JP2001079366A - Method for washing membrane - Google Patents

Method for washing membrane

Info

Publication number
JP2001079366A
JP2001079366A JP25777499A JP25777499A JP2001079366A JP 2001079366 A JP2001079366 A JP 2001079366A JP 25777499 A JP25777499 A JP 25777499A JP 25777499 A JP25777499 A JP 25777499A JP 2001079366 A JP2001079366 A JP 2001079366A
Authority
JP
Japan
Prior art keywords
membrane
water
backwashing
membrane module
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25777499A
Other languages
Japanese (ja)
Inventor
Takehiko Ootoyo
武彦 大豊
Yoshihiko Mori
吉彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP25777499A priority Critical patent/JP2001079366A/en
Publication of JP2001079366A publication Critical patent/JP2001079366A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To surely prevent the damage of a membrane and to maintain high membrane filtration flow rate over a long period of time by backwashing the membrane while rocking the membrane by introducing gas to the raw water side of the membrane and similarly forcibly feeding the liquid containing sodium hypochlorite and the like or gas from the filtered liquid side. SOLUTION: The raw water 1 consisting of river surface running water, etc., is fed forcibly to a membrane module 4 by a raw water feed pump 3 from a circulation tank 2, and the filtered water obtained here is stored at a filtered water tank 5. At the time of backwashing of the membrane module 4, the filtered water in the filtered water tank 5 is fed forcibly to the membrane module 4 by a backwashing pump 6. At this time, the sodium hypochlorite aquatic solution stored in an oxidizing agent tank 8 is poured into the filtered water side of the membrane module 4 by an oxidizing agent feed pump 9. The air generated at a compressor 7 is fed simultaneously to the raw water side of the membrane module 4 to air-bubble the membrane module 4. In such a way, an adhered matter at the membrane module 4 is surely decomposed oxidatively and also peeled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、上水道や工業用
水、あるいは下水二次処理水の濾過処理、および下水、
排水の濾過処理に用いられる膜の洗浄方法に関するもの
であり、膜の損傷を起こさず高い洗浄回復性が得られる
結果、高い濾過流束が維持できるというものである。
BACKGROUND OF THE INVENTION The present invention relates to filtration of water supply and industrial water or sewage secondary treatment water, and sewage treatment.
The present invention relates to a method for cleaning a membrane used for a filtration treatment of wastewater, in which high cleaning recovery is obtained without causing damage to the membrane, and as a result, a high filtration flux can be maintained.

【0002】[0002]

【従来の技術】種々の原水の濾過に用いられる濾過膜
は、濾過精度に優れる為、各種の濾過装置に用いられて
いる。しかし、濾過の継続に伴い原水中の有機物等の除
去対象物質が膜面に付着し、表面の孔を閉塞するため徐
々に濾過性能が低下し、ついには濾過できなくなってし
まう。そこで、濾過性能を維持するための膜の洗浄方法
として膜の濾過方向とは逆方向から濾水あるいは清澄水
を噴出させて膜の濾過面の付着物を除去する逆流洗浄が
用いられている。あるいは、よりその効果を高めるため
逆流洗浄水に次亜塩素酸ソーダを添加したり、特開平4
−310220号公報に示されているように、オゾン水
を用いて逆流洗浄する方法や特開昭60−58222号
公報に開示されているオゾン化加圧空気で逆洗する方法
が知られている。さらには特開昭63−42703号公
報に開示されているように、オゾン化空気を中空糸膜の
原水側に気泡として注入する方法が知られている。
2. Description of the Related Art Filtration membranes used for filtration of various raw waters are used in various filtration devices because of their excellent filtration accuracy. However, with the continuation of the filtration, substances to be removed such as organic substances in the raw water adhere to the membrane surface and block the pores on the surface, so that the filtration performance gradually decreases, and finally the filtration becomes impossible. Therefore, as a method of cleaning the membrane to maintain the filtration performance, backwashing is used, in which filtered water or clarified water is jetted from a direction opposite to the filtration direction of the membrane to remove deposits on the filtration surface of the membrane. Alternatively, sodium hypochlorite is added to the backwash water to further enhance its effect.
As shown in JP-A-310220, a method of backwashing with ozone water and a method of backwashing with ozonized pressurized air disclosed in JP-A-60-58222 are known. . Further, as disclosed in JP-A-63-42703, a method is known in which ozonized air is injected as bubbles into the raw water side of a hollow fiber membrane.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の逆流洗
浄のみによる洗浄方法では、逆流洗浄水は、孔の閉塞が
軽微な、即ち水力学的抵抗が少ない部分に優先的に流れ
るため、閉塞が軽微な部分は洗浄されるが、完全に閉塞
した孔にはほとんど逆洗水が流れないため洗浄されな
い。従って膜面全体が洗浄できず、逆流洗浄後も十分に
濾過性能が回復しないという問題があった。又、膜表面
の付着物質が多い場合は、逆流洗浄時の圧力だけでは厚
い付着層を剥離できず、洗浄回復性が不十分であった。
However, in the conventional washing method using only backwashing, the backwashing water flows preferentially in a portion where pores are slightly clogged, that is, where there is little hydraulic resistance. Minor parts are washed, but are not washed because backwash water hardly flows into the completely closed holes. Therefore, there is a problem that the entire membrane surface cannot be washed, and the filtration performance cannot be sufficiently restored even after the backflow washing. In addition, when the amount of the adhered substance on the film surface is large, the thick adhered layer cannot be peeled off only by the pressure at the time of the backflow cleaning, and the cleaning recovery property is insufficient.

【0004】一方、原水側に気泡を導入する方法は、特
に導入された気泡により膜が揺動し、膜同士が触れ合う
ことにより膜表面の付着物質が掻き落とされることによ
り洗浄が行われるため、その効果は逆流洗浄よりも大き
い。しかし、逆に膜同士のこすれによってむしろ付着物
質が孔内に押し込まれ、かえって孔の閉塞が生じたり、
あるいは膜表面がこすられる結果、孔が押しつぶされて
しまい、かえって濾過性能が低下するという問題があっ
た。即ち、膜を傷つけずに効果的に洗浄を行い、高い濾
過流束を維持する方法は未だ見いだされていない。
On the other hand, in the method of introducing bubbles into the raw water side, the film is swung by the introduced bubbles, and the membranes are brought into contact with each other so that the adhered substances on the surface of the film are scraped off. The effect is greater than backwashing. However, on the contrary, the adhered substance is pushed into the pores due to the rubbing between the membranes, and the pores are rather closed,
Alternatively, as a result of the rubbing of the membrane surface, the pores are crushed, resulting in a problem that the filtration performance is reduced. That is, there has not yet been found a method for effectively washing without damaging the membrane and maintaining a high filtration flux.

