JP6411051B2 - Immersion membrane separator and method for operating the same - Google Patents

Immersion membrane separator and method for operating the same Download PDF

Info

Publication number
JP6411051B2
JP6411051B2 JP2014071666A JP2014071666A JP6411051B2 JP 6411051 B2 JP6411051 B2 JP 6411051B2 JP 2014071666 A JP2014071666 A JP 2014071666A JP 2014071666 A JP2014071666 A JP 2014071666A JP 6411051 B2 JP6411051 B2 JP 6411051B2
Authority
JP
Japan
Prior art keywords
pipe
membrane
valve
water collecting
flat membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014071666A
Other languages
Japanese (ja)
Other versions
JP2015192937A (en
Inventor
博克 神田
博克 神田
英輔 田村
英輔 田村
良祐 辻林
良祐 辻林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2014071666A priority Critical patent/JP6411051B2/en
Publication of JP2015192937A publication Critical patent/JP2015192937A/en
Application granted granted Critical
Publication of JP6411051B2 publication Critical patent/JP6411051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、固液分離を行う浸漬型膜分離装置及びその運転方法に関する。   The present invention relates to, for example, an immersion type membrane separation apparatus that performs solid-liquid separation and an operation method thereof.

従来、下水、し尿、生活排水、工場廃水などの汚水を好気的に生物分解させる活性汚泥法による排水処理において、平膜エレメントによる固液分離を行う技術が知られている。
従来の活性汚泥法では、汚水を活性汚泥にて生物分解させた後、汚泥と浄化された水との固液分離を沈殿槽により重力分離させる方法が取られている。膜分離活性汚泥処理法では、固液分離を膜で行うため、重力分離に比べて反応槽内の活性汚泥濃度を高くすることができる。このため、同容量の反応槽でも処理能力を上げることができる処理技術となる。
2. Description of the Related Art Conventionally, a technique for performing solid-liquid separation using a flat membrane element is known in wastewater treatment by an activated sludge method in which sewage such as sewage, human waste, domestic wastewater, and factory wastewater is aerobically biodegraded.
The conventional activated sludge method employs a method in which sludge is biodegraded with activated sludge and then the solid-liquid separation between the sludge and the purified water is gravity separated by a sedimentation tank. In the membrane separation activated sludge treatment method, since solid-liquid separation is performed with a membrane, the concentration of activated sludge in the reaction tank can be increased as compared with gravity separation. For this reason, it becomes a processing technique that can increase the processing capacity even in a reaction tank of the same capacity.

平膜エレメントを使用した膜分離活性汚泥処理法の浸漬型膜分離装置(メンブレンバイオリアクター(Membrane Bioreactor: MBR))は、例えば、開放式の反応槽内に複数の平膜エレメントで構成される膜ユニットを配置している。
各平膜エレメントは、平板状の膜支持体の表面ないしは内部に濾過液流路を有し、膜支持体の表面を覆って濾過膜を配置し、2箇所以上の集水口を備えている。
A submerged membrane separation apparatus (membrane bioreactor (MBR)) for membrane separation activated sludge treatment using a flat membrane element is, for example, a membrane composed of a plurality of flat membrane elements in an open reaction tank Units are arranged.
Each flat membrane element has a filtrate flow path on the surface or inside of a flat membrane support, and has a filtration membrane covering the surface of the membrane support, and has two or more water collection ports.

各集水口には、濾過液を取り出すための配管がそれぞれ接続されている。配管には吸引ポンプが設けられている。濾過液は、配管を介して処理水槽へ送られる。
反応槽には、原水供給配管から被処理液が供給される。原水供給配管には、原水供給ポンプが設けられている。
各平膜エレメントの直下には、散気管が配設されている。散気管は平膜エレメントの直下の端部と異なる端部を反応槽から外部へ導き、大気中に設置するブロワに接続されている。
A pipe for taking out the filtrate is connected to each water collecting port. The piping is provided with a suction pump. The filtrate is sent to the treated water tank via a pipe.
The liquid to be treated is supplied to the reaction tank from the raw water supply pipe. The raw water supply pipe is provided with a raw water supply pump.
A diffuser tube is disposed directly under each flat membrane element. The air diffuser is connected to a blower installed in the atmosphere by guiding an end different from the end directly below the flat membrane element from the reaction vessel to the outside.

この処理装置では、被処理液を原水供給ポンプにより反応槽に供給し、ブロワの駆動により散気管から空気を噴出させ、この噴出気流により反応槽内の被処理液を同伴しながら、各平膜エレメント間を速い速度で被処理液を上昇させ、反応槽の膜ユニットの設置されていない箇所で下降流の流れを形成して、結果反応槽内の被処理液を旋回させると共に、各平膜エレメント表面に被処理液に含まれる固形物が付着堆積しないようにしている。そして、吸引ポンプの間歇的駆動により平膜エレメントのろ過液通路側を間歇的に減圧し、平膜エレメントのろ過液側の減圧と反応槽の水位による平膜エレメントへの加圧水圧とによる膜間差圧のもとで水を膜ろ過させ、集水口から配管を介して膜により所定の固体が分離されたろ過液を処理水槽に貯えることができる。   In this processing apparatus, the liquid to be processed is supplied to the reaction tank by the raw water supply pump, and air is ejected from the air diffuser by driving the blower. The liquid to be treated is raised at a high speed between the elements, a downward flow is formed at a place where the membrane unit of the reaction tank is not installed, and the liquid to be treated in the reaction tank is swirled as a result. The solids contained in the liquid to be treated are prevented from adhering to the element surface. Then, the filtrate passage side of the flat membrane element is intermittently depressurized by intermittent driving of the suction pump, and the intermembrane between the depressurization of the flat membrane element on the filtrate side and the pressurized water pressure on the flat membrane element due to the water level of the reaction tank. Water can be membrane-filtered under a differential pressure, and a filtrate from which a predetermined solid is separated by a membrane from a water collection port via a pipe can be stored in a treated water tank.

そして、この処理装置では、ブロワの駆動により散気管から噴出した空気の上昇によって生じる気液混合の上向流によって平膜エレメントの膜面を洗浄し、膜濾過を行いつつも被処理液中の固形分による汚泥層の付着を抑制することで安定した膜濾過運転を行っている。近年では、気液混合による上向流を効果的に利用するために平膜エレメントの大型化(高さ方向への長尺化)が進んでいる。
膜濾過運転は連続的に行われるが、一定期間運転すると気液混合による上向流では付着を抑制できない汚れが膜面に堆積するため、定期的に運転を停止し薬液洗浄を行う必要がある。
In this processing apparatus, the membrane surface of the flat membrane element is washed by the upward flow of the gas-liquid mixture generated by the rise of the air ejected from the diffuser by the drive of the blower, and the membrane in the liquid to be treated is subjected to membrane filtration. Stable membrane filtration operation is performed by suppressing the adhesion of the sludge layer due to the solid content. In recent years, flat membrane elements have been increased in size (lengthened in the height direction) in order to effectively use the upward flow caused by gas-liquid mixing.
Membrane filtration operation is performed continuously, but if it is operated for a certain period of time, dirt that cannot be suppressed by upward flow due to gas-liquid mixing accumulates on the membrane surface, so it is necessary to periodically stop the operation and perform chemical cleaning .

従来、膜の洗浄には、平膜エレメントを反応槽内に浸漬した状態で、自然流下やポンプで濾過液の流れと逆方向に薬液を流入させ、濾過膜から薬液が被処理液側へ浸出する状態で、一定時間保持することで、膜面(膜細孔)の汚れを除去(薬液洗浄)していた。
しかし、従来の洗浄方法では、複数枚を並設する浸漬型の平膜エレメントを反応槽内において薬液洗浄する場合、各平膜エレメントに十分な量の薬液が均一に流入することが望ましいが、ムラが生じやすい。
そのため、膜支持体を覆った濾過膜が被処理液側に膨らんだ状態に全体がなるまで薬液を流入する必要があった。その結果、多くの薬液量を必要としていた。
Conventionally, for membrane cleaning, a flat membrane element is immersed in the reaction tank, and the chemical solution is allowed to flow in the direction opposite to the flow of the filtrate with natural flow or a pump. In this state, the film surface (membrane pores) was removed (chemical solution cleaning) by holding for a certain period of time.
However, in the conventional cleaning method, when chemical solution cleaning is performed in a reaction tank for immersion type flat membrane elements arranged in parallel, it is desirable that a sufficient amount of chemical solution flows uniformly into each flat membrane element, Unevenness is likely to occur.
Therefore, it is necessary to flow in the chemical solution until the filtration membrane covering the membrane support is swollen toward the liquid to be treated. As a result, a large amount of chemical solution was required.

