御を行うこともできる。   The membrane separation activated sludge treatment apparatus 1 is provided with a control device (controller) (not shown). Devices such as the first treated water passage valve V1, the connection passage valve V2, the second treated water passage valve V3, and the blowers 24 and 44 are electrically connected to the control device via signal lines. The control device controls the opening / closing of the first treated water flow path valve V1, the connection flow path valve V2, and the second treated water flow path valve V3 based on the measurement of the flow rate measuring means, or the second based on the dissolved oxygen concentration measuring means. Control the amount of air diffused by the air diffuser (42, 44), control the operation and stop of the first air diffuser (22, 24), and the amount of air diffused based on the measurement by the nitrogen concentration measuring means It has a function to do. Then, an operation type selection process and a change process are executed based on the quality of the treated water and the load water amount. In addition, the first raw water passage valve V4 and the second raw water passage valve V5 are further electrically connected to the control device, and the control device opens and closes the first raw water passage valve V4 and the second raw water passage valve V5. The flow rate measuring means installed in the first raw water flow path or the second raw water flow path, the oxidation-reduction potential measuring means installed in the first biological reaction tank 20 and the membrane separation tank 40, Various measurement means such as dissolved oxygen concentration measurement means and nitrogen (ammonia nitrogen) concentration measurement means installed in the first biological reaction tank 20 can be further connected, and control can be performed based on these measurements.
次に、膜分離活性汚泥処理装置の運転方法について説明する。   Next, the operation method of the membrane separation activated sludge treatment apparatus will be described.
図2は、本発明の一実施形態に係る膜分離活性汚泥処理装置の運転方法毎に被処理水の通流経路を示した概要図である。   FIG. 2 is a schematic diagram showing a flow path of water to be treated for each operation method of the membrane separation activated sludge treatment apparatus according to one embodiment of the present invention.
本実施形態に係る膜分離活性汚泥処理装置1では、被処理水の通流経路が異なる複数の運転形式を選択することができ、第1生物反応槽20を、好機条件下の処理を行う好気槽、嫌気条件下の処理を行う嫌気槽及び無酸素条件下の処理を行う無酸素槽のいずれかとして機能させた運転が可能となっている。また、第1生物反応槽20をバイパスして第1生物反応槽20で生物反応処理を行わない運転も可能である。このような運転方法(運転形式)は、第1散気手段(22,24)の作動と停止、並びに、第1処理水流路弁V1、連結流路弁V2、第2処理水流路弁V3、第1原水流路弁V4及び第2原水流路弁V5の開閉の切替によって実現される。   In the membrane separation activated sludge treatment apparatus 1 according to the present embodiment, a plurality of operation modes having different flow paths of water to be treated can be selected, and the first biological reaction tank 20 is preferably subjected to treatment under favorable conditions. The operation which functioned as either an air tank, an anaerobic tank which performs processing under anaerobic conditions, and an anaerobic tank which performs processing under anaerobic conditions is possible. Moreover, the operation | movement which bypasses the 1st biological reaction tank 20 and does not perform a biological reaction process with the 1st biological reaction tank 20 is also possible. Such an operation method (operation format) includes the operation and stop of the first air diffuser (22, 24), the first treated water flow path valve V1, the connection flow path valve V2, the second treated water flow path valve V3, This is realized by switching between opening and closing of the first raw water passage valve V4 and the second raw water passage valve V5.
図2(a)に示すように、膜分離活性汚泥処理装置1では、連結流路弁V2、第2処理水流路弁V3及び第1原水流路弁V4を開弁させ、第1処理水流路弁V1及び第2原水流路弁V5を閉弁させることによって、第1生物反応槽20に原水(被処理水)を導入する第1原水流路F01、第1生物反応槽20における処理水を第2生物反応槽30に流入させる連結流路F30、第2生物反応槽30における処理水を膜分離槽40に流入させる第2処理水流路F20、膜分離槽40における処理水を第2生物反応槽30に返流させる返流流路F40を形成させることができる。そして、第2処理水流路F20と返流流路F40とは、循環路を形成し、処理水の一部は固液分離された後に排水流路F50を通流して系外に排水される。   As shown in FIG. 2 (a), in the membrane separation activated sludge treatment apparatus 1, the connection flow path valve V2, the second treated water flow path valve V3, and the first raw water flow path valve V4 are opened, and the first treated water flow path is formed. By closing the valve V1 and the second raw water flow path valve V5, the first raw water flow path F01 for introducing the raw water (treated water) into the first biological reaction tank 20 and the treated water in the first biological reaction tank 20 are supplied. The connection flow path F30 for flowing into the second biological reaction tank 30, the second treated water flow path F20 for flowing the treated water in the second biological reaction tank 30 into the membrane separation tank 40, and the treated water in the membrane separation tank 40 for the second biological reaction. A return flow path F40 to be returned to the tank 30 can be formed. Then, the second treated water flow path F20 and the return flow path F40 form a circulation path, and a part of the treated water is separated into solid and liquid, and then flows through the drainage flow path F50 to be drained outside the system.
この運転形式では、第1生物反応槽20、第2生物反応槽30、膜分離槽40の順に被処理水の生物反応処理が行われる。このとき、第1生物反応槽20は嫌気槽として機能し、第2生物反応槽30は無酸素槽として機能し、膜分離槽40は好気槽として機能することで、ポリリン酸蓄積細菌に蓄積させているリンを好機条件下の生物反応処理に先立って放出させることができ、脱リン処理の効率を向上させることが可能となる。   In this operation format, the biological reaction treatment of the water to be treated is performed in the order of the first biological reaction tank 20, the second biological reaction tank 30, and the membrane separation tank 40. At this time, the first biological reaction tank 20 functions as an anaerobic tank, the second biological reaction tank 30 functions as an anaerobic tank, and the membrane separation tank 40 functions as an aerobic tank, thereby accumulating in polyphosphate accumulating bacteria. The phosphorus that has been removed can be released prior to the biological reaction treatment under the favorable conditions, and the efficiency of the dephosphorization treatment can be improved.