【0005】[0005]

【課題を解決するための手段】本発明者らは、膜の洗浄
方法について鋭意検討した結果、以下の発明を完成する
に至った。すなわち本発明は、多孔膜の洗浄方法におい
て、原水側に気体を導入して膜を揺動させると同時に、
濾液側から、加圧した次亜塩素酸ナトリウム、二酸化塩
素、過酸化水素の少なくとも1以上を含む液体または気
体で逆流洗浄することを特徴とする膜を洗浄する方法で
ある。
Means for Solving the Problems As a result of intensive studies on a method for cleaning a film, the present inventors have completed the following invention. That is, the present invention, in the method for cleaning a porous membrane, while introducing a gas to the raw water side to rock the membrane,
This is a method for cleaning a membrane, comprising performing backflow cleaning from the filtrate side with a liquid or gas containing at least one of pressurized sodium hypochlorite, chlorine dioxide, and hydrogen peroxide.

【0006】以下に本発明の詳細を述べる。本発明の対
象となる原水は、河川水、湖沼水、地下水、貯水、下水
二次処理水、工場排水、下水などである。従来、上記の
様な原水を膜で濾過すると、該原水中に含まれる、使用
する膜の孔径以上の大きさの懸濁物質や有機物は膜で阻
止され、いわゆる濃度分極やケーク層を形成すると同時
に、該原水中の有機物は膜を目詰まりさせたり、あるい
は膜内部の網状組織に吸着する。その結果、原水を濾過
した際の膜の濾過流束は、清澄水を濾過した際のそれに
比べて数分の1から数十分の1にまで低下してしまい
又、濾過の継続に従って濾過流束は徐々に低下してい
く。
The details of the present invention will be described below. The raw water that is an object of the present invention is river water, lake water, groundwater, storage water, sewage secondary treatment water, industrial wastewater, sewage, and the like. Conventionally, when raw water as described above is filtered through a membrane, suspended substances and organic substances having a size larger than the pore diameter of the membrane to be used contained in the raw water are blocked by the membrane, and a so-called concentration polarization or cake layer is formed. At the same time, the organic substances in the raw water clog the membrane or adsorb to the network inside the membrane. As a result, the filtration flux of the membrane when filtering the raw water is reduced from a fraction to several tenths of that when the clear water is filtered. The bundle gradually decreases.

【0007】これらの膜を閉塞する物質は、一般に無機
物粒子の周りを有機物が覆った状態で原水中に存在し、
表面の有機物による付着力で膜表面に強固に付着する。
このため通常行われる膜濾水や清澄水を用いた水圧を利
用した逆流洗浄では、強固に付着した物を剥離できず、
その洗浄回復効果は小さい。これに対し、次亜塩素酸ナ
トリウム、二酸化塩素、過酸化水素の少なくとも1以上
を含む液体または気体で逆流洗浄を行うと、その酸化力
により、膜に付着した物質表面の有機物が酸化分解ある
いは変性され、膜表面から剥離し易くなる。しかし、こ
れら液体、気体の逆流洗浄のみでは、前述したように、
閉塞が軽微な部分は十分に洗浄されるが、完全に閉塞し
たり、あるいは付着層が厚い部分は、やはり十分な洗浄
が行えない。
[0007] Substances that block these films are generally present in raw water in a state where inorganic substances are covered with organic substances.
It adheres firmly to the film surface by the adhesive force of the organic matter on the surface.
For this reason, backflow washing using water pressure using membrane filtration water or clarified water that is usually performed cannot remove strongly adhered substances,
Its cleaning recovery effect is small. In contrast, when backwashing is performed with a liquid or gas containing at least one of sodium hypochlorite, chlorine dioxide, and hydrogen peroxide, the oxidizing power causes oxidative decomposition or denaturation of organic substances on the surface of the substance attached to the film. And it is easy to peel off from the film surface. However, only backflow cleaning of these liquids and gases, as described above,
The portion where the occlusion is slight is sufficiently washed, but the portion which is completely occluded or where the adhesion layer is thick cannot be sufficiently washed.

【0008】そこで、原水側に気体を導入し膜を揺動さ
せると同時に、次亜塩素酸ナトリウム、二酸化塩素、過
酸化水素の少なくとも1以上を含む液体または気体によ
る逆流洗浄することにより、より効果的に付着物質を剥
離することができる。また、通常原水側に気泡を導入し
て洗浄を行うと、膜同士が擦れ合い洗浄効果は高いもの
の、同時に膜表面に傷が付き、かえって透過流束が低下
する場合がある。しかし、本発明のように、逆流洗浄と
同時に気体を導入すると、逆洗による水流または気流に
より膜同士の距離が離れ、過度にこすり合わされるのを
防ぐ。同時に、通常、膜と膜の間に詰まり易い、膜表面
から脱落した付着物質も排出されやすくなる。
Therefore, a gas is introduced into the raw water side to oscillate the membrane and, at the same time, backwashing is performed with a liquid or gas containing at least one of sodium hypochlorite, chlorine dioxide and hydrogen peroxide. The attached substance can be peeled off. Further, when washing is usually performed by introducing bubbles into the raw water side, although the membranes rub against each other and the washing effect is high, the membrane surface may be scratched at the same time, and on the contrary, the permeation flux may decrease. However, when gas is introduced at the same time as backwashing as in the present invention, the distance between the membranes is increased due to the water flow or airflow due to backwashing, and excessive rubbing is prevented. At the same time, the attached substances that are usually clogged between the films and fall off from the film surface are also easily discharged.

【0009】以上のように、次亜塩素酸ナトリウム、二
酸化塩素、過酸化水素の少なくとも1以上を含む液体ま
たは気体による逆流洗浄と同時に、原水側に気体を導入
することにより、膜の傷つきを起こさずに効果的に洗浄
できる。以下各々詳細に述べる。
As described above, the gas is introduced into the raw water side at the same time as the backwashing with the liquid or gas containing at least one of sodium hypochlorite, chlorine dioxide and hydrogen peroxide, thereby causing damage to the membrane. It can be effectively cleaned without using. Each is described in detail below.

