JP3948593B2 - Membrane cleaning method - Google Patents

Membrane cleaning method Download PDF

Info

Publication number
JP3948593B2
JP3948593B2 JP25792899A JP25792899A JP3948593B2 JP 3948593 B2 JP3948593 B2 JP 3948593B2 JP 25792899 A JP25792899 A JP 25792899A JP 25792899 A JP25792899 A JP 25792899A JP 3948593 B2 JP3948593 B2 JP 3948593B2
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
module
water
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25792899A
Other languages
Japanese (ja)
Other versions
JP2001079364A (en
Inventor
武彦 大豊
吉彦 森
超 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP25792899A priority Critical patent/JP3948593B2/en
Publication of JP2001079364A publication Critical patent/JP2001079364A/en
Application granted granted Critical
Publication of JP3948593B2 publication Critical patent/JP3948593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、河川水、湖沼水、伏流水等の上水、工業用水原水、下水、下水二次処理水、工業排水、家庭排水、屎尿、海水などの膜濾過方法を利用した水処理における膜の洗浄方法に関するものである。
【0002】
【従来の技術】
従来、上記の様な原水を膜で濾過すると、該原水中に含まれる、使用する膜の孔径以上の大きさの懸濁物質や有機物は膜で阻止され、いわゆる濃度分極やケーク層を形成すると同時に、該原水中の有機物は膜を目詰まりさせたり、あるいは膜内部の網状組織に吸着する。その結果、原水を濾過した際の膜の濾過流束は、清澄水を濾過した際のそれに比べて数分の1から数十分の1にまで低下してしまい又、濾過の継続に従って濾過流束は徐々に低下していく。
【0003】
また、中空糸膜モジュールを用いたろ過方法のうち、中空糸膜の外表面側から内表面側へろ過する、いわゆる外圧式ろ過方法は、中空糸膜の内表面側から外表面側へろ過する内圧式ろ過方法に比べて、単位容積当たりのろ過に寄与する膜面積が大きく確保可能であるため、造水コストのミニマム化が要求される分野、例えば、上水道を作るための除濁の様な水処理分野に使用されている例があり、その際に、ろ過水をより、安定に採水可能となるように、定期的に物理洗浄を実施するろ過方法が開示されている。
【0004】
具体的には、一定時間濾過後に、濾過水の一部を使用して、膜の濾過水側から原水側へと、濾過とは逆方向に水を流す、逆流洗浄(以後、逆洗と略す)、水で満たされた状態の中空糸膜モジュールの下方から上方へと圧縮空気を供給する事により、糸を揺り動かし、中空糸膜間に蓄積した懸濁物質を系外へ排出する、エアスクラビングがある。
また、特開昭60−19002号公報には、逆洗と共に、中空糸膜収納容器内の中空糸膜の側方または下方に気泡発生ノズルを配置しこのノズルから気体を噴出させる方法が開示されている。
【0005】
【発明が解決しようとする課題】
上記、逆洗やエアスクラビングはいずれも、膜表面及び膜間に蓄積する懸濁物質の排除には、有効な手法であり、ろ過運転をより安定なものとするものであるが、特開昭60−19002号公報に開示されたようなモジュール内に配置された気泡発生ノズルから気体を噴出させる方法では、発生する気泡が小さく、膜表面に蓄積する懸濁物質の量が多い場合、満足な洗浄効果が得られない。そこで、本願の様な原水をモジュールに送る配管の途中に気体を導入し、モジュールに設置された原水導入口を介してモジュールに気体を導入するエアスクラビングを行うと、モジュール内に大きな気体のかたまりを導入することができ、膜が激しく揺れ、洗浄が効率よく行われるが、該懸濁物質を介して膜の外表面同士が擦れ、膜表面が潰れることにより、表面開孔が閉塞し、ろ過運転の安定性が損なわれてしまう場合がある。特に、蓄積する懸濁物質の粒径が大きく、膜表面に蓄積する量が多い時に、上記のような激しいエアスクラビングを行うと、膜表面が傷つく現象が顕著に起こる。さらに、上記現象が継続されると、膜の破損にいたる可能性もある。
【0006】
本発明者らは、膜の洗浄方法について鋭意検討した結果、以下の発明を完成するに至った。
すなわち、本発明は、(1)原水を中空糸膜モジュールに送る配管に気体を導入し、中空糸膜モジュールの膜端部接着固定部の片方に設けられた原水導入口を介して中空糸膜モジュール内に気体を導入すると同時に、中空糸膜の濾水側に、気体または液体を導入して、中空糸膜の濾水側から原水側に気体または液体を透過させる事を特徴とする外圧式濾過中空糸膜の洗浄方法、(2)濁質成分が0.1〜500μmの粒子を含む原水を、(原水の濁度(度))×(洗浄と洗浄の間に膜を透過する水の量(m))/(膜表面積(m))の値が0.001以上である濾過と、上記(1)記載の洗浄を交互に行う外圧式濾過中空糸膜の洗浄方法、に関する。
【0007】
以下、本発明を詳細に説明する。本発明の対象となる原水は、河川水、湖沼水、地下水、貯水、下水二次処理水、工場排水、下水などである。本発明は、濾過中に膜表面に蓄積した懸濁物質の粒径が大きく、中空糸膜表面に蓄積する量が多いときに有効な中空糸(以下中空糸膜を単に膜というときもある)の洗浄方法である。気泡発生ノズルから出た細かいエアーでは洗浄力が劣る場合、原水を中空糸膜モジュール(以下、中空糸膜モジュールを単に膜モジュールあるいはモジュールということもある)に送る配管に気体を導入し、中空糸膜モジュールの膜端部接着固定部の片方に設置された原水導入口を介して中空糸膜モジュールに気体を導入すると、大きな気体のかたまりで激しいエアラビングを行うことができる。この方法は、膜が激しく揺れ、洗浄効果は高いが、一方、懸濁物質を介して膜の該表面が激しく擦れ、膜表面が潰れることにより表面開孔が閉塞し、ろ過運転の安定性が損なわれるおそれがある。これを防ぐために、本発明ではエアスクラビングを行うときに同時に、膜の濾過水側に、気体または液体を導入して、膜の濾水側から原水側に気体または液体を透過させる。この方法によれば、膜面同士が擦れにくくなり、膜表面が潰れることがない。以下各々詳細に述べる。
【0008】
[多孔膜]
多孔膜としては、膜の素材として、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン;テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルキルビニルエーテル共重合体(EPE)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、クロロトリフルオロエチレン−エチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)、ポリ4フッ化エチレン(PTFE)等のフッ素系樹脂;ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド等のスーパーエンジニアリングプラスチック;酢酸セルロース、エチルセルロース等のセルロース類;ポリアクリロニトリル、ポリビニルアルコールの単独及びこれらの混合物、また、セラミック等の無機膜が挙げられる。特に、フッ素系樹脂性膜、無機膜が、耐酸化性に優れるため好ましいが、特に、ポリフッ化ビニリデン(PVDF)膜を使用すれば好ましい。
【0009】
このような多孔膜のうち、その孔径領域が逆浸透膜、ナノフィルター、限外濾過(UF)膜、精密濾過(MF)膜であるものが使用し得るが、基本的に高い濾過流量を有する、限外濾過(UF)膜、精密濾過(MF)膜を使用するのが好ましく、特に、精密濾過(MF)膜を使用するのが好ましい。例えば、平均孔径が0.001〜1μmの膜が好ましく、平均孔径0.05〜1μmの膜がさらに好ましい。
【0010】
多孔膜の形状としては、中空糸状、平膜状など任意の形状を用いることができるが、単位体積当たりの膜面積が大きくとれる中空糸状が好ましい。中空糸状膜の形状としては、ストレート中空糸膜、ウェーブをつけた中空糸膜などがあるが、ウェーブをつけた中空糸膜の方が、濁質の排出性など理由から、好ましい。
一般に、濾過は膜を収納したモジュールを用いて行われる。
【0011】
[膜モジュール]
この発明で使用される膜モジュールは、配管等を介して接続される中空糸膜モジュールに加え、管板のあるタンクや外郭ハウジングに挿入・配置する事によって使用される、カートリッジ型膜モジュールも含まれる。
また、膜モジュールの両側端部接着固定に使用される熱硬化性樹脂の例を挙げると、エポキシ樹脂、ウレタン樹脂、シリコーンゴム等である。また、これらの樹脂にシリカ、カーボンブラック、フッ化カーボン等のフィラーを混入させる事により、樹脂隔壁部の強度向上及び硬化収縮の低減をはかっても良い。
膜モジュールのモジュールケースに使用される材質を例示すると、ポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィン;ポリテトラフルオロエチレン(PTFE)、PFA、FEP、EPE、ETFE、PCTFE、ECTFE、PVDF等のフッ素系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン等の塩素樹脂;ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリルスルホン樹脂、ポリフェニルエーテル樹脂、PMMAなどのアクリル樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂(ABS)、アクリロニトリル−スチレン共重合体樹脂、ポリフェニレンサルファイド樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂の単独及びこれらの混合物、及び、アルミニウム、ステンレス鋼等の金属が挙げられる。
【0012】
膜モジュールの膜端部接着固定部の片方には、原水及びエアスクラビング用気体導入のための孔がもうけられる。孔の大きさは、3mm以上10cm以下が好ましい。孔の大きさが、3mmより小さいと、モジュールに導入された気泡の大きさが小さく、エアスクラビング時に膜の揺れが激しく無く、孔の大きさが10cmより大きいと、モジュール内の膜充填本数を下げるので、好ましくない。
【0013】
[多孔膜の濾過方法]
濾過方式としては、全量濾過方式でもクロスフロー濾過方式でもよい。
また、加圧濾過方式でも陰圧濾過方式でもよいが、加圧濾過方式がより高い濾過流束が得られるため好ましい。
【0014】
[多孔膜の洗浄方法]
本発明の、原水導入配管に気体を導入し、モジュールに設置された原水導入口を介してモジュールに気体を導入するエアスクラビングとは、気体発生ノズルを用いず、原水導入配管に直接気体を注入する単純な装置を用い、モジュールに設置された原水導入口の大きさを制御して、モジュール内の気体の大きさを変え、濾過と濾過の間の洗浄時に、気体を混入させた原水または気体のみを膜モジュール内に供給する事により、モジュール内の膜表面及び膜間に蓄積した懸濁物質を脱離、排出する操作を指す。
【0015】
本発明の、膜の濾水側に、気体または液体を導入して、膜の濾水側から原水側に気体または液体を透過させる逆流洗浄とは、懸濁水をろ過した、ろ水の一部を使用し、膜のろ水側(外圧式ろ過の場合では、内表面側)から原水側(外圧式ろ過の場合では、外表面側)へと、定常状態のろ過とは逆方向に気体または液体の流れを発生させる操作を指す。この場合、気体と液体の混合物を用いることも含まれる。
【0016】
原水導入配管に気体を導入し、モジュールに設置された原水導入口を介してモジュールに気体を導入する事により、モジュール内に配置された気泡発生ノズルから小さい気体を噴出させる方法に比べて、気泡を大きくする事ができるので、膜をより大きく揺らす事ができ、膜の洗浄効果も大きいが、このエアスクラビングを単独で行う場合、該懸濁物質を介して膜の外表面同士がより激しく擦れ、膜表面が潰れることにより、表面開孔が閉塞し、ろ過運転の安定性が損なわれてしまう場合がある。特に、原水の中の粒子の粒径が大きく、従って、濾過中に膜表面に蓄積した懸濁物質の粒径が大きく、膜表面に蓄積する量が多い時に、本願の様な激しいエアスクラビングを行うと、その現象が顕著に起こる。そこで、本発明では、上記エアバブリングを行うときに、同時に、膜の濾水側に、気体または液体を導入して、膜の濾水側から原水側に気体または液体を透過させる逆流洗浄を行うことが必須である。