また、薬液を流入させ、濾過液流路内の濾過液と薬液が混じり均一な濃度になるまでに時間がかかり、一定時間保持する時間が長くなるという問題があった。
さらに、薬液を入れてから保持する時間が長くなれば、濾過膜から被処理液側に流出する薬液量が多くなり、膜の洗浄には効果的だが、生物にとって薬液は毒となるため、過剰な流出は極力避けた方が良い。
In addition, there is a problem that it takes time for the chemical solution to flow in and the filtrate and the chemical solution in the filtrate flow channel are mixed to obtain a uniform concentration, and the time for holding for a certain period of time becomes long.
In addition, if the time for holding the chemical solution is increased, the amount of chemical solution that flows out from the filtration membrane to the liquid to be treated increases, which is effective for cleaning the membrane. It is better to avoid spills as much as possible.

また、薬液洗浄時に膜面の散気洗浄を行えば、汚れ除去の効果が高まると考えられる。この方法では膜面が膨らんでおり、この状態で散気を行うと、膜のよれ等が発生しやすく、膜の溶着部分の剥がれや破れが懸念されるなどの問題があった。
そこで、薬液を循環させるとともに、平膜エレメントへ流入する流入液量と平膜エレメントから流れ出る流出液量との差分液量を増減調整することで、薬液の使用効率と洗浄効率を高め、さらに濾過膜の表面に付着したファウリング物質を解砕して濾過膜から剥離させる技術が提案されている(例えば、特許文献1参照)。
In addition, it is considered that the effect of removing dirt is enhanced by performing aeration cleaning of the film surface during chemical cleaning. In this method, the film surface swells, and if air is diffused in this state, there is a problem that the film is liable to sway, and the welded part of the film may be peeled off or torn.
Therefore, the chemical solution is circulated, and the difference between the amount of inflow fluid flowing into the flat membrane element and the amount of effluent fluid flowing out of the flat membrane element is adjusted to increase or decrease, thereby improving the use efficiency and cleaning efficiency of the chemical solution and further filtering A technique has been proposed in which fouling substances adhering to the surface of the membrane are crushed and separated from the filtration membrane (see, for example, Patent Document 1).

また、上部に薬液注入用及び排出用の2つのノズルを有する平膜エレメントの洗浄方法において、水頭差を用いて薬液を注入し、薬液及び濾過室に貯留していた濾過液の混合液を循環させる技術が提案されている(例えば、特許文献2参照)。   In addition, in a method for cleaning a flat membrane element having two nozzles for injecting and discharging chemicals in the upper part, the chemical liquid is injected using a water head difference, and the mixed liquid of the chemical liquid and the filtrate stored in the filtration chamber is circulated. The technique to make is proposed (for example, refer patent document 2).

再公表特許2009−122460号公報Republished patent 2009-122460 特開2006−198462号公報JP 2006-198462 A

しかしながら、特許文献1では、膜モジュールの一方の連結部及び他方の連結部に循環系を連通し、この循環系を、洗浄薬液を貯溜する薬液槽と、薬液槽と一方の集水部に連通する供給管路部と、他方の集水部と薬液槽に連通する排出管路部と、供給管路部から分岐して薬液槽に連通する分流管路部とを備える構成としているので、構造が複雑で、しかも薬液を供給する供給ポンプと薬液を排出する排出ポンプとを必要としている。
また、特許文献1は、膜濾過運転時に両方の集水部に集水系を接続し、両方の集水部から濾過液を吸引することを開示するが、上述の循環系では、両方の集水部にそれぞれ供給管路部と排出管路部とが接続しているので、特別な装置や配管構成が無いと、濾過液を吸引することはできないという問題がある。
また、特許文献1では、膜の洗浄時に、膜モジュールへ流入する供給液量と膜モジュールの濾過液流路から流れ出る排出液量との差分液量を増減調整して差分液量の供給超過状態と排出超過状態を繰り返し生じさせているが、供給超過状態(濾過膜が被処理液側に膨らんだ状態)とするためには、従来の洗浄方法と同じ量の薬液量が必要となってしまう。
However, in Patent Document 1, a circulation system is communicated with one connection part and the other connection part of the membrane module, and this circulation system is communicated with a chemical solution tank for storing a cleaning chemical solution, a chemical solution tank, and one water collecting part. A supply pipe section, a discharge pipe section communicating with the other water collecting section and the chemical liquid tank, and a branch pipe section branched from the supply pipe section and communicated with the chemical liquid tank. However, it requires a supply pump for supplying a chemical solution and a discharge pump for discharging the chemical solution.
Moreover, although patent document 1 discloses connecting a water collection system to both water collection parts at the time of a membrane filtration operation and sucking a filtrate from both water collection parts, in the above-mentioned circulation system, both water collections are disclosed. Since the supply pipe section and the discharge pipe section are connected to the respective sections, there is a problem that the filtrate cannot be sucked without a special device or piping configuration.
Further, in Patent Document 1, when the membrane is washed, the difference liquid amount between the amount of the supply liquid flowing into the membrane module and the amount of the discharge liquid flowing out from the filtrate flow path of the membrane module is adjusted to increase or decrease to supply the difference liquid amount excessively. However, in order to obtain an excessive supply state (a state in which the filtration membrane swells toward the liquid to be treated), the same amount of chemical solution as in the conventional cleaning method is required. .

特許文献2では、基板の両面が流路材、平膜の順で覆われ、流路材が配された濾過室と連通する薬液注入用と薬液排出用の少なくとも2つのノズルを基板の上部に有する平膜エレメントの洗浄方法であって、水頭差を用いて薬液を注入し、薬液及び濾過室に貯留していた濾過液の混合液を循環させることを開示するが、2つのノズルが基板の上部に設けられているため、薬液注入用のノズルから流入した薬液は濾過室に行き渡ることなく薬液排出用のノズルへ短絡する虞がある。
また、特許文献2を、特に、高さ方向に長尺化した平膜エレメントに適用すると、薬液注入用のノズルから流入した薬液は濾過室に行き渡ることなく薬液排出用のノズルへ短絡する虞がおおきく、平膜エレメントの下部側膜面の洗浄が十分行われない、又は洗浄時間が従来の洗浄方法と変わらないことが懸念される。
また、特許文献2では、濾過運転時には、薬液注入用のノズルを閉止するため、ノズルが2つあるにも拘わらず、一方のノズルしか使用できないという問題がある。
According to Patent Document 2, at least two nozzles for injecting chemicals and discharging chemicals are connected to the upper part of the substrate so that both surfaces of the substrate are covered in the order of the channel material and the flat membrane, and communicate with the filtration chamber in which the channel material is arranged. Disclosed is a method for cleaning a flat membrane element having a chemical solution injected using a water head difference and circulating a mixed solution of the chemical solution and the filtrate stored in the filtration chamber. Since it is provided in the upper part, there is a possibility that the chemical liquid flowing in from the chemical liquid injection nozzle short-circuits to the chemical liquid discharge nozzle without reaching the filtration chamber.
Further, when Patent Document 2 is applied particularly to a flat membrane element elongated in the height direction, there is a risk that the chemical liquid flowing in from the chemical liquid injection nozzle may short-circuit to the chemical liquid discharge nozzle without reaching the filtration chamber. There is a concern that the lower side membrane surface of the flat membrane element is not sufficiently cleaned, or that the cleaning time is not different from the conventional cleaning method.
Moreover, in patent document 2, in order to close the nozzle for chemical | medical solution injection | pouring at the time of filtration operation, although there are two nozzles, there exists a problem that only one nozzle can be used.

本発明は斯かる従来の問題点を解決するために為されたもので、その目的は、平膜エレメントによる膜濾過運転時と膜洗浄時との切り分けを開閉弁の切替で確実且つ簡単に行うことができる浸漬型膜分離装置及びその運転方法を提供することにある。   The present invention has been made in order to solve such a conventional problem, and its object is to perform the separation between the membrane filtration operation by the flat membrane element and the membrane cleaning reliably and easily by switching the on-off valve. Another object of the present invention is to provide a submerged membrane separation apparatus and an operation method thereof.