【0010】[多孔膜]多孔膜としては、膜の素材とし
て、ポリエチレン、ポリプロピレン、ポリブテン等のポ
リオレフィン;テトラフルオロエチレン−パーフルオロ
アルキルビニルエーテル共重合体(PFA)、テトラフ
ルオロエチレン−ヘキサフルオロプロピレン共重合体
(FEP)、テトラフルオロエチレン−ヘキサフルオロ
プロピレン−パーフルオロアルキルビニルエーテル共重
合体(EPE)、テトラフルオロエチレン−エチレン共
重合体(ETFE)、ポリクロロトリフルオロエチレン
(PCTFE)、クロロトリフルオロエチレン−エチレ
ン共重合体(ECTFE)、ポリフッ化ビニリデン(P
VDF)、ポリ4フッ化エチレン(PTFE)等のフッ
素系樹脂;ポリスルホン、ポリエーテルスルホン、ポリ
エーテルケトン、ポリエーテルエーテルケトン、ポリフ
ェニレンスルフィド等のスーパーエンジニアリングプラ
スチック;酢酸セルロース、エチルセルロース等のセル
ロース類;ポリアクリロニトリル、ポリビニルアルコー
ルの単独及びこれらの混合物、また、セラミック等の無
機膜が挙げられる。特に、フッ素系樹脂性膜、無機膜
が、耐酸化性に優れるため好ましいが、特に、ポリフッ
化ビニリデン(PVDF)膜を使用すれば好ましい。
[Porous membrane] As the porous membrane, polyolefins such as polyethylene, polypropylene and polybutene; tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer Coalescence (FEP), tetrafluoroethylene-hexafluoropropylene-perfluoroalkylvinylether copolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene- Ethylene copolymer (ECTFE), polyvinylidene fluoride (P
VDF), fluororesins such as polytetrafluoroethylene (PTFE); super engineering plastics such as polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, and polyphenylene sulfide; celluloses such as cellulose acetate and ethylcellulose; Acrylonitrile, polyvinyl alcohol alone and mixtures thereof, and inorganic films such as ceramics may be mentioned. In particular, a fluorine-based resinous film and an inorganic film are preferable because of their excellent oxidation resistance, and it is particularly preferable to use a polyvinylidene fluoride (PVDF) film.

【0011】このような多孔膜のうち、その孔径領域が
逆浸透膜、ナノフィルター、限外濾過(UF)膜、精密
濾過(MF)膜であるものが使用し得るが、基本的に高
い濾過流量を有する、限外濾過(UF)膜、精密濾過
(MF)膜を使用するのが好ましく、特に、精密濾過
(MF)膜を使用するのが好ましい。例えば、平均孔径
が0.001〜1μmの膜が好ましく、平均孔径0.0
5〜1μmの膜がさらに好ましい。多孔膜の形状として
は、中空糸状、平膜状など任意の形状を用いることがで
きるが、単位体積当たりの膜面積が大きくとれる中空糸
状が好ましい。中空糸状膜の形状としては、ストレート
中空糸膜、ウェーブがついた中空糸膜などがあるが、ウ
ェーブがついた中空糸膜の方が、濁質の排出性など理由
から好ましい。一般に、濾過は膜を収納したモジュール
を用いて行われる。
Among such porous membranes, those whose pore size region is a reverse osmosis membrane, a nanofilter, an ultrafiltration (UF) membrane, or a microfiltration (MF) membrane can be used. It is preferable to use an ultrafiltration (UF) membrane or a microfiltration (MF) membrane having a flow rate, and particularly preferable to use a microfiltration (MF) membrane. For example, a membrane having an average pore size of 0.001 to 1 μm is preferable, and an average pore size of 0.01 μm.
Films of 5 to 1 μm are more preferred. As the shape of the porous membrane, any shape such as a hollow fiber shape and a flat film shape can be used, but a hollow fiber shape which can provide a large membrane area per unit volume is preferable. Examples of the shape of the hollow fiber membrane include a straight hollow fiber membrane and a wavy hollow fiber membrane, and a wavy hollow fiber membrane is preferable for reasons such as turbidity discharge. Generally, filtration is performed using a module containing a membrane.

【0012】[膜モジュール]この発明で使用される膜
モジュールは、配管等を介して接続される中空糸膜モジ
ュールに加え、管板のあるタンクや外郭ハウジングに挿
入・配置する事によって使用される、カートリッジ型膜
モジュールも含まれる。
[Membrane Module] The membrane module used in the present invention is used by inserting and arranging it in a tank having a tube sheet or an outer housing in addition to a hollow fiber membrane module connected via piping or the like. And a cartridge type membrane module.

【0013】また、膜モジュールの両側端部接着固定に
使用される熱硬化性樹脂の例を挙げると、エポキシ樹
脂、ウレタン樹脂、シリコーンゴム等である。また、こ
れらの樹脂にシリカ、カーボンブラック、フッ化カーボ
ン等のフィラーを混入させる事により、樹脂隔壁部の強
度向上及び硬化収縮の低減をはかっても良い。膜モジュ
ールのモジュールケースに使用される材質を例示する
と、ポリエチレン、ポリプロピレン、ポリブテン等のポ
リオレフィン;ポリテトラフルオロエチレン(PTF
E)、PFA、FEP、EPE、ETFE、PCTF
E、ECTFE、PVDF等のフッ素系樹脂;ポリ塩化
ビニル、ポリ塩化ビニリデン等の塩素樹脂;ポリスルホ
ン樹脂、ポリエーテルスルホン樹脂、ポリアリルスルホ
ン樹脂、ポリフェニルエーテル樹脂、PMMAなどのア
クリル樹脂、アクリロニトリル−ブタジエン−スチレン
共重合体樹脂(ABS)、アクリロニトリル−スチレン
共重合体樹脂、ポリフェニレンサルファイド樹脂、ポリ
アミド樹脂、ポリカーボネート樹脂、ポリエーテルケト
ン樹脂、ポリエーテルエーテルケトン樹脂の単独及びこ
れらの混合物、及び、アルミニウム、ステンレス鋼等の
金属が挙げられる。
Examples of the thermosetting resin used for bonding and fixing both end portions of the membrane module include epoxy resin, urethane resin and silicone rubber. Further, by mixing a filler such as silica, carbon black, or carbon fluoride into these resins, the strength of the resin partition wall may be improved and the curing shrinkage may be reduced. Examples of the material used for the module case of the membrane module include polyolefins such as polyethylene, polypropylene, and polybutene; and polytetrafluoroethylene (PTF).
E), PFA, FEP, EPE, ETFE, PCTF
Fluorine resins such as E, ECTFE and PVDF; chlorine resins such as polyvinyl chloride and polyvinylidene chloride; acrylic resins such as polysulfone resin, polyether sulfone resin, polyallyl sulfone resin, polyphenyl ether resin, PMMA, and acrylonitrile-butadiene. -Styrene copolymer resin (ABS), acrylonitrile-styrene copolymer resin, polyphenylene sulfide resin, polyamide resin, polycarbonate resin, polyetherketone resin, polyetheretherketone resin alone or a mixture thereof, and aluminum, stainless steel Metals such as steel are exemplified.

