WO2012098969A1 - Method for cleaning membrane module, method of fresh water generation, and fresh water generator - Google Patents

Method for cleaning membrane module, method of fresh water generation, and fresh water generator Download PDF

Info

Publication number
WO2012098969A1
WO2012098969A1 PCT/JP2012/050416 JP2012050416W WO2012098969A1 WO 2012098969 A1 WO2012098969 A1 WO 2012098969A1 JP 2012050416 W JP2012050416 W JP 2012050416W WO 2012098969 A1 WO2012098969 A1 WO 2012098969A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane module
scale inhibitor
microfiltration
ultrafiltration membrane
Prior art date
Application number
PCT/JP2012/050416
Other languages
French (fr)
Japanese (ja)
Inventor
智宏 前田
谷口 雅英
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012504975A priority Critical patent/JPWO2012098969A1/en
Priority to CN201280006054.8A priority patent/CN103328079B/en
Publication of WO2012098969A1 publication Critical patent/WO2012098969A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/14Use of concentrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/164Use of bases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • raw water is filtered through a microfiltration membrane / ultrafiltration membrane (hereinafter referred to as MF / UF membrane) module, and the filtrate is provided with a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane).
  • MF / UF membrane microfiltration membrane / ultrafiltration membrane
  • RO membrane reverse osmosis membrane
  • NF membrane nanofiltration membrane
  • the present invention relates to a fresh water generation method and a fresh water generation apparatus for filtering with a semipermeable membrane unit.
  • the present invention relates to a fresh water generation method characterized by a method for cleaning an MF / UF membrane module in the fresh water generation method, and a fresh water generation apparatus capable of suitably implementing it.
  • Patent Document 1 describes that back pressure cleaning is performed by adding an oxidizing agent such as sodium hypochlorite to back pressure cleaning water.
  • the oxidizing agent has an effect of decomposing / removing organic substances such as humic acid and microorganism-derived protein adhering to the membrane surface and membrane pores.
  • Patent Document 1 a method of producing clear water by filtering raw water with a MF / UF membrane and then treating the filtered water with a semipermeable membrane is called an IMS process (see Non-Patent Document 1).
  • IMS process in Patent Documents 2 and 3, there is a method in which a part of the reverse osmosis membrane concentrated water originally discharged out of the system in order to increase the water recovery rate is used as the reverse pressure washing water of the MF membrane / UF membrane. Proposed.
  • Patent Document 4 proposes a method in which reverse osmosis membrane concentrated water to which an oxidizing agent such as sodium hypochlorite is added is used as MF / UF membrane reverse pressure washing water.
  • an oxidizing agent such as sodium hypochlorite
  • An object of the present invention is to provide a fresh water generation method in which raw water is filtered with an MF / UF membrane module, and the filtered water is filtered with a semipermeable membrane unit having an RO membrane or an NF membrane.
  • An object of the present invention is to provide a cleaning method, a fresh water generating method, and a fresh water generating device for an MF / UF membrane module, which can prevent clogging due to scales adhering and accumulating in holes.
  • the present invention is characterized by one of the following configurations.
  • a method for cleaning a membrane module which is supplied from the side and performs reverse pressure cleaning of the microfiltration / ultrafiltration membrane module.
  • a fresh water generation method in which raw water is filtered with a microfiltration / ultrafiltration membrane module and then separated into permeate and concentrated water with a semipermeable membrane unit, temporarily, the microfiltration / ultrafiltration Filtration in the membrane module is interrupted, and at least a part of the concentrated water is supplied as wash water from the secondary side of the microfiltration / ultrafiltration membrane module to perform back pressure washing of the microfiltration / ultrafiltration membrane module.
  • a method for producing fresh water wherein the washing water contains a scale inhibitor and an alkaline solution.
  • a scale inhibitor is added to at least a part of the filtrate obtained from the microfiltration / ultrafiltration membrane module and separated by the semipermeable membrane unit so that the wash water contains the scale inhibitor.
  • the fresh water generation method according to (5) further comprising adding a scale inhibitor to at least a part of the concentrated water so that the wash water contains the scale inhibitor.
  • a microfiltration / ultrafiltration membrane module a semipermeable membrane unit that separates at least a portion of filtrate of the microfiltration / ultrafiltration membrane module into permeate and concentrated water, and at least the concentrated water
  • a back pressure washing unit that supplies a part of the washing water from the secondary side of the microfiltration / ultrafiltration membrane module to backwash the microfiltration / ultrafiltration membrane module, and prevents scale in the washing water
  • a fresh water generator comprising a scale inhibitor supply unit that contains an agent and an alkaline solution supply unit that contains an alkaline solution in the washing water.
  • the alkaline solution includes a unit for supplying the scale inhibitor to a line for supplying at least a part of the concentrated water from the secondary side of the microfiltration / ultrafiltration membrane module as the scale inhibitor supply unit.
  • the fresh water generator according to (9), comprising a unit that supplies an alkaline solution to a line that supplies at least a part of the concentrated water from the secondary side of the microfiltration / ultrafiltration membrane module as a supply unit.
  • the scale inhibitor supply unit a unit for supplying a scale inhibitor to a line for supplying filtered water of the microfiltration / ultrafiltration membrane module to the semipermeable membrane unit, and as the alkaline solution supply unit,
  • the scale inhibitor supply unit further includes a unit that supplies the scale inhibitor to a line that supplies at least a part of the concentrated water from the secondary side of the microfiltration / ultrafiltration membrane module.
  • microfiltration / ultrafiltration membrane module means at least one of a microfiltration membrane module and an ultrafiltration membrane module.
  • filtration in the MF / UF membrane module is temporarily performed. Interrupting, supplying at least a portion of the concentrated water as wash water from the secondary side of the MF / UF membrane module to perform back pressure washing of the MF / UF membrane module, and adding a scale inhibitor to the wash water Incorporate an alkaline solution. That is, the MF / UF membrane module is back-pressure washed with washing water to which an alkaline solution is added, and a scale inhibitor is added to the washing water in advance. Thereby, it can suppress that a scale is produced
  • a raw water storage tank 1 that stores raw water
  • a raw water supply pump 2 that supplies raw water
  • a raw water supply valve 3 that opens when the raw water is supplied
  • a raw water filter a raw water filter
  • a hollow fiber membrane module 4 (MF / UF membrane module), an air vent valve 5 that is opened when performing back-pressure washing or air washing, a filtration water valve 6 that is opened during filtration, and a hollow fiber membrane filtrate.
  • the filtrate storage tank 7 to be stored, the semipermeable membrane unit 18 for separating the filtrate of the hollow fiber membrane module 4 into permeate and concentrated water, and the filtrate obtained by the hollow fiber membrane module 4 to the semipermeable membrane unit 18.
  • a booster pump 19 that supplies the concentrated water, a concentrated water storage tank 20 that stores the concentrated water of the semipermeable membrane unit 18, and a concentrated water drain valve 22 that is opened when the concentrated water of the semipermeable membrane unit is drained out of the system.
  • Concentrated water is supplied as washing water to hollow fiber membrane module
  • a backwash pump 8 that backwashes the fluid 4
  • a backwash valve 9 that opens during backwashing
  • a backwash pipe 10 through which concentrated water from the concentrated water storage tank 20 passes during backwashing, and a hollow fiber.
  • An air supply unit including a compressor 13 as a supply source, an alkaline solution storage tank 14 for storing an alkaline solution, an alkaline solution supply pump 15 for supplying an alkaline solution to concentrated water as a reverse pressure washing water, and a scale inhibitor Scale storage tank 16, a first scale supply pump 17 for supplying scale inhibitor to concentrated water as back pressure washing water, and a scale inhibitor for water supplied to the semipermeable membrane unit 18.
  • Second scale preventive agent supply pump 21 is provided for supplying.
  • the first scale inhibitor supply pump 17 that supplies the scale inhibitor to the concentrated water of the semipermeable membrane unit 18 and the supply to the semipermeable membrane unit 18.
  • the second scale inhibitor supply pump 21 for supplying the scale inhibitor to water is provided, either one may be used.
  • the filtrate of the hollow fiber membrane module 4 is temporarily stored in the filtrate storage tank 7 as an intermediate tank, and then supplied to the semipermeable membrane unit 18, as shown in FIG.
  • the filtered water of the hollow fiber membrane module 4 may be supplied directly to the semipermeable membrane unit 18 and separated into permeated water and concentrated water without using an intermediate tank.
  • the concentrated water of the semipermeable membrane unit 18 stored in the concentrated water storage tank 20 is used as cleaning water, and back pressure cleaning is performed using the backwash pump 8.
  • the high pressure concentrated water of the semipermeable membrane unit 18 may be supplied to the hollow fiber membrane module 4 as it is without using the concentrated water storage tank 20 and the backwash pump 8 to perform back pressure washing.
  • the hollow fiber membrane module 4 may be an immersion membrane module that is immersed in a membrane immersion tank containing raw water and suction filtered with a pump, siphon, or the like in addition to the pressure membrane module as shown in FIG.
  • a pressurizing membrane module an external pressure type or an internal pressure type may be used, but an external pressure type is preferred from the viewpoint of simplicity of pretreatment.
  • the material of the MF / UF membrane constituting the hollow fiber membrane module 4 is not particularly limited as long as it is a porous hollow fiber membrane, but it is not limited to inorganic materials such as ceramics, polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer.
  • Polymer polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, chlorotrifluoroethylene-ethylene copolymer ,
  • PVDF polyvinylidene fluoride
  • polyacrylonitrile is more preferable from the viewpoint that a strong high stain resistance hydrophilic.
  • the membrane constituting the hollow fiber membrane module 4 may be an MF membrane or a UF membrane, and a membrane having a surface pore diameter in the range of 0.001 ⁇ m to 10 ⁇ m can be appropriately selected.
  • the MF / UF membrane module may be a module using a flat membrane, a tubular membrane, a monolith membrane, etc., in addition to the hollow fiber membrane module 4 shown in FIG.
  • the filtration method in the MF / UF membrane module may be either a full filtration method or a cross flow filtration method, but full filtration is preferred from the viewpoint of low energy consumption.
  • a control method of the filtration flow rate in the MF / UF membrane module there is no problem even if it is constant flow filtration or constant pressure filtration, but the constant flow rate from the viewpoint of easy control of the amount of filtered water produced. Filtration is preferred.
  • the semipermeable membrane in the semipermeable membrane unit 18 is a membrane having semi-permeability that does not allow some components in the liquid mixture to be separated, for example, a solvent to permeate and other components to permeate.
  • the material polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer are often used.
  • the membrane structure includes an asymmetric membrane having a dense layer on at least one side of the membrane, and gradually having fine pores with a large pore diameter from the dense layer to the inside of the membrane or the other side, or a dense layer of the asymmetric membrane.
  • a composite membrane having a very thin separation functional layer formed of another material on the top can be used as appropriate.
  • the membrane form includes a hollow fiber membrane and a flat membrane.
  • the present invention can be carried out regardless of the film material, film structure and film form, and any of them is effective, but as typical films, for example, cellulose acetate-based or polyamide-based asymmetric membranes and polyamide-based, There are composite membranes having a urea-based separation functional layer, and it is preferable to use a cellulose acetate-based asymmetric membrane and a polyamide-based composite membrane from the viewpoint of water production, durability, and salt rejection.
  • the operating pressure of the semipermeable membrane unit 18 is usually preferably 0.1 MPa to 15 MPa, and can be properly used depending on the type of supply water, the operation method, and the like. It is used at a relatively low pressure when supplying low osmotic pressure water such as brine or ultrapure water, and at a relatively high pressure when desalinating seawater, treating wastewater, and recovering useful materials.
  • the semipermeable membrane unit 18 provided with the NF membrane or the RO membrane is not particularly limited, but in order to facilitate handling, a fluid separation element is provided by placing a hollow fiber membrane-like or flat membrane-like semipermeable membrane in a casing. It is preferable to use a pressure vessel filled with (element).
  • a fluid separation element is formed of a flat membrane, for example, generally a semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes.
  • Examples of commercially available products include reverse osmosis membrane elements TM700 series and TM800 series manufactured by Toray Industries, Inc. These fluid separation elements may form a semipermeable membrane unit by one, but it is also preferable to form a semipermeable membrane unit by connecting a plurality of fluid separation elements in series or in parallel.
  • the raw water stored in the raw water storage tank 1 with the raw water supply valve 3 and the filtered water valve 6 open is turned into a hollow fiber membrane module by the raw water supply pump 2.
  • 4 is supplied to the primary side of the pressure filter 4 and pressure filtered by the hollow fiber membrane module 4.
  • the filtration time is preferably set as appropriate according to the raw water quality and the filtration flux, but the filtration may be continued until a predetermined filtration differential pressure is reached.
  • the filtrate of the hollow fiber membrane module 4 is temporarily stored in the filtrate storage tank 7, then pressurized by the booster pump 19 and supplied to the semipermeable membrane unit 18.
  • the supplied water is separated into permeated water from which solutes such as salt have been removed and concentrated water from which solutes such as salt have been concentrated.
  • the filtration in the MF / UF membrane module is temporarily interrupted, and the concentrated water of the semipermeable membrane unit is used to concentrate the MF / UF membrane module.