本発明に係る浸漬型膜分離装置は、濾過膜流路より外部に濾過液を取り出す集水口を2つ以上有する平膜エレメントと、前記平膜エレメントを浸漬する反応槽と、前記集水口にそれぞれ対向配置されて接続される2つの集水管と、第一開閉弁を設け、一方の前記集水管に接続される第一配管と、前記第一配管を吸込口側に接続させる吸引ポンプと、他方の前記集水管に接続され、前記第一開閉弁と前記吸引ポンプの吸込口との間の前記第一配管に接続される第二配管と、第二開閉弁を設け、前記吸引ポンプの吐出口側に接続される濾過液配管と、薬液投入部を設け、一端が前記吸引ポンプと前記第二開閉弁との間の前記濾過液配管に第三開閉弁を介して接続され、他端が前記第一開閉弁と前記一方の集水管との間の第一配管に第四開閉弁を介して接続される第三配管とを備え、前記平膜エレメントは、前記平膜エレメントの両端部を、一方の端は浸漬された前記平膜エレメントの上端とし、もう一方の端は浸漬された前記平膜エレメントの下端としており、前記集水口をそれぞれ、前記平膜エレメントの上端の上部に上向きに、前記平膜エレメントの下端の下部に下向きに、それぞれ1つ以上有し、前記第一開閉弁及び前記第二開閉弁は、膜濾過運転時には開放され、膜洗浄運転時には閉止され、前記第三開閉弁及び前記第四開閉弁は、膜濾過運転時には閉止され、膜洗浄運転時には開放され、前記吸引ポンプは、膜濾過運転時には前記平膜エレメントの下端の集水口から該下端の集水口に対向配置され水平に位置する前記一方の集水管を介して前記第一配管に、及び前記平膜エレメントの上端の集水口から該上端の集水口に対向配置された水平に位置する前記他方の集水管を介して前記第二配管に、濾過液を導出するように吸引し、膜洗浄運転時には前記薬液投入部から投入される薬液を前記第三配管から前記第一配管を経由して前記一方の集水管へ吸引し、前記薬液を前記平膜エレメントを経由して前記他方の集水管から導出するように吸引する。 The submerged membrane separation device according to the present invention includes a flat membrane element having two or more water collection ports for taking out filtrate from the filtration membrane flow path, a reaction tank for immersing the flat membrane element, and a water collection port, respectively. Two water collecting pipes arranged to be opposed to each other, a first on-off valve, a first pipe connected to one of the water collecting pipes, a suction pump for connecting the first pipe to the suction port side, and the other A second pipe connected to the first pipe between the first on-off valve and the suction port of the suction pump; and a second on-off valve provided to the discharge pipe of the suction pump Provided with a filtrate pipe connected to the side, and a chemical solution inlet, one end is connected to the filtrate pipe between the suction pump and the second on-off valve via a third on-off valve, and the other end is A fourth on-off valve is connected to the first pipe between the first on-off valve and the one water collecting pipe. And a third pipe connected Te, the flat membrane element, the two ends of the flat sheet membrane element, one end is the upper end of the dip the flat membrane element, the other end was immersed the A lower end of the flat membrane element, and each of the water collecting ports has one or more upwards at the upper part of the upper end of the flat membrane element and downwards at the lower part of the lower end of the flat membrane element. And the second on-off valve is opened during the membrane filtration operation and closed during the membrane cleaning operation, and the third on-off valve and the fourth on-off valve are closed during the membrane filtration operation and opened during the membrane cleaning operation, suction pump, the first pipe through the one water collecting pipe positioned horizontally disposed to face the current Mizuguchi the lower end from the current Mizuguchi of the lower end of the flat sheet membrane element during membrane filtration operation, and the flat membrane Jer The second pipe from the cement of the upper end of the condenser water inlet through the other water collecting pipe which is located oppositely disposed horizontally on the upper end of the collecting Mizuguchi, sucked to derive the filtrate, the at the time of membrane cleaning operation The chemical solution introduced from the chemical solution introduction unit is sucked from the third pipe to the one water collecting pipe through the first pipe, and the chemical liquid is led out from the other water collecting pipe through the flat membrane element. Aspirate.

本発明に係る浸漬型膜分離装置は、前記平膜エレメントの直下に、ブロワの駆動により噴出した空気の上昇によって生じる気液混合の上向流によって前記平膜エレメントの膜面を洗浄するために設置され、膜濾過運転時にも膜洗浄運転時にも空気を噴出する散気管を有する
発明に係る浸漬型膜分離装置は、前記薬液投入部が、漏斗状の入れ口を備えながら逆止機構を有する薬液投入口である。
本発明に係る浸漬型膜分離装置は、前記薬液投入部が、筐体に開口状の薬液投入口を備え、前記吸引ポンプによって前記第三配管に導入される前記薬液を貯留する中継槽である。
The submerged membrane separation apparatus according to the present invention is for cleaning the membrane surface of the flat membrane element by the upward flow of gas-liquid mixing caused by the rise of the air blown by the drive of the blower immediately below the flat membrane element. It is installed and has an air diffuser that ejects air during membrane filtration operation and membrane cleaning operation .
In the submerged membrane separation apparatus according to the present invention, the chemical solution input unit is a chemical solution input port having a check mechanism while having a funnel-shaped input port.
The submerged membrane separation apparatus according to the present invention is a relay tank in which the chemical solution input unit includes an opening-shaped chemical solution input port in a housing and stores the chemical solution introduced into the third pipe by the suction pump. .

本発明に係る浸漬型膜分離装置の運転方法は、膜濾過運転時には、前記第三配管の前記第三開閉弁及び前記第四開閉弁を閉止し、前記第一配管及び前記第二配管を前記吸引ポンプに連通し、前記吸引ポンプで前記第一配管及び前記第二配管から濾過液を吸引して前記濾過液配管へ送出し、膜洗浄運転時には、前記第一開閉弁及び前記第二開閉弁を閉止すると共に前記第三配管の前記第三開閉弁及び前記第四開閉弁を開放し、前記薬液投入部で投入される所定の薬液を前記吸引ポンプで、前記第三配管から前記第一配管を経由して前記一方の集水管へ吸引した後、前記一方の集水管から前記平膜エレメントを経由して前記他方の集水管へ吸引し、前記他方の集水管から前記第二配管及び前記第一配管を経由して前記第三配管に導出する、前記平膜エレメント内を前記薬液が下から上に向かって流れるよう薬液循環路を構成する
In the operation method of the submerged membrane separation device according to the present invention, during the membrane filtration operation, the third on-off valve and the fourth on-off valve of the third pipe are closed, and the first pipe and the second pipe are The suction pump communicates with the first pump and the second pipe with the suction pump and sends the filtrate to the filtrate pipe. During the membrane cleaning operation, the first on-off valve and the second on-off valve And the third on-off valve and the fourth on-off valve of the third pipe are opened, and a predetermined chemical liquid to be introduced in the chemical liquid inlet is fed from the third pipe to the first pipe by the suction pump. And then sucking from the one water collecting pipe to the other water collecting pipe through the flat membrane element, and from the other water collecting pipe to the second pipe and the first water collecting pipe. via one pipe to derive to the third pipe, the flat Inside the element the chemical make up the chemical circulation path to flow from bottom to top.

本発明によれば、片側の集水口から濾過液流路内の液を吸引しながら、もう一方の集水口から薬液を流入させ循環させるため、膜が膨らむまでの薬液を入れず少量の薬液で、各平膜エレメント内に薬液を充填し、均一な濃度で膜面全体を洗浄できる。
特に、高さ方向に大型化した平膜エレメントにおいて、自然流下で流し込んで膜面全体に薬液を行き渡らせるよりも効果的である。
According to the present invention, while sucking the liquid in the filtrate flow path from one water collecting port, the chemical liquid flows in from the other water collecting port and circulates, so a small amount of chemical liquid is not used until the membrane expands. Each flat membrane element can be filled with a chemical solution to clean the entire membrane surface with a uniform concentration.
In particular, in a flat membrane element that is enlarged in the height direction, it is more effective than flowing in a natural flow and spreading the chemical solution over the entire membrane surface.

本発明によれば、洗浄時間が短縮でき、片側から吸引を行っているため、被処理液側への薬液の流出が抑えられる。
本発明によれば、膜が膨らんだ状態にならないため、薬液洗浄時に散気洗浄を行っても膜のよれや溶着部分の剥がれや破れが起こりにくく、より効果の高い洗浄が可能となる。
According to the present invention, since the cleaning time can be shortened and suction is performed from one side, the outflow of the chemical liquid to the liquid to be processed is suppressed.
According to the present invention, since the film does not swell, even if aeration cleaning is performed at the time of chemical solution cleaning, the film is hardly twisted and the welded portion is not peeled off or torn, so that more effective cleaning is possible.