また、図2(b)に示すように、膜分離活性汚泥処理装置1では、第2処理水流路弁V3及び第2原水流路弁V5を開弁させ、第1処理水流路弁V1、連結流路弁V2及び第1原水流路弁V4を閉弁させることによって、第2生物反応槽30に原水(被処理水)を導入する第2原水流路F02、第2生物反応槽30における処理水を膜分離槽40に流入させる第2処理水流路F20、膜分離槽40における処理水を第2生物反応槽30に返流させる返流流路F40を形成させることができる。そして、第2処理水流路F20と返流流路F40とが循環路を形成し、処理水の一部は固液分離された後に排水流路F50を通流して系外に排水される。   2B, in the membrane separation activated sludge treatment apparatus 1, the second treated water flow path valve V3 and the second raw water flow path valve V5 are opened to connect the first treated water flow path valve V1. Treatment in the second raw water flow path F02 and the second biological reaction tank 30 for introducing raw water (treated water) into the second biological reaction tank 30 by closing the flow path valve V2 and the first raw water flow path valve V4. A second treated water flow path F20 that allows water to flow into the membrane separation tank 40 and a return flow path F40 that returns treated water in the membrane separation tank 40 to the second biological reaction tank 30 can be formed. Then, the second treated water flow path F20 and the return flow path F40 form a circulation path, and a part of the treated water is separated into solid and liquid and then flows through the drainage flow path F50 to be drained outside the system.
この運転形式では、第2生物反応槽30、膜分離槽40の順に被処理水の生物反応処理が行われ、このとき、第2生物反応槽30は無酸素槽として機能し、膜分離槽40は好気槽として機能し、第1生物反応槽20はバイパスされることで、膜分離槽40のみによって好機条件下の生物反応処理がなされるようにすることができる。そのため、水量や窒素成分が低負荷の処理に対応した処理槽構成となり、その運転動力が削減されると共に、滞留時間や処理槽容量の調整や、第1生物反応槽20における補修、汚泥回収等が可能となる。   In this operation format, the biological reaction treatment of the water to be treated is performed in the order of the second biological reaction tank 30 and the membrane separation tank 40. At this time, the second biological reaction tank 30 functions as an oxygen-free tank, and the membrane separation tank 40 Functions as an aerobic tank, and the first biological reaction tank 20 is bypassed, so that the biological reaction treatment under favorable conditions can be performed only by the membrane separation tank 40. Therefore, it becomes a processing tank configuration corresponding to processing with a low load of water and nitrogen components, its operating power is reduced, adjustment of residence time and processing tank capacity, repair in the first biological reaction tank 20, sludge recovery, etc. Is possible.
また、図2(c)に示すように、膜分離活性汚泥処理装置1では、第1処理水流路弁V1、連結流路弁V2及び第2原水流路弁V5を開弁させ、第2処理水流路弁V3及び第1原水流路弁V4を閉弁させることによって、第2生物反応槽30に原水(被処理水)を導入する第2原水流路F02、第2生物反応槽30における処理水を第1生物反応槽20に流入させる連結流路F30、第1生物反応槽20における処理水を膜分離槽40に流入させる第1処理水流路F10、膜分離槽40における処理水を第2生物反応槽30に返流させる返流流路F40を形成させることができる。そして、連結流路F30及び第1処理水流路F10と返流流路F40とが循環路を形成し、処理水の一部は固液分離された後に排水流路F50を通流して系外に排水される。   In addition, as shown in FIG. 2 (c), in the membrane separation activated sludge treatment apparatus 1, the first treated water flow path valve V1, the connection flow path valve V2, and the second raw water flow path valve V5 are opened to perform the second treatment. Treatment in the second raw water flow path F02 and the second biological reaction tank 30 for introducing the raw water (treated water) into the second biological reaction tank 30 by closing the water flow path valve V3 and the first raw water flow path valve V4. A connection flow path F30 for flowing water into the first biological reaction tank 20, a first treated water flow path F10 for flowing treated water in the first biological reaction tank 20 into the membrane separation tank 40, and a second treated water in the membrane separation tank 40. A return flow path F40 to be returned to the biological reaction tank 30 can be formed. The connection flow path F30, the first treated water flow path F10, and the return flow path F40 form a circulation path, and a portion of the treated water is separated into solid and liquid and then flows through the drainage flow path F50 to the outside of the system. Drained.
この運転形式では、第2生物反応槽30、第1生物反応槽20、膜分離槽40の順に被処理水の生物反応処理が行われる。このとき、第2生物反応槽30は無酸素槽として機能し、第1生物反応槽20は無酸素槽として機能し、膜分離槽40は好気槽として機能することで、水量や窒素成分が高負荷の処理に好適な槽分割型の運転形式が実現される。返流流路F40を経て返流された硝酸態窒素は、第2生物反応槽30と第1生物反応槽20とにおいて脱窒処理されるため、脱窒処理滞留時間の確保や処理水質の向上を図ることができる。   In this operation format, the biological reaction treatment of the water to be treated is performed in the order of the second biological reaction tank 30, the first biological reaction tank 20, and the membrane separation tank 40. At this time, the second biological reaction tank 30 functions as an oxygen-free tank, the first biological reaction tank 20 functions as an oxygen-free tank, and the membrane separation tank 40 functions as an aerobic tank. A tank division type operation mode suitable for high-load processing is realized. Since nitrate nitrogen returned through the return flow path F40 is denitrified in the second biological reaction tank 30 and the first biological reaction tank 20, ensuring of the denitrification treatment residence time and improvement of treated water quality are achieved. Can be achieved.