【0017】
濾過とエアスクラビング、逆流洗浄のそれぞれの時間は、適宜選択出来、濾過流量の回復性と、濾過水の回収率を勘案して、適宜決めればよい。
通常、洗浄と洗浄の間の濾過時間の1/10000〜1/5の時間をエアバブリング、逆流洗浄の時間にあてる事が好ましい。1/10000より頻度が少ないと、洗浄効果が少なく、1/5より頻度が多いと、濾水の回収率が悪いので、好ましくない。
【0018】
エアスクラビングの供給エアーの単位時間あたりの流量は標準状態において、単位時間あたりの濾過流量の0.1〜20倍の流量を供給するのが好ましく、0.5〜10倍の流量であることがより好ましい。これらの流量以下では、洗浄効果が低く、これら流量以上では、膜の乾燥等が起こる可能性がある。
逆流洗浄の気体、液体、気体及び液体の単位時間あたりの逆洗流量は、濾水回収率と膜擦れ合い防止とのかね合いから、単位時間あたりの濾過流量の0.01〜10倍の流量が好ましく、0.1〜3倍の流量が特に好ましい。これら逆洗流量より低いと、膜の擦れ合いを防止する効果が低く、洗浄の効果も低くなり、これら単位時間あたりの逆洗流量より、流量が高いと、濾水の回収率低くなり、好ましくない。
【0019】
本発明によれば、エアスクラビングにより気体を導入する際は常に逆流洗浄と同時に行うと良いが、気体の導入(同時に逆流洗浄)に先立ち逆流洗浄のみを行っても良い。あるいは気体の導入(同時に逆流洗浄)を行った後逆流洗浄のみを行っても良い。
さらに、同時に原水を導入しながら気体を導入し同時に逆流洗浄しても良いし、原水を導入せずに行っても良い。あるいは、これらを交互に組み合わせても良い。
気体の導入(同時に逆流洗浄)に先立ち原水のみ導入を行っても良い。あるいは気体の導入(同時に逆流洗浄)を行った後原水のみ導入を行っても良い。
【0020】
[原水水質]
本発明の原水に含まれる濁質成分とは、鉄、マンガン、アルミニウム、シリコン等の金属及びその酸化物の単独及び混合物、及び/又は、それらが、有機物、例えば、フミン酸、フルボ酸等により凝集したものを指し、該微粒子の大きさは、0.1〜500μmの範囲内のものを含むものである。河川水等には、それ以上の粒径の粒子も含まれているが、通常、膜モジュールに導入される原水は、スクリーンメッシュ等による前処理が行われるので500μmを超える様な微粒子がろ過膜モジュールへ供給される可能性は、極めて少ない。本発明のろ過方法でいう、微粒子の粒径は、レーザー回折/散乱式の粒度分布測定装置により、測定した値である。
【0021】
また、本発明の濁度とは、日間平均濁度であり、JIS K0101 9.2に準拠して複数日、測定し、平均した値である。
本願の様な、原水をモジュールに送る配管の途中に気体を導入し、モジュールに設置された原水導入口を介してモジュールに気体を導入するエアスクラビングを逆流洗浄と別に行う場合、そのエアスクラビングを行う時点で単位膜面積あたりに蓄積している濁質の量が多いと、膜表面がより傷つく。単位膜面積(m2 )を洗浄と洗浄の間に透過する総濾過水量(m3 )とその原水の濁度(度)を乗じた値が0.01以上の場合、上記の様な、激しいエアスクラビングを単独で行うと、膜表面が傷つくが、本発明によれば、高い膜濾過流束で、高品質の処理水が得られる。
【0022】
【発明の実施の形態】
以下、この発明に用いられる膜及び、膜モジュールの製法例と、懸濁水のろ過方法の例を説明する。
なお、例3〜6の濁度、粒度の測定は、
濁度:測定装置は、島津製作所製のUV−160A、50mmセルを使用し、測定方法は、JIS K0101 9.2に準拠して実施した。
微粒子の粒径:測定装置は、堀場製作所製のLA−910粒度分布計を使用して測定した。
【0023】
【例1】
(膜の製造例)
PVDFパウダー(呉羽化学社製、KF#1000)、疎水性シリカ(日本アエロジル社製、R−972[平均1次粒子径0.016μm、比表面積110m2 /g、Mw値=50%])、DOP(チッソ社製、CSサイザー)、DBP(チッソ社製)をそれぞれ40.0/23.0/30.8/6.2重量部取り分け、ヘンシェルミキサーにより混合した後、2軸押し出し機により、ペレットを作成した。
【0024】
上記ペレットを、バレル温度260℃、ヘッド温度235℃、紡口温度230℃の温度条件の2軸押し出し機から、寸法:1.70mmφ/0.90mmφ/0.50mmφの2重紡口を経て、紡口から30cm下方の温度40℃の冷却・固化浴(水温40℃の温水)中に溶融押し出しした。
この中空糸膜をワインダーに巻き取り、該中空糸膜束をジクロロメタンを使用し、以下の抽出条件で中空糸膜中のDOPとDBPを抽出した。
【0025】
処理条件:室温(25〜27℃)、中空糸膜の単純体積(内/外径、長さより算出)に対する該ジクロロメタンの体積:20倍量、処理時間:5時間。
次に50%エタノール水溶液に上記中空糸膜束を30分浸漬し、次いで、重量パーセント濃度20%の水酸化ナトリウム水溶液を使用し、以下の抽出条件で中空糸膜中のシリカを抽出した。
処理温度:60℃、中空糸膜の単純体積(内/外径、長さより算出)に対する該水溶液の体積:20倍量(疎水性シリカに対する当量比で8倍当量)、処理時間:2時間。
【0026】
その後、該水酸化ナトリウム水溶液と同一体積の60℃温水での温水洗浄を1時間行い、この温水洗浄を合計10回繰り返した。
以上により、内/外径:0.70/1.25mmφ、空孔率70%、平均孔径0.18μmである中空糸多孔質膜を得た。
【0027】
【例2】
(膜モジュールの製造例)
例1で製膜した中空糸多孔質膜を1800本束ねた。
次に、この束の片側端面中空部を目止め処理した後、内径83mmφ、長さ1000mmの、ポリ塩化ビニル製円筒状モジュールケースに収納し、目止め処理を行った端部には、接着冶具のみを、他方端部には、中空糸多孔質膜と平行に、外径 11mmφのポリプロピレン製棒状物を合計5本配置した後に接着冶具を取り付けた。上記、接着冶具が両側に取り付けられたモジュールケースを2液性エポキシ接着剤により、遠心注型を行った。
【0028】
遠心注型終了後、接着冶具、ポリプロピレン製棒状物を取り除き、目止め処理を行った側の接着端部を切断し、中空糸中空部を開口させた。
以上の様にして、中空糸膜モジュールを作成した。
この膜モジュールをエタノールで親水化し、さらに、水への置換処理を行った後、純水透過水量を測定した。
その後、1気圧の圧縮空気により、リーク検査を行ったが、リークの発生は、確認されなかった。
【0029】
【例3】
(実施例)
例2の中空糸膜モジュールを使用して、原水1として、濁度が0.1〜5度、水中の微粒子の粒径が0.9〜30μm(中央値は、9μm)、水温が12℃の河川表流水を用いた。図1に示すように、原水1は循環タンク2を経て原水供給ポンプ3により膜モジュール4へ圧送され、得られた濾過水は濾水タンク5に貯められる。逆洗時に、濾水タンク5中の濾過水は逆洗ポンプ6により膜モジュール4に送られる。また、エアーバブリングは、コンプレッサー7で発生した空気を、膜モジュール4の1次側の原水導入配管に注入して行った。
【0030】
濾過は膜モジュール4へ原水1を一定流量8.4m3 /m2 /日で供給する定流量濾過とし、また、膜濾過水量と循環水量の比を1対1としたクロスフロー方式で行い、濾過水量は、一定水量4.2m3 /m2 /日で運転した。
運転条件は、濾過を20分間行った後、濾水による逆流洗浄を20秒間行うという操作を繰り返し、1時間毎に濾過水による逆流洗浄と毎時2Nm3 の空気によるエアースクラビングを同時に2分間行った。
(原水の濁度(度))×(洗浄と洗浄の間に膜を透過する総濾過水量(m3 ))/(膜表面積(m2 ))の値は0.44であった。
【0031】
上記運転条件で12ヶ月間運転した後の膜間平均差圧は、1.9kg/cm2 、であった。その後、モジュールを装置から取り外し、リーク検査を行ったが、リークは確認されなかった。また、運転後の膜モジュールを解体し、単糸を次亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸と硝酸の混合液で薬品洗浄した後、純水透水量を測定したところ、未使用の膜の透水量の95%に相当する透水量であり、膜外表面を倍率5,000倍の走査型電子顕微鏡で観察したところ、膜の外表面の傷つきは軽微であった。
【0032】
【例4】
(実施例)
例3で使用したのと同じモジュールを使用し、膜濾過の運転条件を、濾過を60分間行った後、濾過水による逆流洗浄と空気を用いたエアースクラビングを同時に2分間行う運転方式に変更した以外は例3と、同じ実験を行った。
(原水の濁度(度))×(洗浄と洗浄の間に膜を透過する総濾過水量(m3 ))/(膜表面積(m2 ))の値は0.44であった。
【0033】
上記運転条件で12ヶ月間運転した後の膜間平均差圧は、2.1kg/cm2 であった。その後、モジュールを装置から取り外し、リーク検査を行ったが、リークは確認されなかった。また、運転後の膜モジュールを解体し、単糸を次亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸と硝酸の混合液で薬品洗浄した後、純水透水量を測定したところ、未使用の膜の透水量の95%に相当する透水量であり、膜外表面を倍率5,000倍の走査型電子顕微鏡で観察したところ、膜の外表面の傷つきは軽微であった。
【0034】
【例5】
(比較例)
例3において、濾過水による逆流洗浄と空気を用いたエアースクラビングを同時に行うのに換えて、エアーのみのスクラビングを行って、例3と同様の実験を行った。
6ヶ月後の膜間平均差圧は、2.5kg/cm2 であり、これ以上の濾過運転の継続はできなかった。また、運転後の膜モジュールを解体し、単糸を次亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸と硝酸の混合液で薬品洗浄した後、純水透水量を測定したところ、未使用の膜の透水量の80%に相当する透水量であった。膜外表面を倍率5,000倍の走査型電子顕微鏡で観察したところ、膜表面が荒れ、膜表面の開孔の一部が閉塞しており、透過水量の低下の要因と推定された。
【0035】
【例6】
(比較例)
例5において、原水1を、濁度0.1度の水に変更し、膜濾過の運転条件を、濾過3分間行った後、エアーのみのスクラビングに変更した以外は例5と、同じ実験を行った。
(原水の濁度(度))×(洗浄と洗浄の間に膜を透過する総濾過水量(m3 ))/(膜表面積(m2 ))の値は0.009であった。
上記運転条件で12ヶ月間運転した後の膜間平均差圧は、2.5kg/cm2 であり、これ以上の濾過運転の継続はできなかった。その後、モジュールを装置から取り外し、リーク検査を行ったが、リークは確認されなかった。また、運転後の膜モジュールを解体し、単糸を次亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸と硝酸の混合液で薬品洗浄した後、純水透水量を測定したところ、未使用の膜の透水量の95%に相当する透水量であり、膜外表面を倍率5,000倍の走査型電子顕微鏡で観察したところ、膜の外表面の傷つきは軽微であった。
【0036】
【例7】
(比較例)
例3で使用したのと同じモジュールを使用し、コンプレッサー7で発生した圧縮空気を、モジュール内の膜下方に設置した、2mmのノズル孔径を持った気泡発生ノズルを通し、エアスクラビングを行った以外は、例3と、同じ実験を行った。上記運転条件で3ヶ月間運転した後の膜間平均差圧は、2.5kg/cm2 であり、これ以上の濾過運転の継続はできなかった。。その後、モジュールを装置から取り外し、リーク検査を行ったが、リークは確認されなかった。また、運転後の膜モジュールを解体し、単糸を次亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸と硝酸の混合液で薬品洗浄した後、純水透水量を測定したところ、未使用の膜の透水量の95%に相当する透水量であり、膜外表面を倍率5,000倍の走査型電子顕微鏡で観察したところ、膜の外表面の傷つきは軽微であった。
【0037】
【発明の効果】
本発明によれば、膜を傷つけずに効果的に洗浄を行う事ができ、この結果、長期間に渡って高い膜濾過流束を維持することが可能である。
【図面の簡単な説明】
【図1】 本発明の膜の洗浄方法を組み込んだ処理フローの一例を示したものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a membrane in water treatment using a membrane filtration method such as river water, lake water, underground water, etc., raw water for industrial use, sewage, secondary treated water for sewage, industrial wastewater, domestic wastewater, manure, seawater, etc. This relates to a cleaning method.