  • Backwashing is performed. That is, in the apparatus shown in FIG. 1, at least the filtration in the hollow fiber membrane module 4 is temporarily interrupted, and the concentration obtained from the semipermeable membrane unit 18 in the hollow fiber membrane module 4 from the direction opposite to the filtration direction. Perform back-pressure washing to back flow water. In the case of the apparatus shown in FIG. 1, this cleaning can be performed while the operation of the semipermeable membrane unit 18 is continued, but the semipermeable membrane unit 18 in the meantime is stored in the filtrate storage tank 7. The filtered water is used.
  • the raw water supply pump 2 is stopped, the raw water supply valve 3 and the filtrate water valve 6 are closed, and the filtration process of the hollow fiber membrane module 4 is stopped. And the backwash valve 9 is opened and the backwash pump 8 is operated.
  • an alkaline solution is contained in the concentrated water obtained from the semipermeable membrane unit. Wash water.
  • the concentrated water is, for example, water containing a significant concentration of scale-generating components such as calcium ions, magnesium ions, bicarbonate ions, carbonate ions, sulfate ions, sodium ions, chloride ions, and the like.
  • Concentrated water in the unit Therefore, when an alkaline solution is added to the water and the pH is locally increased, scale is generated and clogging is likely to occur.
  • clogging tends to occur when the TDS (Total Dissolved Solids) concentration is 1,000 mg / L or more, and clogging is more likely to occur when the concentration exceeds 10,000 mg / L. It has been found that clogging is more likely to occur when it exceeds 000 mg / L. Therefore, in the present invention, the MF / UF membrane module is back-pressure washed with concentrated water containing an alkaline solution and an anti-scale material. In this way, the concentrated water that has conventionally been required to be disposed of can be effectively used.
  • TDS Total Dissolved Solids
  • the alkaline solution in the alkaline solution storage tank 14 is supplied by the alkaline solution supply pump 15, and the scale inhibitor in the scale inhibitor storage tank 16 is supplied by the first scale inhibitor supply pump 17.
  • the concentrated water an alkaline solution and a scale inhibitor are contained. Then, the concentrated water is used as washing water to perform back pressure washing of the hollow fiber membrane module 4.
  • the TDS concentration refers to the total soluble substance concentration, and examples of the soluble substance include sodium ions, calcium ions, magnesium ions, chloride ions, carbonate ions, sulfate ions, and the like. Since water with a high salt concentration, such as seawater, contains only a very small amount of other soluble substances with respect to the salinity, the TDS concentration can be replaced by the salt concentration.
  • the back pressure washing of the hollow fiber membrane module 4 is performed, for example, regularly during the course of membrane filtration, and the frequency is usually about once every 15 to 120 minutes.
  • the back pressure washing using the washing water containing the alkaline solution and the scale inhibitor may be applied at the time of every back pressure washing, but it is not always necessary to carry out the whole back washing process. In order to reduce the chemical cost, it is preferable to carry out the treatment at a frequency of several times a day to once a week.
  • Time of two types of back pressure cleaning is particularly limited. However, it is preferable that both be within the range of 5 seconds to 120 seconds.
  • the flux for backwashing is not particularly limited, but is preferably 0.5 times or more of the filtration flux. If the back pressure washing flux is less than 0.5 times the filtration flux, it is difficult to sufficiently remove the dirt deposited on the membrane surface and pores.
  • a higher back-pressure cleaning flux is preferable because the membrane cleaning effect is higher, but it is appropriately set within a range in which damage such as breakage of the hollow fiber membrane module container and membrane cracking does not occur.
  • a sodium hydroxide solution As the alkaline solution, a sodium hydroxide solution, a sodium hypochlorite solution, or the like can be used.
  • a sodium hypochlorite solution is preferable because it is easy to use and has a high membrane cleaning effect.
  • a cleaning effect is hardly obtained when the pH is less than 10, and when the pH exceeds 12, there is a high possibility of deteriorating the membrane. Therefore, a pH range of 10 to 12 is preferable.
  • a sodium hypochlorite solution it is preferably added so that the chlorine concentration in the wash water is in the range of several mg / L to several thousand mg / L.
  • the chlorine concentration in the washing water be 50 mg / L or more and 1000 mg / L or less. This is because if the chlorine concentration is too low, the sodium hypochlorite solution is completely consumed while being held in the hollow fiber membrane module 4, and a sufficient cleaning effect cannot be obtained, and the chlorine concentration is too high. This is because the cost of treating the wastewater becomes high.
  • the scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used.
  • Organic polymers include synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine; natural polymers such as carboxymethylcellulose, chitosan, and alginic acid; and monomers such as ethylenediaminetetraacetic acid (EDTA). Can be used.
  • polyphosphate etc. can be used as an inorganic type scale inhibitor.
  • polyphosphate and ethylenediaminetetraacetic acid are particularly preferably used from the viewpoints of availability, ease of operation such as solubility, and cost.
  • the polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom.
  • Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc. These scale inhibitors may be used alone, or a plurality of scale inhibitors may be mixed.
  • the addition concentration of the scale inhibitor is sufficient if at least the scale components in the wash water can be dissolved and removed. In consideration of operability such as cost and time required for dissolution, it is generally 0.01 ppm or more and 100 ppm or less, particularly 0.1 ppm or more and 50 ppm or less, more preferably 1 ppm in the case of a general seawater level. It is 20 ppm or less. When the addition concentration is lower than 0.01 ppm, the generation of scale may not be sufficiently suppressed, so that the performance of the semipermeable membrane may be deteriorated.
  • the scale inhibitor itself adheres to the surface of the semipermeable membrane to cause deterioration of water permeability or deteriorate the water quality.
  • it may be necessary to add tens to hundreds of ppm.
  • the scale inhibitor it is preferable to add the scale inhibitor to the washing water before adding the alkaline solution. If the alkaline solution is added to the washing water before the scale inhibitor is added, the possibility of scale formation in the washing water due to a local increase in pH increases.
  • the scale inhibitor need not be added to the concentrated water on the downstream side of the semipermeable membrane unit 18.
  • the scale inhibitor is added to the water supplied to the semipermeable membrane unit 18 by the second scale inhibitor supply pump 21, that is, the filtered water of the hollow fiber membrane module 4, and the permeated water and concentrated water are added by the semipermeable membrane unit 18. May be separated. By doing in this way, the concentrated water used for washing
  • scale treatment in the semipermeable membrane unit 18 can be prevented by adding a scale inhibitor to the water supplied to the semipermeable membrane unit 18 such as when processing seawater with a high hardness component as raw water. it can.
  • the second scale prevention is performed in consideration of both the scale precipitation due to concentration in the semipermeable membrane unit 18 and the scale precipitation due to the addition of alkali. It is necessary to determine the addition amount by the agent supply pump 21.
  • the scale inhibitor is added to the water supplied to the semipermeable membrane unit 18 by the second scale inhibitor supply pump 21, and the concentrated water obtained from the semipermeable membrane unit 18 by the first scale inhibitor supply pump 17 is added.
  • a scale inhibitor may be added.
  • the second scale inhibitor supply pump 21 adds an amount of scale inhibitor that can prevent scale precipitation due to concentration in the semipermeable membrane unit 18, and the first scale inhibitor supply pump 17 uses an alkaline solution.
  • the backwashing it is preferable to add an amount of a scale inhibitor that can prevent scale precipitation due to the addition of the alkaline solution.
  • the semipermeable membrane unit 18 it is effective to add a scale inhibitor to each semipermeable membrane unit supply water in order to prevent scale precipitation due to concentration.
  • a scale inhibitor to the supply water of the semipermeable membrane unit 18 upstream of the addition of the solution.
  • the cleaning water containing the alkaline solution and the scale inhibitor is held in the hollow fiber membrane module 4 for a predetermined time. It is preferable to make it.
  • the time for retaining the alkaline solution and the washing water containing the scale inhibitor in the hollow fiber membrane module 4 is preferably about 5 to 180 minutes, and more preferably about 10 to 30 minutes. This is because if the contact time is too short, the cleaning power is weak, and if it is too long, the time during which the apparatus is stopped becomes long and the operation efficiency of the apparatus decreases.
  • the air valve 12 is opened, the compressed air of the compressor 13 is sent to the primary side of the hollow fiber membrane module 4, and air washing is performed to vibrate the membrane. It is preferable.
  • the air cleaning is performed during the two types of back pressure cleaning described above, before and after the execution, or at least a part of the time during which the cleaning water containing the alkaline solution and the scale inhibitor is held in the hollow fiber membrane module 4. Is preferred.
  • the water pushed out to the primary side of the hollow fiber membrane module 4 and the air supplied from the lower part of the hollow fiber membrane module 4 are discharged out of the system through the air vent valve 5.
  • the higher the pressure of the compressed air the higher the cleaning effect of the membrane, which is preferable.
  • the pressure is appropriately set within a range in which the membrane is not damaged.
  • the apparatus shown in FIG. 1 was prepared and fresh water was produced.
  • the hollow fiber membrane module 4 includes a hollow fiber UF membrane made of polyvinylidene fluoride having a molecular weight cut off of 150,000 Da manufactured by Toray Industries, Inc., and a pressurized hollow fiber membrane module (HFU-2020) having a membrane area of 72 m 2. One was used.
  • the raw water supply valve 3 and the filtered water valve 6 are opened, the raw water supply pump 2 is operated, the turbidity is 4 degrees, and the TOC (Total Organic Carbon) concentration is 2 mg / L, the whole amount of seawater having a salt concentration of 3.5% was filtered at a filtration flux of 3 m / d.
  • the second scale inhibitor is added so that the ethylenediaminetetraacetic acid (EDTA) in the scale inhibitor storage tank 16 is 10 ppm in the supply water of the semipermeable membrane unit 18.
  • EDTA ethylenediaminetetraacetic acid
  • Membrane separation was performed at a membrane filtration flow rate of 60 m 3 / d, a concentrated water flow rate of 120 m 3 / d, and a recovery rate of 33% while being constantly added using the supply pump 21.
  • the raw water supply valve 3 and the filtrate water valve 6 are closed, the raw water supply pump 2 is stopped, and at the same time, the backwash valve 9, the air washing valve 12 and the air vent valve 5 are opened.
  • the backwash pump 8 is operated, and backwashing with a flux of 3.3 m / d using concentrated water from the semipermeable membrane unit 18 and air washing for supplying air at 100 L / min from the lower side of the membrane module are simultaneously performed for 1 minute. Carried out. Thereafter, the backwash valve 9 and the air washing valve 12 were closed and the backwash pump 8 was stopped. At the same time, the drain valve 11 was opened, and the entire amount of water in the hollow fiber membrane module 4 was discharged out of the system.
  • the raw water supply valve 3 is opened, the raw water supply pump 2 is operated, the raw water is supplied into the hollow fiber membrane module 4, the filtrate water valve 6 is opened, the air vent valve 5 is closed, and the process returns to the filtration step. The process was repeated.
  • the backwash pump 8 and the alkaline solution supply pump 15 were stopped, and the inside of the hollow fiber membrane module 4 was held at a chlorine concentration of 500 mg / L for 20 minutes. Thereafter, the raw water supply valve 3 is opened, the raw water supply pump 2 is operated, the raw water is supplied into the hollow fiber membrane module 4, the filtrate water valve 6 is opened, the air vent valve 5 is closed, and the process returns to the filtration step. The process was repeated.
  • the filtration differential pressure of the hollow fiber membrane module 4 changed from 60 to 70 kPa for one month from the start of operation with respect to 60 kPa immediately after the start of operation, and stable operation was possible.
  • the membrane filtration differential pressure of the semipermeable membrane unit 18 was 100 kPa immediately after the start of operation, whereas it was stable at about 120 kPa even after one month.
  • Example 2 Fresh water was produced in the same manner as in Example 1 except that the following points were changed. That is, EDTA was not added using the second scale inhibitor supply pump 21. Instead, EDTA was added using the first scale inhibitor supply pump 17 so that the concentration in the wash water was 20 ppm at the time of back pressure washing using the wash water to which the sodium hypochlorite solution was added. .
  • the filtration differential pressure of the hollow fiber membrane module 4 changed from 60 to 70 kPa for one month from the start of operation with respect to 60 kPa immediately after the start of operation, and stable operation was possible.
  • the membrane filtration differential pressure of the semipermeable membrane unit 18 was 100 kPa immediately after the start of the operation, but increased to about 140 kPa after one month, but was relatively stable.
  • the filtration differential pressure of the hollow fiber membrane module 4 became as high as 150 kPa after one month due to clogging due to scale components, compared with 60 kPa immediately after the start of operation, and it was forced to carry out chemical cleaning.
  • the membrane filtration differential pressure of the semipermeable membrane unit 18 was 100 kPa immediately after the start of operation, whereas it became as high as 180 kPa after one month due to scale generation.
  • Raw water storage tank 2 Raw water supply pump 3: Raw water supply valve 4: Hollow fiber membrane module 5: Air vent valve 6: Filtration water valve 7: Filtration water storage tank 8: Backwash pump 9: Backwash valve 10: Reverse Wash pipe 11: Drain valve 12: Air valve 13: Compressor 14: Alkaline solution reservoir 15: Alkaline solution supply pump 16: Scale inhibitor storage tank 17: First scale inhibitor supply pump 18: Semipermeable membrane unit 19: Booster Pump 20: Concentrated water storage tank 21: Second scale inhibitor supply pump 22: Semipermeable membrane concentrated water drain valve

Abstract

A method of fresh water generation by filtering raw water through a microfiltration/ultrafiltration membrane module and subsequently separating the filtrate into filtrate water and concentrated water with a semipermeable-membrane unit. For the purpose of preventing clogging due to scale deposition and accumulation on the surface and within the pores of the membrane of the microfiltration/ultrafiltration membrane module, the fresh water generation method includes temporarily stopping the filtration through the microfiltration/ultrafiltration membrane module, supplying at least some of the concentrated water as cleaning water from the downstream side of the microfiltration/ultrafiltration membrane module to conduct back-pressure washing of the microfiltration/ultrafiltration membrane module, and incorporating a scale inhibitor and an alkaline solution into the cleaning water.