本発明の第一実施形態に係る浸漬型膜分離装置の膜濾過運転状態を示す説明図である。It is explanatory drawing which shows the membrane filtration driving | running state of the immersion type membrane separator which concerns on 1st embodiment of this invention. 本発明の第一実施形態に係る浸漬型膜分離装置の膜洗浄運転状態を示す説明図である。It is explanatory drawing which shows the membrane washing | cleaning driving | running state of the immersion type membrane separator which concerns on 1st embodiment of this invention. 本発明の第二実施形態に係る浸漬型膜分離装置の膜濾過運転状態を示す説明図である。It is explanatory drawing which shows the membrane filtration driving | running state of the immersion type membrane separator which concerns on 2nd embodiment of this invention. 本発明の第二実施形態に係る浸漬型膜分離装置の膜洗浄運転状態を示す説明図である。It is explanatory drawing which shows the membrane washing | cleaning driving | running state of the immersion type membrane separator which concerns on 2nd embodiment of this invention.

以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の第一実施形態に係る浸漬型膜分離装置10の膜濾過運転状態を示す。図2は、本発明の第一実施形態に係る浸漬型膜分離装置10の膜洗浄運転状態を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a membrane filtration operation state of the submerged membrane separation apparatus 10 according to the first embodiment of the present invention. FIG. 2 shows a membrane cleaning operation state of the submerged membrane separation apparatus 10 according to the first embodiment of the present invention.

本実施形態に係る浸漬型膜分離装置10は、開放式の反応槽11内に複数の平膜エレメント15で構成される膜ユニット13が配置されている。
各平膜エレメント15は、平板状の膜支持体の表面ないしは内部に濾過液流路を有し、膜支持体の表面を覆って濾過膜を配置し、濾過液流路に連通する2つの集水口17a,17bを各平膜エレメント15の両端部(図1の紙面の上下方向の端部)に備えている。各集水口17a,17bは、濾過液を取り出すための集水管19a,19bにそれぞれ接続されている。
In the submerged membrane separation apparatus 10 according to the present embodiment, a membrane unit 13 composed of a plurality of flat membrane elements 15 is arranged in an open reaction tank 11.
Each flat membrane element 15 has a filtrate channel on the surface or inside of a flat plate membrane support, and a filter membrane is disposed so as to cover the surface of the membrane support and communicated with the filtrate channel. Water ports 17a and 17b are provided at both end portions of each flat membrane element 15 (end portions in the vertical direction of the paper surface of FIG. 1). The water collection ports 17a and 17b are connected to water collection pipes 19a and 19b for taking out the filtrate.

下方の集水管19aは、平膜エレメント15の下端の集水口17aに対向配置されている。そして、下方の集水管19aは、第一開閉弁23を備える第一配管21に接続されている。第一配管21は、吸引ポンプ27の吸込口に接続されている。上方の集水管19bは、平膜エレメント15の上端の集水口17bに対向配置されている。そして、上方の集水管19bは、第二配管25に接続されている。第二配管25は、第一配管21に設けた第一開閉弁23の下流側でかつ吸引ポンプ27の吸込側の手前の合流部21bで第一配管21に合流するように接続されている。   The lower water collecting pipe 19 a is disposed opposite to the water collecting port 17 a at the lower end of the flat membrane element 15. The lower water collecting pipe 19 a is connected to a first pipe 21 having a first on-off valve 23. The first pipe 21 is connected to the suction port of the suction pump 27. The upper water collecting pipe 19 b is disposed so as to face the water collecting port 17 b at the upper end of the flat membrane element 15. The upper water collecting pipe 19 b is connected to the second pipe 25. The second pipe 25 is connected so as to join the first pipe 21 at a junction 21 b on the downstream side of the first on-off valve 23 provided on the first pipe 21 and before the suction side of the suction pump 27.

吸引ポンプ27の吐出側は、第二開閉弁31を設けた濾過液管29に接続されている。濾過液管29は濾過液を貯留する処理水槽(図示せず)に接続されている。
吸引ポンプ27の吐出側は、濾過液管29に設けた第二開閉弁31の手前側の合流部29aで第三配管33に接続されている。第三配管33は、第一配管21に設けた第一開閉弁23の上流側の合流部21aで第一配管21に接続されている。第三配管33は、濾過液管29との合流部29a側に第三開閉弁35を設けている。第三配管33は、第一配管21との合流部21a側に第四開閉弁37及び薬液投入口39を設けている。
The discharge side of the suction pump 27 is connected to a filtrate pipe 29 provided with a second on-off valve 31. The filtrate pipe 29 is connected to a treated water tank (not shown) that stores the filtrate.
The discharge side of the suction pump 27 is connected to the third pipe 33 at a merging portion 29 a on the near side of the second on-off valve 31 provided in the filtrate pipe 29. The third pipe 33 is connected to the first pipe 21 at a junction 21 a upstream of the first on-off valve 23 provided in the first pipe 21. The third pipe 33 is provided with a third on-off valve 35 on the side of the joining portion 29 a with the filtrate pipe 29. The third pipe 33 is provided with a fourth on-off valve 37 and a chemical solution inlet 39 on the side of the junction 21 a with the first pipe 21.

薬液投入口39から投入される薬液は、特に限定されるものではないが、次亜塩素酸ナトリウム、過酸化水素、塩酸、硫酸、硝酸、シュウ酸、クエン酸、リンゴ酸、水酸化ナトリウム、その他の薬液を適宜選択して使用することができる。
反応槽11には、原水供給配管41を介して被処理液が供給される。原水供給配管41は、原水供給ポンプ(図示せず)を設けている。
膜ユニット13の直下には、散気管45を反応槽底面から浮かせて収容し周囲には障害にならない散気ユニット43が配設されている。空気供給管47は一端部を散気管45に接続し、もう一端部は反応槽11の外部に導かれてブロワ49に接続されている。
The chemical solution introduced from the chemical solution inlet 39 is not particularly limited, but sodium hypochlorite, hydrogen peroxide, hydrochloric acid, sulfuric acid, nitric acid, oxalic acid, citric acid, malic acid, sodium hydroxide, etc. These chemical solutions can be appropriately selected and used.
The liquid to be treated is supplied to the reaction tank 11 through the raw water supply pipe 41. The raw water supply pipe 41 is provided with a raw water supply pump (not shown).
Immediately below the membrane unit 13, there is disposed an air diffusion unit 43 that floats from the bottom of the reaction tank and accommodates it and does not hinder the surroundings. One end of the air supply pipe 47 is connected to the diffuser pipe 45, and the other end is led to the outside of the reaction tank 11 and connected to the blower 49.

次に、図1に基づいて本実施形態に係る浸漬型膜分離装置10の作用を説明する。
この浸漬型膜分離装置10は、図1に示すように、膜濾過運転する場合には、先ず、第三配管33内に濾過液が流入しないように、第三配管33の第三開閉弁35及び第四開閉弁37を閉止する。また、第一配管21の第一開閉弁23及び濾過液管29の第二開閉弁31を開放する。
Next, the operation of the submerged membrane separation apparatus 10 according to the present embodiment will be described based on FIG.
As shown in FIG. 1, in the submerged membrane separation device 10, when the membrane filtration operation is performed, first, the third on-off valve 35 of the third pipe 33 is prevented so that the filtrate does not flow into the third pipe 33. And the 4th on-off valve 37 is closed. Further, the first on-off valve 23 of the first pipe 21 and the second on-off valve 31 of the filtrate pipe 29 are opened.

次に、被処理液を原水供給ポンプにより反応槽11に供給する。同時に、ブロワ49を駆動して空気供給管47を介して供給される空気を、散気管45から膜ユニット13に向かって矢印で示すように噴出させる。
この空気の噴出により反応槽11内に貯留される被処理液に旋回流を起こさせる。つまり、この噴出気流により反応槽11内の被処理液を同伴しながら、各平膜エレメント15間を速い速度で被処理液を上昇させ、反応槽11の膜ユニット13の設置されていない箇所で下降流の流れを形成して、結果反応槽11内の被処理液を旋回させる。同時に、吸引ポンプ27の間歇的駆動により平膜エレメント15の濾過液通路側を間歇的に減圧し、平膜エレメント15の濾過液側の減圧と反応槽11の水位による平膜エレメント15への加圧水圧とによる膜間差圧のもとで被処理液を膜濾過させる。この膜濾過液は、集水口17a,17bから集水管19a,19bに集められ、矢印で示すように、集水管19a,19bから第一配管21及び第二配管25に流入し、濾過液管29を経由して処理水槽に貯えられる。
Next, the liquid to be treated is supplied to the reaction tank 11 by the raw water supply pump. At the same time, the blower 49 is driven, and the air supplied through the air supply pipe 47 is ejected from the air diffusion pipe 45 toward the membrane unit 13 as indicated by an arrow.
A swirling flow is caused in the liquid to be treated stored in the reaction tank 11 by the ejection of the air. That is, the liquid to be processed is raised between the flat membrane elements 15 at a high speed while accompanying the liquid to be processed in the reaction tank 11 by this jet of air flow, and the membrane unit 13 of the reaction tank 11 is not installed. A downward flow is formed, and the liquid to be treated in the reaction tank 11 is swirled. At the same time, the filtrate passage side of the flat membrane element 15 is intermittently depressurized by intermittent driving of the suction pump 27, and the pressurized water to the flat membrane element 15 is reduced by the depressurization of the flat membrane element 15 on the filtrate side and the water level of the reaction tank 11. The liquid to be treated is subjected to membrane filtration under a transmembrane pressure difference due to pressure. The membrane filtrate is collected from the water collection ports 17a and 17b to the water collection pipes 19a and 19b, and flows into the first pipe 21 and the second pipe 25 from the water collection pipes 19a and 19b, as indicated by arrows, and the filtrate pipe 29 Is stored in the treated water tank.