[0002]
[Prior art]
Conventionally, when raw water as described above is filtered through a membrane, suspended substances and organic substances having a size larger than the pore size of the membrane to be used are blocked by the membrane, and so-called concentration polarization and a cake layer are formed. At the same time, the organic matter in the raw water clogs the membrane or adsorbs to the network inside the membrane. As a result, the filtration flux of the membrane when the raw water is filtered is reduced from a fraction to a few tenths compared with that when the clear water is filtered. The bundle gradually decreases.
[0003]
Of the filtration methods using the hollow fiber membrane module, the so-called external pressure filtration method that filters from the outer surface side of the hollow fiber membrane to the inner surface side is a filtration from the inner surface side of the hollow fiber membrane to the outer surface side. Compared to the internal pressure filtration method, it is possible to secure a large membrane area that contributes to filtration per unit volume, so it is necessary to minimize water production costs, such as turbidity for making waterworks. There is an example used in the field of water treatment, and a filtration method is periodically disclosed in which physical cleaning is periodically performed so that filtrated water can be collected more stably.
[0004]
Specifically, after filtration for a certain period of time, a part of the filtered water is used to flow water from the filtered water side of the membrane to the raw water side in the opposite direction to the filtration, backwashing (hereinafter abbreviated as backwashing). ) By supplying compressed air from the bottom to the top of the hollow fiber membrane module filled with water, the yarn is rocked and the suspended matter accumulated between the hollow fiber membranes is discharged out of the system. There is.
Japanese Patent Application Laid-Open No. 60-19002 discloses a method of arranging a bubble generating nozzle on the side or lower side of the hollow fiber membrane in the hollow fiber membrane storage container together with backwashing and ejecting gas from the nozzle. ing.
[0005]
[Problems to be solved by the invention]
Both the above-described backwashing and air scrubbing are effective techniques for eliminating suspended substances accumulated on the membrane surface and between the membranes, and make the filtration operation more stable. In the method of ejecting gas from the bubble generating nozzle arranged in the module as disclosed in Japanese Patent Application Laid-Open No. 60-19002, it is satisfactory when the generated bubbles are small and the amount of suspended substances accumulated on the membrane surface is large. The cleaning effect cannot be obtained. Therefore, when air scrubbing is performed to introduce gas into the module through the raw water introduction port installed in the module, gas is introduced in the middle of the pipe for sending raw water to the module as in the present application, and a large mass of gas is contained in the module. The membrane is vigorously shaken and the washing is performed efficiently, but the outer surfaces of the membrane are rubbed through the suspended substance, and the membrane surface is crushed, thereby clogging the surface pores and filtering. Operation stability may be impaired. In particular, when the particle size of the accumulated suspended substance is large and the amount accumulated on the membrane surface is large, the above-described intense air scrubbing causes a remarkable phenomenon that the membrane surface is damaged. Furthermore, if the above phenomenon continues, there is a possibility of film breakage.
[0006]
As a result of intensive studies on the film cleaning method, the present inventors have completed the following invention.
The present invention provides: (1) raw water introduced gas pipe to send to the hollow fiber membrane module, the hollow fiber membranes through the raw water inlet port provided on one film edge bonded and fixed portions of the hollow fiber membrane module and at the same time introducing gas into the module, the drainage side of the hollow fiber membranes, by introducing a gas or liquid, external pressure, characterized in that to transmit gas or liquid from the drainage side of the hollow fiber membrane to the raw water side the method of cleaning a filtration hollow fiber membrane, (2) turbid component is a raw water containing particles of 0.1 to 500 [mu] m, the water passing through the membrane between the cleaning and (turbidity of raw water (degree)) × (wash The present invention relates to a method for cleaning an external pressure filtration hollow fiber membrane in which the value (amount (m 3 )) / (membrane surface area (m 2 )) is 0.001 or more and the cleaning described in (1) above are alternately performed.
[0007]