【0014】[多孔膜の濾過方法]濾過方式としては、
全量濾過方式でもクロスフロー濾過方式でもよい。ま
た、加圧濾過方式でも陰圧濾過方式でもよいが、加圧濾
過方式がより高い濾過流束が得られるため好ましい。ま
た、内圧濾過、外圧濾過のどちらでもよいが、外圧濾過
の方が、エアスクラビングの効果が大きいので好まし
い。
[Filtering method of porous membrane]
Either a full filtration method or a cross flow filtration method may be used. In addition, a pressure filtration method or a negative pressure filtration method may be used, but the pressure filtration method is preferable because a higher filtration flux can be obtained. Either internal pressure filtration or external pressure filtration may be used, but external pressure filtration is preferred because the effect of air scrubbing is greater.

【0015】[多孔膜の洗浄方法]本発明は、原水側に
気体を導入すると同時に、次亜塩素酸ナトリウム、二酸
化塩素、過酸化水素のいずれか1つ以上を含む液体また
は気体によって、膜の濾液側から逆流洗浄するものであ
る。液体と気体の混合物を用いて逆流洗浄することも含
まれる。洗浄操作は濾過を中断して行う。
[Method of Cleaning Porous Membrane] According to the present invention, a gas is introduced into the raw water side and, at the same time, a liquid or gas containing at least one of sodium hypochlorite, chlorine dioxide and hydrogen peroxide is used to clean the membrane. This is to wash back from the filtrate side. Backwashing with a mixture of liquid and gas is also included. The washing operation is performed by interrupting the filtration.

【0016】逆流洗浄水への次亜塩素酸ナトリウム、二
酸化塩素、過酸化水素等の酸化剤の添加方法は、気体や
液体の状態で濾水タンクなどに直接投入しても良いし、
あるいは水溶液として、濾水タンクから多孔膜に至る配
管の途中でエジェクターやラインミキサーを用いて添加
しても良い。気体状態で導入する場合は、逆洗タンクの
適宜位置に設けた散気管等を介して行えば良い。あるい
はUチューブ式を用いることもできる。また、他の構成
として、多孔膜に逆流洗浄水を誘導する管の途中で、エ
ジェクター方式またはラインミキシング方式で気体を添
加しても良い。
The method of adding an oxidizing agent such as sodium hypochlorite, chlorine dioxide, hydrogen peroxide or the like to the backwash water may be directly added to a drainage tank in a gaseous or liquid state,
Alternatively, it may be added as an aqueous solution using an ejector or a line mixer in the middle of the pipe from the drainage tank to the porous membrane. When the gas is introduced in a gaseous state, the gas may be introduced through an air diffuser or the like provided at an appropriate position in the backwash tank. Alternatively, a U-tube type can be used. As another configuration, a gas may be added by an ejector method or a line mixing method in the middle of a pipe for guiding backwash water to the porous membrane.

【0017】逆流洗浄水中の酸化剤の濃度は、0.05
mg/リットル以上50重量%以下の範囲が好ましい。
これより濃度が低い場合は、酸化が十分に進まないた
め、洗浄効果が十分に得られ難い。一方、濃度がこの範
囲を超えると、薬品のコストが高くなりすぎる。濃度範
囲は、好ましくは0.1mg/リットル以上20重量%
以下、さらに好ましくは0.1mg/リットル以上10
重量%以下である。濾過とエアスクラビング、逆流洗浄
のそれぞれの時間は、適宜選択出来、濾過流量の回復性
と、濾過水の回収率を勘案して、適宜決めればよい。通
常、洗浄と洗浄の間の濾過時間の1/10000〜1/
5の時間をエアスクラビング、逆流洗浄の時間にあてる
事が好ましい。1/10000より頻度が少ないと洗浄
効果が少なく、1/5より頻度が多いと、濾水の回収率
が悪くなり、好ましくない。
The concentration of the oxidizing agent in the backwash water is 0.05
The range is preferably from mg / liter to 50% by weight.
If the concentration is lower than this, oxidation does not proceed sufficiently, so that it is difficult to obtain a sufficient cleaning effect. On the other hand, if the concentration exceeds this range, the cost of the chemical becomes too high. The concentration range is preferably 0.1 mg / liter or more and 20% by weight.
Or less, more preferably 0.1 mg / liter or more and 10
% By weight or less. The respective times of filtration, air scrubbing, and backwashing can be appropriately selected, and may be appropriately determined in consideration of the recovery of the filtration flow rate and the recovery rate of filtered water. Usually, 1/1000 to 1/1/1 of the filtration time between washings.
It is preferable to assign the time of 5 to the time of air scrubbing and backwashing. If the frequency is less than 1 / 10,000, the washing effect is small, and if the frequency is more than 1/5, the recovery rate of drainage becomes poor, which is not preferable.

【0018】気体の導入は、膜面の原水側に気体を送り
込み、膜面を振動させることにより膜の洗浄を行うもの
である。本発明においては、膜面に吸着した有機物が逆
流洗浄水に含まれる酸化剤により分解あるいは変性され
て非吸着性物質となるため、膜の孔を閉塞する非吸着性
の物質(有機物、無機物)が、気体の導入により有効に
ふるい落とされ、大きな洗浄効果が得られる。エアスク
ラビングの供給エアーの単位時間あたりの流量は標準状
態において、単位時間あたりの濾過流量の0.1〜20
倍の流量を供給するのが好ましく、0.5〜10倍の流
量であることがより好ましい。これらの流量以下では、
洗浄効果が低く、これら流量以上では、膜の乾燥等が起
こる可能性がある。
The introduction of gas is to clean the membrane by sending the gas to the raw water side of the membrane and vibrating the membrane. In the present invention, since the organic substance adsorbed on the membrane surface is decomposed or denatured by the oxidizing agent contained in the backwash water to become a non-adsorbable substance, a non-adsorbable substance (organic substance, inorganic substance) that closes the pores of the membrane. However, they are effectively sieved by the introduction of gas, and a great cleaning effect is obtained. The flow rate of the air supplied per unit time of the air scrubbing is 0.1 to 20 times the filtration flow rate per unit time in the standard state.
Preferably, the flow rate is doubled, more preferably 0.5 to 10 times. Below these flows,
The cleaning effect is low, and if the flow rate is more than these, drying of the film may occur.