また、図2(d)に示すように、第1散気手段(22,24)を作動させ、被処理水の曝気を行うことによって、第1生物反応槽20を好気槽として機能させることができる。図2(d)では、第1処理水流路弁V1、連結流路弁V2及び第2原水流路弁V5を開弁させ、第2処理水流路弁V3及び第1原水流路弁V4を閉弁させることによって、第2生物反応槽30、第1生物反応槽20、膜分離槽40の順に被処理水の生物反応処理が行われ、第2生物反応槽30は無酸素槽として機能し、第1生物反応槽20と膜分離槽40とが好気槽として機能する。被処理水に含まれるアンモニア態窒素は、第1生物反応槽20と膜分離槽40とにおいて硝化処理されるため、硝化処理滞留時間の確保や硝化率の向上を図ることができる。   In addition, as shown in FIG. 2 (d), the first biological reaction tank 20 is caused to function as an aerobic tank by operating the first air diffuser (22, 24) and aeration of the water to be treated. Can do. In FIG. 2D, the first treated water passage valve V1, the connection passage valve V2 and the second raw water passage valve V5 are opened, and the second treated water passage valve V3 and the first raw water passage valve V4 are closed. By making the valve, the biological reaction treatment of the water to be treated is performed in the order of the second biological reaction tank 30, the first biological reaction tank 20, and the membrane separation tank 40, and the second biological reaction tank 30 functions as an oxygen-free tank, The first biological reaction tank 20 and the membrane separation tank 40 function as an aerobic tank. Since ammonia nitrogen contained in the water to be treated is nitrified in the first biological reaction tank 20 and the membrane separation tank 40, it is possible to secure a nitrification residence time and improve a nitrification rate.
図3は、本発明の一実施形態に係る膜分離活性汚泥処理装置における運転形式の選択処理の一例を示す流れ図である。   FIG. 3 is a flowchart showing an example of operation type selection processing in the membrane separation activated sludge treatment apparatus according to one embodiment of the present invention.
膜分離活性汚泥処理装置1における運転形式の選択の処理は、運転開始時や運転継続時に制御装置によって行われる。以下の処理フローでは、操作者の指示によって運転形式の選択の処理を開始した制御装置が、各弁の開閉の切替並びに第1散気手段(22,42)の作動と停止の切替の制御を行う例を示している。なお、膜分離活性汚泥処理装置1の運転開始時には、各弁は全閉され、第1散気手段(22,42)は停止した状態である。   The process of selecting the operation type in the membrane separation activated sludge treatment apparatus 1 is performed by the control device at the start of operation or when the operation is continued. In the following process flow, the control device that has started the operation type selection process in accordance with the operator's instruction controls the opening / closing of each valve and the switching of the operation and stop of the first air diffuser (22, 42). An example is shown. At the start of operation of the membrane separation activated sludge treatment apparatus 1, each valve is fully closed and the first air diffuser (22, 42) is stopped.
運転形式の選択の処理が開始されると、制御装置は、原水のリン濃度(C)の計測値を取得する(ステップS100)。リン濃度(C)は、原水に含まれる有機態リン及び無機態リンの濃度(全リン(T−P)濃度)等であり、原水の膜分離活性汚泥処理装置1への引き込みにあたってあらかじめ計測されて制御装置が有する記憶装置に記憶される等している。 When the process of selecting the operation format is started, the control device acquires a measured value of the raw water phosphorus concentration (C P ) (step S100). The phosphorus concentration (C P ) is the concentration of organic phosphorus and inorganic phosphorus (total phosphorus (TP) concentration) contained in the raw water, and is measured in advance when drawing the raw water into the membrane separation activated sludge treatment apparatus 1. And stored in a storage device included in the control device.
ステップS110において、制御装置は、原水のリン濃度(C)が、処理水における限界リン濃度(CPLV)を下回っているか否かを判定する。限界リン濃度(CPLV)は、膜分離活性汚泥処理装置1における脱リン処理で達成しようとする目標リン濃度を意味し、例えば、処理水に課されるリン濃度の水質基準値(例えば、1mg/L等の値)以下の任意濃度が設定される。 In step S110, the control device determines whether or not the phosphorus concentration (C P ) of the raw water is lower than the limit phosphorus concentration (C PLV ) in the treated water. The critical phosphorus concentration (C PLV ) means a target phosphorus concentration to be achieved by the dephosphorization treatment in the membrane separation activated sludge treatment apparatus 1. For example, a water quality reference value (for example, 1 mg) of the phosphorus concentration imposed on the treated water An arbitrary density equal to or less than a value such as / L) is set.
ステップS110において、原水のリン濃度(C)が、処理水における限界リン濃度(CPLV)を下回っていると判定された場合(ステップS110:YES)には、処理はステップS120に移行する。 In Step S110, when it is determined that the phosphorus concentration (C P ) of the raw water is lower than the limit phosphorus concentration (C PLV ) in the treated water (Step S110: YES), the process proceeds to Step S120.
ステップS120において、制御装置は、各弁に制御信号を出力し、連結流路弁V2及び第2処理水流路弁V3を開弁、且つ、第1処理水流路弁V1閉弁させる。また、第1原水流路弁V4を開弁、第2原水流路弁V5を閉弁させる。そして、各弁の開閉の切替制御がなされると、運転形式の選択の処理は終了する。   In step S120, the control device outputs a control signal to each valve, opens the connection flow path valve V2 and the second treated water flow path valve V3, and closes the first treated water flow path valve V1. Further, the first raw water passage valve V4 is opened, and the second raw water passage valve V5 is closed. Then, when the switching control of opening and closing of each valve is performed, the operation type selection process ends.
このような処理では、図2(a)に示すように、連結流路F30と第2処理水流路F20とが形成されると共に、第1生物反応槽20に系外から被処理水を流入させる第1原水流路F01が形成され、リン除去に好適な槽分割型の運転形式が実現される。   In such a process, as shown in FIG. 2A, a connection flow path F30 and a second treated water flow path F20 are formed, and water to be treated is caused to flow into the first biological reaction tank 20 from outside the system. The first raw water flow path F01 is formed, and a tank division type operation mode suitable for phosphorus removal is realized.
その一方で、ステップS110において、原水のリン濃度(C)が、処理水における限界リン濃度(CPLV)以上であると判定された場合(ステップS110:NO)には、処理はステップS130に移行する。 On the other hand, if it is determined in step S110 that the phosphorus concentration (C P ) of the raw water is equal to or higher than the limit phosphorus concentration (C PLV ) in the treated water (step S110: NO), the process proceeds to step S130. Transition.
ステップS130において、制御装置は、負荷水量(L)の計測値を取得する。負荷水量(L)は、膜分離活性汚泥処理装置1に引き込まれる原水の流入量であり、第1生物反応槽20や第2生物反応槽よりも前段に設置される流量計測手段によって計測され、その計測信号が制御装置に送信されている。   In step S130, the control device acquires a measured value of the load water amount (L). The load water amount (L) is an inflow amount of the raw water drawn into the membrane separation activated sludge treatment apparatus 1, and is measured by a flow rate measuring unit installed in a stage prior to the first biological reaction tank 20 and the second biological reaction tank. The measurement signal is transmitted to the control device.
