JP2006289370A - Solid-liquid separation method and apparatus - Google Patents

Solid-liquid separation method and apparatus Download PDF

Info

Publication number
JP2006289370A
JP2006289370A JP2006214524A JP2006214524A JP2006289370A JP 2006289370 A JP2006289370 A JP 2006289370A JP 2006214524 A JP2006214524 A JP 2006214524A JP 2006214524 A JP2006214524 A JP 2006214524A JP 2006289370 A JP2006289370 A JP 2006289370A
Authority
JP
Japan
Prior art keywords
filtration
air
sludge
diffuser
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006214524A
Other languages
Japanese (ja)
Inventor
Yousei Katsura
甬生 葛
Satoshi Konishi
聡史 小西
Toshihiro Tanaka
俊博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2006214524A priority Critical patent/JP2006289370A/en
Publication of JP2006289370A publication Critical patent/JP2006289370A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-liquid separation method for activated sludge treatment water, which can ensure and maintain a high and uniform filtration flux and a low and uniform filtrate water turbidity, and to provide its apparatus. <P>SOLUTION: In the solid-liquid separation method and apparatus, water to be treated is introduced into an activated sludge treatment bioreaction tank. A sludge mixed liquid in the bioreaction tank is introduced into a filtration separation tank, in which a plurality of filtration modules are provided in an immersed state, to obtain filtrate water from the filtration modules by water head. The sludge mixed liquid after the filtration is returned to the bioreaction tank. A partition wall is provided between the filtration modules within the filtration separation tank. An aeration tube is provided on the lower part of each of the filtration modules. In the filtration, while obtaining filtrate water from filtration modules on both sides with the partition wall interposed in between, after air flow into the lower aeration tube in one of the filtration modules with the partition wall interposed in between, the air flow is carried out for the other aeration tube. The air flow for the aeration tubes in the filtration modules is changed and alternately carried out. In the washing of the filtration module, the filtration is stopped. The air washing of the filtration modules are alternately carried out for both the filtration modules with the partition wall interposed in between every predetermined time. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、活性汚泥処理の固液分離に関するもので、下水、有機性工業廃水や生活排水等の活性汚泥処理における固液分離方法及び装置に関するものである。   The present invention relates to solid-liquid separation in activated sludge treatment, and relates to a solid-liquid separation method and apparatus in activated sludge treatment such as sewage, organic industrial wastewater, and domestic wastewater.

従来、活性汚泥による水処理では、処理水を得るためには活性汚泥の固液分離を行わなければならない。通常では、活性汚泥混合液を沈殿池に導入させ、重力沈降によって、汚泥を沈降させ、上澄み液を処理水として沈殿池から流出させる方法が用いられる。この場合、活性汚泥を沈降させるためには十分な沈降面積及び滞留時間を有する沈殿池が必要であり、処理装置の大型化と設置容積の増大要因となっている。また、活性汚泥がバルキング等、沈降性の悪化した場合、沈殿池より汚泥が流出し、処理水の悪化を招く。   Conventionally, in water treatment with activated sludge, solid sludge separation of activated sludge has to be performed in order to obtain treated water. Usually, a method is used in which an activated sludge mixed liquid is introduced into a sedimentation basin, the sludge is sedimented by gravity sedimentation, and the supernatant liquid is discharged from the sedimentation basin as treated water. In this case, a sedimentation basin having a sufficient sedimentation area and residence time is necessary to settle the activated sludge, which is a factor for increasing the size of the processing apparatus and increasing the installation volume. Moreover, when activated sludge deteriorates sedimentation property, such as bulking, sludge flows out from a sedimentation basin and causes deterioration of treated water.

一方、沈殿池に代わって膜分離による活性汚泥の固液分離を行う手法は以前から用いられている。この場合、固液分離用膜として、一般的に精密ろ過膜や限外ろ過膜が用いられる。
ろ過分離手段としてポンプによる吸引や加圧が必要であり、通常数十kPa〜数百kPaの圧力で行うため、ポンプによる動力が大きく、ランニングコストの増大となっている。また、膜分離でSSの全くない清澄な処理水が得られる一方、透過フラックスが低く、膜汚染を防止するため、定期的に薬洗する必要がある。
On the other hand, instead of a sedimentation basin, a method of performing solid-liquid separation of activated sludge by membrane separation has been used for some time. In this case, a microfiltration membrane or an ultrafiltration membrane is generally used as the solid-liquid separation membrane.
As the filtration / separation means, suction or pressurization by a pump is necessary, and since it is usually performed at a pressure of several tens of kPa to several hundred kPa, the power of the pump is large and the running cost is increased. In addition, clear treated water having no SS can be obtained by membrane separation, while the permeation flux is low, and it is necessary to periodically wash the medicine in order to prevent membrane contamination.

最近、沈殿池に代わる活性汚泥の固液分離法として、生物反応槽に不織布等のろ布からなるろ過体を複数浸漬させ、ダイナミックろ過層によるろ過において、間欠的にろ過体下部にガスを供給して洗浄する処理法が開示されている。さらに、曝気槽とは別に、ろ過体同士の間に仕切り壁を設けた複数ろ過体を浸漬する固液分離槽に、曝気槽汚泥を導入して仕切り壁を挟んだ両側のろ過体を、定期的にろ過及び散気を交互に行う処理方法が開示されている。   Recently, as a solid-liquid separation method for activated sludge as an alternative to a sedimentation basin, a plurality of filter media made of filter cloth such as non-woven fabric are immersed in a biological reaction tank, and gas is intermittently supplied to the bottom of the filter media during filtration using a dynamic filtration layer. And a cleaning method is disclosed. In addition to the aeration tank, the filtration bodies on both sides sandwiching the partition wall by introducing the aeration tank sludge into the solid-liquid separation tank in which multiple filter bodies with partition walls provided between the filter bodies are immersed are periodically In particular, a treatment method in which filtration and aeration are alternately performed is disclosed.