【0019】逆流洗浄の気体、液体、気体及び液体の単
位時間あたりの逆洗流量は、濾水回収率と膜擦れ合い防
止とのかね合いから、単位時間あたりの濾過流量の0.
01〜10倍の流量が好ましく、0.1〜3倍の流量が
特に好ましい。これら逆洗流量より低いと、膜の擦れ合
いを防止する効果が低く、洗浄の効果も低くなり、これ
ら単位時間あたりの逆洗流量より、流量が高いと、濾水
の回収率低くなり、好ましくない。
The backwash flow rate of gas, liquid, gas and liquid per unit time in backwashing is set at 0.1% of the filtration flow rate per unit time in consideration of the recovery rate of drainage and prevention of membrane rubbing.
A flow rate of 01 to 10 times is preferable, and a flow rate of 0.1 to 3 times is particularly preferable. When the flow rate is lower than the backwash flow rate, the effect of preventing rubbing of the membrane is low, and the cleaning effect is also low. Absent.

【0020】本発明によれば、原水側に気体を導入する
際は常に逆流洗浄と同時に行うと洗浄効果が高いが、気
体の導入(同時に逆流洗浄)に先立ち逆流洗浄のみを行
っても良い。あるいは気体の導入(同時に逆流洗浄)を
行った後、逆流洗浄のみを行っても良い。さらに、同時
に原水を導入しながら気体を導入し同時に逆流洗浄して
も良いし、原水を導入せずに行っても良い。あるいは、
これらを交互に組み合わせても良い。気体の導入(同時
に逆流洗浄)に先立ち原水のみ導入を行っても良い。あ
るいは気体の導入(同時に逆流洗浄)を行った後原水の
み導入を行っても良い。本発明は、上述のごとく構成し
たので、高い膜濾過流束で、高品質の処理水が得られ
る。
According to the present invention, when introducing the gas to the raw water side, the washing effect is high if the washing is always performed simultaneously with the backwashing. However, only the backwashing may be performed prior to the introduction of the gas (simultaneously, the backwashing). Alternatively, after introducing gas (backwashing at the same time), only backwashing may be performed. Further, the gas may be introduced while introducing the raw water at the same time, and the backwash may be performed at the same time, or the cleaning may be performed without introducing the raw water. Or,
These may be combined alternately. Prior to the introduction of gas (simultaneously backwashing), only the raw water may be introduced. Alternatively, only the raw water may be introduced after the introduction of the gas (backwashing at the same time). Since the present invention is configured as described above, high quality treated water can be obtained with a high membrane filtration flux.

【0021】[0021]

【発明の実施の形態】以下、本発明を実施例を用いて説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to embodiments.

【0022】[0022]

【実施例1】原水1として、濁度が1〜5度、水温が1
2〜15℃の河川表流水を用いた。図1に示すように、
原水1は循環タンク2を経て原水供給ポンプ3により膜
モジュール4へ圧送され、得られた濾過水は濾水タンク
5に貯められる。逆洗時に、濾水タンク5中の濾過水は
逆洗ポンプ6により膜モジュール4に送られるが、この
途中の配管で、酸化剤タンク8に貯められた次亜塩素酸
ナトリウム水溶液を、酸化剤送液ポンプ9を用いてライ
ンミキサーを使用して注入した。また、エアーバブリン
グは、コンプレッサー7で発生した空気を、膜モジュー
ル4の原水側(1次側)へ供給して行った。
Example 1 Raw water 1 has a turbidity of 1 to 5 degrees and a water temperature of 1
River surface water at 2 to 15 ° C was used. As shown in FIG.
The raw water 1 is pumped to the membrane module 4 by the raw water supply pump 3 via the circulation tank 2, and the obtained filtered water is stored in the filtered water tank 5. At the time of backwashing, the filtered water in the drainage tank 5 is sent to the membrane module 4 by the backwashing pump 6, and the aqueous solution of sodium hypochlorite stored in the oxidizing agent tank 8 is oxidized by piping along the way. Injection was performed using a line mixer using the liquid sending pump 9. The air bubbling was performed by supplying the air generated by the compressor 7 to the raw water side (primary side) of the membrane module 4.

【0023】膜モジュール4は、特開平3−21553
5号公報に基づいて作製した内径が0.7mmφ、外径
が1.25mmφ、平均孔径0.1μmのPVDF(ポ
リフッ化ビニリデン)製中空糸状精密濾過(MF)膜を
1m長、3インチ径のPVC(ポリ塩化ビニル)ケーシ
ングに納めた外圧式モジュールである。当該モジュール
の膜面積は7.0m2 、モジュール濾過圧が50kPa
の時の清澄水濾過流束は毎時1.8m3 である。
The membrane module 4 is disclosed in Japanese Unexamined Patent Publication No.
A hollow fiber microfiltration (MF) membrane made of PVDF (polyvinylidene fluoride) having an inner diameter of 0.7 mmφ, an outer diameter of 1.25 mmφ, and an average pore diameter of 0.1 μm, which is manufactured based on No. 5, is 1 m long and 3 inches in diameter. External pressure type module housed in PVC (polyvinyl chloride) casing. The module has a membrane area of 7.0 m 2 and a module filtration pressure of 50 kPa.
The clarified water filtration flux at this time is 1.8 m 3 / h.