Hereinafter, the present invention will be described in detail. The raw water that is the subject of the present invention is river water, lake water, ground water, stored water, secondary sewage treatment water, factory waste water, sewage, and the like. The present invention is larger the particle size of the suspended solids accumulated on the membrane surface during filtration is also the term effective hollow fiber membrane (hereinafter hollow fiber membrane simply film when the amount of accumulating on the surface of the hollow fiber membrane is large ) Cleaning method. If the detergency is inferior in fine air exiting from the gas bubble generating nozzle, a hollow fiber membrane module (hereinafter, a hollow fiber membrane module may be simply referred to as membrane module or modules) raw gas is introduced into the pipe to be sent to the hollow fiber When gas is introduced into the hollow fiber membrane module through the raw water inlet provided on one side of the membrane end adhesive fixing portion of the membrane module, intense air rubbing can be performed with a large mass of gas. In this method, the membrane shakes violently and the cleaning effect is high. On the other hand, the surface of the membrane is rubbed vigorously through suspended substances, and the membrane surface is crushed to clog the surface pores, which makes the filtration operation stable. There is a risk of damage. In order to prevent this, in the present invention, simultaneously with air scrubbing, gas or liquid is introduced into the filtered water side of the membrane, and the gas or liquid is permeated from the filtered water side of the membrane to the raw water side. According to this method, the film surfaces are hardly rubbed and the film surface is not crushed. Each will be described in detail below.
[0008]
[Porous membrane]
As a porous membrane, polyolefin such as polyethylene, polypropylene and polybutene; tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoro Ethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene-ethylene copolymer (ECTFE) , Fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE); polysulfone, polyethersulfone, polyetherketone, polyetheretherketo , Super engineering plastics such as polyphenylene sulfide; cellulose such as cellulose acetate, ethyl cellulose; polyacrylonitrile, alone and mixtures of these polyvinyl alcohols also include inorganic film such as a ceramic. In particular, a fluorine-based resin film and an inorganic film are preferable because of excellent oxidation resistance, but it is particularly preferable to use a polyvinylidene fluoride (PVDF) film.
[0009]
Among such porous membranes, those whose pore size region is a reverse osmosis membrane, nanofilter, ultrafiltration (UF) membrane, or microfiltration (MF) membrane can be used, but basically have a high filtration flow rate. It is preferable to use an ultrafiltration (UF) membrane or a microfiltration (MF) membrane, and it is particularly preferable to use a microfiltration (MF) membrane. For example, a membrane having an average pore diameter of 0.001 to 1 μm is preferable, and a membrane having an average pore diameter of 0.05 to 1 μm is more preferable.
[0010]
As the shape of the porous membrane, an arbitrary shape such as a hollow fiber shape or a flat membrane shape can be used, but a hollow fiber shape that allows a large membrane area per unit volume is preferable. As the shape of the hollow fiber membrane, there are a straight hollow fiber membrane, a waved hollow fiber membrane, etc., but a waved hollow fiber membrane is preferred for reasons such as turbidity discharge.
In general, filtration is performed using a module containing a membrane.
[0011]
[Membrane module]
The membrane module used in the present invention includes a cartridge type membrane module that is used by being inserted and arranged in a tank having a tube plate or an outer housing in addition to a hollow fiber membrane module connected via a pipe or the like. It is.
Further, examples of the thermosetting resin used for adhesion fixing of both side end portions of the membrane module include epoxy resin, urethane resin, and silicone rubber. Further, by mixing fillers such as silica, carbon black, and carbon fluoride into these resins, the strength of the resin partition walls may be improved and the curing shrinkage may be reduced.
Examples of materials used for the module case of the membrane module include polyolefins such as polyethylene, polypropylene, and polybutene; fluorine resins such as polytetrafluoroethylene (PTFE), PFA, FEP, EPE, ETFE, PCTFE, ECTFE, and PVDF; Chlorine resins such as polyvinyl chloride and polyvinylidene chloride; polysulfone resin, polyether sulfone resin, polyallyl sulfone resin, polyphenyl ether resin, acrylic resin such as PMMA, acrylonitrile-butadiene-styrene copolymer resin (ABS), acrylonitrile -Styrene copolymer resin, polyphenylene sulfide resin, polyamide resin, polycarbonate resin, polyetherketone resin, polyetheretherketone resin alone and mixtures thereof, Beauty, aluminum, and a metal such as stainless steel.
[0012]
A hole for introducing gas for raw water and air scrubbing is provided on one side of the membrane end adhesive fixing portion of the membrane module. The size of the hole is preferably 3 mm or more and 10 cm or less. If the size of the hole is smaller than 3 mm, the size of the bubble introduced into the module is small, the membrane does not shake vigorously during air scrubbing, and if the size of the hole is larger than 10 cm, the number of membranes filled in the module is reduced. Since it lowers, it is not preferable.
[0013]
[Filtering method of porous membrane]
The filtration method may be a whole amount filtration method or a cross flow filtration method.
Moreover, although a pressure filtration system or a negative pressure filtration system may be used, the pressure filtration system is preferable because a higher filtration flux can be obtained.
[0014]
[Porous membrane cleaning method]
In the present invention, air scrubbing that introduces gas into the raw water introduction pipe and introduces gas into the module through the raw water introduction port installed in the module means that gas is directly injected into the raw water introduction pipe without using a gas generation nozzle. Using a simple device, control the size of the raw water inlet installed in the module, change the size of the gas in the module, and raw water or gas mixed with gas during washing between filtrations This refers to the operation of removing and discharging suspended substances accumulated between the membrane surface and the membrane in the module by supplying only the membrane module into the membrane module.