ステップS140において、制御装置は、計測された負荷水量(L)が、計画水量(Q)を下回っているか否かを判定する。計画水量(Q)は、膜分離活性汚泥処理装置1の用法や原水の種類等に応じて設計される時間あたり最大水量であり、例えば、窒素負荷の過多等に基いて制御装置が有する記憶装置にあらかじめ所定値が記憶されている。   In step S140, the control device determines whether or not the measured load water amount (L) is less than the planned water amount (Q). The planned amount of water (Q) is the maximum amount of water per hour designed according to the usage of the membrane separation activated sludge treatment device 1, the type of raw water, etc., for example, a storage device that the control device has based on excessive nitrogen load, etc. A predetermined value is stored in advance.
ステップS140において、計測された負荷水量(L)が、計画水量(Q)を下回っていると判定された場合(ステップS140:YES)には、処理はステップS150に移行する。   In step S140, when it is determined that the measured load water amount (L) is lower than the planned water amount (Q) (step S140: YES), the process proceeds to step S150.
ステップS150において、制御装置は、各弁に制御信号を出力し、第2処理水流路弁V3を開弁、且つ、第1処理水流路弁V1及び連結流路弁V2を閉弁させる。また、第2原水流路弁V5を開弁、第1原水流路弁V4を閉弁させる。そして、各弁の開閉の切替制御がなされると、運転形式の選択の処理は終了する。   In step S150, the control device outputs a control signal to each valve, opens the second treated water passage valve V3, and closes the first treated water passage valve V1 and the connection passage valve V2. Further, the second raw water passage valve V5 is opened, and the first raw water passage valve V4 is closed. Then, when the switching control of opening and closing of each valve is performed, the operation type selection process ends.
このような処理では、図2(b)に示すように、第2処理水流路F20が形成されると共に、第2生物反応槽30に系外から被処理水を流入させる第2原水流路F02が形成され、水量や窒素成分が低負荷の処理に好適な槽一体型の運転形式が実現される。   In such a process, as shown in FIG. 2 (b), a second treated water flow path F20 is formed, and a second raw water flow path F02 that allows treated water to flow into the second biological reaction tank 30 from outside the system. And a tank-integrated operation mode suitable for processing with a low load of water and nitrogen components is realized.
その一方で、ステップS140において、計測された負荷水量(L)が、計画水量(Q)以上であると判定された場合(ステップS140:NO)には、処理はステップS160に移行する。   On the other hand, if it is determined in step S140 that the measured load water amount (L) is equal to or greater than the planned water amount (Q) (step S140: NO), the process proceeds to step S160.
ステップS160において、制御装置は、各弁に制御信号を出力し、第1処理水流路弁V1及び連結流路弁V2を開弁、且つ、第2処理水流路弁V3を閉弁させる。また、第2原水流路弁V5を開弁、第1原水流路弁V4を閉弁させる。そして、各弁の開閉の切替制御がなされると、運転形式の選択の処理は終了する。   In step S160, the control device outputs a control signal to each valve, opens the first treated water passage valve V1 and the connection passage valve V2, and closes the second treated water passage valve V3. Further, the second raw water passage valve V5 is opened, and the first raw water passage valve V4 is closed. Then, when the switching control of opening and closing of each valve is performed, the operation type selection process ends.
このような処理では、図2(c)に示すように、連結流路F30と第1処理水流路F10とが形成されると共に、第2生物反応槽30に系外から被処理水を流入させる第2原水流路F02が形成され、水量や窒素成分が高負荷の処理に好適な槽分割型の運転形式が実現される。   In such a process, as shown in FIG. 2C, a connection flow path F30 and a first treated water flow path F10 are formed, and water to be treated is caused to flow into the second biological reaction tank 30 from outside the system. The second raw water flow path F02 is formed, and a tank division type operation mode suitable for processing with a high load of water and nitrogen components is realized.
図4は、本発明の一実施形態に係る膜分離活性汚泥処理装置における運転形式の変更処理の一例を示す流れ図である。   FIG. 4 is a flowchart showing an example of operation type change processing in the membrane separation activated sludge treatment apparatus according to the embodiment of the present invention.
本実施形態に係る膜分離活性汚泥処理装置1では、第1生物反応槽20において生物反応処理を行う運転形式が選択された場合、さらに、第1散気手段(22,24)の作動と停止の切替によって運転形式の変更がなされる。すなわち、第1生物反応槽20及び第2生物反応槽30の双方で生物反応処理を行う槽分割型の運転形式においては、第1生物反応槽20を好気槽として機能させる運転形式と、第1生物反応槽20を無酸素槽又は嫌気槽として機能させる運転形式とを切り替えて生物反応処理を行うことが可能となっている。膜分離活性汚泥処理装置1では、制御装置は、生物反応処理を行う間に運転形式の変更の処理を繰り返し実行する。   In the membrane separation activated sludge treatment apparatus 1 according to the present embodiment, when the operation mode for performing the biological reaction treatment in the first biological reaction tank 20 is selected, the first aeration means (22, 24) is further activated and stopped. The operation type is changed by switching the mode. That is, in the tank division type operation mode in which the biological reaction treatment is performed in both the first biological reaction tank 20 and the second biological reaction tank 30, an operation mode in which the first biological reaction tank 20 functions as an aerobic tank, It is possible to perform a biological reaction process by switching the operation mode in which one biological reaction tank 20 functions as an anaerobic tank or an anaerobic tank. In the membrane separation activated sludge treatment apparatus 1, the control apparatus repeatedly executes the operation type change process while performing the biological reaction process.
運転形式の変更の処理が開始されると、制御装置は、被処理水の窒素濃度(C)の計測値を取得する(ステップS200)。窒素濃度(C)は、例えば、第1生物反応槽20における被処理水のアンモニア態窒素濃度であり、第1生物反応槽20に導入される被処理水について窒素(アンモニア態窒素等)濃度計測手段によってあらかじめ計測される。 When the process of changing the operation format is started, the control device acquires a measured value of the nitrogen concentration (C N ) of the water to be treated (Step S200). The nitrogen concentration (C N ) is, for example, the ammonia nitrogen concentration of the water to be treated in the first biological reaction tank 20, and the nitrogen (ammonia nitrogen etc.) concentration of the water to be treated introduced into the first biological reaction tank 20. It is measured in advance by the measuring means.