【0024】濾過は膜モジュール4へ原水1を一定圧力
で供給する定圧濾過とし、また、膜濾過水量と循環水量
の比を1対1としたクロスフロー方式で行った。運転条
件は、濾過を20分間行った後、次亜塩素酸ナトリウム
濃度3mg/リットルの次亜塩素酸ナトリウム含有濾水
による逆流洗浄を20秒間行うという操作を繰り返し、
1時間毎に次亜塩素酸ナトリウム濃度3mg/リットル
の次亜塩素酸ナトリウム含有濾過水による逆流洗浄と毎
時2Nm3 の空気によるエアースクラビングを同時に2
分間行った。
The filtration was a constant pressure filtration in which the raw water 1 was supplied to the membrane module 4 at a constant pressure, and the filtration was carried out by a cross-flow system in which the ratio of the amount of membrane filtered water to the amount of circulating water was 1: 1. The operation conditions were as follows: After performing filtration for 20 minutes, repeating the operation of performing backwashing with sodium hypochlorite-containing filtered water having a sodium hypochlorite concentration of 3 mg / liter for 20 seconds,
Backwashing with filtered water containing sodium hypochlorite having a sodium hypochlorite concentration of 3 mg / liter every hour and air scrubbing with air at 2 Nm 3 / hour simultaneously.
Minutes.

【0025】上記運転条件で1ヶ月間運転した後の膜濾
過水量は、4.5m3 /m2 /日であった。また、運転
後の膜モジュールを解体し、単糸を次亜塩素酸ナトリウ
ムと苛性ソーダの混合液と蓚酸と硝酸の混合液で薬品洗
浄した後、純水透水量を測定したところ、未使用の膜の
透水量の97%に相当する透水量であり、膜外表面を倍
率5,000倍の走査型電子顕微鏡で観察した結果、膜
の外表面の傷つきは軽微であった。
After operating under the above operating conditions for one month, the amount of membrane filtered water was 4.5 m 3 / m 2 / day. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. The water permeation amount was 97% of the water permeation amount of the film, and the outer surface of the membrane was observed with a scanning electron microscope at a magnification of 5,000. As a result, the outer surface of the membrane was slightly damaged.

【0026】[0026]

【実施例2】実施例1において、膜濾過の運転条件を、
濾過を60分間行った後、次亜塩素酸ナトリウム濃度3
mg/リットル含有濾過水による逆流洗浄と空気を用い
たエアースクラビングを同時に2分間行う運転方式に変
更した。12ヶ月後の膜濾過流量は4.3m3 /m2
日であった。また、運転後の膜モジュールを解体し、単
糸を次亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸
と硝酸の混合液で薬品洗浄した後、純水透水量を測定し
たところ、未使用の膜の透水量の95%に相当する透水
量であり、膜外表面を倍率5,000倍の走査型電子顕
微鏡で観察した結果、膜の外表面の傷つきは軽微であっ
た。
Example 2 In Example 1, the operating conditions for membrane filtration were as follows:
After filtration for 60 minutes, sodium hypochlorite concentration 3
The operation method was changed to a method in which backwashing with filtered water containing mg / liter and air scrubbing using air were performed simultaneously for 2 minutes. The membrane filtration flow rate after 12 months is 4.3 m 3 / m 2 /
It was a day. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. Of the membrane was observed with a scanning electron microscope at a magnification of 5,000, and as a result, the outer surface of the membrane was slightly damaged.

【0027】[0027]

【実施例3】実施例1において、膜濾過の運転条件を、
次亜塩素酸ナトリウム濃度3mg/リットル含有濾過水
による逆流洗浄に変えて、二酸化塩素濃度3mg/リッ
トル含有濾過水を用いて実施例1と同様の実験を行っ
た。1ヶ月後の膜濾過流量は4.5m3 /m2 /日であ
った。また、運転後の膜モジュールを解体し、単糸を次
亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸と硝酸
の混合液で薬品洗浄した後、純水透水量を測定したとこ
ろ、未使用の膜の透水量の97%に相当する透水量であ
り、膜外表面を倍率5,000倍の走査型電子顕微鏡で
観察した結果、膜の外表面の傷つきは軽微であった。
Example 3 In Example 1, the operating conditions for membrane filtration were as follows:
The same experiment as in Example 1 was performed using filtered water containing 3 mg / liter of chlorine dioxide instead of backwashing with filtered water containing 3 mg / liter of sodium hypochlorite. One month later, the membrane filtration flow rate was 4.5 m 3 / m 2 / day. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. The water permeation amount was 97% of the water permeation amount of the film, and the outer surface of the membrane was observed with a scanning electron microscope at a magnification of 5,000. As a result, the outer surface of the membrane was slightly damaged.

【0028】[0028]

【実施例4】実施例1において、膜濾過の運転条件を、
次亜塩素酸ナトリウム濃度3mg/リットル含有濾過水
による逆流洗浄に変えて、過酸化水素濃度3mg/リッ
トル含有濾過水を用いて実施例1と同様の実験を行っ
た。12ヶ月後の膜濾過流量は4.1m3 /m2 /日で
あった。また、運転後の膜モジュールを解体し、単糸を
次亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸と硝
酸の混合液で薬品洗浄した後、純水透水量を測定したと
ころ、未使用の膜の透水量の97%に相当する透水量で
あり、膜外表面を倍率5,000倍の走査型電子顕微鏡
で観察した結果、膜の外表面の傷つきは軽微であった。
Example 4 In Example 1, the operating conditions for membrane filtration were as follows:
The same experiment as in Example 1 was performed using filtered water containing 3 mg / l of hydrogen peroxide instead of backwashing with filtered water containing 3 mg / l of sodium hypochlorite. The membrane filtration flow rate after 12 months was 4.1 m 3 / m 2 / day. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. The water permeation amount was 97% of the water permeation amount of the film, and the outer surface of the membrane was observed with a scanning electron microscope at a magnification of 5,000. As a result, the outer surface of the membrane was slightly damaged.

【0029】[0029]

【比較例1】実施例2において、次亜塩素酸ナトリウム
含有濾過水による逆流洗浄と空気を用いたエアースクラ
ビングを同時に行うのに換えて、エアーのみのスクラビ
ングを行って、実施例2と同様の実験を行った。6ヶ月
後の膜濾過流量は2.5m3 /m2 /日であった。ま
た、運転後の膜モジュールを解体し、単糸を次亜塩素酸
ナトリウムと苛性ソーダの混合液と蓚酸と硝酸の混合液
で薬品洗浄した後、純水透水量を測定したところ、未使
用の膜の透水量の80%に相当する透水量であった。膜
外表面を倍率5,000倍の走査型電子顕微鏡で観察し
たところ、膜表面が荒れ、膜表面の開孔の一部が閉塞し
ており、透過水量の低下の要因と推定された。
Comparative Example 1 In the same manner as in Example 2 except that backflow washing with filtered water containing sodium hypochlorite and air scrubbing using air were performed simultaneously, scrubbing using only air was performed. An experiment was performed. After 6 months, the membrane filtration flow rate was 2.5 m 3 / m 2 / day. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. Was equivalent to 80% of the amount of water permeated. Observation of the outer surface of the membrane with a scanning electron microscope at a magnification of 5,000 times revealed that the membrane surface was rough, and some of the openings on the membrane surface were closed, which was considered to be a cause of a decrease in the amount of permeated water.