[0015]
In the present invention, reverse flow washing in which gas or liquid is introduced into the filtrate side of the membrane and gas or liquid is permeated from the filtrate side to the raw water side of the membrane is a part of the filtrate obtained by filtering the suspended water. From the filtrate side of the membrane (inner surface side in the case of external pressure filtration) to the raw water side (outer surface side in the case of external pressure filtration). An operation that generates a flow of liquid. In this case, the use of a mixture of gas and liquid is also included.
[0016]
Compared with the method in which gas is introduced into the raw water introduction pipe and gas is introduced into the module via the raw water introduction port installed in the module, a small gas is ejected from the bubble generating nozzle arranged in the module. Therefore, when the air scrubbing is carried out alone, the outer surfaces of the membrane are rubbed more vigorously through the suspended solids. When the membrane surface is crushed, the surface opening may be blocked, and the stability of the filtration operation may be impaired. Especially when the particle size of the particles in the raw water is large, and therefore the particle size of the suspended matter accumulated on the membrane surface during filtration is large and the amount accumulated on the membrane surface is large, the intense air scrubbing as in the present application is performed. When done, the phenomenon is noticeable. Therefore, in the present invention, when performing the above-mentioned air bubbling, at the same time, a gas or liquid is introduced into the filtrate side of the membrane, and reverse flow cleaning is performed so that the gas or liquid permeates from the filtrate side of the membrane to the raw water side. It is essential.
[0017]
The respective times of filtration, air scrubbing, and backwashing can be selected as appropriate, and may be determined as appropriate in consideration of the recoverability of the filtration flow rate and the collected water recovery rate.
Usually, it is preferable to spend 1/10000 to 1/5 of the filtration time between washings for air bubbling and backwashing. If the frequency is less than 1/10000, the washing effect is small, and if the frequency is more than 1/5, the recovery rate of filtrate is poor, which is not preferable.
[0018]
The air scrubbing supply air flow rate per unit time is preferably 0.1 to 20 times the filtration flow rate per unit time in the standard state, and preferably 0.5 to 10 times the flow rate. More preferred. Below these flow rates, the cleaning effect is low, and above these flow rates, there is a possibility of film drying and the like.
The backwashing flow rate per unit time of the backwashing gas, liquid, gas and liquid is 0.01 to 10 times the filtration flow rate per unit time due to the balance between the filtrate recovery rate and the prevention of membrane rubbing. A flow rate of 0.1 to 3 times is particularly preferable. If the flow rate is lower than the backwash flow rate, the effect of preventing the membrane from rubbing is low, and the cleaning effect is also low.If the flow rate is higher than the backwash flow rate per unit time, the recovery rate of the filtrate is lowered. Absent.
[0019]
According to the present invention, when gas is introduced by air scrubbing, it is preferably always performed simultaneously with back-flow cleaning, but only back-flow cleaning may be performed prior to introduction of gas (simultaneously back-flow cleaning). Alternatively, after the introduction of gas (simultaneous backwashing), only backwashing may be performed.
Further, the gas may be introduced while the raw water is introduced at the same time, and the backflow cleaning may be performed at the same time, or the raw water may not be introduced. Alternatively, these may be combined alternately.
Prior to the introduction of gas (simultaneous backwashing), only raw water may be introduced. Alternatively, only raw water may be introduced after the introduction of gas (simultaneous backwashing).
[0020]
[Raw water quality]
The turbid component contained in the raw water of the present invention is a single or mixture of metals such as iron, manganese, aluminum, silicon and their oxides and / or their organic substances such as humic acid, fulvic acid, etc. It refers to agglomerated particles, and the size of the fine particles includes those in the range of 0.1 to 500 μm. River water and the like contain particles with a particle size larger than that. Normally, the raw water introduced into the membrane module is pretreated with a screen mesh or the like, so fine particles exceeding 500 μm are filtered. The possibility of being supplied to the module is very low. The particle diameter of the fine particles referred to in the filtration method of the present invention is a value measured by a laser diffraction / scattering particle size distribution measuring apparatus.
[0021]
Moreover, the turbidity of this invention is a daily average turbidity, and is the value which measured and averaged several days based on JISK0101 9.2.