ステップS210において、制御装置は、被処理水の窒素濃度(C)が、硝化処理における限界窒素濃度(CNLV)を上回っているか否かを判定する。硝化処理における限界窒素濃度(CNLV)は、膜分離槽40で達成しようとする硝化処理後の目標窒素濃度(アンモニア態窒素濃度等)を意味し、例えば、所定の循環比や水温の下で、原水中に含まれるアンモニア態窒素等を、膜分離槽40において硝化処理した後に、第2生物反応槽30に返流し、第2生物反応槽30において脱窒処理して窒素除去することが可能であると見込まれる処理限界等に基いてあらかじめ設定される。 In step S210, the control device determines whether the nitrogen concentration (C N ) of the water to be treated is higher than the limit nitrogen concentration (C NLV ) in the nitrification treatment. The critical nitrogen concentration (C NLV ) in nitrification means the target nitrogen concentration (ammonia nitrogen concentration, etc.) after nitrification to be achieved in the membrane separation tank 40. For example, under a predetermined circulation ratio or water temperature. Ammonia nitrogen or the like contained in the raw water is nitrified in the membrane separation tank 40 and then returned to the second biological reaction tank 30 and denitrified in the second biological reaction tank 30 to remove nitrogen. It is set in advance based on the processing limit expected to be possible.
膜分離槽40が有する第2散気手段(42,44)の散気量は、散気に関わる運転動力を抑制する観点からは、膜分離器41の洗浄性に合わせて調節するのが適切である。そのため、第2散気手段(42,44)のみによる散気では、溶存酸濃度を維持することができなくなることがあり、硝化処理が不完全になる場合がある。そこで、このステップS210では、第1生物反応槽20に導入される被処理水に含まれているアンモニア態窒素等の窒素成分が、更なる硝化処理を要するか否かを、事前の予備運転等において求められている硝化処理の処理限界濃度との比較によって判断する。   It is appropriate to adjust the amount of air diffused by the second air diffuser (42, 44) of the membrane separation tank 40 in accordance with the detergency of the membrane separator 41 from the viewpoint of suppressing the driving power related to air diffusion. It is. For this reason, in the case of aeration only with the second aeration means (42, 44), the dissolved acid concentration may not be maintained, and the nitrification treatment may be incomplete. Therefore, in this step S210, whether or not the nitrogen component such as ammonia nitrogen contained in the water to be treated introduced into the first biological reaction tank 20 requires further nitrification treatment, a preliminary operation or the like in advance. Judgment is made by comparison with the treatment limit concentration of the nitrification treatment required in (1).
ステップS210において、被処理水の窒素濃度(C)が、硝化処理の限界窒素濃度(CNLV)を上回っていると判定された場合(ステップS210:YES)には、処理はステップS220に移行する。 In step S210, when it is determined that the nitrogen concentration (C N ) of the water to be treated is higher than the limit nitrogen concentration (C NLV ) of nitrification treatment (step S210: YES), the process proceeds to step S220. To do.
ステップS220において、制御装置は、第1散気手段(22,24)を作動させる。すなわち、制御装置は、停止した状態となっている第1散気手段のブロワ24を起動し、所定の散気量による被処理水の曝気を開始させる。そして、運転形式の変更の処理は終了する。   In step S220, the control device operates the first air diffuser (22, 24). That is, the control device starts the blower 24 of the first air diffuser in a stopped state, and starts aeration of the water to be treated with a predetermined amount of air diffused. Then, the process of changing the operation format ends.
このような処理では、第1生物反応槽20が好気槽として機能するように膜分離活性汚泥処理装置1の運転形式が変更される。すなわち、ステップS120で選択された槽分割型の運転形式(図2(a)参照)では、好気槽として機能する第1生物反応槽20、無酸素槽として機能する第2生物反応槽30、好気槽として機能する膜分離槽40を順次経る運転形式が実現されることになる。この運転形式では、第2生物反応槽30における無酸素条件下の生物反応処理に先立って、高負荷の有機物の好気分解処理や硝化処理が可能となる。   In such treatment, the operation format of the membrane separation activated sludge treatment apparatus 1 is changed so that the first biological reaction tank 20 functions as an aerobic tank. That is, in the tank division type operation format selected in step S120 (see FIG. 2A), the first biological reaction tank 20 that functions as an aerobic tank, the second biological reaction tank 30 that functions as an oxygen-free tank, An operation mode that sequentially passes through the membrane separation tank 40 functioning as an aerobic tank is realized. In this operation mode, prior to the biological reaction treatment under the oxygen-free condition in the second biological reaction tank 30, a high load organic matter can be aerobically decomposed or nitrified.
また、ステップS160で選択された槽分割型の運転形式(図2(c)参照)では、無酸素槽として機能する第2生物反応槽30、好気槽として機能する第1生物反応槽20、好気槽として機能する膜分離槽40を順次経る運転形式が実現されることになる(図2(d)参照)。この運転形式では、硝化処理と脱窒処理との滞留時間や処理槽容積の比率を変更することが可能になり、装置規模が小さく抑えられていながら、窒素負荷に応じた処理水質の向上を容易に図ることができる。   Moreover, in the tank-divided operation type selected in step S160 (see FIG. 2C), the second biological reaction tank 30 that functions as an anoxic tank, the first biological reaction tank 20 that functions as an aerobic tank, An operation mode that sequentially passes through the membrane separation tank 40 functioning as an aerobic tank is realized (see FIG. 2D). In this operation mode, it is possible to change the residence time and treatment tank volume ratio between nitrification treatment and denitrification treatment, and it is easy to improve the quality of treated water according to the nitrogen load while keeping the equipment scale small. Can be aimed at.
その一方で、ステップS210において、被処理水の窒素濃度(C)が、硝化処理の限界窒素濃度(CNLV)以下であると判定された場合(ステップS210:NO)には、処理は終了する。 On the other hand, when it is determined in step S210 that the nitrogen concentration (C N ) of the water to be treated is equal to or lower than the limit nitrogen concentration (C NLV ) of the nitrification treatment (step S210: NO), the processing ends. To do.