以上のように、本実施形態に係る浸漬型膜分離装置10によれば、散気運転を行うことにより、被処理液の膜濾過を連続して行うことができる。
本実施形態に係る浸漬型膜分離装置10は、従来の浸漬型膜分離装置と同様に、被処理液の膜濾過に伴って平膜エレメント15の膜に汚れが蓄積し、膜を洗浄する必要がある。
As described above, according to the submerged membrane separation apparatus 10 according to the present embodiment, the membrane filtration of the liquid to be processed can be continuously performed by performing the aeration operation.
In the immersion type membrane separation apparatus 10 according to the present embodiment, as in the conventional immersion type membrane separation apparatus, dirt accumulates on the membrane of the flat membrane element 15 due to membrane filtration of the liquid to be treated, and the membrane needs to be washed. There is.

次に、図2に基づいて本実施形態に係る浸漬型膜分離装置10の洗浄方法を説明する。
この浸漬型膜分離装置10は、図2に示すように、膜の洗浄時には、第三配管33の第三開閉弁35及び第四開閉弁37を開放する。また、第一配管21の第一開閉弁23及び濾過液管29の第二開閉弁31を閉止する。これによって、第三配管33は合流部21aを介して第一配管21に接続される。また、第三配管33は合流部29aを介して吸引ポンプ27の吐出側に接続される。また、第一配管21は、第三配管33との合流部21aと第二配管25との合流部21bとの区間が閉止される。
Next, a method for cleaning the submerged membrane separation apparatus 10 according to the present embodiment will be described with reference to FIG.
As shown in FIG. 2, the submerged membrane separation apparatus 10 opens the third on-off valve 35 and the fourth on-off valve 37 of the third pipe 33 when the membrane is washed. Further, the first on-off valve 23 of the first pipe 21 and the second on-off valve 31 of the filtrate pipe 29 are closed. As a result, the third pipe 33 is connected to the first pipe 21 via the junction 21a. Further, the third pipe 33 is connected to the discharge side of the suction pump 27 through the merging portion 29a. Further, the first pipe 21 is closed at the section between the joining portion 21 a with the third pipe 33 and the joining portion 21 b with the second pipe 25.

次に、漏斗状の入れ口を備えながら逆止機構を有する薬液投入口39から所定の薬液を投入する。
投入された薬液を含む濾過液は、吸引ポンプ27の連続駆動(運転)により、矢印で示すように、第三配管33から合流部21aを経由して第一配管21へ流入し、下方の集水管19aから集水口17aを介して各平膜エレメント15内に流入し、膜の洗浄を行いながら集水口17bを介して上方の集水管19bへ導かれる。
Next, a predetermined chemical solution is charged from a chemical solution inlet 39 having a check mechanism while having a funnel-shaped inlet.
As shown by the arrow, the filtrate containing the introduced chemical liquid flows into the first pipe 21 from the third pipe 33 via the junction 21a as indicated by the arrows by continuous driving (operation) of the suction pump 27, and collects in the lower part. The water flows from the water pipe 19a into each flat membrane element 15 through the water collection port 17a, and is guided to the upper water collection pipe 19b through the water collection port 17b while cleaning the membrane.

薬液を含む濾過液は、吸引ポンプ27によって、さらに、上方の集水管19bから第二配管25を経由して合流部21bへ吸引され、合流部21bから合流部29aを経由して第三配管33へ再度流入する。
このように、本実施形態に係る浸漬型膜分離装置10の洗浄方法によれば、薬液投入口39から薬液を注入しながら、薬液を第三配管33及び第一配管21を介して下方の集水管19aから各平膜エレメント15を供給して洗浄した後、上方の集水管19bと連通する第二配管25から吸引ポンプ27で吸引し、吸引した薬液を第三配管33の薬液投入口39に戻す(循環)ため、各平膜エレメント15の膜が膨らむまでの大量の薬液を入れず少量の薬液量と短い時間で膜面全体に薬液を充填させ、均一な濃度で膜面全体を洗浄できる。特に、高さ方向に大型化した平膜エレメントにおいて、自然流下で流し込んで膜面全体に薬液を行き渡らせるよりも効果的である。
The filtrate containing the chemical solution is further sucked by the suction pump 27 from the upper water collecting pipe 19b via the second pipe 25 to the merging section 21b and from the merging section 21b via the merging section 29a to the third pipe 33. Flow into again.
As described above, according to the method for cleaning the submerged membrane separation apparatus 10 according to the present embodiment, the chemical liquid is collected through the third pipe 33 and the first pipe 21 while the chemical liquid is being injected from the chemical liquid inlet 39. After each flat membrane element 15 is supplied from the water pipe 19a and cleaned, it is sucked by the suction pump 27 from the second pipe 25 communicating with the upper water collecting pipe 19b, and the sucked chemical liquid is supplied to the chemical liquid inlet 39 of the third pipe 33. In order to return (circulate), the entire membrane surface can be filled with a small amount of chemical solution and in a short time without adding a large amount of chemical solution until the membrane of each flat membrane element 15 expands, and the entire membrane surface can be washed with a uniform concentration . In particular, in a flat membrane element that is enlarged in the height direction, it is more effective than flowing in a natural flow and spreading the chemical solution over the entire membrane surface.

また、本実施形態に係る浸漬型膜分離装置10の洗浄方法によれば、吸引ポンプ27の吸引量は、濾過時と同等又は半分程度にて行い、少量で短時間で薬液洗浄を行うため、被処理液側への薬液流出を抑えることができる。
また、本実施形態に係る浸漬型膜分離装置10の洗浄方法によれば、散気洗浄を行いながらの薬液洗浄が可能であり、より効果的な膜洗浄ができる。
Further, according to the cleaning method of the submerged membrane separation apparatus 10 according to the present embodiment, the suction amount of the suction pump 27 is the same as or about half that during filtration, and chemical cleaning is performed in a short time with a small amount. The outflow of the chemical liquid to the liquid to be treated can be suppressed.
Moreover, according to the cleaning method of the submerged membrane separation apparatus 10 according to the present embodiment, chemical cleaning can be performed while performing aeration cleaning, and more effective membrane cleaning can be performed.