Description

膜モジュールの洗浄方法、造水方法および造水装置Membrane module cleaning method, fresh water generation method and fresh water generation device
 本発明は、原水を精密ろ過膜/限外ろ過膜(以下、MF/UF膜という。)モジュールでろ過し、そのろ過水を逆浸透膜(RO膜)またはナノろ過膜(NF膜)を備えた半透膜ユニットでろ過する造水方法および造水装置に関するものである。特に、前記造水方法におけるMF/UF膜モジュールの洗浄方法に特徴を有する造水方法、およびそれを好適に実施できる造水装置に関するものである。 In the present invention, raw water is filtered through a microfiltration membrane / ultrafiltration membrane (hereinafter referred to as MF / UF membrane) module, and the filtrate is provided with a reverse osmosis membrane (RO membrane) or a nanofiltration membrane (NF membrane). In addition, the present invention relates to a fresh water generation method and a fresh water generation apparatus for filtering with a semipermeable membrane unit. In particular, the present invention relates to a fresh water generation method characterized by a method for cleaning an MF / UF membrane module in the fresh water generation method, and a fresh water generation apparatus capable of suitably implementing it.
 近年、上下水道や廃水処理等の水処理用途において、膜によって原水中の不純物を分離除去して清澄な水に変換する膜ろ過法の普及が進んでいる。膜の除去対象物質は、膜の種類によって異なるが、MF/UF膜の場合は、一般的に縣濁物質、細菌、原虫、コロイド物質等が挙げられる。また、RO膜やNF膜(以下、これらを合わせて半透膜という。)の場合は、溶解性有機物、ウィルス、イオン物質等が挙げられる。 In recent years, in water treatment applications such as water and sewage and wastewater treatment, membrane filtration methods that separate and remove impurities in raw water by membranes and convert them into clear water have been spreading. The substance to be removed varies depending on the type of the film, but in the case of the MF / UF film, generally, suspended substances, bacteria, protozoa, colloidal substances, and the like can be mentioned. In the case of an RO membrane or an NF membrane (hereinafter collectively referred to as a semipermeable membrane), soluble organic substances, viruses, ionic substances and the like can be mentioned.
 原水をMF/UF膜でろ過する場合、ろ過を継続するに伴い、MF/UF膜の表面や膜細孔径内におけるフミン質やタンパク質等の付着量が増大し、ろ過差圧上昇が問題となってくる。 When raw water is filtered through an MF / UF membrane, as the filtration continues, the amount of humic substances, proteins, etc. on the surface of the MF / UF membrane and within the pore size of the membrane increases, and an increase in the filtration differential pressure becomes a problem. Come.
 そこで、MF/UF膜 の1次側(供給水側)に気泡を導入し、膜を振動させ、膜同士を触れ合わせることにより膜表面の付着物質を掻き落とす空気洗浄や、MF/UF膜に対してろ過とは逆方向に膜ろ過水あるいは清澄水を圧力で流し、膜表面や膜細孔径内に付着していた付着物質を除去する逆圧洗浄等の物理洗浄が実用化されている。さらに洗浄効果を高めるため、例えば特許文献1では、逆圧洗浄水に次亜塩素酸ナトリウム等の酸化剤を添加して逆圧洗浄を行うことが記載されている。酸化剤は、膜表面や膜細孔内に付着したフミン酸や微生物由来のタンパク質等の有機物を分解・除去する効果がある。 Therefore, air is introduced into the primary side (feed water side) of the MF / UF membrane cage, the membranes are vibrated, and the membranes are brought into contact with each other to remove the adhered substances on the membrane surface, or to the MF / UF membrane. On the other hand, physical washing such as back pressure washing is performed in which membrane filtration water or clarified water is flowed in pressure in the opposite direction to filtration to remove adhered substances adhering to the membrane surface and membrane pore diameter. In order to further enhance the cleaning effect, for example, Patent Document 1 describes that back pressure cleaning is performed by adding an oxidizing agent such as sodium hypochlorite to back pressure cleaning water. The oxidizing agent has an effect of decomposing / removing organic substances such as humic acid and microorganism-derived protein adhering to the membrane surface and membrane pores.
 また、原水をMF/UF膜でろ過した後、そのろ過水を半透膜で処理することにより清澄水を製造する方法はIMSプロセスと呼称されている(非特許文献1参照)。IMSプロセスにおいて、特許文献2、3では、水回収率を高めるために本来系外に排出していた逆浸透膜濃縮水の一部をMF膜/UF膜の逆圧洗浄水として利用する方法が提案されている。しかし、酸化剤を用いずに逆浸透膜濃縮水で逆洗する場合、浸透圧ショックにより膜モジュール内の微生物を死滅に至らしめるものの、フミン質や微生物由来のタンパク質等の有機物を分解・除去できないため、ファウリングが早期に進行してしまう問題があった。 In addition, a method of producing clear water by filtering raw water with a MF / UF membrane and then treating the filtered water with a semipermeable membrane is called an IMS process (see Non-Patent Document 1). In the IMS process, in Patent Documents 2 and 3, there is a method in which a part of the reverse osmosis membrane concentrated water originally discharged out of the system in order to increase the water recovery rate is used as the reverse pressure washing water of the MF membrane / UF membrane. Proposed. However, when backwashing with reverse osmosis membrane concentrated water without using an oxidant, microorganisms in the membrane module are killed by osmotic shock, but organic substances such as humic substances and microorganism-derived proteins cannot be decomposed or removed. Therefore, there was a problem that fouling progressed early.
 そこで、特許文献4では次亜塩素酸ナトリウム等の酸化剤を添加した逆浸透膜濃縮水をMF膜/UF膜の逆圧洗浄水として利用する方法が提案されている。しかし、海水を逆浸透膜処理して得られる濃縮水等の場合、該濃縮水に高濃度のカルシウム、マグネシウムが存在している。そのため、海水膜ろ過水や逆浸透膜濃縮水に次亜塩素酸ナトリウムを添加すると、局所的にpHが高くなり、逆洗水中にスケールが生成する。またこのような逆圧洗浄水を用いて逆圧洗浄を行うと、膜細孔内にスケールが付着・蓄積し、無機ファウリングが著しく進行する。そのため、半透膜ユニットの濃縮水に次亜塩素産ナトリウム等の酸化剤をMF膜/UF膜の逆圧洗浄水として使用することは現実的でないと考えられていた。 Therefore, Patent Document 4 proposes a method in which reverse osmosis membrane concentrated water to which an oxidizing agent such as sodium hypochlorite is added is used as MF / UF membrane reverse pressure washing water. However, in the case of concentrated water obtained by treating seawater with a reverse osmosis membrane, high concentrations of calcium and magnesium are present in the concentrated water. Therefore, when sodium hypochlorite is added to seawater membrane filtered water or reverse osmosis membrane concentrated water, the pH locally increases and scale is generated in the backwash water. In addition, when back pressure cleaning is performed using such back pressure cleaning water, scale adheres and accumulates in the membrane pores, and inorganic fouling significantly proceeds. For this reason, it has been considered impractical to use an oxidizing agent such as sodium hypochlorite as concentrated water of the semipermeable membrane unit as the back pressure washing water of the MF membrane / UF membrane.
特開2001-79366号公報JP 2001-79366 A 特開2006-272136号公報JP 2006-272136 A 特開2007-181822号公報JP 2007-181822 A 特開平9-220449号公報JP-A-9-220449
 本発明の目的は、原水をMF/UF膜モジュールでろ過し、そのろ過水をRO膜またはNF膜を備えた半透膜ユニットで膜ろ過する造水方法において、MF/UF膜の表面および細孔内にスケールが付着・蓄積することによる目詰まりを防止することができるMF/UF膜モジュールの洗浄方法、造水方法および造水装置を提供することにある。 An object of the present invention is to provide a fresh water generation method in which raw water is filtered with an MF / UF membrane module, and the filtered water is filtered with a semipermeable membrane unit having an RO membrane or an NF membrane. An object of the present invention is to provide a cleaning method, a fresh water generating method, and a fresh water generating device for an MF / UF membrane module, which can prevent clogging due to scales adhering and accumulating in holes.
 上記課題を解決するため、本発明は次のいずれかの構成を特徴とするものである。
(1) 原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法において、前記精密ろ過/限外ろ過膜モジュールにおけるろ過の中断時に実施する膜モジュールの洗浄方法であって、前記濃縮水の少なくとも一部を洗浄水とし、スケール防止剤とアルカリ性溶液を含有せしめた前記洗浄水を前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行う膜モジュールの洗浄方法。
(2) 前記濃縮水の少なくとも一部にスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、前記(1)に記載の膜モジュールの洗浄方法。
(3) 前記精密ろ過/限外ろ過膜モジュールから得られたろ過水の少なくとも一部にスケール防止剤を添加し前記半透膜ユニットで分離することで、前記洗浄水にスケール防止剤を含有せしめる、前記(1)に記載の膜モジュールの洗浄方法。
(4) さらに前記濃縮水の少なくとも一部にもスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、前記(3)に記載の膜モジュールの洗浄方法。
(5) 原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法であって、一時的に、前記精密ろ過/限外ろ過膜モジュールにおけるろ過を中断し、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行うとともに、前記洗浄水にスケール防止剤とアルカリ性溶液を含有せしめる造水方法。
(6) 前記濃縮水の少なくとも一部にスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、前記(5)に記載の造水方法。
(7) 前記精密ろ過/限外ろ過膜モジュールから得られたろ過水の少なくとも一部にスケール防止剤を添加し前記半透膜ユニットで分離することで、前記洗浄水にスケール防止剤を含有せしめる、前記(5)に記載の造水方法。
(8) さらに前記濃縮水の少なくとも一部にもスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、前記(7)に記載の造水方法。
(9) 精密ろ過/限外ろ過膜モジュールと、前記精密ろ過/限外ろ過膜モジュールのろ過水の少なくとも一部を透過水と濃縮水とに分離する半透膜ユニットと、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行う逆圧洗浄ユニットと、前記洗浄水にスケール防止剤を含有せしめるスケール防止剤供給ユニットと、前記洗浄水にアルカリ性溶液を含有せしめるアルカリ性溶液供給ユニットとを備える造水装置。
(10) 前記スケール防止剤供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにスケール防止剤を供給するユニットを備え、前記アルカリ性溶液供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにアルカリ性溶液を供給するユニットを備える、前記(9)に記載の造水装置。
(11) 前記スケール防止剤供給ユニットとして、前記精密ろ過/限外ろ過膜モジュールのろ過水を半透膜ユニットに供給するラインにスケール防止剤を供給するユニットを備え、前記アルカリ性溶液供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにアルカリ性溶液を供給するユニットを備える、前記(9)に記載の造水装置。
(12) 前記スケール防止剤供給ユニットとして、さらに、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにスケール防止剤を供給するユニットを備える、前記(11)に記載の造水装置。
In order to solve the above problems, the present invention is characterized by one of the following configurations.
(1) Interruption of filtration in the microfiltration / ultrafiltration membrane module in the fresh water production method in which raw water is filtered with a microfiltration / ultrafiltration membrane module and then separated into permeate and concentrated water with a semipermeable membrane unit. A method for cleaning a membrane module that is sometimes performed, wherein at least a part of the concentrated water is used as cleaning water, and the cleaning water containing a scale inhibitor and an alkaline solution is added to the secondary of the microfiltration / ultrafiltration membrane module. A method for cleaning a membrane module, which is supplied from the side and performs reverse pressure cleaning of the microfiltration / ultrafiltration membrane module.
(2) The membrane module cleaning method according to (1), wherein a scale inhibitor is added to at least a part of the concentrated water so that the scale water contains a scale inhibitor.
(3) A scale inhibitor is added to at least a part of the filtered water obtained from the microfiltration / ultrafiltration membrane module and separated by the semipermeable membrane unit so that the washing water contains the scale inhibitor. The method for cleaning a membrane module according to (1) above.
(4) The method for cleaning a membrane module according to (3), further comprising adding a scale inhibitor to at least a part of the concentrated water so that the scale water contains a scale inhibitor.
(5) A fresh water generation method in which raw water is filtered with a microfiltration / ultrafiltration membrane module and then separated into permeate and concentrated water with a semipermeable membrane unit, temporarily, the microfiltration / ultrafiltration Filtration in the membrane module is interrupted, and at least a part of the concentrated water is supplied as wash water from the secondary side of the microfiltration / ultrafiltration membrane module to perform back pressure washing of the microfiltration / ultrafiltration membrane module. A method for producing fresh water, wherein the washing water contains a scale inhibitor and an alkaline solution.
(6) The fresh water generation method according to (5), wherein a scale inhibitor is added to at least a part of the concentrated water so that the wash water contains the scale inhibitor.
(7) A scale inhibitor is added to at least a part of the filtrate obtained from the microfiltration / ultrafiltration membrane module and separated by the semipermeable membrane unit so that the wash water contains the scale inhibitor. The fresh water generation method according to (5).
(8) The fresh water generation method according to (7), further comprising adding a scale inhibitor to at least a part of the concentrated water so that the wash water contains the scale inhibitor.
(9) a microfiltration / ultrafiltration membrane module, a semipermeable membrane unit that separates at least a portion of filtrate of the microfiltration / ultrafiltration membrane module into permeate and concentrated water, and at least the concentrated water A back pressure washing unit that supplies a part of the washing water from the secondary side of the microfiltration / ultrafiltration membrane module to backwash the microfiltration / ultrafiltration membrane module, and prevents scale in the washing water A fresh water generator comprising a scale inhibitor supply unit that contains an agent and an alkaline solution supply unit that contains an alkaline solution in the washing water.
(10) The alkaline solution includes a unit for supplying the scale inhibitor to a line for supplying at least a part of the concentrated water from the secondary side of the microfiltration / ultrafiltration membrane module as the scale inhibitor supply unit. The fresh water generator according to (9), comprising a unit that supplies an alkaline solution to a line that supplies at least a part of the concentrated water from the secondary side of the microfiltration / ultrafiltration membrane module as a supply unit.
(11) As the scale inhibitor supply unit, a unit for supplying a scale inhibitor to a line for supplying filtered water of the microfiltration / ultrafiltration membrane module to the semipermeable membrane unit, and as the alkaline solution supply unit, The fresh water generator according to (9), further comprising a unit that supplies an alkaline solution to a line that supplies at least a part of the concentrated water from a secondary side of the microfiltration / ultrafiltration membrane module.
(12) The scale inhibitor supply unit further includes a unit that supplies the scale inhibitor to a line that supplies at least a part of the concentrated water from the secondary side of the microfiltration / ultrafiltration membrane module. The fresh water generator described in (11).
 なお、本発明において「精密ろ過/限外ろ過膜モジュール」とは、精密ろ過膜モジュールおよび限外ろ過膜モジュールの少なくとも一方という意味である。 In the present invention, “microfiltration / ultrafiltration membrane module” means at least one of a microfiltration membrane module and an ultrafiltration membrane module.