間欠的にろ過体下部にガスを供給して洗浄する処理法では、生物反応槽に浸漬するろ過体表面の流れは仕切り壁を挟んだ生物反応槽散気管からの曝気により形成されており、各ろ過体の表面流れは不均一である。いずれのろ過体においても下降流となっている。一方、ろ過体洗浄用の通気管はろ過体下部にあり、ガス供給による洗浄時、ろ過体表面の流れは上向流となり、下降流の汚泥流れの影響で、高い上昇速度或いは均一な上昇速度が得られないことがある。この場合、汚泥付着層の剥離効果が低下し、高いろ過フラックスの維持が困難となる。   In the treatment method in which gas is intermittently supplied to the lower part of the filter body and washed, the flow on the surface of the filter body immersed in the bioreaction tank is formed by aeration from the bioreactor aeration tube sandwiching the partition wall. The surface flow of the filter body is uneven. In any filter body, it is a downward flow. On the other hand, the ventilation pipe for cleaning the filter body is located at the lower part of the filter body, and when cleaning by gas supply, the flow of the filter body is an upward flow, and a high rising speed or a uniform rising speed due to the sludge flow of the downstream flow. May not be obtained. In this case, the peeling effect of a sludge adhesion layer falls and it becomes difficult to maintain a high filtration flux.

曝気槽とは別に、ろ過体同士の間に仕切り壁を設けた複数ろ過体を浸漬する固液分離槽に、曝気槽汚泥を導入して仕切り壁を挟んだ両側のろ過体を、定期的にろ過及び散気を交互に行う処理方法では、固液分離槽内のろ過体の半分が常時ろ過操作を停止していることから、有効なろ過水量を得ることができず、ろ過体の有効利用ができないという問題点がある。また、ろ過体表面の汚泥流れは、仕切り壁を挟んだ反対側通気管散気による循環流−すなわち、通気管散気中のろ過体では上昇流、ろ過中のろ過体では下降流となっているため、ろ過中のろ過体で均一な流速が得られず、洗浄までの連続ろ過時間が長いと、流速の遅いろ過体表面に汚泥付着層が過度に成長し、汚泥流路の抵抗を増加させ、流れの停滞を起こすことがある。このことはろ過フラックスの低下を招く要因となる。
本発明は、従来の欠点を解消し、固液分離槽内のろ過体の有効に使用され、かつ高いろ過フラックスが得られる固液分離方法及び装置を提供することを目的とするものである。
Separately from the aeration tank, the filter bodies on both sides sandwiching the partition wall by introducing the aeration tank sludge into the solid-liquid separation tank in which multiple filter bodies with partition walls provided between the filter bodies are immersed In the treatment method that alternately performs filtration and aeration, since the filtration operation of half of the filter in the solid-liquid separation tank is constantly stopped, an effective amount of filtered water cannot be obtained, and the filter is effectively used. There is a problem that can not be. In addition, the sludge flow on the surface of the filter body is a circulating flow by the opposite side air pipe diffused across the partition wall-that is, an upward flow in the filter medium in the air pipe diffused, and a downward flow in the filter medium being filtered. Therefore, if the filter during filtration does not provide a uniform flow rate and the continuous filtration time until washing is long, a sludge adhesion layer grows excessively on the surface of the filter with a slow flow rate, increasing the sludge flow path resistance. Cause flow stagnation. This is a factor that causes a reduction in filtration flux.
The object of the present invention is to provide a solid-liquid separation method and apparatus that eliminates the disadvantages of the prior art, can be used effectively as a filter in a solid-liquid separation tank, and provides a high filtration flux.

本発明は、上記の課題を解決するために、下記の構成からなるものである。
(1)被処理水を生物反応槽に導入して活性汚泥処理を行い、該生物反応槽から排出される汚泥混合液を、複数のろ過体からなるろ過モジュールを浸漬設置したろ過分離槽に導入し、水頭圧により該ろ過モジュールからろ過水を得るとともに、該ろ過分離層内の汚泥混合液を該生物反応槽に返送する固形分離方法において、
該ろ過分離槽内の隣接するろ過モジュールAとろ過モジュールBの間に仕切り壁を設置して、該仕切壁の上下で液が連通できるようにし、ろ過モジュールAの下方に散気管A、ろ過モジュールBの下部に散気管Bを設け、ろ過時は、ろ過モジュールA、ろ過モジュールBともにろ過を行いながら、散気管Aへの通気と散気管Bへの通気を交互に行うことにより、通気を行う側のろ過モジュールに対して汚泥混合液は上昇流、通気を行わない側のろ過モジュールに対して汚泥混合液は下降流を形成し、空洗時は、ろ過モジュールA、ろ過モジュールBともにろ過を停止して、散気管Aへの通気と散気管Bへの通気を交互に行うことにより、通気を行う側のろ過モジュールに対して汚泥混合液は上昇流、通気を行わない側のろ過モジュールに対して汚泥混合液は下降流を形成し、ろ過時の散気量は空洗時の散気量より少量とし、ろ過を所定時間行った後に空洗を短時間行ってろ過と空洗を繰り返すようにしたことを特徴とする固液分離方法。
In order to solve the above-described problems, the present invention has the following configuration.
(1) Treated water is introduced into a biological reaction tank to perform activated sludge treatment, and the sludge mixed liquid discharged from the biological reaction tank is introduced into a filtration separation tank in which a filtration module composed of a plurality of filter bodies is immersed. In the solid separation method of obtaining filtered water from the filtration module by water head pressure and returning the sludge mixed solution in the filtration separation layer to the biological reaction tank,
A partition wall is installed between adjacent filtration modules A and B in the filtration separation tank so that liquid can communicate with the upper and lower sides of the partition wall. An air diffuser B is provided at the lower part of B, and at the time of filtration, ventilation is performed by alternately conducting air to the air diffuser A and air to the air diffuser B while filtering both the filter module A and the filter module B. The sludge mixed liquid forms an upward flow with respect to the filtration module on the side, and the sludge mixed liquid forms a downward flow with respect to the filtration module on the non-ventilated side. By stopping and alternately ventilating the diffuser tube A and ventilating tube B, the sludge mixed liquid flows up to the filtration module on the ventilation side and flows into the filtration module on the non-ventilation side. for The mud mixture forms a downward flow, and the amount of air diffused during filtration should be smaller than the amount of air diffused during air washing. After filtering for a predetermined time, perform air washing for a short time and repeat filtration and air washing. A solid-liquid separation method characterized by that.