When air scrubbing that introduces gas into the module through the raw water introduction port installed in the module is performed separately from backwashing, as in this application, When the amount of turbidity accumulated per unit membrane area at the time of performing is large, the membrane surface is more damaged. If the unit membrane area (m 2 ) multiplied by the total amount of filtered water (m 3 ) permeated between washings and the turbidity (degree) of the raw water is 0.01 or more, When air scrubbing is performed alone, the membrane surface is damaged, but according to the present invention, high-quality treated water can be obtained with a high membrane filtration flux.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the example of the manufacturing method of the membrane used for this invention and a membrane module, and the example of the filtration method of suspension water are demonstrated.
In addition, the measurement of the turbidity and the particle size in Examples 3 to 6,
Turbidity: As a measuring device, UV-160A, 50 mm cell manufactured by Shimadzu Corporation was used, and a measuring method was performed in accordance with JIS K0101 9.2.
Particle size of fine particles: The measuring device was measured using an LA-910 particle size distribution meter manufactured by Horiba.
[0023]
[Example 1]
(Example of membrane production)
PVDF powder (manufactured by Kureha Chemical Co., KF # 1000), hydrophobic silica (manufactured by Nippon Aerosil Co., Ltd., R-972 [average primary particle diameter 0.016 μm, specific surface area 110 m 2 / g, Mw value = 50%]), DOP (manufactured by Chisso Corporation, CS sizer) and DBP (manufactured by Chisso Corporation) are respectively separated by 40.0 / 23.0 / 30.8 / 6.2 parts by weight, mixed with a Henschel mixer, and then with a twin screw extruder, Pellets were made.
[0024]
From the twin screw extruder having the barrel temperature of 260 ° C., the head temperature of 235 ° C., and the spinneret temperature of 230 ° C., the pellets passed through the double spinneret with dimensions of 1.70 mmφ / 0.90 mmφ / 0.50 mmφ, The melt was extruded into a cooling / solidification bath (warm water with a water temperature of 40 ° C.) at a temperature of 40 ° C. 30 cm below the spinning nozzle.
The hollow fiber membrane was wound around a winder, and the hollow fiber membrane bundle was extracted with dichloromethane using the following extraction conditions to extract DOP and DBP.
[0025]
Treatment conditions: room temperature (25-27 ° C.), volume of dichloromethane relative to simple volume of hollow fiber membrane (calculated from inner / outer diameter, length): 20 times amount, treatment time: 5 hours.
Next, the hollow fiber membrane bundle was immersed in a 50% ethanol aqueous solution for 30 minutes, and then a silica solution in the hollow fiber membrane was extracted under the following extraction conditions using a sodium hydroxide aqueous solution having a weight percent concentration of 20%.
Treatment temperature: 60 ° C., volume of the aqueous solution with respect to the simple volume of hollow fiber membrane (inner / outer diameter, calculated from length): 20 times the amount (equivalent ratio to hydrophobic silica is 8 times equivalent), treatment time: 2 hours.
[0026]
Thereafter, warm water washing with 60 ° C. warm water in the same volume as the aqueous sodium hydroxide solution was performed for 1 hour, and this warm water washing was repeated a total of 10 times.
Thus, a hollow fiber porous membrane having an inner / outer diameter of 0.70 / 1.25 mmφ, a porosity of 70%, and an average pore diameter of 0.18 μm was obtained.
[0027]
[Example 2]
(Production example of membrane module)
1800 hollow fiber porous membranes formed in Example 1 were bundled.
Next, after sealing the hollow portion on one side of the bundle, it is housed in a cylindrical module case made of polyvinyl chloride having an inner diameter of 83 mmφ and a length of 1000 mm. On the other end, a total of five polypropylene rods having an outer diameter of 11 mmφ were arranged in parallel with the hollow fiber porous membrane, and then an adhesive jig was attached. The module case with the bonding jig attached on both sides was subjected to centrifugal casting with a two-component epoxy adhesive.
[0028]
After completion of the centrifugal casting, the bonding jig and the polypropylene rod were removed, the bonded end on the side subjected to the sealing treatment was cut, and the hollow portion of the hollow fiber was opened.
A hollow fiber membrane module was produced as described above.
The membrane module was hydrophilized with ethanol, and further subjected to a substitution treatment with water, and then the amount of pure water permeated water was measured.
Thereafter, a leak test was performed with 1 atmosphere of compressed air, but no occurrence of leak was confirmed.
[0029]
[Example 3]
(Example)
Using the hollow fiber membrane module of Example 2, as raw water 1, the turbidity is 0.1 to 5 degrees, the particle size of fine particles in water is 0.9 to 30 μm (median is 9 μm), and the water temperature is 12 ° C. The river surface water was used. As shown in FIG. 1, raw water 1 is pumped to a membrane module 4 by a raw water supply pump 3 through a circulation tank 2, and the filtrate water obtained is stored in a filtrate tank 5. At the time of backwashing, the filtrate in the filtrate tank 5 is sent to the membrane module 4 by the backwash pump 6. The air bubbling was performed by injecting air generated by the compressor 7 into the raw water introduction pipe on the primary side of the membrane module 4.
[0030]
Filtration is a constant flow filtration that supplies raw water 1 to the membrane module 4 at a constant flow rate of 8.4 m 3 / m 2 / day. The filtrate was operated at a constant water volume of 4.2 m 3 / m 2 / day.