 本発明によれば、原水をMF/UF膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法において、一時的に、前記MF/UF膜モジュールにおけるろ過を中断し、前記濃縮水の少なくとも一部を洗浄水として前記MF/UF膜モジュールの2次側から供給して前記MF/UF膜モジュールの逆圧洗浄を行うとともに、該洗浄水にスケール防止剤とアルカリ性溶液を含有せしめる。すなわち、MF/UF膜モジュールを、アルカリ性溶液を添加した洗浄水で逆圧洗浄するとともに、該洗浄水に予めスケール防止剤を添加しておく。これにより、逆圧洗浄水中に局所的なpH上昇によりスケールが生成されることを抑制し、膜表面および細孔内にスケールが付着・蓄積することによる目詰まりを防止することができる。 According to the present invention, in the fresh water generation method in which raw water is filtered with an MF / UF membrane module and then separated into permeated water and concentrated water with a semipermeable membrane unit, filtration in the MF / UF membrane module is temporarily performed. Interrupting, supplying at least a portion of the concentrated water as wash water from the secondary side of the MF / UF membrane module to perform back pressure washing of the MF / UF membrane module, and adding a scale inhibitor to the wash water Incorporate an alkaline solution. That is, the MF / UF membrane module is back-pressure washed with washing water to which an alkaline solution is added, and a scale inhibitor is added to the washing water in advance. Thereby, it can suppress that a scale is produced | generated by local pH rise in back pressure wash water, and can prevent clogging by a scale adhering and accumulating in a membrane surface and a pore.
本発明の造水装置の一実施態様を示すフロー図である。It is a flowchart which shows one embodiment of the fresh water generator of this invention. 本発明の造水装置の別の実施態様を示すフロー図である。It is a flowchart which shows another embodiment of the fresh water generator of this invention.
 以下、図面に示す実施形態に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施形態に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In addition, this invention is not limited to the following embodiment.
 本発明に係る図1に示す造水装置は、例えば、原水を貯留する原水貯留槽1と、原水を供給する原水供給ポンプ2と、原水供給時に開となる原水供給弁3と、原水をろ過する中空糸膜モジュール4(MF/UF膜モジュール)と、逆圧洗浄や空気洗浄する場合に開となるエア抜き弁5と、ろ過時に開となるろ過水弁6と、中空糸膜ろ過水を貯留するろ過水貯留槽7と、中空糸膜モジュール4のろ過水を透過水と濃縮水に分離する半透膜ユニット18と、中空糸膜モジュール4で得られたろ過水を半透膜ユニット18に供給するブースターポンプ19と、半透膜ユニット18の濃縮水を貯留する濃縮水貯留槽20と、半透膜ユニットの濃縮水を系外へ排水する場合に開となる濃縮水排水弁22と、濃縮水を洗浄水として供給して中空糸膜モジュール4を逆圧洗浄する逆洗ポンプ8と、該逆圧洗浄時に開となる逆洗弁9と、逆洗時に濃縮水貯留槽20からの濃縮水が通る逆洗配管10と、中空糸膜モジュール4の1次側の水を排水する場合に開となる排水弁11と、圧縮空気を中空糸膜モジュール4の下部に供給し空気洗浄する場合に開となる空気弁12と、圧縮空気の供給源であるコンプレッサー13を含む空気供給ユニットと、アルカリ性溶液を貯留するアルカリ性溶液貯留槽14と、逆圧洗浄水としての濃縮水にアルカリ性溶液を供給するアルカリ性溶液供給ポンプ15と、スケール防止剤を貯留するスケール防止剤貯留槽16と、逆圧洗浄水としての濃縮水にスケール防止剤を供給する第1スケール防止剤供給ポンプ17と、半透膜ユニット18への供給水にスケール防止剤を供給する第2スケール防止剤供給ポンプ21が設けられている。 1 according to the present invention includes, for example, a raw water storage tank 1 that stores raw water, a raw water supply pump 2 that supplies raw water, a raw water supply valve 3 that opens when the raw water is supplied, and a raw water filter. A hollow fiber membrane module 4 (MF / UF membrane module), an air vent valve 5 that is opened when performing back-pressure washing or air washing, a filtration water valve 6 that is opened during filtration, and a hollow fiber membrane filtrate. The filtrate storage tank 7 to be stored, the semipermeable membrane unit 18 for separating the filtrate of the hollow fiber membrane module 4 into permeate and concentrated water, and the filtrate obtained by the hollow fiber membrane module 4 to the semipermeable membrane unit 18. A booster pump 19 that supplies the concentrated water, a concentrated water storage tank 20 that stores the concentrated water of the semipermeable membrane unit 18, and a concentrated water drain valve 22 that is opened when the concentrated water of the semipermeable membrane unit is drained out of the system. Concentrated water is supplied as washing water to hollow fiber membrane module A backwash pump 8 that backwashes the fluid 4, a backwash valve 9 that opens during backwashing, a backwash pipe 10 through which concentrated water from the concentrated water storage tank 20 passes during backwashing, and a hollow fiber. A drain valve 11 that is opened when water on the primary side of the membrane module 4 is drained, an air valve 12 that is opened when compressed air is supplied to the lower part of the hollow fiber membrane module 4 and air-washed, and compressed air An air supply unit including a compressor 13 as a supply source, an alkaline solution storage tank 14 for storing an alkaline solution, an alkaline solution supply pump 15 for supplying an alkaline solution to concentrated water as a reverse pressure washing water, and a scale inhibitor Scale storage tank 16, a first scale supply pump 17 for supplying scale inhibitor to concentrated water as back pressure washing water, and a scale inhibitor for water supplied to the semipermeable membrane unit 18. Second scale preventive agent supply pump 21 is provided for supplying.
 ここで、図1に示す装置では、スケール防止剤供給ユニットとして、半透膜ユニット18の濃縮水にスケール防止剤を供給する第1スケール防止剤供給ポンプ17と、半透膜ユニット18への供給水にスケール防止剤を供給する第2スケール防止剤供給ポンプ21とが設けられているが、いずれか一方であっても構わない。 Here, in the apparatus shown in FIG. 1, as the scale inhibitor supply unit, the first scale inhibitor supply pump 17 that supplies the scale inhibitor to the concentrated water of the semipermeable membrane unit 18 and the supply to the semipermeable membrane unit 18. Although the second scale inhibitor supply pump 21 for supplying the scale inhibitor to water is provided, either one may be used.
 そして、図1に示す装置では、中空糸膜モジュール4のろ過水を一旦、中間タンクであるろ過水貯留槽7に貯留した後、半透膜ユニット18に供給しているが、図2のように中間タンクを介さず、中空糸膜モジュール4のろ過水を直接半透膜ユニット18に供給して透過水と濃縮水とに分離しても構わない。 In the apparatus shown in FIG. 1, the filtrate of the hollow fiber membrane module 4 is temporarily stored in the filtrate storage tank 7 as an intermediate tank, and then supplied to the semipermeable membrane unit 18, as shown in FIG. Alternatively, the filtered water of the hollow fiber membrane module 4 may be supplied directly to the semipermeable membrane unit 18 and separated into permeated water and concentrated water without using an intermediate tank.
 また、図1に示す装置では、濃縮水貯留槽20に貯留した半透膜ユニット18の濃縮水を洗浄水とし、かつ、逆洗ポンプ8を用いて逆圧洗浄を行っているが、図2のように濃縮水貯留槽20と逆洗ポンプ8を介さず、半透膜ユニット18の高圧濃縮水をそのまま中空糸膜モジュール4に供給して逆圧洗浄を実施しても構わない。 In the apparatus shown in FIG. 1, the concentrated water of the semipermeable membrane unit 18 stored in the concentrated water storage tank 20 is used as cleaning water, and back pressure cleaning is performed using the backwash pump 8. As described above, the high pressure concentrated water of the semipermeable membrane unit 18 may be supplied to the hollow fiber membrane module 4 as it is without using the concentrated water storage tank 20 and the backwash pump 8 to perform back pressure washing.
 中空糸膜モジュール4としては、図1のような加圧型膜モジュール以外にも、原水の入った膜浸漬槽に浸漬させてポンプやサイフォン等で吸引ろ過する浸漬型膜モジュールでも構わない。また加圧型膜モジュールの場合、外圧式でも内圧式であっても良いが、前処理の簡便さの観点から外圧式である方が好ましい。 The hollow fiber membrane module 4 may be an immersion membrane module that is immersed in a membrane immersion tank containing raw water and suction filtered with a pump, siphon, or the like in addition to the pressure membrane module as shown in FIG. In the case of a pressurizing membrane module, an external pressure type or an internal pressure type may be used, but an external pressure type is preferred from the viewpoint of simplicity of pretreatment.
 中空糸膜モジュール4を構成するMF/UF膜の材質としては、多孔質の中空糸膜であれば特に限定しないが、セラミック等の無機素材、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体、クロロトリフルオロエチレン-エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコール、ポリエーテルスルホン、ポリ塩化ビニルからなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。 The material of the MF / UF membrane constituting the hollow fiber membrane module 4 is not particularly limited as long as it is a porous hollow fiber membrane, but it is not limited to inorganic materials such as ceramics, polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer. Polymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, chlorotrifluoroethylene-ethylene copolymer , Preferably containing at least one selected from the group consisting of polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, polyethersulfone, and polyvinyl chloride, and further, film strength and chemical resistance More preferably polyvinylidene fluoride (PVDF) in terms of sex, polyacrylonitrile is more preferable from the viewpoint that a strong high stain resistance hydrophilic.
 中空糸膜モジュール4を構成する膜は、MF膜であってもUF膜であっても構わず、表面細孔径が0.001μm~10μmの範囲内である膜を適宜選択することができる。 The membrane constituting the hollow fiber membrane module 4 may be an MF membrane or a UF membrane, and a membrane having a surface pore diameter in the range of 0.001 μm to 10 μm can be appropriately selected.
 MF/UF膜モジュールとしては、図1に示す中空糸膜モジュール4の他、平膜、管状膜、モノリス膜等を用いたモジュールでも構わない。 The MF / UF membrane module may be a module using a flat membrane, a tubular membrane, a monolith membrane, etc., in addition to the hollow fiber membrane module 4 shown in FIG.
 MF/UF膜モジュールにおけるろ過方式は、全量ろ過方式、クロスフローろ過方式のどちらでも良いが、エネルギー消費が少ないという観点から全量ろ過が好ましい。ここでMF/UF膜モジュールにおけるろ過流量の制御方法としては、定流量ろ過であっても定圧ろ過であっても差し支えはないが、ろ過水の生産水量の制御のし易さの点から定流量ろ過である方が好ましい。 The filtration method in the MF / UF membrane module may be either a full filtration method or a cross flow filtration method, but full filtration is preferred from the viewpoint of low energy consumption. Here, as a control method of the filtration flow rate in the MF / UF membrane module, there is no problem even if it is constant flow filtration or constant pressure filtration, but the constant flow rate from the viewpoint of easy control of the amount of filtered water produced. Filtration is preferred.
 一方、半透膜ユニット18における半透膜とは、被分離混合液中の一部の成分、例えば溶媒を透過させ他の成分を透過させない半透性を有する膜であり、NF膜やRO膜を包含する。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材がよく利用されている。また、その膜構造には、膜の少なくとも片面に緻密層を持ち、緻密層から膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称膜や、非対称膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合膜などを適宜使用できる。膜形態には中空糸膜、平膜がある。本発明は、これら膜素材、膜構造や膜形態によらず実施することができいずれも効果があるが、代表的な膜としては、例えば酢酸セルロース系やポリアミド系の非対称膜およびポリアミド系、ポリ尿素系の分離機能層を有する複合膜などがあり、造水量、耐久性、塩排除率の観点から、酢酸セルロース系の非対称膜、ポリアミド系の複合膜を用いることが好ましい。 On the other hand, the semipermeable membrane in the semipermeable membrane unit 18 is a membrane having semi-permeability that does not allow some components in the liquid mixture to be separated, for example, a solvent to permeate and other components to permeate. Is included. As the material, polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer are often used. In addition, the membrane structure includes an asymmetric membrane having a dense layer on at least one side of the membrane, and gradually having fine pores with a large pore diameter from the dense layer to the inside of the membrane or the other side, or a dense layer of the asymmetric membrane. A composite membrane having a very thin separation functional layer formed of another material on the top can be used as appropriate. The membrane form includes a hollow fiber membrane and a flat membrane. The present invention can be carried out regardless of the film material, film structure and film form, and any of them is effective, but as typical films, for example, cellulose acetate-based or polyamide-based asymmetric membranes and polyamide-based, There are composite membranes having a urea-based separation functional layer, and it is preferable to use a cellulose acetate-based asymmetric membrane and a polyamide-based composite membrane from the viewpoint of water production, durability, and salt rejection.
 半透膜ユニット18の運転圧力は通常0.1MPa~15MPaであることが好ましく、供給水の種類、運転方法などで適宜使い分けられる。かん水や超純水などの浸透圧の低い水を供給水とする場合には比較的低圧で、海水淡水化や廃水処理、有用物の回収などの場合には比較的高圧で使用される。 The operating pressure of the semipermeable membrane unit 18 is usually preferably 0.1 MPa to 15 MPa, and can be properly used depending on the type of supply water, the operation method, and the like. It is used at a relatively low pressure when supplying low osmotic pressure water such as brine or ultrapure water, and at a relatively high pressure when desalinating seawater, treating wastewater, and recovering useful materials.
 NF膜またはRO膜を備えた半透膜ユニット18としては、特に制約はないが、取り扱いを容易にするため、中空糸膜状や平膜状の半透膜を筐体に納めて流体分離素子(エレメント)としたものを耐圧容器に充填したものを用いることが好ましい。流体分離素子は、平膜で形成する場合、例えば、多数の孔を穿設した筒状の中心パイプの周りに、半透膜を流路材(ネット)とともに円筒状に巻回したものが一般的であり、市販品としては、東レ(株)製逆浸透膜エレメントTM700シリーズやTM800シリーズを挙げることができる。これら流体分離素子は1本で半透膜ユニットを構成してもよいが、複数本の流体分離素子を直列あるいは並列に接続して半透膜ユニットを構成することも好ましい。 The semipermeable membrane unit 18 provided with the NF membrane or the RO membrane is not particularly limited, but in order to facilitate handling, a fluid separation element is provided by placing a hollow fiber membrane-like or flat membrane-like semipermeable membrane in a casing. It is preferable to use a pressure vessel filled with (element). When the fluid separation element is formed of a flat membrane, for example, generally a semipermeable membrane is wound in a cylindrical shape together with a flow path material (net) around a cylindrical central pipe having a large number of holes. Examples of commercially available products include reverse osmosis membrane elements TM700 series and TM800 series manufactured by Toray Industries, Inc. These fluid separation elements may form a semipermeable membrane unit by one, but it is also preferable to form a semipermeable membrane unit by connecting a plurality of fluid separation elements in series or in parallel.
 このような造水装置において、通常のろ過工程では、原水供給弁3およびろ過水弁6が開の状態で、原水貯留槽1に貯留されている原水が、原水供給ポンプ2によって中空糸膜モジュール4の1次側に供給され、該中空糸膜モジュール4で加圧ろ過される。ろ過時間は原水水質やろ過流束に応じて適宜設定するのが好ましいが、所定のろ過差圧に達するまでろ過を継続させても良い。 In such a fresh water generator, in a normal filtration process, the raw water stored in the raw water storage tank 1 with the raw water supply valve 3 and the filtered water valve 6 open is turned into a hollow fiber membrane module by the raw water supply pump 2. 4 is supplied to the primary side of the pressure filter 4 and pressure filtered by the hollow fiber membrane module 4. The filtration time is preferably set as appropriate according to the raw water quality and the filtration flux, but the filtration may be continued until a predetermined filtration differential pressure is reached.
 中空糸膜モジュール4のろ過水は、一時的にろ過水貯留槽7に貯留された後、ブースターポンプ19によって昇圧され、半透膜ユニット18に供給される。半透膜ユニット18では、供給水が、塩分などの溶質が除去された透過水と、塩分などの溶質が濃縮された濃縮水に分離される。 The filtrate of the hollow fiber membrane module 4 is temporarily stored in the filtrate storage tank 7, then pressurized by the booster pump 19 and supplied to the semipermeable membrane unit 18. In the semipermeable membrane unit 18, the supplied water is separated into permeated water from which solutes such as salt have been removed and concentrated water from which solutes such as salt have been concentrated.