(2)前記散気管Aもしくは散気管Bへの通気を、ろ過時は間欠的或いは連続的に行い、空洗時は連続して行うことを特徴とする前記(1)記載の固液分離方法。
(3)ろ過時における前記散気管Aもしくは散気管Bへの通気において、ろ過水濁度が所定値以上となった時には通気量を減少或いは通気を停止し、ろ過水濁度が所定値以下となった時には通気量を増加或いは通気を再開することを特徴とする前記(1)又は(2)記載の固液分離方法。
(4)前記散気管Aもしくは散気管Bへの通気量は、ろ過時で1.0m/m流路/min以下、空洗時で2.5m/m流路/min以上としたことを特徴とするぜんき(1)〜(3)のいずれかに記載の固液分離方法。
(2) The solid-liquid separation method according to (1), wherein the ventilation to the air diffuser A or the air diffuser B is performed intermittently or continuously during filtration and continuously during air washing. .
(3) When the filtered water turbidity becomes equal to or higher than a predetermined value in the ventilation to the air diffuser A or the diffuser B during filtration, the air flow is reduced or the air flow is stopped, and the filtered water turbidity is equal to or lower than the predetermined value. The solid-liquid separation method as described in (1) or (2) above, wherein the aeration amount is increased or the aeration is resumed when it becomes.
(4) The air flow rate to the air diffuser A or the air diffuser B is 1.0 m 3 / m 2 flow path / min or less at the time of filtration and 2.5 m 3 / m 2 flow path / min or more at the time of air washing A solid-liquid separation method according to any one of (1) to (3), wherein

(5)槽内に上下で液が連通できるようにした仕切り壁を配し、該仕切り壁の両側に複数のろ過体からなる表面にダイナミックろ過層が形成されるろ過モジュールを配し、該各ろ過モジュールの下方にそれぞれ散気管を配し、該ろ過モジュールに付設された、空洗時に全体のろ過を停止するろ過水排出配管と、該各散気管にそれぞれ付設された通気用の空気供給管と、該空気供給管に設けられ、ろ過時には一方の散気管と他方の散気管への通気を交互に行い、空洗時にはろ過時よりも多い通気量で一方の散気管と他方の散気管への通気を交互に行う、通気先を切り換えるための通気弁と、生物反応槽からの汚泥混合液を導入するための汚泥混合液供給管と、槽内の汚泥混合液を該生物反応槽に返送するための汚泥混合液返送管とを設けたろ過分離槽を有することを特徴とする固液分離装置。 (5) A partition wall that allows liquid to communicate with the upper and lower sides in the tank is disposed, and filtration modules in which a dynamic filtration layer is formed on the surface composed of a plurality of filter bodies are disposed on both sides of the partition wall, A diffusing pipe is provided below the filtration module, and a filtered water discharge pipe attached to the filtration module to stop the entire filtration at the time of air washing, and an air supply pipe for ventilation attached to each of the diffusing pipes. The air supply pipe is alternately ventilated to one air diffuser and the other air diffuser at the time of filtration, and to the one air diffuser and the other air diffuser at the time of air washing with a larger air flow rate than at the time of filtration. The aeration valve for switching the ventilation destination, the sludge mixed liquid supply pipe for introducing the sludge mixed liquid from the biological reaction tank, and the sludge mixed liquid in the tank are returned to the biological reaction tank. Filtration with sludge mixed liquid return pipe Solid-liquid separation device characterized by having a Hanareso.

本発明によれば、生物反応槽から汚泥混合液をろ過分離槽に供給して、ろ過モジュールによるダイナミックろ過において、ろ過分離槽内に浸漬設置する複数のろ過モジュールに対し、隣接同士のろ過モジュール間に仕切り壁を設け、ろ過モジュール下部にそれぞれ、散気管を設置し、空洗時仕切り壁を挟んだろ過モジュール同士のいずれかの散気管に対して通気すれば、通気側モジュール流路の気液混合汚泥流れは比較的均等な上向流となり、反対側のモジュール流路は下降流の汚泥流れを形成できる。これを交互に行えば、モジュール流路に対し、確実に流速の速い同一方向の流れを形成できる。このため、ろ過モジュール表面に過成長した汚泥ケーキ層を確実に剥離することができ、高い洗浄効果が得られる。   According to the present invention, the sludge mixed solution is supplied from the biological reaction tank to the filtration separation tank, and in the dynamic filtration by the filtration module, between the filtration modules adjacent to each other with respect to the plurality of filtration modules immersed in the filtration separation tank. If a partition wall is provided in the filter module, a diffuser pipe is installed at the bottom of the filtration module, and air is passed through one of the filtration modules that sandwich the partition wall during air washing, the gas-liquid in the vent-side module flow path The mixed sludge flow becomes a relatively uniform upward flow, and the module flow path on the opposite side can form a downflow sludge flow. By alternately performing this, a flow in the same direction with a high flow rate can be reliably formed in the module flow path. For this reason, the sludge cake layer overgrown on the filtration module surface can be reliably peeled, and a high cleaning effect is obtained.