また、本実施形態に係る浸漬型膜分離装置10の洗浄方法によれば、洗浄時間が短縮でき、下方の集水管19aから上方の集水管19bへ向けての吸引ポンプ27での吸引を行いつつ、吸引ポンプ27の吐出力で第一配管21内を水頭ヘッドに逆らって下方の集水管19aへ薬液を導入させるので、吸引ポンプ27の吸込み負圧を吐出圧が押し込んで助けてくれるので、薬液が滞ることなく流れる。また、吸引ポンプ27の吐出力で第一配管21内を水頭ヘッドに逆らって下方の集水管19aへ薬液を導入するが、膜ユニット13内は吸引ポンプ27の吸い込み力も影響するので、被処理液側への薬液の流出が抑えられる。これを、もし上方の集水管19bから下方の集水管19aへ向けて吸引ポンプ27吐出力で導入しつつ、吸引ポンプ27の吸引力で下方の集水管19aから吸引したとすると、下方の集水管19aまで抵抗の大きな膜ユニット13内の圧力損失に抗して届かせようとすると、吸引ポンプの吐出圧を増加させなければならず、その途中に染み出す膜があるので被処理液側への薬液の流出は避けようがない。
また、本実施形態に係る浸漬型膜分離装置10の洗浄方法によれば、各平膜エレメント15の膜が膨らんだ状態にならないため、薬液洗浄時に散気洗浄を行っても各平膜エレメント15の膜のよれや溶着部分の剥がれや破れが起こりにくく、より効果の高い洗浄が可能となる。
Further, according to the cleaning method of the submerged membrane separation apparatus 10 according to the present embodiment, the cleaning time can be shortened, and suction is performed by the suction pump 27 from the lower water collecting pipe 19a toward the upper water collecting pipe 19b. Since the chemical liquid is introduced into the lower water collecting pipe 19a against the head of the first pipe 21 by the discharge force of the suction pump 27, the discharge pressure pushes in the suction negative pressure of the suction pump 27 and helps. Flows without delay. Further, the chemical liquid is introduced into the lower water collecting pipe 19a against the head of the first pipe 21 by the discharge force of the suction pump 27. However, since the suction force of the suction pump 27 also affects the inside of the membrane unit 13, the liquid to be treated The outflow of chemicals to the side is suppressed. If this is introduced from the upper water collecting pipe 19b to the lower water collecting pipe 19a with the suction force of the suction pump 27 and sucked from the lower water collecting pipe 19a by the suction force of the suction pump 27, the lower water collecting pipe In order to reach the pressure loss in the membrane unit 13 having a large resistance up to 19a, the discharge pressure of the suction pump must be increased, and there is a membrane that oozes out in the middle of There is no way to avoid the outflow of chemicals.
Further, according to the cleaning method of the submerged membrane separation apparatus 10 according to the present embodiment, since the membrane of each flat membrane element 15 does not swell, each flat membrane element 15 even if diffused cleaning is performed during chemical cleaning. As a result, it is difficult for the film to be twisted or the welded part to be peeled off or torn, and cleaning with higher effectiveness is possible.

図3は、本発明の第二実施形態に係る浸漬型膜分離装置10Aの膜濾過運転状態を示す。図4は、本発明の第二実施形態に係る浸漬型膜分離装置10Aの膜洗浄運転状態を示す。
本実施形態に係る浸漬型膜分離装置10Aは、第三配管33を、中継槽51を設けた第三配管33Aに置き換えた点で、本発明の第一実施形態に係る浸漬型膜分離装置10とは相違する。その他の構成は、本発明の第一実施形態に係る浸漬型膜分離装置10と同じであるから同じ符号を付してそれらの説明は省略する。
中継槽51は、第三配管33の薬液投入口39の位置で薬液を第三配管33Aに投入できるように配置されている。
FIG. 3 shows a membrane filtration operation state of the submerged membrane separation apparatus 10A according to the second embodiment of the present invention. FIG. 4 shows the membrane cleaning operation state of the submerged membrane separation apparatus 10A according to the second embodiment of the present invention.
The submerged membrane separation apparatus 10 </ b> A according to the present embodiment replaces the third pipe 33 with the third pipe 33 </ b> A provided with the relay tank 51, and the submerged membrane separation apparatus 10 according to the first embodiment of the present invention. Is different. Since the other configuration is the same as that of the submerged membrane separation apparatus 10 according to the first embodiment of the present invention, the same reference numerals are given and description thereof is omitted.
The relay tank 51 is arranged so that the chemical liquid can be introduced into the third pipe 33 </ b> A at the position of the chemical inlet 37 of the third pipe 33.

次に、図3に基づいて、本実施形態に係る浸漬型膜分離装置10Aの作用を説明する。
この浸漬型膜分離装置10Aは、図3に示すように、膜濾過運転する場合には、先ず、第三配管33A内に濾過液が流入しないように、第三配管33Aの第三開閉弁35及び第四開閉弁37を閉止する。また、第一配管21の第一開閉弁23及び濾過液管29の第二開閉弁31を開放する。
次に、被処理液を原水供給ポンプにより反応槽11に供給する。同時に、ブロワ49を駆動して空気供給管47を介して供給される空気を散気管45から膜ユニット13に向かって矢印で示すように噴出させる。
Next, the operation of the submerged membrane separation apparatus 10A according to the present embodiment will be described based on FIG.
As shown in FIG. 3, in the submerged membrane separation apparatus 10A, when the membrane filtration operation is performed, first, the third on-off valve 35 of the third pipe 33A is prevented so that the filtrate does not flow into the third pipe 33A. And the 4th on-off valve 37 is closed. Further, the first on-off valve 23 of the first pipe 21 and the second on-off valve 31 of the filtrate pipe 29 are opened.
Next, the liquid to be treated is supplied to the reaction tank 11 by the raw water supply pump. At the same time, the blower 49 is driven, and the air supplied through the air supply pipe 47 is ejected from the diffuser pipe 45 toward the membrane unit 13 as indicated by an arrow.

この空気の噴出により反応槽11内に貯留される被処理液に旋回流を起こさせる。同時に、吸引ポンプ27の間歇的駆動により平膜エレメント15の濾過液通路側を間歇的に減圧し、平膜エレメント15の濾過液側の減圧と反応槽11の水位による平膜エレメント15への加圧水圧とによる膜間差圧のもとで被処理液を膜濾過させる。この膜濾過液は、集水口17a,17bから集水管19a,19bに集められ、矢印で示すように、集水管19a,19bから第一配管21及び第二配管25に流入し、濾過液管29を経由して処理水槽に貯えられる。
以上のように、本実施形態に係る浸漬型膜分離装置10Aによれば、本発明の第一実施形態に係る浸漬型膜分離装置10と同様に、膜濾過運転を行うことにより、被処理液の膜濾過を連続して行うことができる。
A swirling flow is caused in the liquid to be treated stored in the reaction tank 11 by the ejection of the air. At the same time, the filtrate passage side of the flat membrane element 15 is intermittently depressurized by intermittent driving of the suction pump 27, and the pressurized water to the flat membrane element 15 is reduced by the depressurization of the flat membrane element 15 on the filtrate side and the water level of the reaction tank 11. The liquid to be treated is subjected to membrane filtration under a transmembrane pressure difference due to pressure. The membrane filtrate is collected from the water collection ports 17a and 17b to the water collection pipes 19a and 19b, and flows into the first pipe 21 and the second pipe 25 from the water collection pipes 19a and 19b, as indicated by arrows, and the filtrate pipe 29 Is stored in the treated water tank.
As described above, according to the submerged membrane separation apparatus 10A according to the present embodiment, the liquid to be treated can be obtained by performing the membrane filtration operation, similarly to the submerged membrane separation apparatus 10 according to the first embodiment of the present invention. The membrane filtration can be performed continuously.

次に、図4に基づいて、本実施形態に係る浸漬型膜分離装置10Aの洗浄方法を説明する。
この浸漬型膜分離装置10Aは、図4に示すように、膜の洗浄時には、第三配管33Aの第三開閉弁35及び第四開閉弁37を開放すると共に中継槽51に所定の薬液を投入する。また、第一配管21の第一開閉弁23及び濾過液管29の第二開閉弁31を閉止する。これによって、第三配管33Aは合流部21aを介して第一配管21に接続される。また、第三配管33Aは合流部29aを介して吸引ポンプ27の吐出側に接続される。また、第一配管21は第三配管33Aとの合流部21aと第二配管25との合流部21bとの区間が閉止される。
Next, based on FIG. 4, a cleaning method for the submerged membrane separation apparatus 10 </ b> A according to the present embodiment will be described.
As shown in FIG. 4, the submerged membrane separation apparatus 10A opens the third on-off valve 35 and the fourth on-off valve 37 of the third pipe 33A and puts a predetermined chemical into the relay tank 51 when cleaning the membrane. To do. Further, the first on-off valve 23 of the first pipe 21 and the second on-off valve 31 of the filtrate pipe 29 are closed. As a result, the third pipe 33A is connected to the first pipe 21 via the junction 21a. In addition, the third pipe 33A is connected to the discharge side of the suction pump 27 via the merging portion 29a. In addition, the first pipe 21 is closed at the section between the junction 21 a with the third pipe 33 </ b> A and the junction 21 b with the second pipe 25.

次に、中継槽51に投入された薬液を含む濾過液は、吸引ポンプ27の連続駆動(運転)により、矢印で示すように、第三配管33Aから合流部21aを経由して第一配管21へ流入し、下方の集水管19aから集水口17aを介して各平膜エレメント15内に流入し、膜の洗浄を行いながら集水口17bを介して上方の集水管19bへ導かれる。
薬液を含む濾過液は、さらに、第二配管25から合流部21bを経由して吸引ポンプ27の吐出側から合流部29aを経由して第三配管33Aへ再度流入する。
Next, the filtrate containing the chemical solution introduced into the relay tank 51 is driven by the continuous operation (operation) of the suction pump 27, as indicated by the arrow, from the third pipe 33A via the junction 21a to the first pipe 21. And flows into the flat membrane element 15 from the lower water collecting pipe 19a through the water collecting port 17a, and is guided to the upper water collecting pipe 19b through the water collecting port 17b while cleaning the membrane.
Further, the filtrate containing the chemical liquid flows again from the second pipe 25 via the junction 21b and from the discharge side of the suction pump 27 to the third pipe 33A via the junction 29a.