このような処理では、第1生物反応槽20が無酸素槽又は嫌気槽として機能するように膜分離活性汚泥処理装置1の運転形式が維持される。すなわち、第2原水流路F02によって第2生物反応槽30に原水(被処理水)を導入する運転形式では、第1生物反応槽20は無酸素槽として機能させることができる。この運転形式では、第2生物反応槽30における脱窒処理の処理能力によっては第1生物反応槽20に硝酸態窒素が導入されることになるため、窒素負荷や第2生物反応槽30における処理条件に応じて窒素除去率を向上させた運転を行うことが可能になる。   In such treatment, the operation mode of the membrane separation activated sludge treatment apparatus 1 is maintained so that the first biological reaction tank 20 functions as an anoxic tank or an anaerobic tank. That is, in the operation mode in which raw water (treated water) is introduced into the second biological reaction tank 30 through the second raw water flow path F02, the first biological reaction tank 20 can function as an anoxic tank. In this operation mode, nitrate nitrogen is introduced into the first biological reaction tank 20 depending on the processing capacity of the denitrification process in the second biological reaction tank 30, so that the nitrogen load and the treatment in the second biological reaction tank 30 are performed. It is possible to perform an operation with an improved nitrogen removal rate depending on the conditions.
また、第1原水流路F01によって第1生物反応槽20に原水(被処理水)を導入する運転形式では、第1生物反応槽20は嫌気槽として機能する。この運転形式では、第1生物反応槽20で、ポリリン酸蓄積細菌に蓄積させているリンを放出させる処理が行われる。そのため、原水中のリンの負荷変動に対応した運転を行うことが可能になる。   In the operation mode in which raw water (treated water) is introduced into the first biological reaction tank 20 through the first raw water flow path F01, the first biological reaction tank 20 functions as an anaerobic tank. In this operation mode, the first biological reaction tank 20 performs a process of releasing phosphorus accumulated in the polyphosphate accumulating bacteria. Therefore, it becomes possible to perform the operation corresponding to the load fluctuation of phosphorus in the raw water.
なお、以上の運転形式の選択処理において、各処理は人為的に行ってもよい。すなわち、リン濃度や負荷水量を手動で計測し、計測値を用いて判定することによって、各弁の開閉を制御装置に制御させてよく、さらに各弁の開閉を手動で行ってもよい。   In the above operation type selection process, each process may be performed artificially. That is, by manually measuring the phosphorus concentration and the load water amount and determining using the measured value, the control device may control the opening and closing of each valve, and each valve may be manually opened and closed.
また、ステップS150及びステップS160の処理を行った後、ステップS130の処理に帰還させることによって、膜分離活性汚泥処理装置1の運転中に計測される負荷水量(L)に応じて、槽一体型の運転形式(図2(b)参照)と槽分割型の運転形式(図2(c)、(d)参照)が繰り返し切り換えられるようにしてもよい。   Moreover, after performing the process of step S150 and step S160, by returning to the process of step S130, according to the load water amount (L) measured during the operation | movement of the membrane separation activated sludge processing apparatus 1, tank integrated type The operation mode (see FIG. 2B) and the tank division type operation format (see FIGS. 2C and 2D) may be repeatedly switched.
1 膜分離活性汚泥処理装置
5 引水ポンプ
10 スクリーン槽
12 スクリーン
20 第1生物反応槽
22 散気管(第1散気手段)
24 ブロワ(第1散気手段)
30 第2生物反応槽
32 撹拌手段
40 膜分離槽
41 膜分離器
42 散気管(第2散気手段)
44 ブロワ(第2散気手段)
54 移送ポンプ
56 吸引ポンプ
58 汚泥引抜ポンプ
110 第1処理水配管
120 連結配管
130 第2処理水配管
140 合流配管
150 越流堰
160 排水配管
170 汚泥引抜配管
V1 第1処理水流路弁
V2 連結流路弁
V3 第2処理水流路弁
V4 第1原水流路弁
V5 第2原水流路弁
DESCRIPTION OF SYMBOLS 1 Membrane-separated activated sludge treatment apparatus 5 Water draw pump 10 Screen tank 12 Screen 20 1st biological reaction tank 22 Aeration pipe (1st aeration means)
24 Blower (first air diffuser)
30 Second biological reaction tank 32 Stirring means 40 Membrane separation tank 41 Membrane separator 42 Aeration tube (second aeration means)
44 Blower (second air diffuser)
54 Transfer Pump 56 Suction Pump 58 Sludge Extraction Pump 110 First Process Water Pipe 120 Connection Pipe 130 Second Process Water Pipe 140 Merge Pipe 150 Overflow Weir 160 Drain Pipe 170 Sludge Extraction Pipe V1 First Process Water Channel Valve V2 Connection Channel Valve V3 Second treated water passage valve V4 First raw water passage valve V5 Second raw water passage valve

Claims (9)

  1. 被処理水の曝気を行う第1散気手段を有し、活性汚泥を用いて前記被処理水の生物反応処理を行う第1生物反応槽と、
    被処理水を撹拌する撹拌手段を有し、活性汚泥を用いて無酸素条件下で前記被処理水の生物反応処理を行う第2生物反応槽と、
    前記第2生物反応槽に隣接して備えられ、前記第1生物反応槽及び前記第2生物反応槽の少なくとも一方において生物反応処理された処理水と活性汚泥とを固液分離する膜分離器及び前記膜分離器を曝気洗浄すると共に前記処理水の曝気を行う第2散気手段を有し、活性汚泥を用いて好気条件下で前記処理水の生物反応処理を行う膜分離槽と、
    前記第1生物反応槽と前記膜分離槽とを接続し、前記第1生物反応槽における処理水を前記膜分離槽に流入させる第1処理水流路と、
    前記第2生物反応槽と前記第1生物反応槽とを接続し、前記第1生物反応槽及び前記第2生物反応槽のいずれか一方における処理水を他方の生物反応槽に流入させる連結流路と、
    前記第2生物反応槽と前記膜分離槽とを接続し、前記第2生物反応槽における処理水を前記膜分離槽に流入させる第2処理水流路と、
    前記膜分離槽と前記第2生物反応槽とを接続し、前記第2生物反応槽と前記膜分離槽との間に前記第2処理水流路と共に循環路を形成して、前記膜分離槽における処理水を前記第2生物反応槽に返流させる返流流路と、
    を備えることを特徴とする膜分離活性汚泥処理装置。
    A first biological reaction tank having a first aeration means for performing aeration of the water to be treated, and performing a biological reaction treatment of the water to be treated using activated sludge;
    A second biological reaction tank having a stirring means for stirring the water to be treated, and performing a biological reaction treatment of the water to be treated under oxygen-free conditions using activated sludge;
    A membrane separator, which is provided adjacent to the second biological reaction tank and separates the treated water and activated sludge which have been subjected to biological reaction treatment in at least one of the first biological reaction tank and the second biological reaction tank; A membrane separation tank for performing a biological reaction treatment of the treated water under aerobic conditions using activated sludge, having a second air diffuser for aeration and washing of the membrane separator and aeration of the treated water;