同様にろ過時において、空洗時より少ない散気量で仕切り壁を挟んだ両モジュールの一方に対し、散気管からの通気によりろ過モジュール流路内の汚泥混合液を確実に流動化するとともに、ろ過体表面汚泥層の成長を抑制でき、高いろ過フラックスを維持できる。また、仕切り壁反対側のろ過モジュール流路において、確実に下降流となる汚泥流れが形成でき、流動停滞に伴う汚泥ケーキ層過成長に起因する汚泥プリッジを解消することができる。ろ過時の通気はろ過モジュールに対して交互に行うことにより、いずれのろ過モジュールも常時高いろ過フラックスが得られる。   Similarly, during filtration, the sludge mixed liquid in the filtration module flow path is surely fluidized by aeration from the air diffusion pipe against one of both modules sandwiching the partition wall with a smaller amount of air diffusion than during air washing, The growth of the filter surface sludge layer can be suppressed, and a high filtration flux can be maintained. Moreover, in the filtration module flow path on the opposite side of the partition wall, a sludge flow that is surely a downward flow can be formed, and the sludge bridge caused by sludge cake layer overgrowth accompanying flow stagnation can be eliminated. Aeration at the time of filtration is alternately performed on the filtration module, so that a high filtration flux is always obtained in any filtration module.

以下に、本発明の実施の形態を説明する。
本発明によれば、生物反応槽から汚泥混合液をろ過分離槽に供給して、ろ過モジュールによるダイナミックろ過において、ろ過分離槽内に浸漬設置する複数のろ過モジュールに対し、隣接同士のろ過モジュール間に仕切り壁を設け、この仕切り壁をその上端が液面より下にあるようにし、且つ下端が槽底より上にあるようにして、仕切り壁の上下で液が連通することができるようし、ろ過モジュール下部にそれぞれ、散気管を設置することで、空洗時仕切り壁を挟んだろ過モジュール同士のいずれかの散気管に対して通気すれば、通気側ろ過モジュール流路の気液混合汚泥流れは比較的均等な上向流となり、反対側ろ過モジュール流路は下降流の汚泥流れを形成できる。これを交互に行えば、ろ過モジュール流路に対し、確実に流速の速い同一方向の流れを形成できる。このため、ろ過モジュール表面に過成長した汚泥ケーキ層を確実に剥離することができ、高い洗浄効果が得られる。
Hereinafter, embodiments of the present invention will be described.
According to the present invention, the sludge mixed solution is supplied from the biological reaction tank to the filtration separation tank, and in the dynamic filtration by the filtration module, between the filtration modules adjacent to each other with respect to the plurality of filtration modules immersed in the filtration separation tank. A partition wall is provided, the upper end of the partition wall is below the liquid level, and the lower end is above the tank bottom so that the liquid can communicate above and below the partition wall; By installing a diffuser pipe at the bottom of the filtration module, if air is passed through any of the diffuser pipes that sandwich the partition wall during air washing, the gas-liquid mixed sludge flow in the ventilation side filtration module flow path Becomes a relatively even upward flow, and the opposite filtration module flow path can form a downward sludge flow. By alternately performing this, a flow in the same direction with a high flow rate can be reliably formed with respect to the filtration module flow path. For this reason, the sludge cake layer overgrown on the filtration module surface can be reliably peeled, and a high cleaning effect is obtained.

同様に、ろ過時は空洗時より少ない散気量で仕切り壁を挟んだ両ろ過モジュールの一方に対し、散気管からの通気を行うことによりろ過モジュール流路内の汚泥混合液を確実に流動させるとともに、ろ過体表面汚泥層の成長を抑制でき、高いろ過フラックスを維持することができる。また、仕切り壁反対側のろ過モジュール流路において、確実に下降流となる汚泥流れが形成でき、流動停滞に伴う汚泥ケーキ層過成長に起因する汚泥ブリッジを解消できる。ろ過時の通気はろ過モジュールに対して交互に行うことにより、いずれのモジュールも同時にろ過を行なうことができ、かつ常時高いろ過フラックスが得られる。   Similarly, during filtration, the sludge mixed liquid in the flow path of the filtration module flows reliably by ventilating from one of the two filtration modules that sandwich the partition wall with a smaller amount of air diffusion than when washing with air. In addition, the growth of the filter surface sludge layer can be suppressed, and a high filtration flux can be maintained. Moreover, in the filtration module flow path on the opposite side of the partition wall, a sludge flow that is surely a downward flow can be formed, and a sludge bridge caused by sludge cake layer overgrowth accompanying flow stagnation can be eliminated. Aeration at the time of filtration is alternately performed on the filtration module, so that any module can perform filtration at the same time, and a high filtration flux is always obtained.