 本発明は、例えば所定時間上記のようなろ過および分離を行った後に、MF/UF膜モジュールにおけるろ過を一時的に中断し、半透膜ユニットの濃縮水を用いて前記MF/UF膜モジュールの逆圧洗浄を行う。すなわち、図1に示す装置においては、少なくとも該中空糸膜モジュール4におけるろ過を一時的に中断し、中空糸膜モジュール4にろ過方向とは逆方向から、半透膜ユニット18から得られた濃縮水を逆流させる逆圧洗浄を行う。この洗浄は、図1に示す装置の場合、半透膜ユニット18の運転を継続しながら実施することができるが、その間の半透膜ユニット18での処理には、ろ過水貯留槽7に貯留しているろ過水を使用するものとする。 In the present invention, for example, after performing filtration and separation as described above for a predetermined time, the filtration in the MF / UF membrane module is temporarily interrupted, and the concentrated water of the semipermeable membrane unit is used to concentrate the MF / UF membrane module. Backwashing is performed. That is, in the apparatus shown in FIG. 1, at least the filtration in the hollow fiber membrane module 4 is temporarily interrupted, and the concentration obtained from the semipermeable membrane unit 18 in the hollow fiber membrane module 4 from the direction opposite to the filtration direction. Perform back-pressure washing to back flow water. In the case of the apparatus shown in FIG. 1, this cleaning can be performed while the operation of the semipermeable membrane unit 18 is continued, but the semipermeable membrane unit 18 in the meantime is stored in the filtrate storage tank 7. The filtered water is used.
 中空糸膜モジュール4の逆圧洗浄は、原水供給ポンプ2を停止し、原水供給弁3とろ過水弁6を閉じて、中空糸膜モジュール4のろ過工程を停止してから、エア抜き弁5と逆洗弁9を開とし、逆洗ポンプ8を稼働することで行われる。 In the back pressure washing of the hollow fiber membrane module 4, the raw water supply pump 2 is stopped, the raw water supply valve 3 and the filtrate water valve 6 are closed, and the filtration process of the hollow fiber membrane module 4 is stopped. And the backwash valve 9 is opened and the backwash pump 8 is operated.
 また、逆圧洗浄に際しては、MF/UF膜に付着しているフミン質や微生物由来のタンパク質等の有機物を分解・除去するため、半透膜ユニットから得られた濃縮水にアルカリ性溶液を含有せしめて洗浄水とする。 In addition, in order to decompose and remove organic substances such as humic substances and microorganism-derived proteins adhering to the MF / UF membrane during back pressure washing, an alkaline solution is contained in the concentrated water obtained from the semipermeable membrane unit. Wash water.
 ここで、濃縮水は、例えばカルシウムイオン、マグネシウムイオン、重炭酸イオン、炭酸イオン、硫酸イオンなどのスケール生成成分や、ナトリウムイオンや塩化物イオンなどを有意な濃度で含有する水が、半透膜ユニットで濃縮された水である。そのため、当該水にアルカリ性溶液を添加して局所的にpHが高くなることで、スケールが生成し、目詰まりが起こりやすくなる。本発明者の検討によると、TDS(Total Dissolubed Solids)濃度が1,000mg/L以上になると目詰まりが起こり易くなり始め、10,000mg/Lを超えると目詰まりがより起こり易くなり、30,000mg/Lを超えると目詰まりがさらに起こり易くなることが分かっている。そのため、本発明においては、アルカリ性溶液と共にスケール防止材を含有せしめた濃縮水でMF/UF膜モジュールを逆圧洗浄する。こうすることで、従来廃棄処分が必要だった濃縮水を現実的に有効利用できる。 Here, the concentrated water is, for example, water containing a significant concentration of scale-generating components such as calcium ions, magnesium ions, bicarbonate ions, carbonate ions, sulfate ions, sodium ions, chloride ions, and the like. Concentrated water in the unit. Therefore, when an alkaline solution is added to the water and the pH is locally increased, scale is generated and clogging is likely to occur. According to the study of the present inventor, clogging tends to occur when the TDS (Total Dissolved Solids) concentration is 1,000 mg / L or more, and clogging is more likely to occur when the concentration exceeds 10,000 mg / L. It has been found that clogging is more likely to occur when it exceeds 000 mg / L. Therefore, in the present invention, the MF / UF membrane module is back-pressure washed with concentrated water containing an alkaline solution and an anti-scale material. In this way, the concentrated water that has conventionally been required to be disposed of can be effectively used.
 図1に示す形態においてはアルカリ性溶液貯留槽14のアルカリ性溶液をアルカリ性溶液供給ポンプ15で供給すると共に、スケール防止剤貯留槽16のスケール防止剤を第1スケール防止剤供給ポンプ17で供給することで、濃縮水にアルカリ性溶液とスケール防止剤を含有せしめる。そして、該濃縮水を洗浄水として用いて中空糸膜モジュール4の逆圧洗浄をする。 In the form shown in FIG. 1, the alkaline solution in the alkaline solution storage tank 14 is supplied by the alkaline solution supply pump 15, and the scale inhibitor in the scale inhibitor storage tank 16 is supplied by the first scale inhibitor supply pump 17. In the concentrated water, an alkaline solution and a scale inhibitor are contained. Then, the concentrated water is used as washing water to perform back pressure washing of the hollow fiber membrane module 4.
 なお、TDS濃度は、全溶解性物質濃度のことであり、この溶解性物質としては、ナトリウムイオン、カルシウムイオン、マグネシウムイオン、塩化物イオン、炭酸イオン、硫酸イオンなどが含まれる。海水のように塩濃度が高い水は、塩分に対して他の溶解性物質を極微量にしか包含しないため、塩濃度でTDS濃度を代替することができる。 The TDS concentration refers to the total soluble substance concentration, and examples of the soluble substance include sodium ions, calcium ions, magnesium ions, chloride ions, carbonate ions, sulfate ions, and the like. Since water with a high salt concentration, such as seawater, contains only a very small amount of other soluble substances with respect to the salinity, the TDS concentration can be replaced by the salt concentration.
 中空糸膜モジュール4の逆圧洗浄は、膜ろ過を続ける途中で例えば定期的に行われ、その頻度は通常15分~120分に1回程度である。 The back pressure washing of the hollow fiber membrane module 4 is performed, for example, regularly during the course of membrane filtration, and the frequency is usually about once every 15 to 120 minutes.
 また、アルカリ性溶液とスケール防止剤を含む洗浄水を用いた逆圧洗浄は、毎回の逆圧洗浄時に適用しても構わないが、必ずしも全逆洗工程で実施する必要はない。薬品コスト削減のためには、1日に数回~1週間に1回程度の頻度で実施することが好ましい。 Further, the back pressure washing using the washing water containing the alkaline solution and the scale inhibitor may be applied at the time of every back pressure washing, but it is not always necessary to carry out the whole back washing process. In order to reduce the chemical cost, it is preferable to carry out the treatment at a frequency of several times a day to once a week.
 2種類の逆圧洗浄(アルカリ性溶液とスケール防止剤を含む洗浄水を用いた逆圧洗浄とアルカリ性溶液とスケール防止剤を含まない洗浄水を用いた逆圧洗浄)の時間は、特に制限するものではないが、いずれも、5秒~120秒の範囲内とするのが好ましい。1回の逆圧洗浄時間が5秒未満では、十分な洗浄効果が得られず、120秒を超えると中空糸膜モジュール4の稼働効率が低くなる。逆圧洗浄の流束は、特に制限するものではないが、ろ過流束の0.5倍以上であることが好ましい。逆圧洗浄の流束がろ過流束の0.5倍未満では、膜面および細孔内に付着堆積した汚れを十分に除去することが難しい。逆圧洗浄の流束は高い方が膜の洗浄効果が高くなるので好ましいが、中空糸膜モジュール容器の破損や膜の亀裂等の損傷が起こらない範囲内に適宜設定する。 Time of two types of back pressure cleaning (back pressure cleaning using washing water containing alkaline solution and scale inhibitor and back pressure washing using washing water not containing alkaline solution and scale inhibitor) is particularly limited. However, it is preferable that both be within the range of 5 seconds to 120 seconds. When the back pressure washing time for one time is less than 5 seconds, a sufficient washing effect cannot be obtained, and when it exceeds 120 seconds, the operation efficiency of the hollow fiber membrane module 4 is lowered. The flux for backwashing is not particularly limited, but is preferably 0.5 times or more of the filtration flux. If the back pressure washing flux is less than 0.5 times the filtration flux, it is difficult to sufficiently remove the dirt deposited on the membrane surface and pores. A higher back-pressure cleaning flux is preferable because the membrane cleaning effect is higher, but it is appropriately set within a range in which damage such as breakage of the hollow fiber membrane module container and membrane cracking does not occur.
 アルカリ性溶液としては、水酸化ナトリウム溶液や次亜塩素酸ナトリウム溶液等が使用できる。中でも、使用し易さ、膜の洗浄効果が高いという点から次亜塩素酸ナトリウム溶液が好ましい。水酸化ナトリウム溶液を用いる場合には、pH10未満の場合では洗浄効果がほとんど得られず、pH12を超える場合では膜を劣化させる可能性が高いことから、pH10以上pH12以下の範囲が好ましい。次亜塩素酸ナトリウム溶液を用いる場合には、洗浄水中の塩素濃度が数mg/L~数千mg/Lの範囲となるように添加することが好ましい。中でも、後述するように、中空糸膜モジュール4内に次亜塩素酸ナトリウム溶液を保持する場合は、洗浄水中の塩素濃度が50mg/L以上1000mg/L以下となるようにすることが好ましい。これは塩素濃度が低すぎると中空糸膜モジュール4内に保持している間に該次亜塩素酸ナトリウム溶液が全て消費されてしまい洗浄効果が十分に得られないことと、塩素濃度が高すぎると排水を処理するコストが高くなるからである。 As the alkaline solution, a sodium hydroxide solution, a sodium hypochlorite solution, or the like can be used. Among these, a sodium hypochlorite solution is preferable because it is easy to use and has a high membrane cleaning effect. In the case of using a sodium hydroxide solution, a cleaning effect is hardly obtained when the pH is less than 10, and when the pH exceeds 12, there is a high possibility of deteriorating the membrane. Therefore, a pH range of 10 to 12 is preferable. When a sodium hypochlorite solution is used, it is preferably added so that the chlorine concentration in the wash water is in the range of several mg / L to several thousand mg / L. In particular, as will be described later, when the sodium hypochlorite solution is retained in the hollow fiber membrane module 4, it is preferable that the chlorine concentration in the washing water be 50 mg / L or more and 1000 mg / L or less. This is because if the chlorine concentration is too low, the sodium hypochlorite solution is completely consumed while being held in the hollow fiber membrane module 4, and a sufficient cleaning effect cannot be obtained, and the chlorine concentration is too high. This is because the cost of treating the wastewater becomes high.
 スケール防止剤とは、溶液中の金属、金属イオンなどと錯体を形成し、金属あるいは金属塩を可溶化させるもので、有機や無機のイオン性ポリマーあるいはモノマーを使用できる。有機系のポリマーとしては、ポリアクリル酸、スルホン化ポリスチレン、ポリアクリルアミド、ポリアリルアミンなどの合成ポリマーや、カルボキシメチルセルロース、キトサン、アルギン酸などの天然高分子が、モノマーとしてはエチレンジアミン四酢酸(EDTA)などが使用できる。また、無機系のスケール防止剤としてはポリリン酸塩などが使用できる。これらのスケール防止剤の中では入手のしやすさ、溶解性など操作のしやすさ、価格の点から特にポリリン酸塩、エチレンジアミン四酢酸(EDTA)が好適に用いられる。ポリリン酸塩とはヘキサメタリン酸ナトリウムを代表とする分子内に2個以上のリン原子を有し、アルカリ金属、アルカリ土類金属とリン酸原子などにより結合した重合無機リン酸系物質をいう。代表的なポリリン酸塩としては、ピロリン酸四ナトリウム、ピロリン酸二ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム、ヘプタポリリン酸ナトリウム、デカポリリン酸ナトリウム、メタリン酸ナトリウム、ヘキサメタリン酸ナトリウム、およびこれらのカリウム塩などが挙げられる。これらスケール防止剤を単体で用いても良いが、複数のスケール防止剤を混合しても良い。 The scale inhibitor is a substance that forms a complex with a metal, a metal ion, or the like in a solution and solubilizes the metal or metal salt, and an organic or inorganic ionic polymer or monomer can be used. Organic polymers include synthetic polymers such as polyacrylic acid, sulfonated polystyrene, polyacrylamide, and polyallylamine; natural polymers such as carboxymethylcellulose, chitosan, and alginic acid; and monomers such as ethylenediaminetetraacetic acid (EDTA). Can be used. Moreover, polyphosphate etc. can be used as an inorganic type scale inhibitor. Among these scale inhibitors, polyphosphate and ethylenediaminetetraacetic acid (EDTA) are particularly preferably used from the viewpoints of availability, ease of operation such as solubility, and cost. The polyphosphate refers to a polymerized inorganic phosphate material having two or more phosphorus atoms in a molecule typified by sodium hexametaphosphate and bonded with an alkali metal, an alkaline earth metal and a phosphate atom. Typical polyphosphates include tetrasodium pyrophosphate, disodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, sodium heptapolyphosphate, sodium decapolyphosphate, sodium metaphosphate, sodium hexametaphosphate, and potassium salts thereof. Etc. These scale inhibitors may be used alone, or a plurality of scale inhibitors may be mixed.
 スケール防止剤の添加濃度は洗浄水中の少なくともスケール成分を溶解除去できれば十分である。費用や溶解にかかる時間などの操作性を考慮すると、一般的には0.01ppm以上100ppm以下であり、特に一般的な海水レベルの場合においては0.1ppm以上50ppm以下が好ましく、更に好ましくは1ppm以上20ppm以下である。添加濃度が0.01ppmよりも低い場合にはスケールの発生を十分に抑制できない場合があるため、半透膜の性能劣化が起こる可能性がある。また、100ppmを超えるとスケール防止剤それ自体が半透膜表面に付着して透水性能低下を引き起こしたり、水質を悪化させたりすることがあるため好ましくない。ただし、多量にスケール成分や金属類を含有する洗浄水では数十~数百ppmの添加が必要な場合もある。 The addition concentration of the scale inhibitor is sufficient if at least the scale components in the wash water can be dissolved and removed. In consideration of operability such as cost and time required for dissolution, it is generally 0.01 ppm or more and 100 ppm or less, particularly 0.1 ppm or more and 50 ppm or less, more preferably 1 ppm in the case of a general seawater level. It is 20 ppm or less. When the addition concentration is lower than 0.01 ppm, the generation of scale may not be sufficiently suppressed, so that the performance of the semipermeable membrane may be deteriorated. On the other hand, if it exceeds 100 ppm, the scale inhibitor itself adheres to the surface of the semipermeable membrane to cause deterioration of water permeability or deteriorate the water quality. However, in the case of washing water containing a large amount of scale components and metals, it may be necessary to add tens to hundreds of ppm.
 スケール防止剤はアルカリ性溶液を添加する手前で洗浄水に添加することが好ましい。スケール防止剤を添加する前にアルカリ性溶液を洗浄水に添加すると、局所的なpH上昇によって洗浄水中にスケール生成する可能性が高くなる。 It is preferable to add the scale inhibitor to the washing water before adding the alkaline solution. If the alkaline solution is added to the washing water before the scale inhibitor is added, the possibility of scale formation in the washing water due to a local increase in pH increases.
 なお、スケール防止剤は、必ずしも半透膜ユニット18の下流側で濃縮水に添加する必要はない。第2スケール防止剤供給ポンプ21により半透膜ユニット18への供給水、すなわち中空糸膜モジュール4のろ過水にスケール防止剤を添加し、それを半透膜ユニット18で透過水と濃縮水とに分離してもよい。このようにすることで、洗浄に用いられる濃縮水は結果的にスケール防止剤を含有したものとなり、かつ、アルカリ性溶液を添加する時点で濃縮水が既にスケール防止剤が含有していることになる。加えて、原水として硬度成分の多い海水を処理する場合など、半透膜ユニット18への供給水にスケール防止剤を添加しておくことで、半透膜ユニット18でのスケール生成を防ぐことができる。 The scale inhibitor need not be added to the concentrated water on the downstream side of the semipermeable membrane unit 18. The scale inhibitor is added to the water supplied to the semipermeable membrane unit 18 by the second scale inhibitor supply pump 21, that is, the filtered water of the hollow fiber membrane module 4, and the permeated water and concentrated water are added by the semipermeable membrane unit 18. May be separated. By doing in this way, the concentrated water used for washing | cleaning will eventually contain a scale inhibitor, and the concentrated water will already contain the scale inhibitor at the time of adding an alkaline solution. . In addition, scale treatment in the semipermeable membrane unit 18 can be prevented by adding a scale inhibitor to the water supplied to the semipermeable membrane unit 18 such as when processing seawater with a high hardness component as raw water. it can.
 このように第2スケール防止剤供給ポンプ21のみを用いてスケール防止剤を添加する場合、半透膜ユニット18での濃縮によるスケール析出とアルカリ添加によるスケール析出の両方を考慮し、第2スケール防止剤供給ポンプ21による添加量を決定する必要がある。 In this way, when the scale inhibitor is added using only the second scale inhibitor supply pump 21, the second scale prevention is performed in consideration of both the scale precipitation due to concentration in the semipermeable membrane unit 18 and the scale precipitation due to the addition of alkali. It is necessary to determine the addition amount by the agent supply pump 21.