    A first treated water flow path for connecting the first biological reaction tank and the membrane separation tank, and allowing treated water in the first biological reaction tank to flow into the membrane separation tank;
    A connection flow path for connecting the second biological reaction tank and the first biological reaction tank, and allowing treated water in one of the first biological reaction tank and the second biological reaction tank to flow into the other biological reaction tank. When,
    A second treated water flow path for connecting the second biological reaction tank and the membrane separation tank, and allowing treated water in the second biological reaction tank to flow into the membrane separation tank;
    In the membrane separation tank, the membrane separation tank and the second biological reaction tank are connected, and a circulation path is formed between the second biological reaction tank and the membrane separation tank together with the second treated water flow path. A return flow path for returning treated water to the second biological reaction tank;
    A membrane separation activated sludge treatment apparatus characterized by comprising:
  2. 前記返流流路が、前記膜分離槽と前記第2生物反応槽との間に設けられる越流堰によって形成され、
    前記膜分離槽において生物反応処理された処理水は、前記越流堰を越流して前記第2生物反応槽へ返流される
    ことを特徴とする請求項1に記載の膜分離活性汚泥処理装置。
    The return flow path is formed by an overflow weir provided between the membrane separation tank and the second biological reaction tank,
    2. The membrane separation activated sludge treatment apparatus according to claim 1, wherein the treated water subjected to the biological reaction treatment in the membrane separation tank is returned to the second biological reaction tank through the overflow weir. .
  3. 前記第2散気手段が、気泡径が100μm以上の粗大気泡を前記被処理水に散気し、
    前記第1散気手段が、前記粗大気泡よりも気泡径が小さい微細気泡を前記被処理水に散気する
    ことを特徴とする請求項1又は請求項2に記載の膜分離活性汚泥処理装置。
    The second air diffuser diffuses coarse bubbles having a bubble diameter of 100 μm or more into the water to be treated.
    3. The membrane separation activated sludge treatment apparatus according to claim 1, wherein the first air diffuser diffuses fine bubbles having a smaller bubble diameter than the coarse bubbles into the water to be treated.
  4. さらに、
    前記第1処理水流路を開閉する第1処理水流路弁と、
    前記連結流路を開閉する連結流路弁と、
    前記第2処理水流路を開閉する第2処理水流路弁と
    を備えることを特徴とする請求項1から請求項3のいずれか一項に記載の膜分離活性汚泥処理装置。
    further,
    A first treated water channel valve for opening and closing the first treated water channel;
    A connection flow path valve for opening and closing the connection flow path;
    The membrane-separated activated sludge treatment apparatus according to any one of claims 1 to 3, further comprising a second treated water channel valve that opens and closes the second treated water channel.
  5. 請求項4に記載の膜分離活性汚泥処理装置の運転方法であって、
    前記第2処理水流路弁を開弁、且つ、前記第1処理水流路弁及び前記連結流路弁を閉弁させると共に、前記第2生物反応槽に系外から被処理水を流入させて、前記第2生物反応槽、前記膜分離槽の順に前記被処理水の生物反応処理を行う
    ことを特徴とする膜分離活性汚泥処理装置の運転方法。
    The operation method of the membrane separation activated sludge treatment apparatus according to claim 4,
    Opening the second treated water flow path valve, closing the first treated water flow path valve and the connection flow path valve, and allowing treated water to flow into the second biological reaction tank from outside the system, A method for operating a membrane separation activated sludge treatment apparatus, wherein the biological reaction treatment of the treated water is performed in the order of the second biological reaction tank and the membrane separation tank.
  6. 請求項4に記載の膜分離活性汚泥処理装置の運転方法であって、
    前記連結流路弁及び前記第2処理水流路弁を開弁、且つ、前記第1処理水流路弁を閉弁させると共に、前記第1生物反応槽に系外から被処理水を流入させて、前記第1生物反応槽、前記第2生物反応槽、前記膜分離槽の順に前記被処理水の生物反応処理を行う
    ことを特徴とする膜分離活性汚泥処理装置の運転方法。
    The operation method of the membrane separation activated sludge treatment apparatus according to claim 4,
    Opening the connection flow path valve and the second treated water flow path valve, and closing the first treated water flow path valve, and allowing treated water to flow into the first biological reaction tank from outside the system, A method for operating a membrane separation activated sludge treatment apparatus, wherein the biological reaction treatment of the treated water is performed in the order of the first biological reaction tank, the second biological reaction tank, and the membrane separation tank.
  7. 請求項4に記載の膜分離活性汚泥処理装置の運転方法であって、
    前記第1処理水流路弁及び前記連結流路弁を開弁、且つ、前記第2処理水流路弁を閉弁させると共に、前記第2生物反応槽に系外から被処理水を流入させて、前記第2生物反応槽、前記第1生物反応槽、前記膜分離槽の順に前記被処理水の生物反応処理を行う
    ことを特徴とする膜分離活性汚泥処理装置の運転方法。
    The operation method of the membrane separation activated sludge treatment apparatus according to claim 4,
    Opening the first treated water flow path valve and the connection flow path valve, and closing the second treated water flow path valve, and flowing treated water from outside the system into the second biological reaction tank, A method for operating a membrane separation activated sludge treatment apparatus, wherein biological treatment treatment of the treated water is performed in the order of the second biological reaction tank, the first biological reaction tank, and the membrane separation tank.