ろ過進行時の散気管として、空洗用散気管を兼用してもよいが、汚泥性状、濃度に対応し、汚泥流れを確実に同一方向とし、各流路に均一な流れを形成するために別途通気管を設けても良い。ろ過進行時の通気管としては孔径の小さい多孔管、孔径が好ましくは1mm〜3mm程度の多孔管、デフューザー等のいずれを用いてもよい。
なお、通気を受けるろ過モジュールでは、汚泥濃度及び性状により、ろ過水濁度の上昇が予想される。また、水頭圧の変化によりろ過水フラックスの低下もある。このため、通気量の大きさ及び散気管への通気の切替えの頻度はろ過水量及びろ過水濁度に応じて適宜に調整し、間欠的に行うことも可能である。
As the air diffuser during filtration, an air diffuser for air washing may be used as well, but in order to ensure the sludge flow in the same direction and to form a uniform flow in each flow path, corresponding to the sludge properties and concentration A separate vent pipe may be provided. As the ventilation tube during the progress of filtration, any of a porous tube having a small pore diameter, a porous tube having a pore diameter of preferably about 1 mm to 3 mm, a diffuser, or the like may be used.
In addition, in the filtration module which receives ventilation | gas_flowing, the raise of filtered water turbidity is anticipated with sludge density | concentration and a property. There is also a reduction in the filtrate flux due to changes in the water head pressure. For this reason, the magnitude | size of ventilation | gas_flowing amount and the frequency of switching of ventilation | gas_flowing to a diffuser can be adjusted suitably according to the amount of filtrate water and filtration water turbidity, and can also be performed intermittently.

ろ過モジュールは複数のろ過体から構成される。ろ過体形状としては平面型が中心であるが、円筒型、中空型を用いることも可能である。ろ過モジュール当たりのろ過体枚数は通常2〜100枚程度であるが、ろ過モジュール流路内の汚泥流れを比較的均等にし、各ろ過体に対し均一な洗浄効果を得るためには、5〜20枚を1個のろ過モジュールとするのが好ましい。   The filtration module is composed of a plurality of filter bodies. Although the flat shape is the center as the filter body shape, a cylindrical shape or a hollow shape can also be used. The number of filter bodies per filtration module is usually about 2 to 100, but in order to make the sludge flow in the filtration module flow path relatively uniform and obtain a uniform cleaning effect for each filter body, 5 to 20 is required. The sheet is preferably a single filtration module.

以下に、本発明を実施態様の一例を示す図面を用いて詳細に説明する。ただし、本発明はこの実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating an embodiment. However, the present invention is not limited to this example.

実施例1
図1に飲料廃水に対する本発明による処理の一例をフローシートで示す。
図1に示す如く、流入原水1が生物反応槽2に流入し、活性汚泥処理を行う。活性汚泥処理後の汚泥混合液は、汚泥供給ポンプ3よりろ過分離槽4の底部に送られる。ろ過分離槽4には、ろ過モジュールAの7とろ過モジュールBの8が、仕切り壁18を挟んで設置されている。ろ過モジュールA及びろ過モジュールBの下部には、それぞれ散気管Aの9と散気管Bの10が配置されている。散気管A、Bへの通気は、ブロワー11よりそれぞれ通気弁Aの5、Bの6を通じて行われる。なお、散気時は通気弁A及びBのいずれか一方のみ開放して行う。散気管AとB間の通気切り替えは、通気弁A、Bの切り替えにより行い、その間通気ブロワー11は連続運転となる。
Example 1
FIG. 1 shows an example of processing according to the present invention for beverage wastewater in a flow sheet.
As shown in FIG. 1, the inflow raw water 1 flows into the biological reaction tank 2 and performs activated sludge treatment. The sludge mixed liquid after the activated sludge treatment is sent to the bottom of the filtration separation tank 4 from the sludge supply pump 3. In the filtration separation tank 4, filtration module A 7 and filtration module B 8 are installed with a partition wall 18 interposed therebetween. In the lower part of the filtration module A and the filtration module B, 9 of the diffuser tube A and 10 of the diffuser tube B are arranged, respectively. Ventilation to the air diffusers A and B is performed from the blower 11 through the vent valves A 5 and B 6, respectively. It should be noted that only one of the vent valves A and B is opened when air is diffused. The ventilation switching between the air diffusers A and B is performed by switching the ventilation valves A and B. During that period, the ventilation blower 11 is continuously operated.

ろ過は、両ろ過モジュールを用いて同時に行われる。ろ過モジュールからのろ過水14は処理水槽12に流入し、処理水17として排出される。なお、水逆洗の場合、水逆洗ポンプ13は処理水槽12のろ過水14を用い、ろ過モジュール内部に供給する方式で水逆洗を行う。水逆洗時は、ろ過モジュール底部からモジュール内部侵入汚泥を排出汚泥16として生物反応槽2に戻す。また、ろ過水14を得たあとのろ過分離槽4内の汚泥混合液は返送汚泥15として生物反応槽2に返送される。
第1表に本実施例でのろ過分離槽の処理条件を示す。
Filtration is performed simultaneously using both filtration modules. The filtered water 14 from the filtration module flows into the treated water tank 12 and is discharged as treated water 17. In the case of water backwashing, the water backwashing pump 13 uses the filtered water 14 of the treated water tank 12 and performs water backwashing by supplying it into the filtration module. At the time of backwashing with water, the sludge entering the module is returned from the bottom of the filtration module to the biological reaction tank 2 as discharged sludge 16. Moreover, the sludge mixed liquid in the filtration separation tank 4 after obtaining the filtered water 14 is returned to the biological reaction tank 2 as return sludge 15.
Table 1 shows the processing conditions of the filtration separation tank in this example.

Figure 2006289370
Figure 2006289370

本実施例では、ろ過分離槽4に、有効ろ過面積0.7m/枚の平面型通水性ろ過体3枚の7、8をろ過体モジュールとして、A、Bの2ろ過モジュールを浸漬設置した。A及びBろ過モジュール間に厚み20mmの仕切り壁18を設けた。なお、仕切り壁18は図に示すように上下が液で連通しているものである。ろ過モジュールの通水性ろ過体として、厚み約0.1mm、孔径114μmのポリエステル織布を用いた。ろ過時の水頭圧を約10cmとし、ろ過分離槽4に供給する汚泥混合液の流量は30m/dとし、ろ過体表面の汚泥流速を平均0.01m/sとした。 In this example, two filtration modules A and B were immersed and installed in the filtration separation tank 4 with 7 and 8 of three flat water-permeable filtration bodies having an effective filtration area of 0.7 m 2 / sheet as filter bodies modules. . A partition wall 18 having a thickness of 20 mm was provided between the A and B filtration modules. The partition wall 18 is in fluid communication with the top and bottom as shown in the figure. A polyester woven fabric having a thickness of about 0.1 mm and a pore diameter of 114 μm was used as a water-permeable filter for the filtration module. The head pressure at the time of filtration was about 10 cm, the flow rate of the sludge mixed solution supplied to the filtration separation tank 4 was 30 m 3 / d, and the sludge flow rate on the surface of the filter body was 0.01 m / s on average.