 勿論、第2スケール防止剤供給ポンプ21により半透膜ユニット18への供給水にスケール防止剤を添加するとともに、第1スケール防止剤供給ポンプ17により半透膜ユニット18で得られた濃縮水にスケール防止剤を添加してもよい。 Of course, the scale inhibitor is added to the water supplied to the semipermeable membrane unit 18 by the second scale inhibitor supply pump 21, and the concentrated water obtained from the semipermeable membrane unit 18 by the first scale inhibitor supply pump 17 is added. A scale inhibitor may be added.
 特に薬品費用削減の観点からは、中空糸膜モジュール4の中空糸膜ろ過水にスケール防止剤を添加し、さらに半透膜ユニット18の濃縮水にもスケール防止剤を添加することが、好ましい。この時、第2スケール防止剤供給ポンプ21では、半透膜ユニット18での濃縮によるスケール析出を防止できる量のスケール防止剤を添加し、第1スケール防止剤供給ポンプ17では、アルカリ性溶液を用いた逆洗を行う際に、アルカリ性溶液の添加によるスケール析出を防止できる量のスケール防止剤を添加することが好ましい。 Particularly, from the viewpoint of reducing chemical costs, it is preferable to add a scale inhibitor to the hollow fiber membrane filtrate of the hollow fiber membrane module 4 and further add a scale inhibitor to the concentrated water of the semipermeable membrane unit 18. At this time, the second scale inhibitor supply pump 21 adds an amount of scale inhibitor that can prevent scale precipitation due to concentration in the semipermeable membrane unit 18, and the first scale inhibitor supply pump 17 uses an alkaline solution. When performing the backwashing, it is preferable to add an amount of a scale inhibitor that can prevent scale precipitation due to the addition of the alkaline solution.
 半透膜ユニット18においては、濃縮によるスケール析出を防止するためにそれぞれの半透膜ユニット供給水に対してスケール防止剤を添加することが有効である。なお、海水からホウ素を効率的に除去する場合など、半透膜ユニット18の供給水にアルカリ性溶液を添加してpHをアルカリ側に調整する場合は、その添加効果を発揮できるように、当該アルカリ性溶液の添加よりも上流側で、半透膜ユニット18の供給水にスケール防止剤を添加することが好ましい。 In the semipermeable membrane unit 18, it is effective to add a scale inhibitor to each semipermeable membrane unit supply water in order to prevent scale precipitation due to concentration. When the alkaline solution is added to the supply water of the semipermeable membrane unit 18 and the pH is adjusted to the alkali side, such as when boron is efficiently removed from seawater, the alkalinity is used so that the addition effect can be exhibited. It is preferable to add a scale inhibitor to the supply water of the semipermeable membrane unit 18 upstream of the addition of the solution.
 なお、薬品添加の直後にはインラインミキサーを設けたり、添加口を供給水の流れに直接接触させるなどして、添加口近傍での急激な濃度やpH変化を防止することも好ましい。 In addition, it is also preferable to prevent an abrupt concentration or pH change in the vicinity of the addition port by providing an in-line mixer immediately after the addition of the chemical or by bringing the addition port into direct contact with the flow of the supply water.
 洗浄効果を高めるためには、アルカリ性溶液とスケール防止剤を含む洗浄水を用いた逆圧洗浄に続いて、中空糸膜モジュール4内に該アルカリ性溶液とスケール防止剤を含む洗浄水を所定時間保持させることが好ましい。中空糸膜モジュール4内にアルカリ性溶液とスケール防止剤を含む洗浄水を保持する時間は5~180分間程度であることが好ましく、更には10~30分間程度がより好ましい。あまり接触時間が短いと洗浄力が弱く、長すぎると装置を停めている時間が長くなり、装置の運転効率が落ちるからである。 In order to enhance the cleaning effect, following the reverse pressure cleaning using the cleaning water containing the alkaline solution and the scale inhibitor, the cleaning water containing the alkaline solution and the scale inhibitor is held in the hollow fiber membrane module 4 for a predetermined time. It is preferable to make it. The time for retaining the alkaline solution and the washing water containing the scale inhibitor in the hollow fiber membrane module 4 is preferably about 5 to 180 minutes, and more preferably about 10 to 30 minutes. This is because if the contact time is too short, the cleaning power is weak, and if it is too long, the time during which the apparatus is stopped becomes long and the operation efficiency of the apparatus decreases.
 さらに、膜表面にファウリング物質が付着蓄積している場合、空気弁12を開にして中空糸膜モジュール4の1次側にコンプレッサー13の圧縮空気を送り込み、膜を振動させる空気洗浄を実施することが好ましい。空気洗浄は、先述した2種類の逆圧洗浄実施中や実施前後、または中空糸膜モジュール4内にアルカリ溶液とスケール防止剤を含む洗浄水を保持させている時間の少なくとも一部で実施することが好ましい。中空糸膜モジュール4の1次側に押し出された水や中空糸膜モジュール4の下部から供給された空気はエア抜き弁5を通って系外に排出される。この場合、圧縮空気の圧力は、高い方が膜の洗浄効果が高くなるので好ましいが、膜が損傷しない範囲内で適宜設定する。 Further, when fouling substances are attached and accumulated on the membrane surface, the air valve 12 is opened, the compressed air of the compressor 13 is sent to the primary side of the hollow fiber membrane module 4, and air washing is performed to vibrate the membrane. It is preferable. The air cleaning is performed during the two types of back pressure cleaning described above, before and after the execution, or at least a part of the time during which the cleaning water containing the alkaline solution and the scale inhibitor is held in the hollow fiber membrane module 4. Is preferred. The water pushed out to the primary side of the hollow fiber membrane module 4 and the air supplied from the lower part of the hollow fiber membrane module 4 are discharged out of the system through the air vent valve 5. In this case, the higher the pressure of the compressed air, the higher the cleaning effect of the membrane, which is preferable. However, the pressure is appropriately set within a range in which the membrane is not damaged.
 以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。 Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples.
 <実施例1>
 図1に示す装置を用意し、造水を行った。中空糸膜モジュール4には、東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸UF膜を備えた、膜面積が72mの加圧型中空糸膜モジュール(HFU-2020)1本を用いた。半透膜ユニット18には東レ(株)製逆浸透膜エレメント(TM820-400)4本を用いた。
<Example 1>
The apparatus shown in FIG. 1 was prepared and fresh water was produced. The hollow fiber membrane module 4 includes a hollow fiber UF membrane made of polyvinylidene fluoride having a molecular weight cut off of 150,000 Da manufactured by Toray Industries, Inc., and a pressurized hollow fiber membrane module (HFU-2020) having a membrane area of 72 m 2. One was used. For the semipermeable membrane unit 18, four reverse osmosis membrane elements (TM820-400) manufactured by Toray Industries, Inc. were used.
 中空糸膜モジュール4におけるろ過工程では、原水供給弁3とろ過水弁6を開き、原水供給ポンプ2を稼動させ、濁度が4度、TOC(Total Organic Carbon:全有機炭素)濃度が2mg/L、塩濃度3.5%の海水をろ過流束3m/dで全量ろ過した。また、半透膜ユニット18における分離工程では、スケール防止剤貯留槽16内のエチレンジアミン四酢酸(EDTA)を、半透膜ユニット18の供給水における濃度が10ppmとなるように、第2スケール防止剤供給ポンプ21を用いて常時添加しながら、膜ろ過流量60m/d、濃縮水流量120m/d、回収率33%で膜分離した。 In the filtration step in the hollow fiber membrane module 4, the raw water supply valve 3 and the filtered water valve 6 are opened, the raw water supply pump 2 is operated, the turbidity is 4 degrees, and the TOC (Total Organic Carbon) concentration is 2 mg / L, the whole amount of seawater having a salt concentration of 3.5% was filtered at a filtration flux of 3 m / d. In the separation step in the semipermeable membrane unit 18, the second scale inhibitor is added so that the ethylenediaminetetraacetic acid (EDTA) in the scale inhibitor storage tank 16 is 10 ppm in the supply water of the semipermeable membrane unit 18. Membrane separation was performed at a membrane filtration flow rate of 60 m 3 / d, a concentrated water flow rate of 120 m 3 / d, and a recovery rate of 33% while being constantly added using the supply pump 21.
 中空糸膜モジュール4で30分ろ過した後、原水供給弁3とろ過水弁6を閉じ、原水供給ポンプ2を停止すると同時に、逆洗弁9と空洗弁12とエア抜き弁5を開き、逆洗ポンプ8を稼動させ、半透膜ユニット18の濃縮水を用いた流束3.3m/dの逆圧洗浄と膜モジュールの下方から100L/minで空気を供給する空気洗浄を同時に1分間実施した。その後、逆洗弁9と空洗弁12を閉じ、逆洗ポンプ8を停止すると同時に、排水弁11を開き、中空糸膜モジュール4内の水を系外に全量排出した。その後、原水供給弁3を開き、原水供給ポンプ2を稼動し、原水を中空糸膜モジュール4内に供給後、ろ過水弁6を開き、エア抜き弁5を閉じ、ろ過工程に戻り、先述した工程を繰り返していった。 After 30 minutes of filtration with the hollow fiber membrane module 4, the raw water supply valve 3 and the filtrate water valve 6 are closed, the raw water supply pump 2 is stopped, and at the same time, the backwash valve 9, the air washing valve 12 and the air vent valve 5 are opened. The backwash pump 8 is operated, and backwashing with a flux of 3.3 m / d using concentrated water from the semipermeable membrane unit 18 and air washing for supplying air at 100 L / min from the lower side of the membrane module are simultaneously performed for 1 minute. Carried out. Thereafter, the backwash valve 9 and the air washing valve 12 were closed and the backwash pump 8 was stopped. At the same time, the drain valve 11 was opened, and the entire amount of water in the hollow fiber membrane module 4 was discharged out of the system. Thereafter, the raw water supply valve 3 is opened, the raw water supply pump 2 is operated, the raw water is supplied into the hollow fiber membrane module 4, the filtrate water valve 6 is opened, the air vent valve 5 is closed, and the process returns to the filtration step. The process was repeated.
 また1日1回アルカリ性溶液貯留槽14内の次亜塩素酸ナトリウム溶液を半透膜ユニット18の濃縮水に添加した洗浄水を用いた逆圧洗浄を実施した。逆洗弁9と空洗弁12とエア抜き弁5を開き、逆洗ポンプ8、アルカリ性溶液供給ポンプ15を稼動させ、流束3.3m/dの逆圧洗浄と中空糸膜モジュール4の下方から100L/minで空気を供給する空気洗浄を同時に1分間実施した。この時の逆圧洗浄水中の塩素濃度が500mg/Lとなるように、ハック社製ポケット残留塩素計を用いて測定し、次亜塩素酸ナトリウム溶液添加量を適宜調整した。次に、逆洗ポンプ8、アルカリ性溶液供給ポンプ15を停止し、中空糸膜モジュール4内が塩素濃度500mg/Lで20分間保持した。その後、原水供給弁3を開き、原水供給ポンプ2を稼動させ、原水を中空糸膜モジュール4内に供給後、ろ過水弁6を開き、エア抜き弁5を閉じ、ろ過工程に戻り、先述した工程を繰り返した。 In addition, once a day, back pressure cleaning was performed using cleaning water in which the sodium hypochlorite solution in the alkaline solution storage tank 14 was added to the concentrated water of the semipermeable membrane unit 18. Open the backwash valve 9, the air wash valve 12, and the air vent valve 5, operate the backwash pump 8 and the alkaline solution supply pump 15, and backwash with a flux of 3.3 m / d and below the hollow fiber membrane module 4. From the above, air cleaning for supplying air at 100 L / min was simultaneously performed for 1 minute. At this time, the amount of sodium hypochlorite solution added was appropriately adjusted by measuring with a pocket residual chlorine meter manufactured by Hack so that the chlorine concentration in the backwash water was 500 mg / L. Next, the backwash pump 8 and the alkaline solution supply pump 15 were stopped, and the inside of the hollow fiber membrane module 4 was held at a chlorine concentration of 500 mg / L for 20 minutes. Thereafter, the raw water supply valve 3 is opened, the raw water supply pump 2 is operated, the raw water is supplied into the hollow fiber membrane module 4, the filtrate water valve 6 is opened, the air vent valve 5 is closed, and the process returns to the filtration step. The process was repeated.
 その結果、中空糸膜モジュール4のろ過差圧は、運転開始直後60kPaに対し、運転開始から1ヶ月の間も60~70kPaを推移し、安定運転できた。また、半透膜ユニット18の膜ろ過差圧は、運転開始直後100kPaであったのに対し、1ヶ月後も120kPa程度と安定していた。 As a result, the filtration differential pressure of the hollow fiber membrane module 4 changed from 60 to 70 kPa for one month from the start of operation with respect to 60 kPa immediately after the start of operation, and stable operation was possible. The membrane filtration differential pressure of the semipermeable membrane unit 18 was 100 kPa immediately after the start of operation, whereas it was stable at about 120 kPa even after one month.
 <実施例2>
 以下の点を変更した以外は実施例1と同様に造水を行った。すなわち、第2スケール防止剤供給ポンプ21を用いてEDTAを添加することはしなかった。代わりに、次亜塩素酸ナトリウム溶液を添加した洗浄水を用いた逆圧洗浄の時に、第1スケール防止剤供給ポンプ17を用いて、該洗浄水における濃度が20ppmとなるようにEDTAを添加した。
<Example 2>
Fresh water was produced in the same manner as in Example 1 except that the following points were changed. That is, EDTA was not added using the second scale inhibitor supply pump 21. Instead, EDTA was added using the first scale inhibitor supply pump 17 so that the concentration in the wash water was 20 ppm at the time of back pressure washing using the wash water to which the sodium hypochlorite solution was added. .
 その結果、中空糸膜モジュール4のろ過差圧は、運転開始直後60kPaに対し、運転開始から1ヶ月の間も60~70kPaを推移し、安定運転できた。一方、半透膜ユニット18の膜ろ過差圧は、運転開始直後100kPaであったのに対し、1ヶ月後も140kPa程度と高くなったが比較的安定していた。 As a result, the filtration differential pressure of the hollow fiber membrane module 4 changed from 60 to 70 kPa for one month from the start of operation with respect to 60 kPa immediately after the start of operation, and stable operation was possible. On the other hand, the membrane filtration differential pressure of the semipermeable membrane unit 18 was 100 kPa immediately after the start of the operation, but increased to about 140 kPa after one month, but was relatively stable.
 <比較例1>
 エチレンジアミン四酢酸(EDTA)を全く添加しなかった以外は、実施例1と全く同じとした。
<Comparative Example 1>
Except for not adding ethylenediaminetetraacetic acid (EDTA) at all, it was exactly the same as Example 1.
 その結果、中空糸膜モジュール4のろ過差圧は、運転開始直後60kPaに対し、スケール成分による目詰まりにより1ヶ月後には150kPaと高くなり、薬液洗浄を実施せざるを得なくなった。半透膜ユニット18の膜ろ過差圧も、運転開始直後100kPaであったのに対し、スケール発生により1ヶ月後には180kPaと高くなった。 As a result, the filtration differential pressure of the hollow fiber membrane module 4 became as high as 150 kPa after one month due to clogging due to scale components, compared with 60 kPa immediately after the start of operation, and it was forced to carry out chemical cleaning. The membrane filtration differential pressure of the semipermeable membrane unit 18 was 100 kPa immediately after the start of operation, whereas it became as high as 180 kPa after one month due to scale generation.
 本発明の目的は、原水を膜モジュールで膜ろ過する膜分離装置において、膜表面および細孔内にスケールが付着・蓄積することによる目詰まりを防止し、効果的に膜モジュールの洗浄を実現することができる。 It is an object of the present invention to prevent clogging caused by scales adhering and accumulating on the membrane surface and pores in a membrane separation apparatus for membrane filtration of raw water with a membrane module, and effectively cleaning the membrane module. be able to.
1:原水貯留槽
2:原水供給ポンプ
3:原水供給弁
4:中空糸膜モジュール
5:エア抜き弁
6:ろ過水弁
7:ろ過水貯留槽
8:逆洗ポンプ
9:逆洗弁
10:逆洗配管
11:排水弁
12:空気弁
13:コンプレッサー
14:アルカリ性溶液貯留槽
15:アルカリ性溶液供給ポンプ
16:スケール防止剤貯留槽
17:第1スケール防止剤供給ポンプ
18:半透膜ユニット
19:ブースターポンプ
20:濃縮水貯留槽
21:第2スケール防止剤供給ポンプ
22:半透膜濃縮水排水弁
1: Raw water storage tank 2: Raw water supply pump 3: Raw water supply valve 4: Hollow fiber membrane module 5: Air vent valve 6: Filtration water valve 7: Filtration water storage tank 8: Backwash pump 9: Backwash valve 10: Reverse Wash pipe 11: Drain valve 12: Air valve 13: Compressor 14: Alkaline solution reservoir 15: Alkaline solution supply pump 16: Scale inhibitor storage tank 17: First scale inhibitor supply pump 18: Semipermeable membrane unit 19: Booster Pump 20: Concentrated water storage tank 21: Second scale inhibitor supply pump 22: Semipermeable membrane concentrated water drain valve