このように、本実施形態に係る浸漬型膜分離装置10Aの洗浄方法によれば、中継槽51に薬液を注入しながら、薬液を第三配管33A及び第一配管21を介して下方の集水管19aから各平膜エレメント15を供給して洗浄した後、上方の集水管19bと連通する第二配管25から吸引ポンプ27で吸引し、吸引した薬液を第三配管33Aの中継槽51に戻す(循環)ため、各平膜エレメント15の膜が膨らむまでの大量の薬液を入れず少量の薬液量と短い時間で膜面全体に薬液を充填させ、均一な濃度で膜面全体を洗浄できる。特に、高さ方向に大型化した平膜エレメントにおいて、自然流下で流し込んで膜面全体に薬液を行き渡らせるよりも効果的である。   As described above, according to the cleaning method of the submerged membrane separation apparatus 10A according to the present embodiment, the chemical solution is poured into the relay tank 51 through the third pipe 33A and the first pipe 21 and the lower water collecting pipe. After supplying and cleaning each flat membrane element 15 from 19a, the suction pump 27 sucks in the second pipe 25 communicating with the upper water collecting pipe 19b, and the sucked chemical solution is returned to the relay tank 51 of the third pipe 33A ( Therefore, it is possible to fill the entire membrane surface with a small amount of chemical solution and a short time without adding a large amount of chemical solution until the membrane of each flat membrane element 15 swells, and to wash the entire membrane surface with a uniform concentration. In particular, in a flat membrane element that is enlarged in the height direction, it is more effective than flowing in a natural flow and spreading the chemical solution over the entire membrane surface.

また、本実施形態に係る浸漬型膜分離装置10Aの洗浄方法によれば、吸引ポンプ27の吸引量は、膜濾過時と同等又は半分程度にて行い、少量で短時間で薬液洗浄を行うため、被処理液側への薬液流出を抑えることができる。
また、本実施形態に係る浸漬型膜分離装置10Aの洗浄方法によれば、散気洗浄を行いながらの薬液洗浄が可能であり、より効果的な膜洗浄ができる。
In addition, according to the cleaning method of the submerged membrane separation apparatus 10A according to the present embodiment, the suction amount of the suction pump 27 is the same as or about half that during membrane filtration, and chemical cleaning is performed in a short time with a small amount. The chemical liquid outflow to the liquid to be treated can be suppressed.
Further, according to the cleaning method of the immersion type membrane separation apparatus 10A according to the present embodiment, chemical cleaning can be performed while performing aeration cleaning, and more effective membrane cleaning can be performed.

また、本実施形態に係る浸漬型膜分離装置10Aの洗浄方法によれば、洗浄時間が短縮でき、下方の集水管19aから上方の集水管19bへ向けての吸引を行っているため、被処理液側への薬液の流出が抑えられる。
また、本実施形態に係る浸漬型膜分離装置10Aの洗浄方法によれば、各平膜エレメント15の膜が膨らんだ状態にならないため、薬液洗浄時に散気洗浄を行っても各平膜エレメント15の膜のよれや溶着部分の剥がれや破れが起こりにくく、より効果の高い洗浄が可能となる。
Further, according to the cleaning method of the submerged membrane separation apparatus 10A according to the present embodiment, the cleaning time can be shortened, and suction from the lower water collecting pipe 19a to the upper water collecting pipe 19b is performed. The outflow of the chemical liquid to the liquid side is suppressed.
Further, according to the cleaning method of the submerged membrane separation apparatus 10A according to the present embodiment, the membrane of each flat membrane element 15 does not swell, so that each flat membrane element 15 even if diffused cleaning is performed during chemical cleaning. As a result, it is difficult for the film to be twisted or the welded part to be peeled off or torn, and cleaning with higher effectiveness is possible.

なお、上記各実施形態では、2つの集水口17a,17bを設けた場合について説明したが、本発明はこれに限らず、集水口を3個以上設けても良い。
また、上記各実施形態では、膜ユニット13の上下に集水口17a,17bを設けると共に上下に集水管19a,19bを設ける場合について説明したが、本発明はこれに限らず、膜ユニット13を横置きとし、その両側に集水口17a,17bを設けると共に左右に集水管19a,19bを設けても良い。
In addition, although each said embodiment demonstrated the case where the two water collection ports 17a and 17b were provided, this invention is not restricted to this, You may provide three or more water collection ports.
In each of the above embodiments, the case where the water collection ports 17a and 17b are provided above and below the membrane unit 13 and the water collection pipes 19a and 19b are provided above and below has been described. The water collecting ports 17a and 17b may be provided on both sides and the water collecting pipes 19a and 19b may be provided on the left and right sides.

10,10A 浸漬型膜分離装置
11 反応槽
13 膜ユニット
15 平膜エレメント
17a,17b 集水口
19a 下方の集水管
19b 上方の集水管
21 第一配管
21a,21b,29a 合流部
23 第一開閉弁
25 第二配管
27 吸引ポンプ
29 濾過液管
31 第二開閉弁
33,33A 第三配管
35 第三開閉弁
37 第四開閉弁
39 薬液投入口
41 原水供給配管
45 散気管
51 中継槽
10, 10A Submerged membrane separator 11 Reaction tank 13 Membrane unit 15 Flat membrane elements 17a, 17b Water collecting port 19a Lower water collecting pipe 19b Upper water collecting pipe 21 First piping 21a, 21b, 29a Merging section 23 First on-off valve 25 Second pipe 27 Suction pump 29 Filtrate pipe 31 Second on-off valve 33, 33A Third pipe 35 Third on-off valve 37 Fourth on-off valve 39 Chemical liquid inlet 41 Raw water supply pipe 45 Aeration pipe 51 Relay tank

Claims (5)