The operating condition was that filtration was performed for 20 minutes, and then backwashing with filtered water was performed for 20 seconds. Backwashing with filtered water and air scrubbing with 2 Nm 3 of air per hour were performed simultaneously for 2 minutes. .
The value of (turbidity (degree) of raw water) × (total amount of filtered water permeating through the membrane between washings (m 3 )) / (membrane surface area (m 2 )) was 0.44.
[0031]
The average transmembrane pressure difference after operating for 12 months under the above operating conditions was 1.9 kg / cm 2 . Thereafter, the module was removed from the apparatus and a leak test was performed, but no leak was confirmed. The membrane module after operation was disassembled, and the single yarn was chemically washed with a mixture of sodium hypochlorite and caustic soda, and a mixture of oxalic acid and nitric acid. When the outer surface of the membrane was observed with a scanning electron microscope at a magnification of 5,000 times, the outer surface of the membrane was slightly damaged.
[0032]
[Example 4]
(Example)
The same module used in Example 3 was used, and the membrane filtration operation conditions were changed to an operation method in which filtration was performed for 60 minutes, and then backwashing with filtered water and air scrubbing using air were simultaneously performed for 2 minutes. The same experiment as Example 3 was performed except that.
The value of (turbidity (degree) of raw water) × (total amount of filtered water permeating through the membrane between washings (m 3 )) / (membrane surface area (m 2 )) was 0.44.
[0033]
The average transmembrane pressure difference after operating for 12 months under the above operating conditions was 2.1 kg / cm 2 . Thereafter, the module was removed from the apparatus and a leak test was performed, but no leak was confirmed. The membrane module after operation was disassembled, and the single yarn was chemically washed with a mixture of sodium hypochlorite and caustic soda, and a mixture of oxalic acid and nitric acid. When the outer surface of the membrane was observed with a scanning electron microscope at a magnification of 5,000 times, the outer surface of the membrane was slightly damaged.
[0034]
[Example 5]
(Comparative example)
In Example 3, instead of performing backwashing with filtered water and air scrubbing using air at the same time, scrubbing only with air was performed and the same experiment as in Example 3 was performed.
The transmembrane average pressure difference after 6 months was 2.5 kg / cm 2 , and the filtration operation could not be continued any more. The membrane module after operation was disassembled, and the single yarn was chemically washed with a mixture of sodium hypochlorite and caustic soda, and a mixture of oxalic acid and nitric acid. The water permeability was equivalent to 80% of the water permeability. When the outer surface of the membrane was observed with a scanning electron microscope at a magnification of 5,000, the membrane surface was rough and a part of the pores on the membrane surface was blocked, which was presumed to be a cause of a decrease in the amount of permeated water.
[0035]
[Example 6]
(Comparative example)
In Example 5, the same experiment as Example 5 was performed except that raw water 1 was changed to water having a turbidity of 0.1 degree, and the membrane filtration operation conditions were changed to scrubbing only with air after performing filtration for 3 minutes. went.
The value of (turbidity (degree) of raw water) × (total amount of filtered water permeating through the membrane between washings (m 3 )) / (membrane surface area (m 2 )) was 0.009.
The transmembrane average differential pressure after operating for 12 months under the above operating conditions was 2.5 kg / cm 2 , and the filtration operation could not be continued any further. Thereafter, the module was removed from the apparatus and a leak test was performed, but no leak was confirmed. The membrane module after operation was disassembled, and the single yarn was chemically washed with a mixture of sodium hypochlorite and caustic soda, and a mixture of oxalic acid and nitric acid. When the outer surface of the membrane was observed with a scanning electron microscope at a magnification of 5,000 times, the outer surface of the membrane was slightly damaged.
[0036]
[Example 7]
(Comparative example)
The same module as used in Example 3 was used, except that the compressed air generated by the compressor 7 was passed through a bubble generating nozzle having a nozzle hole diameter of 2 mm installed below the membrane in the module, and air scrubbing was performed. Conducted the same experiment as Example 3. The transmembrane average differential pressure after operating for 3 months under the above operating conditions was 2.5 kg / cm 2 , and further filtration operation could not be continued. . Thereafter, the module was removed from the apparatus and a leak test was performed, but no leak was confirmed. The membrane module after operation was disassembled, and the single yarn was chemically washed with a mixture of sodium hypochlorite and caustic soda, and a mixture of oxalic acid and nitric acid. When the outer surface of the membrane was observed with a scanning electron microscope at a magnification of 5,000 times, the outer surface of the membrane was slightly damaged.
[0037]
【The invention's effect】
According to the present invention, cleaning can be performed effectively without damaging the membrane, and as a result, a high membrane filtration flux can be maintained over a long period of time.
[Brief description of the drawings]
FIG. 1 shows an example of a processing flow incorporating a film cleaning method of the present invention.