Claims (12)

  1.  原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法において、前記精密ろ過/限外ろ過膜モジュールにおけるろ過の中断時に実施する膜モジュールの洗浄方法であって、前記濃縮水の少なくとも一部を洗浄水とし、スケール防止剤とアルカリ性溶液を含有せしめた前記洗浄水を前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行う膜モジュールの洗浄方法。 The raw water is filtered through a microfiltration / ultrafiltration membrane module and then separated into permeated water and concentrated water by a semipermeable membrane unit. This is performed when the filtration in the microfiltration / ultrafiltration membrane module is interrupted. A cleaning method for a membrane module, wherein at least a part of the concentrated water is used as cleaning water, and the cleaning water containing a scale inhibitor and an alkaline solution is supplied from the secondary side of the microfiltration / ultrafiltration membrane module Then, the membrane module cleaning method of performing reverse pressure cleaning of the microfiltration / ultrafiltration membrane module.
  2.  前記濃縮水の少なくとも一部にスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、請求項1に記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to claim 1, wherein a scale inhibitor is added to at least a part of the concentrated water so that the scale water contains a scale inhibitor.
  3.  前記精密ろ過/限外ろ過膜モジュールから得られたろ過水の少なくとも一部にスケール防止剤を添加し前記半透膜ユニットで分離することで、前記洗浄水にスケール防止剤を含有せしめる、請求項1に記載の膜モジュールの洗浄方法。 A scale inhibitor is added to at least a part of the filtered water obtained from the microfiltration / ultrafiltration membrane module and separated by the semipermeable membrane unit, so that the washing water contains the scale inhibitor. 2. A method for cleaning a membrane module according to 1.
  4.  さらに前記濃縮水の少なくとも一部にもスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、請求項3に記載の膜モジュールの洗浄方法。 The method for cleaning a membrane module according to claim 3, further comprising adding a scale inhibitor to at least a part of the concentrated water so that the cleaning water contains a scale inhibitor.
  5.  原水を精密ろ過/限外ろ過膜モジュールでろ過し、次いで半透膜ユニットで透過水と濃縮水とに分離する造水方法であって、一時的に、前記精密ろ過/限外ろ過膜モジュールにおけるろ過を中断し、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行うとともに、前記洗浄水にスケール防止剤とアルカリ性溶液を含有せしめる造水方法。 A method for producing raw water by filtering raw water with a microfiltration / ultrafiltration membrane module, and then separating the permeated water and concentrated water with a semipermeable membrane unit, temporarily in the microfiltration / ultrafiltration membrane module The filtration is interrupted, and at least a part of the concentrated water is supplied as a wash water from the secondary side of the microfiltration / ultrafiltration membrane module to perform back pressure washing of the microfiltration / ultrafiltration membrane module, A water making method of adding a scale inhibitor and an alkaline solution to the washing water.
  6.  前記濃縮水の少なくとも一部にスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、請求項5に記載の造水方法。 The desalinization method according to claim 5, wherein a scale inhibitor is added to at least a part of the concentrated water so as to contain the scale inhibitor in the washing water.
  7.  前記精密ろ過/限外ろ過膜モジュールから得られたろ過水の少なくとも一部にスケール防止剤を添加し前記半透膜ユニットで分離することで、前記洗浄水にスケール防止剤を含有せしめる、請求項5に記載の造水方法。 A scale inhibitor is added to at least a part of the filtered water obtained from the microfiltration / ultrafiltration membrane module and separated by the semipermeable membrane unit, so that the washing water contains the scale inhibitor. 5. The fresh water generation method according to 5.
  8.  さらに前記濃縮水の少なくとも一部にもスケール防止剤を添加することで、前記洗浄水にスケール防止剤を含有せしめる、請求項7に記載の造水方法。 Furthermore, the desalinating method according to claim 7, wherein a scale inhibitor is added to at least a part of the concentrated water so that the washing water contains the scale inhibitor.
  9.  精密ろ過/限外ろ過膜モジュールと、前記精密ろ過/限外ろ過膜モジュールのろ過水の少なくとも一部を透過水と濃縮水とに分離する半透膜ユニットと、前記濃縮水の少なくとも一部を洗浄水として前記精密ろ過/限外ろ過膜モジュールの2次側から供給して前記精密ろ過/限外ろ過膜モジュールの逆圧洗浄を行う逆圧洗浄ユニットと、前記洗浄水にスケール防止剤を含有せしめるスケール防止剤供給ユニットと、前記洗浄水にアルカリ性溶液を含有せしめるアルカリ性溶液供給ユニットとを備える造水装置。 A microfiltration / ultrafiltration membrane module; a semipermeable membrane unit that separates at least a portion of the filtered water of the microfiltration / ultrafiltration membrane module into permeated water and concentrated water; and at least a portion of the concentrated water. A back pressure cleaning unit for supplying back water from the secondary side of the microfiltration / ultrafiltration membrane module as a cleaning water to perform backpressure cleaning of the microfiltration / ultrafiltration membrane module, and a scale inhibitor in the cleaning water A fresh water generator comprising a scale inhibitor supply unit for squeezing and an alkaline solution supply unit for containing an alkaline solution in the washing water.
  10.  前記スケール防止剤供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにスケール防止剤を供給するユニットを備え、前記アルカリ性溶液供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにアルカリ性溶液を供給するユニットを備える、請求項9に記載の造水装置。 The scale inhibitor supply unit includes a unit that supplies scale inhibitor to a line that supplies at least a part of the concentrated water from the secondary side of the microfiltration / ultrafiltration membrane module, and the alkaline solution supply unit The fresh water generator of Claim 9 provided with the unit which supplies an alkaline solution to the line which supplies at least one part of the said concentrated water from the secondary side of the said microfiltration / ultrafiltration membrane module.
  11.  前記スケール防止剤供給ユニットとして、前記精密ろ過/限外ろ過膜モジュールのろ過水を半透膜ユニットに供給するラインにスケール防止剤を供給するユニットを備え、前記アルカリ性溶液供給ユニットとして、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにアルカリ性溶液を供給するユニットを備える、請求項9に記載の造水装置。 The scale inhibitor supply unit includes a unit for supplying a scale inhibitor to a line for supplying the filtrate of the microfiltration / ultrafiltration membrane module to the semipermeable membrane unit, and the concentrated water is used as the alkaline solution supply unit. The fresh water generator of Claim 9 provided with the unit which supplies an alkaline solution to the line which supplies at least one part of from the secondary side of the said microfiltration / ultrafiltration membrane module.
  12.  前記スケール防止剤供給ユニットとして、さらに、前記濃縮水の少なくとも一部を前記精密ろ過/限外ろ過膜モジュールの2次側から供給するラインにスケール防止剤を供給するユニットを備える、請求項11に記載の造水装置。 The scale inhibitor supply unit further includes a unit that supplies the scale inhibitor to a line that supplies at least a part of the concentrated water from the secondary side of the microfiltration / ultrafiltration membrane module. The fresh water generator described.
PCT/JP2012/050416 2011-01-20 2012-01-12 Method for cleaning membrane module, method of fresh water generation, and fresh water generator WO2012098969A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012504975A JPWO2012098969A1 (en) 2011-01-20 2012-01-12 Membrane module cleaning method, fresh water generation method and fresh water generation device
CN201280006054.8A CN103328079B (en) 2011-01-20 2012-01-12 The washing methods of membrane module, method of making water and fresh water generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-009767 2011-01-20
JP2011009767 2011-01-20