濾過膜流路より外部に濾過液を取り出す集水口を2つ以上有する平膜エレメントと、
前記平膜エレメントを浸漬する反応槽と、
前記集水口にそれぞれ対向配置されて接続される2つの集水管と、
第一開閉弁を設け、一方の前記集水管に接続される第一配管と、
前記第一配管を吸込口側に接続させる吸引ポンプと、
他方の前記集水管に接続され、前記第一開閉弁と前記吸引ポンプの吸込口との間の前記第一配管に接続される第二配管と、
第二開閉弁を設け、前記吸引ポンプの吐出口側に接続される濾過液配管と、
薬液投入部を設け、一端が前記吸引ポンプと前記第二開閉弁との間の前記濾過液配管に第三開閉弁を介して接続され、他端が前記第一開閉弁と前記一方の集水管との間の第一配管に第四開閉弁を介して接続される第三配管と
を備え、
前記平膜エレメントは、前記平膜エレメントの両端部を、一方の端は浸漬された前記平膜エレメントの上端とし、もう一方の端は浸漬された前記平膜エレメントの下端としており、前記集水口をそれぞれ、前記平膜エレメントの上端の上部に上向きに、前記平膜エレメントの下端の下部に下向きに、それぞれ1つ以上有し、
前記第一開閉弁及び前記第二開閉弁は、膜濾過運転時には開放され、膜洗浄運転時には閉止され、
前記第三開閉弁及び前記第四開閉弁は、膜濾過運転時には閉止され、膜洗浄運転時には開放され、
前記吸引ポンプは、膜濾過運転時には前記平膜エレメントの下端の集水口から該下端の集水口に対向配置され水平に位置する前記一方の集水管を介して前記第一配管に、及び前記平膜エレメントの上端の集水口から該上端の集水口に対向配置された水平に位置する前記他方の集水管を介して前記第二配管に、濾過液を導出するように吸引し、膜洗浄運転時には前記薬液投入部から投入される薬液を前記第三配管から前記第一配管を経由して前記一方の集水管へ吸引し、前記薬液を前記平膜エレメントを経由して前記他方の集水管から導出するように吸引する
ことを特徴とする浸漬型膜分離装置。
A flat membrane element having two or more water collection ports for taking out filtrate from the filtration membrane channel;
A reaction vessel in which the flat membrane element is immersed;
Two water collecting pipes that are respectively disposed to be opposed to the water collecting port, and
A first pipe provided with a first on-off valve and connected to one of the water collecting pipes;
A suction pump for connecting the first pipe to the suction port side;
A second pipe connected to the other water collecting pipe and connected to the first pipe between the first on-off valve and the suction port of the suction pump;
A second on-off valve, and a filtrate pipe connected to a discharge port side of the suction pump;
Provided with a chemical inlet, one end is connected to the filtrate pipe between the suction pump and the second on-off valve via a third on-off valve, and the other end is the first on-off valve and the one water collecting pipe A third pipe connected to the first pipe through the fourth on-off valve,
The flat membrane element has both ends of the flat membrane element, one end being the upper end of the immersed flat membrane element and the other end being the lower end of the immersed flat membrane element, Each having one or more upwards at the upper part of the upper end of the flat membrane element and downwards at the lower part of the lower end of the flat membrane element ,
The first on-off valve and the second on-off valve are opened during the membrane filtration operation and closed during the membrane cleaning operation,
The third on-off valve and the fourth on-off valve are closed during the membrane filtration operation and opened during the membrane cleaning operation,
The suction pump is connected to the first pipe from the lower water collecting port of the flat membrane element through the one water collecting pipe positioned horizontally and opposed to the lower water collecting port during the membrane filtration operation, and the flat membrane From the water collecting port at the upper end of the element, suction is performed so as to lead the filtrate to the second pipe through the other water collecting pipe positioned horizontally opposite to the water collecting port at the upper end. The chemical solution introduced from the chemical solution introduction unit is sucked from the third pipe to the one water collecting pipe through the first pipe, and the chemical liquid is led out from the other water collecting pipe through the flat membrane element. A submerged membrane separation device characterized by suction.
請求項1に記載の浸漬型膜分離装置において、
前記平膜エレメントの直下に、ブロワの駆動により噴出した空気の上昇によって生じる気液混合の上向流によって前記平膜エレメントの膜面を洗浄するために設置され、膜濾過運転時にも膜洗浄運転時にも空気を噴出する散気管を有する
ことを特徴とする浸漬型膜分離装置。
The submerged membrane separation apparatus according to claim 1,
Directly below the flat membrane element, it is installed to clean the membrane surface of the flat membrane element by the upward flow of gas-liquid mixing caused by the rise of the air jetted by the drive of the blower. A submerged membrane separator characterized by having an air diffuser that sometimes ejects air.
請求項1又は請求項2に記載の浸漬型膜分離装置において、
前記薬液投入部が、漏斗状の入れ口を備えながら逆止機構を有する薬液投入口である
ことを特徴とする浸漬型膜分離装置。
In the submerged membrane separation apparatus according to claim 1 or 2,
The submerged membrane separation apparatus, wherein the chemical solution inlet is a chemical agent inlet having a check mechanism while having a funnel-like inlet.
請求項1又は請求項2に記載の浸漬型膜分離装置において、
前記薬液投入部が、筐体に開口状の薬液投入口を備え、前記吸引ポンプによって前記第三配管に導入される前記薬液を貯留する中継槽である
ことを特徴とする浸漬型膜分離装置。
In the submerged membrane separation apparatus according to claim 1 or 2,
The submerged membrane separation apparatus, wherein the chemical solution input unit is a relay tank having an opening-shaped chemical solution input port in a housing and storing the chemical solution introduced into the third pipe by the suction pump.
請求項1乃至請求項4の何れかに記載の浸漬型膜分離装置の運転方法において、
膜濾過運転時には、前記第三配管の前記第三開閉弁及び前記第四開閉弁を閉止し、前記第一配管及び前記第二配管を前記吸引ポンプに連通し、前記吸引ポンプで前記第一配管及び前記第二配管から濾過液を吸引して前記濾過液配管へ送出し、
膜洗浄運転時には、前記第一開閉弁及び前記第二開閉弁を閉止すると共に前記第三配管の前記第三開閉弁及び前記第四開閉弁を開放し、前記薬液投入部で投入される所定の薬液を前記吸引ポンプで、前記第三配管から前記第一配管を経由して前記一方の集水管へ吸引した後、前記一方の集水管から前記平膜エレメントを経由して前記他方の集水管へ吸引し、前記他方の集水管から前記第二配管及び前記第一配管を経由して前記第三配管に導出する、前記平膜エレメント内を前記薬液が下から上に向かって流れるよう薬液循環路を構成する
ことを特徴とする浸漬型膜分離装置の運転方法。
In the operation method of the submerged membrane separator according to any one of claims 1 to 4,
During the membrane filtration operation, the third on-off valve and the fourth on-off valve of the third pipe are closed, the first pipe and the second pipe are communicated with the suction pump, and the first pipe is connected with the suction pump. And sucking the filtrate from the second pipe and sending it to the filtrate pipe,
During the membrane cleaning operation, the first on-off valve and the second on-off valve are closed and the third on-off valve and the fourth on-off valve of the third pipe are opened, and a predetermined amount that is introduced at the chemical solution introduction unit After the chemical solution is sucked from the third pipe through the first pipe to the one water collecting pipe by the suction pump, the one water collecting pipe passes through the flat membrane element to the other water collecting pipe. A chemical solution circulation path that sucks and leads out from the other water collecting pipe to the third pipe through the second pipe and the first pipe so that the chemical liquid flows from the bottom upward in the flat membrane element The operation method of the submerged membrane separator characterized by comprising.
JP2014071666A 2014-03-31 2014-03-31 Immersion membrane separator and method for operating the same Active JP6411051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014071666A JP6411051B2 (en) 2014-03-31 2014-03-31 Immersion membrane separator and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014071666A JP6411051B2 (en) 2014-03-31 2014-03-31 Immersion membrane separator and method for operating the same

Publications (2)

Publication Number Publication Date
JP2015192937A JP2015192937A (en) 2015-11-05
JP6411051B2 true JP6411051B2 (en) 2018-10-24

Family

ID=54432517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014071666A Active JP6411051B2 (en) 2014-03-31 2014-03-31 Immersion membrane separator and method for operating the same

Country Status (1)

Country Link
JP (1) JP6411051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439495A (en) * 2018-03-13 2018-08-24 常州大学 A kind of emergency drinking water water fetching device
JP7325694B1 (en) 2023-01-20 2023-08-14 三菱電機株式会社 Filtration membrane cleaning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3575072B2 (en) * 1994-08-01 2004-10-06 栗田工業株式会社 Immersion type membrane separation device
JP3479799B2 (en) * 1997-09-12 2003-12-15 株式会社Inax Chemical liquid cleaning method and chemical liquid cleaning device for membrane module
US6547968B1 (en) * 1999-07-30 2003-04-15 Zenon Environmental Inc. Pulsed backwash for immersed membranes
JP2006198462A (en) * 2005-01-18 2006-08-03 Toray Ind Inc Washing method of flat membrane element

Also Published As

Publication number Publication date
JP2015192937A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
KR101115173B1 (en) Backwash
JP4833353B2 (en) Membrane module with pulsed airlift pump
KR20080005993A (en) Chemical clean for membrane filter
JP2001190937A (en) Water purification equipment and method of cleaning membrane element
JP5648387B2 (en) Aeration device and method of operating membrane separation device
JP6411051B2 (en) Immersion membrane separator and method for operating the same
JP3480049B2 (en) Immersion type membrane separation device
JP5238128B2 (en) Solid-liquid separation device for solid-liquid mixed processing liquid
JP5743095B2 (en) Membrane separation activated sludge equipment
JP2010207762A (en) Membrane type methane fermentation treatment apparatus and method for methane fermentation treatment
KR101926857B1 (en) Automatic cleaning system of separation membrane and method using the same
JP4188226B2 (en) Filtration device and filtration method using the filtration device
JP2005052773A (en) Waste water treatment equipment
JP2007209949A (en) Filtrate recovery device of solid-liquid mixed/processed liquid
JP5423184B2 (en) Filtration membrane module cleaning method and cleaning apparatus
KR101594197B1 (en) Filtering device having a cleaning function
JP2006198462A (en) Washing method of flat membrane element
JP2005279495A (en) Immersed membrane separator, washing method for diffuser, and membrane separation method
KR101927778B1 (en) Method for backwashing of ceramic membrane using a blower
JPH1057780A (en) Dipped membrane separator
JP4174577B2 (en) Water supply pipe cleaning method and water supply pipe cleaning device
JP7075751B2 (en) How to clean the filtration membrane
JP2007196126A (en) Membrane filtration system
WO2009122460A1 (en) Method and apparatus for cleaning membrane module
JP7151177B2 (en) Water treatment equipment and its operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20170510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170510

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180117

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180131

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180926

R150 Certificate of patent or registration of utility model

Ref document number: 6411051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150