ろ過工程は、1サイクル120分として行った。この1サイクル120分ろ過において、通気弁A(5)かB(6)を通じて通気サイクルは5分ON、10分OFFの間欠通気を行う。通気は通気管A或いはBの何れかに対して行うため、通気管A及びBからの通気はそれぞれ5分通気、25分停止となる。なお、ろ過時の通気量は0.2m/m/minとした。
通気弁A(5)からの散気時にはろ過モジュールAに対しては、液は上昇流、ろ過モジュールBに対しては、液は下降流となり、通気弁B(6)からの散気時にはろ過モジュールA、Bに対する液の流れは逆になる。そして、通気管A及びBからの通気が停止している時でも、通気時に与えられた液に対する駆動力が残っており、汚泥流路の流れ抵抗がほとんどなく、液の各ろ過面に対する流速を維持することができる。
The filtration process was performed as 120 minutes per cycle. In this one-cycle 120-minute filtration, the ventilation cycle is intermittently aerated for 5 minutes ON and 10 minutes OFF through the ventilation valve A (5) or B (6). Since ventilation is performed with respect to either the ventilation pipe A or B, ventilation from the ventilation pipes A and B is stopped for 5 minutes and stopped for 25 minutes, respectively. The air flow during filtration was 0.2 m 3 / m 2 / min.
When the air is vented from the vent valve A (5), the liquid flows upward to the filtration module A, and the liquid is descended to the filtration module B. When the air diffuses from the vent valve B (6), the liquid is filtered. The liquid flow to modules A and B is reversed. And even when the ventilation from the ventilation pipes A and B is stopped, the driving force for the liquid given at the time of ventilation remains, there is almost no flow resistance of the sludge flow path, and the flow velocity of each liquid to the filtration surface is increased. Can be maintained.

ろ過工程がある時間経過すると、ろ過抵抗が増大するので、外部空洗を行うが、ろ過モジュールに対する外部空洗方法として、ろ過120分毎に通気ブロワー11を起動させ、連続6分間の空洗を行う。その間、通気弁Aからろ過モジュールAへの空洗及び通気弁Bからろ過モジュールBへの空洗時間はそれぞれ3分間とした。通気弁Aの5を開放し、ろ過モジュールA下部の散気管Aの9へ通気する時、通気弁Bの6を閉として通気を行うが、その際汚泥混合液はろ過モジュールA表面を上向流で通過し、その後汚泥混合液は仕切り壁18の上端を通じて、ろ過モジュールBの側に入り、ろ過モジュールB表面を下降流で通過する。同様にBモジュール下部の通気管Bの10へ通気する時、A、Bモジュール表面の汚泥流れは逆に下降流と上向流となる。   Since filtration resistance increases when a certain time passes, external air washing is performed, but as an external air washing method for the filtration module, the ventilation blower 11 is activated every 120 minutes of filtration, and continuous air washing for 6 minutes is performed. Do. Meanwhile, the washing time from the ventilation valve A to the filtration module A and the washing time from the ventilation valve B to the filtration module B were each 3 minutes. When the vent valve A 5 is opened and vented to the diffuser tube A 9 at the bottom of the filtration module A, the vent valve B 6 is closed and ventilated, but the sludge mixture is directed upward on the filtration module A surface. Then, the sludge mixture enters the filtration module B side through the upper end of the partition wall 18 and passes through the surface of the filtration module B in a downward flow. Similarly, when the air is vented to the air pipe B 10 at the lower part of the B module, the sludge flow on the surface of the A and B modules becomes a downward flow and an upward flow.

水逆洗は処理水槽12のろ過水14を用い、ろ過モジュール内部に供給して行う。水逆洗量は、ろ過面積あたり40m/dとし、本実施例では117リットル/minとし、30秒間行った。水逆洗と同時に、ろ過モジュール内部より浸入汚泥を排出する排泥操作を行い、水逆洗後さらに1分間排泥を続ける。   Water backwashing is performed using the filtered water 14 of the treated water tank 12 and supplying it to the inside of the filtration module. The amount of water backwashing was 40 m / d per filtration area, and in this example, 117 liters / min. Simultaneously with the water backwashing, a mud draining operation is performed to discharge the infiltrated sludge from the inside of the filtration module.

図2に実施例における全ろ過モジュールのろ過フラックス経過を示す。実施時のMLSSは約6000mg/リットルである。
処理開始から2ヶ月の運転において、ろ過フラックスがほぼ2〜2.5m/d前後であり、安定した処理が得られた。
図3にろ過水濁度の経過を示す。
約2ヶ月の連続運転において、ろ過水濁度はほぼ10度以下であり、良好なろ過性能を示し、清澄なろ過水を安定して得られた。
FIG. 2 shows the flow of the filtration flux of the entire filtration module in the example. The MLSS at the time of execution is about 6000 mg / liter.
In the operation for 2 months from the start of the treatment, the filtration flux was about 2 to 2.5 m / d, and a stable treatment was obtained.
FIG. 3 shows the course of filtered water turbidity.
In continuous operation for about 2 months, the turbidity of the filtrate was approximately 10 degrees or less, showing good filtration performance, and clear filtrate was stably obtained.