【0030】[0030]

【比較例2】実施例2において、次亜塩素酸ナトリウム
含有濾過水による逆流洗浄と空気を用いたエアースクラ
ビングを同時に行うのに換えて、濾過水による逆流洗浄
と空気を用いたエアースクラビングを同時に行って、同
様の実験を行った。3ヶ月後の膜濾過流量は3.5m3
/m2 /日であった。また、運転後の膜モジュールを解
体し、単糸を次亜塩素酸ナトリウムと苛性ソーダの混合
液と蓚酸と硝酸の混合液で薬品洗浄した後、純水透水量
を測定したところ、未使用の膜の透水量の93%に相当
する透水量であった。膜外表面を倍率5,000倍の走
査型電子顕微鏡で観察したところ、膜の外表面の傷つき
は軽微であった。
Comparative Example 2 In Example 2, instead of simultaneously performing backwashing with filtered water containing sodium hypochlorite and air scrubbing using air, backwashing with filtered water and air scrubbing using air were simultaneously performed. And conducted a similar experiment. After 3 months, the membrane filtration flow rate is 3.5 m 3
/ M 2 / day. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. Was 93% of the amount of water permeated. When the outer surface of the film was observed with a scanning electron microscope at a magnification of 5,000, the outer surface of the film was slightly damaged.

【0031】[0031]

【発明の効果】本発明によれば、膜を傷つけずに効果的
に洗浄を行う事ができ、この結果、長期間に渡って高い
膜濾過流速を維持することが可能である。
According to the present invention, the membrane can be effectively cleaned without damaging the membrane, and as a result, a high membrane filtration flow rate can be maintained for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜の洗浄方法を組み込んだ処理フロー
の一例を示したものである。
FIG. 1 shows an example of a processing flow incorporating a method for cleaning a film of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔膜の洗浄方法において、原水側に気
体を導入して膜を揺動させると同時に、濾液側から、加
圧した次亜塩素酸ナトリウム、二酸化塩素、過酸化水素
の少なくとも1以上を含む液体または気体で逆流洗浄す
ることを特徴とする膜を洗浄する方法。
In a method for cleaning a porous membrane, a gas is introduced into a raw water side to oscillate the membrane, and at the same time, at least one of pressurized sodium hypochlorite, chlorine dioxide, and hydrogen peroxide is supplied from a filtrate side. A method for cleaning a membrane, comprising backwashing with a liquid or gas containing the above.
JP25777499A 1999-09-10 1999-09-10 Method for washing membrane Pending JP2001079366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25777499A JP2001079366A (en) 1999-09-10 1999-09-10 Method for washing membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25777499A JP2001079366A (en) 1999-09-10 1999-09-10 Method for washing membrane

Publications (1)

Publication Number Publication Date
JP2001079366A true JP2001079366A (en) 2001-03-27

Family

ID=17310925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25777499A Pending JP2001079366A (en) 1999-09-10 1999-09-10 Method for washing membrane

Country Status (1)

Country Link
JP (1) JP2001079366A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012691A1 (en) * 2004-08-04 2006-02-09 U.S. Filter Wastewater Group, Inc. Chemical and process for cleaning membranes
JP2006263584A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method for cleaning membrane filtration apparatus
CN100566802C (en) * 2004-08-04 2009-12-09 西门子水技术公司 The chemicals of cleaning film and method
JP2010046587A (en) * 2008-08-20 2010-03-04 Toyobo Co Ltd Hollow fiber membrane module
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US7972493B2 (en) 2007-07-27 2011-07-05 Gore Enterprise Holdings, Inc. Filter wash for chloralkali process
WO2011122289A1 (en) 2010-03-30 2011-10-06 東レ株式会社 Method for cleaning separation membrane module, and method for fresh water generation
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
WO2012057188A1 (en) 2010-10-29 2012-05-03 東レ株式会社 Fresh water generation method and fresh water generation device
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
WO2013001914A1 (en) 2011-06-29 2013-01-03 東レ株式会社 Washing method for separation membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
CN103492054A (en) * 2011-04-25 2014-01-01 东丽株式会社 Method for cleaning membrane module
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
WO2019143951A1 (en) * 2018-01-22 2019-07-25 Ecolab Usa Inc. Method for permeate flow path sanitization in a reverse osmosis system
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
JP2019166449A (en) * 2018-03-22 2019-10-03 積水化学工業株式会社 Washing method of membrane module
JP2020104038A (en) * 2018-12-26 2020-07-09 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment system operation method and water treatment system