Publications (1)

Publication Number Publication Date
WO2012098969A1 true WO2012098969A1 (en) 2012-07-26

Family

ID=46515599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050416 WO2012098969A1 (en) 2011-01-20 2012-01-12 Method for cleaning membrane module, method of fresh water generation, and fresh water generator

Country Status (4)

Country Link
JP (1) JPWO2012098969A1 (en)
CN (1) CN103328079B (en)
CL (1) CL2013002072A1 (en)
WO (1) WO2012098969A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073228A (en) * 2013-02-15 2015-11-18 先进水处理公司 Integrated ultrafiltration and reverse osmosis desalination systems
JP2017113729A (en) * 2015-12-25 2017-06-29 栗田工業株式会社 Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
CN107551651A (en) * 2017-09-22 2018-01-09 江门市河正环保设备有限公司 A kind of intelligently filters device
CN110482742A (en) * 2019-08-29 2019-11-22 深圳中拓天达环境工程有限公司 Electrode foil boracic cleans waste water treatment system and its treatment process
JP2021000600A (en) * 2019-06-21 2021-01-07 オルガノ株式会社 Wastewater treatment facility and wastewater treatment method
US11713259B2 (en) 2016-09-15 2023-08-01 Fluence Water Israel, Ltd. Containerized desalination system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106076119A (en) * 2016-07-27 2016-11-09 北京鑫佰利科技发展有限公司 A kind of NF membrane washing point salt equipment
JP6940962B2 (en) * 2017-03-09 2021-09-29 オルガノ株式会社 Cleaning method of hollow fiber membrane device, ultrafiltration membrane device, ultrapure water production device and cleaning device of hollow fiber membrane device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220449A (en) * 1996-02-15 1997-08-26 Kurita Water Ind Ltd Membrane separation device
JP2001294895A (en) * 2000-04-13 2001-10-23 Miura Co Ltd Membrane detergent
JP2003001073A (en) * 2001-06-15 2003-01-07 Amtec Co Ltd Method for cleaning separation membrane
JP2006272136A (en) * 2005-03-29 2006-10-12 Toray Ind Inc Membrane separation method and membrane separation device
JP2007181822A (en) * 2006-12-19 2007-07-19 Kobelco Eco-Solutions Co Ltd Water treatment system for producing drinking water and its operation method
JP2008229418A (en) * 2007-03-16 2008-10-02 Kurita Water Ind Ltd Method and apparatus for industrial water treatment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09220449A (en) * 1996-02-15 1997-08-26 Kurita Water Ind Ltd Membrane separation device
JP2001294895A (en) * 2000-04-13 2001-10-23 Miura Co Ltd Membrane detergent
JP2003001073A (en) * 2001-06-15 2003-01-07 Amtec Co Ltd Method for cleaning separation membrane
JP2006272136A (en) * 2005-03-29 2006-10-12 Toray Ind Inc Membrane separation method and membrane separation device
JP2007181822A (en) * 2006-12-19 2007-07-19 Kobelco Eco-Solutions Co Ltd Water treatment system for producing drinking water and its operation method
JP2008229418A (en) * 2007-03-16 2008-10-02 Kurita Water Ind Ltd Method and apparatus for industrial water treatment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105073228A (en) * 2013-02-15 2015-11-18 先进水处理公司 Integrated ultrafiltration and reverse osmosis desalination systems
JP2017113729A (en) * 2015-12-25 2017-06-29 栗田工業株式会社 Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
US11713259B2 (en) 2016-09-15 2023-08-01 Fluence Water Israel, Ltd. Containerized desalination system
CN107551651A (en) * 2017-09-22 2018-01-09 江门市河正环保设备有限公司 A kind of intelligently filters device
JP2021000600A (en) * 2019-06-21 2021-01-07 オルガノ株式会社 Wastewater treatment facility and wastewater treatment method
JP7270478B2 (en) 2019-06-21 2023-05-10 オルガノ株式会社 Wastewater treatment facility and wastewater treatment method
CN110482742A (en) * 2019-08-29 2019-11-22 深圳中拓天达环境工程有限公司 Electrode foil boracic cleans waste water treatment system and its treatment process

Also Published As

Publication number Publication date
JPWO2012098969A1 (en) 2014-06-09
CL2013002072A1 (en) 2014-02-28
CN103328079B (en) 2016-06-29
CN103328079A (en) 2013-09-25

Similar Documents

Publication Publication Date Title
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
JP5804228B1 (en) Water treatment method
JP6003646B2 (en) Membrane module cleaning method
JP5549589B2 (en) Fresh water system
WO2012057188A1 (en) Fresh water generation method and fresh water generation device
JP2018065114A (en) Concentration method and apparatus
JP2011125822A (en) Method for washing membrane module and fresh water generator
JP2015188786A (en) Positive permeation processing system
WO2013111826A1 (en) Desalination method and desalination device
WO2020179594A1 (en) Zero liquid discharge system
JP6183213B2 (en) Fresh water generation method and fresh water generation apparatus
JPH09248429A (en) Separation method and apparatus therefor
JP5024158B2 (en) Membrane filtration method
JP2014171926A (en) Desalination method and desalination apparatus
JP4187316B2 (en) Reverse osmosis membrane separation apparatus and reverse osmosis membrane separation method
WO2014007262A1 (en) Fresh-water manufacturing device and fresh-water manufacturing method
JP2011104504A (en) Washing method of water treatment facility
CN212832954U (en) Concentration system
JP3838689B2 (en) Water treatment system
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
WO2012057176A1 (en) Water-treatment method and desalinization method
JP3963304B2 (en) Reverse osmosis separation method
JP2013034938A (en) Method for washing membrane module
WO2023037877A1 (en) Forward osmosis treatment method and forward osmosis treatment device
JP7427890B2 (en) Concentration system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012504975

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12737084

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12737084

Country of ref document: EP

Kind code of ref document: A1