本発明の活性汚泥処理の固液分離を実施する装置の概略説明図である。It is a schematic explanatory drawing of the apparatus which implements the solid-liquid separation of the activated sludge process of this invention. 本発明の実施例のろ過水フラックスの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the filtrate water flux of the Example of this invention. 本発明の実施例のろ過水濁度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the filtration water turbidity of the Example of this invention.

符号の説明Explanation of symbols

1 流入原水
2 生物反応槽
3 汚泥供給ポンプ
4 ろ過分離槽
5 通気弁A
6 通気弁B
7 ろ過モジュールA
8 ろ過モジュールB
9 散気管A
10 散気管B
11 通気ブロワー
12 処理水槽
13 水逆洗ポンプ
14 ろ過水
15 返送汚泥
16 排出汚泥
17 処理水
18 仕切り壁
1 Inflow raw water 2 Biological reaction tank 3 Sludge supply pump 4 Filtration separation tank 5 Ventilation valve A
6 Ventilation valve B
7 Filtration module A
8 Filtration module B
9 Diffuser A
10 Diffuser B
DESCRIPTION OF SYMBOLS 11 Aeration blower 12 Treated water tank 13 Water backwash pump 14 Filtration water 15 Return sludge 16 Discharged sludge 17 Treated water 18 Partition wall

Claims (5)

被処理水を生物反応槽に導入して活性汚泥処理を行い、該生物反応槽から排出される汚泥混合液を、複数のろ過体からなるろ過モジュールを浸漬設置したろ過分離槽に導入し、水頭圧により該ろ過モジュールからろ過水を得るとともに、該ろ過分離層内の汚泥混合液を該生物反応槽に返送する固形分離方法において、
該ろ過分離槽内の隣接するろ過モジュールAとろ過モジュールBの間に仕切り壁を設置して、該仕切壁の上下で液が連通できるようにし、ろ過モジュールAの下方に散気管A、ろ過モジュールBの下部に散気管Bを設け、ろ過時は、ろ過モジュールA、ろ過モジュールBともにろ過を行いながら、散気管Aへの通気と散気管Bへの通気を交互に行うことにより、通気を行う側のろ過モジュールに対して汚泥混合液は上昇流、通気を行わない側のろ過モジュールに対して汚泥混合液は下降流を形成し、空洗時は、ろ過モジュールA、ろ過モジュールBともにろ過を停止して、散気管Aへの通気と散気管Bへの通気を交互に行うことにより、通気を行う側のろ過モジュールに対して汚泥混合液は上昇流、通気を行わない側のろ過モジュールに対して汚泥混合液は下降流を形成し、ろ過時の散気量は空洗時の散気量より少量とし、ろ過を所定時間行った後に空洗を短時間行ってろ過と空洗を繰り返すようにしたことを特徴とする固液分離方法。
Water to be treated is introduced into a biological reaction tank to perform activated sludge treatment, and the sludge mixed liquid discharged from the biological reaction tank is introduced into a filtration separation tank in which a filtration module composed of a plurality of filter bodies is immersed and installed. In the solid separation method of obtaining filtered water from the filtration module by pressure and returning the sludge mixed solution in the filtration separation layer to the biological reaction tank,
A partition wall is installed between adjacent filtration modules A and B in the filtration separation tank so that liquid can communicate with the upper and lower sides of the partition wall. An air diffuser B is provided at the lower part of B, and at the time of filtration, ventilation is performed by alternately conducting air to the air diffuser A and air to the air diffuser B while filtering both the filter module A and the filter module B. The sludge mixed liquid forms an upward flow with respect to the filtration module on the side, and the sludge mixed liquid forms a downward flow with respect to the filtration module on the non-ventilated side. By stopping and alternately ventilating the diffuser tube A and ventilating tube B, the sludge mixed liquid flows up to the filtration module on the ventilation side and flows into the filtration module on the non-ventilation side. for The mud mixture forms a downward flow, and the amount of air diffused during filtration should be smaller than the amount of air diffused during air washing. After filtering for a predetermined time, perform air washing for a short time and repeat filtration and air washing. A solid-liquid separation method characterized by that.
前記散気管Aもしくは散気管Bへの通気を、ろ過時は間欠的或いは連続的に行い、空洗時は連続して行うことを特徴とする請求項1記載の固液分離方法。   2. The solid-liquid separation method according to claim 1, wherein the ventilation to the air diffuser A or the air diffuser B is performed intermittently or continuously during filtration and continuously during air washing. ろ過時における前記散気管Aもしくは散気管Bへの通気において、ろ過水濁度が所定値以上となった時には通気量を減少或いは通気を停止し、ろ過水濁度が所定値以下となった時には通気量を増加或いは通気を再開することを特徴とする請求項1又は請求項2記載の固液分離方法。   When the filtered water turbidity is greater than or equal to a predetermined value in the ventilation to the diffuser pipe A or the diffuser pipe B during filtration, when the filtered water turbidity is reduced or stopped, the filtered water turbidity is less than or equal to a predetermined value. The solid-liquid separation method according to claim 1 or 2, wherein the aeration amount is increased or aeration is resumed. 前記散気管Aもしくは散気管Bへの通気量は、ろ過時で1.0m/m流路/min以下、空洗時で2.5m/m流路/min以上としたことを特徴とする請求項1〜3のいずれかに記載の固液分離方法。 The air flow rate to the air diffuser A or the air diffuser B was set to 1.0 m 3 / m 2 flow path / min or less at the time of filtration and 2.5 m 3 / m 2 flow path / min or more at the time of air washing. The solid-liquid separation method according to any one of claims 1 to 3. 槽内に上下で液が連通できるようにした仕切り壁を配し、該仕切り壁の両側に複数のろ過体からなる表面にダイナミックろ過層が形成されるろ過モジュールを配し、該各ろ過モジュールの下方にそれぞれ散気管を配し、該ろ過モジュールに付設された、空洗時に全体のろ過を停止するろ過水排出配管と、該各散気管にそれぞれ付設された通気用の空気供給管と、該空気供給管に設けられ、ろ過時には一方の散気管と他方の散気管への通気を交互に行い、空洗時にはろ過時よりも多い通気量で一方の散気管と他方の散気管への通気を交互に行う、通気先を切り換えるための通気弁と、生物反応槽からの汚泥混合液を導入するための汚泥混合液供給管と、槽内の汚泥混合液を該生物反応槽に返送するための汚泥混合液返送管とを設けたろ過分離槽を有することを特徴とする固液分離装置。   A partition wall that allows the liquid to communicate with the upper and lower sides in the tank is disposed, and a filtration module in which a dynamic filtration layer is formed on the surface composed of a plurality of filter bodies is disposed on both sides of the partition wall. A diffusing pipe is provided below each, and a filtered water discharge pipe attached to the filtration module for stopping the entire filtration at the time of air washing, an air supply pipe for ventilation attached to each of the diffusing pipes, It is provided in the air supply pipe, and it alternately ventilates one air diffuser and the other air diffuser during filtration, and when air-washed, it ventilates one air diffuser and the other air diffuser with a larger air flow than during filtration. Alternately, a vent valve for switching the aeration destination, a sludge mixture supply pipe for introducing a sludge mixture from the biological reaction tank, and a sludge mixture in the tank for returning to the biological reaction tank Filtration separation tank with sludge mixed liquid return pipe Solid-liquid separation device characterized in that it has.
JP2006214524A 2006-08-07 2006-08-07 Solid-liquid separation method and apparatus Pending JP2006289370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006214524A JP2006289370A (en) 2006-08-07 2006-08-07 Solid-liquid separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006214524A JP2006289370A (en) 2006-08-07 2006-08-07 Solid-liquid separation method and apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002116164A Division JP2003305313A (en) 2002-04-18 2002-04-18 Solid-liquid separation method and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2006289370A true JP2006289370A (en) 2006-10-26