Claims (1)

原水を中空糸膜モジュールに送る配管に気体を導入し、中空糸膜モジュールの膜端部接着固定部の片方に設けられた原水導入口を介して中空糸膜モジュール内に気体を導入すると同時に、中空糸膜の濾水側に、気体または液体を導入して、中空糸膜の濾水側から原水側に気体または液体を透過させる事を特徴とする外圧式濾過中空糸膜の洗浄方法。At the same time as introducing the gas into the pipe that sends the raw water to the hollow fiber membrane module, and introducing the gas into the hollow fiber membrane module through the raw water inlet provided on one side of the membrane end adhesive fixing part of the hollow fiber membrane module, A method for cleaning an external pressure filtration hollow fiber membrane, wherein a gas or a liquid is introduced into the filtrate side of the hollow fiber membrane, and the gas or liquid is allowed to permeate from the filtrate side of the hollow fiber membrane to the raw water side.
JP25792899A 1999-09-10 1999-09-10 Membrane cleaning method Expired - Lifetime JP3948593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25792899A JP3948593B2 (en) 1999-09-10 1999-09-10 Membrane cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25792899A JP3948593B2 (en) 1999-09-10 1999-09-10 Membrane cleaning method

Publications (2)

Publication Number Publication Date
JP2001079364A JP2001079364A (en) 2001-03-27
JP3948593B2 true JP3948593B2 (en) 2007-07-25

Family

ID=17313153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25792899A Expired - Lifetime JP3948593B2 (en) 1999-09-10 1999-09-10 Membrane cleaning method

Country Status (1)

Country Link
JP (1) JP3948593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077742A1 (en) 2010-12-09 2012-06-14 東レ株式会社 Method for producing chemical by continuous fermentation
WO2022114222A1 (en) * 2020-11-30 2022-06-02 旭化成株式会社 Method for washing hollow fiber membrane module

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3702419B2 (en) * 2002-03-15 2005-10-05 水道機工株式会社 Membrane filtration module cleaning method and membrane filtration apparatus
JP5061288B2 (en) * 2003-11-28 2012-10-31 独立行政法人農業・食品産業技術総合研究機構 Separation and collection method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077742A1 (en) 2010-12-09 2012-06-14 東レ株式会社 Method for producing chemical by continuous fermentation
US9365876B2 (en) 2010-12-09 2016-06-14 Toray Industries, Inc. Method for producing chemical by continuous fermentation
WO2022114222A1 (en) * 2020-11-30 2022-06-02 旭化成株式会社 Method for washing hollow fiber membrane module

Also Published As

Publication number Publication date
JP2001079364A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP4382294B2 (en) Method for producing hollow fiber membrane bundle
JP5127107B2 (en) Manufacturing method of separation membrane
JP4626301B2 (en) Composite separation membrane and method for producing the same
JP4951860B2 (en) Method for producing permselective membrane module and permselective membrane module
JP2001079366A (en) Method for washing membrane
CN103619451B (en) The cleaning method of separating film module
JP2004073950A (en) Membrane washing method
JP4931796B2 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
JP2011083764A (en) Method for operating water purification system and water purification system
JP2006281163A (en) Cleaning method of filter membrane
JP3948593B2 (en) Membrane cleaning method
JP2001070763A (en) Membrane washing method
JP2006081979A (en) Membrane washing method
JP4433276B2 (en) Hollow fiber membrane filtration module and cleaning method thereof
JP2004130307A (en) Method for filtration of hollow fiber membrane
JPH0679147A (en) Filtration method
JP4583557B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
US20230271140A1 (en) Method for washing hollow fiber membrane module
JPH11137974A (en) Spiral membrane element
CN116568384A (en) Method for cleaning hollow fiber membrane module
JPH0679146A (en) Filtration method
JP2000000438A (en) Membrane separator and production of permeated water

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Ref document number: 3948593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term