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048306B2 (en) 1996-12-20 2011-11-01 Siemens Industry, Inc. Scouring method
US8518256B2 (en) 2001-04-04 2013-08-27 Siemens Industry, Inc. Membrane module
US8512568B2 (en) 2001-08-09 2013-08-20 Siemens Industry, Inc. Method of cleaning membrane modules
US8182687B2 (en) 2002-06-18 2012-05-22 Siemens Industry, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
US7938966B2 (en) 2002-10-10 2011-05-10 Siemens Water Technologies Corp. Backwash method
US8268176B2 (en) 2003-08-29 2012-09-18 Siemens Industry, Inc. Backwash
US8808540B2 (en) 2003-11-14 2014-08-19 Evoqua Water Technologies Llc Module cleaning method
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
WO2006012691A1 (en) * 2004-08-04 2006-02-09 U.S. Filter Wastewater Group, Inc. Chemical and process for cleaning membranes
CN100566802C (en) * 2004-08-04 2009-12-09 西门子水技术公司 The chemicals of cleaning film and method
US8790515B2 (en) 2004-09-07 2014-07-29 Evoqua Water Technologies Llc Reduction of backwash liquid waste
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US8758622B2 (en) 2004-12-24 2014-06-24 Evoqua Water Technologies Llc Simple gas scouring method and apparatus
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
JP2006263584A (en) * 2005-03-24 2006-10-05 Ngk Insulators Ltd Method for cleaning membrane filtration apparatus
US9675938B2 (en) 2005-04-29 2017-06-13 Evoqua Water Technologies Llc Chemical clean for membrane filter
US8858796B2 (en) 2005-08-22 2014-10-14 Evoqua Water Technologies Llc Assembly for water filtration using a tube manifold to minimise backwash
US8894858B1 (en) 2005-08-22 2014-11-25 Evoqua Water Technologies Llc Method and assembly for water filtration using a tube manifold to minimize backwash
US8293098B2 (en) 2006-10-24 2012-10-23 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8318028B2 (en) 2007-04-02 2012-11-27 Siemens Industry, Inc. Infiltration/inflow control for membrane bioreactor
US8623202B2 (en) 2007-04-02 2014-01-07 Siemens Water Technologies Llc Infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
US9206057B2 (en) 2007-05-29 2015-12-08 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US10507431B2 (en) 2007-05-29 2019-12-17 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8372276B2 (en) 2007-05-29 2013-02-12 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8287743B2 (en) 2007-05-29 2012-10-16 Siemens Industry, Inc. Membrane cleaning with pulsed airlift pump
US8840783B2 (en) 2007-05-29 2014-09-23 Evoqua Water Technologies Llc Water treatment membrane cleaning with pulsed airlift pump
US9573824B2 (en) 2007-05-29 2017-02-21 Evoqua Water Technologies Llc Membrane cleaning with pulsed airlift pump
US8622222B2 (en) 2007-05-29 2014-01-07 Siemens Water Technologies Llc Membrane cleaning with pulsed airlift pump
US7972493B2 (en) 2007-07-27 2011-07-05 Gore Enterprise Holdings, Inc. Filter wash for chloralkali process
US8382981B2 (en) 2008-07-24 2013-02-26 Siemens Industry, Inc. Frame system for membrane filtration modules
US9023206B2 (en) 2008-07-24 2015-05-05 Evoqua Water Technologies Llc Frame system for membrane filtration modules
JP2010046587A (en) * 2008-08-20 2010-03-04 Toyobo Co Ltd Hollow fiber membrane module
US8956464B2 (en) 2009-06-11 2015-02-17 Evoqua Water Technologies Llc Method of cleaning membranes
WO2011122289A1 (en) 2010-03-30 2011-10-06 東レ株式会社 Method for cleaning separation membrane module, and method for fresh water generation
US10441920B2 (en) 2010-04-30 2019-10-15 Evoqua Water Technologies Llc Fluid flow distribution device
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9630147B2 (en) 2010-09-24 2017-04-25 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
WO2012057188A1 (en) 2010-10-29 2012-05-03 東レ株式会社 Fresh water generation method and fresh water generation device
CN103492054A (en) * 2011-04-25 2014-01-01 东丽株式会社 Method for cleaning membrane module
CN103492054B (en) * 2011-04-25 2015-06-03 东丽株式会社 Method for cleaning membrane module
WO2013001914A1 (en) 2011-06-29 2013-01-03 東レ株式会社 Washing method for separation membrane module
US10391432B2 (en) 2011-09-30 2019-08-27 Evoqua Water Technologies Llc Manifold arrangement
US11065569B2 (en) 2011-09-30 2021-07-20 Rohm And Haas Electronic Materials Singapore Pte. Ltd. Manifold arrangement
US9604166B2 (en) 2011-09-30 2017-03-28 Evoqua Water Technologies Llc Manifold arrangement
US9925499B2 (en) 2011-09-30 2018-03-27 Evoqua Water Technologies Llc Isolation valve with seal for end cap of a filtration system
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
US9764289B2 (en) 2012-09-26 2017-09-19 Evoqua Water Technologies Llc Membrane securement device
US9815027B2 (en) 2012-09-27 2017-11-14 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
US10427102B2 (en) 2013-10-02 2019-10-01 Evoqua Water Technologies Llc Method and device for repairing a membrane filtration module
US11173453B2 (en) 2013-10-02 2021-11-16 Rohm And Haas Electronic Materials Singapores Method and device for repairing a membrane filtration module
US10322375B2 (en) 2015-07-14 2019-06-18 Evoqua Water Technologies Llc Aeration device for filtration system
WO2019143951A1 (en) * 2018-01-22 2019-07-25 Ecolab Usa Inc. Method for permeate flow path sanitization in a reverse osmosis system
US10906005B2 (en) 2018-01-22 2021-02-02 Ecolab Usa Inc. Method for permeate flow path sanitization in a reverse osmosis system
JP2019166449A (en) * 2018-03-22 2019-10-03 積水化学工業株式会社 Washing method of membrane module
JP2020104038A (en) * 2018-12-26 2020-07-09 三菱ケミカルアクア・ソリューションズ株式会社 Water treatment system operation method and water treatment system

Similar Documents

Publication Publication Date Title
JP2001079366A (en) Method for washing membrane
JP2004073950A (en) Membrane washing method
JP5821838B2 (en) Hollow fiber membrane filtration device and method for cleaning hollow fiber membrane module
WO2000063122A1 (en) Method for purifying turbid water
WO2013111826A1 (en) Desalination method and desalination device
JP5182413B2 (en) Immersion type membrane separator, method of cleaning a diffuser and membrane separation method
JP4969580B2 (en) Operation method of membrane separator
JP2006247540A (en) Hollow fiber membrane module and its operation method
JP4698274B2 (en) Filtration membrane cleaning method
JP2006263716A (en) Dipping type membrane separation apparatus, washing method of air diffuser and membrane separation method
JP5024158B2 (en) Membrane filtration method
JP2005185985A (en) Method and apparatus for producing water
JP2012086182A (en) Water treatment method and water treatment device
JP2005034694A (en) Membrane cleaning method, and filter
JP2001070763A (en) Membrane washing method
JPH09299947A (en) Reverse osmotic membrane spiral element and treating system using the same
JP2006081979A (en) Membrane washing method
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP2001070764A (en) Cleaning method
JP2001187324A (en) Washing method of membrane filter device, and water treating device
JP3948593B2 (en) Membrane cleaning method
WO2000027510A1 (en) Method for filtration with membrane
JP2004130307A (en) Method for filtration of hollow fiber membrane
WO2023145082A1 (en) Filtration membrane cleaning apparatus, water treatment apparatus, and filtration membrane cleaning method
JP7067678B1 (en) Filtration membrane cleaning equipment, water treatment equipment and filtration membrane cleaning method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040414

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060725

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

RD03 Notification of appointment of power of attorney

Effective date: 20060911

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070124