Family

ID=37410535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214524A Pending JP2006289370A (en) 2006-08-07 2006-08-07 Solid-liquid separation method and apparatus

Country Status (1)

Country Link
JP (1) JP2006289370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995165A (en) * 2020-06-05 2020-11-27 安徽工程大学 Sewage treatment of municipal administration sewage pipe network purifies integrative device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185271A (en) * 1993-12-24 1995-07-25 Kurita Water Ind Ltd Immersion membrane apparatus
JPH10337452A (en) * 1997-06-04 1998-12-22 Nitto Denko Corp Operation of membrane separator
JP2001038177A (en) * 1999-07-29 2001-02-13 Daicel Chem Ind Ltd Solid-liquid separation process and separation membrane module for the same
JP2001276874A (en) * 2000-03-31 2001-10-09 Ebara Corp Solid/liquid separation method and device in organic drain treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07185271A (en) * 1993-12-24 1995-07-25 Kurita Water Ind Ltd Immersion membrane apparatus
JPH10337452A (en) * 1997-06-04 1998-12-22 Nitto Denko Corp Operation of membrane separator
JP2001038177A (en) * 1999-07-29 2001-02-13 Daicel Chem Ind Ltd Solid-liquid separation process and separation membrane module for the same
JP2001276874A (en) * 2000-03-31 2001-10-09 Ebara Corp Solid/liquid separation method and device in organic drain treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111995165A (en) * 2020-06-05 2020-11-27 安徽工程大学 Sewage treatment of municipal administration sewage pipe network purifies integrative device
CN111995165B (en) * 2020-06-05 2022-03-29 安徽工程大学 Sewage treatment of municipal administration sewage pipe network purifies integrative device

Similar Documents

Publication Publication Date Title
JP5889328B2 (en) Method and sewage treatment apparatus for treating organic substances and nitrogen contained in sewage
JP3853657B2 (en) Wastewater treatment method and apparatus
JPWO2009047970A1 (en) Fine bubble diffuser, fine bubble diffuser, and submerged membrane separator
JPH04265128A (en) Membrane separation equipment
JPH07155758A (en) Waste water treating device
JPWO2009028435A1 (en) Immersion type membrane separation device, water purification treatment device, and water purification treatment method using the same
JPH0665371B2 (en) Organic wastewater biological treatment equipment
JP4492268B2 (en) Biological treatment equipment
JP2010082597A (en) Immersion type membrane separation apparatus
JP5001923B2 (en) Water treatment apparatus and water treatment method
CN211620065U (en) Double-membrane self-cleaning membrane bioreactor based on Fenton reaction
JP2010089079A (en) Method for operating immersed membrane separator and immersed membrane separator
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JP3700932B2 (en) Method and apparatus for cleaning filter using ozone
CN201520704U (en) Low energy-consumption integrated membrane bioreactor
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP2006289370A (en) Solid-liquid separation method and apparatus
JP2003305313A (en) Solid-liquid separation method and apparatus therefor
JP2010046561A (en) Sludge dehydrating and concentrating method and apparatus thereof
CN207903981U (en) A kind of efficient up-flow biological reaction apparatus
CN101648763A (en) Low energy-consumption integrative membrane bioreactor
JP5016827B2 (en) Membrane separation activated sludge treatment method
JP3721092B2 (en) Solid-liquid separation method and apparatus for activated sludge
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
JP3883358B2 (en) Filtration separation method and apparatus for sewage treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406