  8. 請求項6に記載の膜分離活性汚泥処理装置の運転方法において、
    前記第1散気手段を作動させて前記第1生物反応槽を好気槽として機能させる運転形式と、前記第1散気手段を停止させて前記第1生物反応槽を嫌気槽として機能させる運転形式とを切り替えて生物反応処理を行う
    ことを特徴とする膜分離活性汚泥処理装置の運転方法。
    In the operation method of the membrane separation activated sludge treatment apparatus according to claim 6,
    An operation mode in which the first aeration means is operated to cause the first biological reaction tank to function as an aerobic tank, and an operation in which the first aeration means is stopped to cause the first biological reaction tank to function as an anaerobic tank. A method for operating a membrane-separated activated sludge treatment apparatus, characterized in that a biological reaction treatment is performed by switching between formats.
  9. 請求項7に記載の膜分離活性汚泥処理装置の運転方法において、
    前記第1散気手段を作動させて前記第1生物反応槽を好気槽として機能させる運転形式と、前記第1散気手段を停止させて前記第1生物反応槽を無酸素槽として機能させる運転形式とを切り替えて生物反応処理を行う
    ことを特徴とする膜分離活性汚泥処理装置の運転方法。
    In the operation method of the membrane separation activated sludge treatment apparatus according to claim 7,
    An operation mode in which the first aeration means is operated to cause the first biological reaction tank to function as an aerobic tank, and the first aeration means is stopped to cause the first biological reaction tank to function as an anaerobic tank. A method for operating a membrane-separated activated sludge treatment apparatus, wherein a biological reaction process is performed by switching between operation modes.
JP2014123709A 2014-06-16 2014-06-16 Membrane separation activated sludge treatment apparatus and operation method thereof Expired - Fee Related JP6181003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014123709A JP6181003B2 (en) 2014-06-16 2014-06-16 Membrane separation activated sludge treatment apparatus and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014123709A JP6181003B2 (en) 2014-06-16 2014-06-16 Membrane separation activated sludge treatment apparatus and operation method thereof

Publications (2)

Publication Number Publication Date
JP2016002514A JP2016002514A (en) 2016-01-12
JP6181003B2 true JP6181003B2 (en) 2017-08-16

Family

ID=55222240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014123709A Expired - Fee Related JP6181003B2 (en) 2014-06-16 2014-06-16 Membrane separation activated sludge treatment apparatus and operation method thereof

Country Status (1)

Country Link
JP (1) JP6181003B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6661060B2 (en) * 2017-08-24 2020-03-11 三菱電機株式会社 Water treatment control system
KR102023630B1 (en) * 2017-09-21 2019-11-25 농업회사법인 인워터솔루션 주식회사 Method for water treatment using a membrane bioreactor system which is adapted of a backward gravity flow system
JP2020049432A (en) * 2018-09-27 2020-04-02 株式会社クボタ Operating method of organic wastewater treatment device and organic wastewater treatment device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3654799B2 (en) * 1999-08-30 2005-06-02 株式会社クボタ Nitrogen-containing wastewater treatment equipment
JP4742403B2 (en) * 2000-05-10 2011-08-10 栗田工業株式会社 Wastewater treatment method
US6863817B2 (en) * 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
JP2004337787A (en) * 2003-05-19 2004-12-02 Kubota Corp Membrane separation activated sludge treatment tank
CN101277905B (en) * 2005-10-06 2013-08-07 西门子工业公司 Dynamic control of membrane bioreactor system
JP2010194481A (en) * 2009-02-26 2010-09-09 Kubota Corp Sewage treatment apparatus and operation method of sewage treatment apparatus
JP2010253428A (en) * 2009-04-28 2010-11-11 Asahi Kasei Chemicals Corp Wastewater treatment apparatus and wastewater treatment method
JP2012076081A (en) * 2011-12-12 2012-04-19 Hitachi Plant Technologies Ltd Membrane separation type activated sludge treatment apparatus and method thereof

Also Published As

Publication number Publication date
JP2016002514A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
JP5217159B2 (en) Sewage treatment apparatus and method
JP5665307B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
KR100566321B1 (en) Membrane combined Advanced wastewater treatment system which applies Trisectional aeration and Changed inflow course and it's operation methods
JP2003126890A (en) Wastewater treatment apparatus and wastewater treatment method using the same
JP6181003B2 (en) Membrane separation activated sludge treatment apparatus and operation method thereof
RU2181344C2 (en) Plant for and method of biological purification of impurities and sewage water
US20120012524A1 (en) Membrane bioreactor process
JP2005279347A (en) Biological treatment method employing membrane separator, and biological treatment apparatus
JP4690265B2 (en) Wastewater treatment method
JP5260417B2 (en) Sewage treatment facilities and methods for renovating sewage treatment facilities
JP2005246308A (en) Method for bio-treating wastewater
JP4307275B2 (en) Wastewater treatment method
CN202881052U (en) Device for removing phosphorus chemically and forcibly by adopting A2O, membrane separation and cloth filter filtering
JP4365734B2 (en) Membrane separation sewage treatment apparatus and operation method thereof
JP2004305926A (en) Immersion membrane separation type activated sludge treatment method
KR20200042273A (en) Membrane combined Advanced wastewater treatment system which applies Trisectional aeration and Changed inflow course and it's operation methods
JP4611334B2 (en) Organic wastewater treatment method and apparatus
KR101192174B1 (en) Plants for advanced treatment of wastewater
JP2016002541A (en) Membrane separation activated sludge treatment apparatus and method
JP6624926B2 (en) Organic wastewater treatment apparatus and organic wastewater treatment method
JP2004283637A (en) Waste water treatment method
JP2004243248A (en) Nitrogen removing device
KR100740579B1 (en) Advanced wastewater treatment apparatus and method improved from existing waste water treatment process using activated sludge method
JP2020040048A (en) Organic wastewater treatment method and organic wastewater treatment device
JP5743448B2 (en) Sewage treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170719

R150 Certificate of patent or registration of utility model

Ref document number: 6181003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees