JP2001079364A - Method for washing membrane - Google Patents

Method for washing membrane

Info

Publication number
JP2001079364A
JP2001079364A JP25792899A JP25792899A JP2001079364A JP 2001079364 A JP2001079364 A JP 2001079364A JP 25792899 A JP25792899 A JP 25792899A JP 25792899 A JP25792899 A JP 25792899A JP 2001079364 A JP2001079364 A JP 2001079364A
Authority
JP
Japan
Prior art keywords
membrane
water
module
gas
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25792899A
Other languages
Japanese (ja)
Other versions
JP3948593B2 (en
Inventor
Yoshihiko Mori
Takehiko Ootoyo
Cho Taniguchi
武彦 大豊
吉彦 森
超 谷口
Original Assignee
Asahi Kasei Corp
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, 旭化成株式会社 filed Critical Asahi Kasei Corp
Priority to JP25792899A priority Critical patent/JP3948593B2/en
Publication of JP2001079364A publication Critical patent/JP2001079364A/en
Application granted granted Critical
Publication of JP3948593B2 publication Critical patent/JP3948593B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To efficiently wash a membrane without damaging the membrane and to maintain a high filtering flow rate, when river water, lake and marsh water, underground water, stored water, sewerage secondary treated water, plant waste water, or sewerage, etc., as raw water is filtered off through a porous membrane. SOLUTION: In the washing method of the membrane, gas is introduced into a piping for feeding raw water to a module, and the gas is introduced into the module via a raw water introduction port installed on the module, and simultaneously the gas or a liquid is introduced into a water filtrate side of the membrane and the gas or the liquid is transmitted from the water filtrate side of the membrane to the raw water side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、河川水、湖沼水、
伏流水等の上水、工業用水原水、下水、下水二次処理
水、工業排水、家庭排水、屎尿、海水などの膜濾過方法
を利用した水処理における膜の洗浄方法に関するもので
ある。
TECHNICAL FIELD The present invention relates to river water, lake water,
The present invention relates to a method for cleaning a membrane in water treatment using a membrane filtration method such as tap water such as underflow water, raw water for industrial use, sewage, sewage secondary treatment water, industrial wastewater, domestic wastewater, human waste, and seawater.

【0002】[0002]

【従来の技術】従来、上記の様な原水を膜で濾過する
と、該原水中に含まれる、使用する膜の孔径以上の大き
さの懸濁物質や有機物は膜で阻止され、いわゆる濃度分
極やケーク層を形成すると同時に、該原水中の有機物は
膜を目詰まりさせたり、あるいは膜内部の網状組織に吸
着する。その結果、原水を濾過した際の膜の濾過流束
は、清澄水を濾過した際のそれに比べて数分の1から数
十分の1にまで低下してしまい又、濾過の継続に従って
濾過流束は徐々に低下していく。
2. Description of the Related Art Conventionally, when raw water as described above is filtered through a membrane, suspended substances and organic substances having a size larger than the pore diameter of the membrane to be used contained in the raw water are blocked by the membrane. At the same time as the cake layer is formed, the organic matter in the raw water clogs the membrane or adsorbs to the network inside the membrane. As a result, the filtration flux of the membrane when filtering the raw water is reduced from a fraction to several tenths of that when the clear water is filtered. The bundle gradually decreases.

【0003】また、中空糸膜モジュールを用いたろ過方
法のうち、中空糸膜の外表面側から内表面側へろ過す
る、いわゆる外圧式ろ過方法は、中空糸膜の内表面側か
ら外表面側へろ過する内圧式ろ過方法に比べて、単位容
積当たりのろ過に寄与する膜面積が大きく確保可能であ
るため、造水コストのミニマム化が要求される分野、例
えば、上水道を作るための除濁の様な水処理分野に使用
されている例があり、その際に、ろ過水をより、安定に
採水可能となるように、定期的に物理洗浄を実施するろ
過方法が開示されている。
[0003] Of the filtration methods using a hollow fiber membrane module, a so-called external pressure filtration method of filtering from the outer surface side to the inner surface side of the hollow fiber membrane is known from the inner surface side of the hollow fiber membrane to the outer surface side. In comparison with the internal pressure filtration method that filters water to a large area, it is possible to secure a large membrane area that contributes to filtration per unit volume.Therefore, in fields where minimization of water production costs is required, for example, turbidity for making waterworks In such a case, there is disclosed a filtration method in which physical cleaning is periodically performed so that filtered water can be more stably collected.

【0004】具体的には、一定時間濾過後に、濾過水の
一部を使用して、膜の濾過水側から原水側へと、濾過と
は逆方向に水を流す、逆流洗浄(以後、逆洗と略す)、
水で満たされた状態の中空糸膜モジュールの下方から上
方へと圧縮空気を供給する事により、糸を揺り動かし、
中空糸膜間に蓄積した懸濁物質を系外へ排出する、エア
スクラビングがある。また、特開昭60−19002号
公報には、逆洗と共に、中空糸膜収納容器内の中空糸膜
の側方または下方に気泡発生ノズルを配置しこのノズル
から気体を噴出させる方法が開示されている。
[0004] Specifically, after filtration for a certain period of time, a part of the filtered water is used to flow water from the filtrated water side of the membrane to the raw water side in the direction opposite to the filtration. Abbreviated as washing),
By supplying compressed air from below to above the hollow fiber membrane module filled with water, the yarn is rocked,
There is air scrubbing for discharging suspended substances accumulated between hollow fiber membranes to the outside of the system. Also, Japanese Patent Application Laid-Open No. 60-19002 discloses a method in which a bubble generating nozzle is arranged on the side or below the hollow fiber membrane in the hollow fiber membrane storage container and gas is ejected from this nozzle together with the backwashing. ing.

【0005】[0005]

【発明が解決しようとする課題】上記、逆洗やエアスク
ラビングはいずれも、膜表面及び膜間に蓄積する懸濁物
質の排除には、有効な手法であり、ろ過運転をより安定
なものとするものであるが、特開昭60−19002号
公報に開示されたようなモジュール内に配置された気泡
発生ノズルから気体を噴出させる方法では、発生する気
泡が小さく、膜表面に蓄積する懸濁物質の量が多い場
合、満足な洗浄効果が得られない。そこで、本願の様な
原水をモジュールに送る配管の途中に気体を導入し、モ
ジュールに設置された原水導入口を介してモジュールに
気体を導入するエアスクラビングを行うと、モジュール
内に大きな気体のかたまりを導入することができ、膜が
激しく揺れ、洗浄が効率よく行われるが、該懸濁物質を
介して膜の外表面同士が擦れ、膜表面が潰れることによ
り、表面開孔が閉塞し、ろ過運転の安定性が損なわれて
しまう場合がある。特に、蓄積する懸濁物質の粒径が大
きく、膜表面に蓄積する量が多い時に、上記のような激
しいエアスクラビングを行うと、膜表面が傷つく現象が
顕著に起こる。さらに、上記現象が継続されると、膜の
破損にいたる可能性もある。
The above-mentioned backwashing and air scrubbing are both effective methods for eliminating suspended substances accumulated on the membrane surface and between the membranes, and make the filtration operation more stable. However, in the method disclosed in Japanese Patent Application Laid-Open No. 60-19002 in which gas is ejected from a bubble generating nozzle disposed in a module, generated bubbles are small and suspended If the amount of the substance is large, a satisfactory cleaning effect cannot be obtained. Therefore, when gas is introduced in the middle of a pipe for sending raw water to the module as in the present application, and air scrubbing is performed to introduce the gas into the module through a raw water introduction port installed in the module, a large gas mass is accumulated in the module. Can be introduced, the membrane shakes violently, and washing is performed efficiently.However, the outer surfaces of the membrane rub against each other via the suspended substance, and the membrane surface is crushed, so that the surface pores are closed and filtration is performed. Operation stability may be impaired. In particular, when the intense air scrubbing as described above is performed when the particle size of the suspended substance to be accumulated is large and the amount of the suspended substance accumulated on the membrane surface is large, a phenomenon that the membrane surface is damaged is remarkable. Further, if the above phenomenon is continued, the film may be damaged.

【0006】[0006]

【課題を解決するための手段】本発明者らは、膜の洗浄
方法について鋭意検討した結果、以下の発明を完成する
に至った。すなわち本発明は、(1)原水をモジュール
に送る配管に気体を導入し、モジュールに設けられた原
水導入口を介してモジュールに気体を導入すると同時
に、膜の濾水側に、気体または液体を導入して、膜の濾
水側から原水側に気体または液体を透過させる事を特徴
とする膜の洗浄方法、(2)濁質成分が0.1〜500
μmの粒子を含む原水を、(原水の濁度(度))×(洗
浄と洗浄の間に膜を透過する水の量(m3 ))/(膜表
面積(m2 ))の値が0.001以上である濾過と、上
記(1)記載の洗浄を交互に行う膜の洗浄方法、に関す
る。
Means for Solving the Problems As a result of intensive studies on a method for cleaning a film, the present inventors have completed the following invention. That is, the present invention (1) introduces gas into a pipe for sending raw water to a module, introduces gas into the module through a raw water introduction port provided in the module, and simultaneously supplies gas or liquid to the filtrate side of the membrane. A method for cleaning a membrane, wherein a gas or a liquid is permeated from the filtrate side to the raw water side by introducing the membrane, and (2) a turbid component is 0.1 to 500.
The raw water containing the particles of μm was converted to (turbidity (degree) of raw water) × (amount of water permeating the membrane between washings (m 3 )) / (membrane surface area (m 2 )) of 0. The present invention relates to a membrane cleaning method in which filtration of 0.001 or more and the cleaning described in (1) are alternately performed.

【0007】以下、本発明を詳細に説明する。本発明の
対象となる原水は、河川水、湖沼水、地下水、貯水、下
水二次処理水、工場排水、下水などである。本発明は、
濾過中に膜表面に蓄積した懸濁物質の粒径が大きく、膜
表面に蓄積する量が多い時に有効な膜の洗浄方法であ
る。気泡発生ノズルから出た細かいエアーでは洗浄力が
劣る場合に、原水をモジュールに送る配管に気体を導入
し、モジュールに設置された原水導入口を介してモジュ
ールに気体を導入すると、大きな気体のかたまりで激し
いエアスクラビングを行うことができる。この方法は、
膜が激しく揺れ、洗浄効果は高いが、一方、懸濁物質を
介して膜の外表面同士が激しく擦れ、膜表面が潰れるこ
とにより、表面開孔が閉塞し、ろ過運転の安定性が損な
われるおそれがある。これを防ぐために、本発明ではエ
アスクラビングを行うときに同時に、膜の濾過水側に、
気体または液体を導入して、膜の濾水側から原水側に気
体または液体を透過させる。この方法によれば、膜面同
士が擦れにくくなり、膜表面が潰れることがない。以下
各々詳細に述べる。
Hereinafter, the present invention will be described in detail. The raw water that is an object of the present invention is river water, lake water, groundwater, storage water, sewage secondary treatment water, industrial wastewater, sewage, and the like. The present invention
This is an effective method for cleaning the membrane when the particle size of the suspended substance accumulated on the membrane surface during filtration is large and the amount accumulated on the membrane surface is large. If the cleaning power is poor with the fine air coming out of the bubble generation nozzle, introducing gas into the pipe that sends raw water to the module and introducing gas into the module through the raw water inlet installed in the module will cause a large gas mass. Intense air scrubbing can be performed. This method
The membrane vibrates violently and the cleaning effect is high, but on the other hand, the outer surfaces of the membrane violently rub against each other via the suspended substance, and the membrane surface is crushed, thereby closing the surface pores and impairing the stability of the filtration operation. There is a risk. In order to prevent this, in the present invention, at the same time as performing air scrubbing, on the filtered water side of the membrane,
A gas or liquid is introduced to permeate the gas or liquid from the filtrate side to the raw water side of the membrane. According to this method, the film surfaces are less likely to be rubbed and the film surface is not crushed. Each is described in detail below.

【0008】[多孔膜]多孔膜としては、膜の素材とし
て、ポリエチレン、ポリプロピレン、ポリブテン等のポ
リオレフィン;テトラフルオロエチレン−パーフルオロ
アルキルビニルエーテル共重合体(PFA)、テトラフ
ルオロエチレン−ヘキサフルオロプロピレン共重合体
(FEP)、テトラフルオロエチレン−ヘキサフルオロ
プロピレン−パーフルオロアルキルビニルエーテル共重
合体(EPE)、テトラフルオロエチレン−エチレン共
重合体(ETFE)、ポリクロロトリフルオロエチレン
(PCTFE)、クロロトリフルオロエチレン−エチレ
ン共重合体(ECTFE)、ポリフッ化ビニリデン(P
VDF)、ポリ4フッ化エチレン(PTFE)等のフッ
素系樹脂;ポリスルホン、ポリエーテルスルホン、ポリ
エーテルケトン、ポリエーテルエーテルケトン、ポリフ
ェニレンスルフィド等のスーパーエンジニアリングプラ
スチック;酢酸セルロース、エチルセルロース等のセル
ロース類;ポリアクリロニトリル、ポリビニルアルコー
ルの単独及びこれらの混合物、また、セラミック等の無
機膜が挙げられる。特に、フッ素系樹脂性膜、無機膜
が、耐酸化性に優れるため好ましいが、特に、ポリフッ
化ビニリデン(PVDF)膜を使用すれば好ましい。
[Porous membrane] As the porous membrane, as the material of the membrane, polyolefins such as polyethylene, polypropylene and polybutene; tetrafluoroethylene-perfluoroalkylvinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer Coalescence (FEP), tetrafluoroethylene-hexafluoropropylene-perfluoroalkylvinyl ether copolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), chlorotrifluoroethylene- Ethylene copolymer (ECTFE), polyvinylidene fluoride (P
VDF), fluororesins such as polytetrafluoroethylene (PTFE); super engineering plastics such as polysulfone, polyethersulfone, polyetherketone, polyetheretherketone, and polyphenylene sulfide; celluloses such as cellulose acetate and ethylcellulose; Acrylonitrile, polyvinyl alcohol alone and mixtures thereof, and inorganic films such as ceramics may be mentioned. In particular, a fluorine-based resinous film and an inorganic film are preferable because of their excellent oxidation resistance, and it is particularly preferable to use a polyvinylidene fluoride (PVDF) film.

【0009】このような多孔膜のうち、その孔径領域が
逆浸透膜、ナノフィルター、限外濾過(UF)膜、精密
濾過(MF)膜であるものが使用し得るが、基本的に高
い濾過流量を有する、限外濾過(UF)膜、精密濾過
(MF)膜を使用するのが好ましく、特に、精密濾過
(MF)膜を使用するのが好ましい。例えば、平均孔径
が0.001〜1μmの膜が好ましく、平均孔径0.0
5〜1μmの膜がさらに好ましい。
Among such porous membranes, those whose pore size region is a reverse osmosis membrane, a nanofilter, an ultrafiltration (UF) membrane, or a microfiltration (MF) membrane can be used. It is preferable to use an ultrafiltration (UF) membrane or a microfiltration (MF) membrane having a flow rate, and particularly preferable to use a microfiltration (MF) membrane. For example, a membrane having an average pore size of 0.001 to 1 μm is preferable, and an average pore size of 0.01 μm.
Films of 5 to 1 μm are more preferred.

【0010】多孔膜の形状としては、中空糸状、平膜状
など任意の形状を用いることができるが、単位体積当た
りの膜面積が大きくとれる中空糸状が好ましい。中空糸
状膜の形状としては、ストレート中空糸膜、ウェーブを
つけた中空糸膜などがあるが、ウェーブをつけた中空糸
膜の方が、濁質の排出性など理由から、好ましい。一般
に、濾過は膜を収納したモジュールを用いて行われる。
As the shape of the porous membrane, any shape such as a hollow fiber shape and a flat film shape can be used, but a hollow fiber shape which can provide a large membrane area per unit volume is preferable. Examples of the shape of the hollow fiber membrane include a straight hollow fiber membrane and a corrugated hollow fiber membrane, and a corrugated hollow fiber membrane is preferable because of the turbidity discharge property and the like. Generally, filtration is performed using a module containing a membrane.

【0011】[膜モジュール]この発明で使用される膜
モジュールは、配管等を介して接続される中空糸膜モジ
ュールに加え、管板のあるタンクや外郭ハウジングに挿
入・配置する事によって使用される、カートリッジ型膜
モジュールも含まれる。また、膜モジュールの両側端部
接着固定に使用される熱硬化性樹脂の例を挙げると、エ
ポキシ樹脂、ウレタン樹脂、シリコーンゴム等である。
また、これらの樹脂にシリカ、カーボンブラック、フッ
化カーボン等のフィラーを混入させる事により、樹脂隔
壁部の強度向上及び硬化収縮の低減をはかっても良い。
膜モジュールのモジュールケースに使用される材質を例
示すると、ポリエチレン、ポリプロピレン、ポリブテン
等のポリオレフィン;ポリテトラフルオロエチレン(P
TFE)、PFA、FEP、EPE、ETFE、PCT
FE、ECTFE、PVDF等のフッ素系樹脂;ポリ塩
化ビニル、ポリ塩化ビニリデン等の塩素樹脂;ポリスル
ホン樹脂、ポリエーテルスルホン樹脂、ポリアリルスル
ホン樹脂、ポリフェニルエーテル樹脂、PMMAなどの
アクリル樹脂、アクリロニトリル−ブタジエン−スチレ
ン共重合体樹脂(ABS)、アクリロニトリル−スチレ
ン共重合体樹脂、ポリフェニレンサルファイド樹脂、ポ
リアミド樹脂、ポリカーボネート樹脂、ポリエーテルケ
トン樹脂、ポリエーテルエーテルケトン樹脂の単独及び
これらの混合物、及び、アルミニウム、ステンレス鋼等
の金属が挙げられる。
[Membrane Module] The membrane module used in the present invention is used by inserting and arranging it in a tank having a tube sheet or an outer housing in addition to a hollow fiber membrane module connected via piping or the like. And a cartridge type membrane module. Examples of the thermosetting resin used for bonding and fixing both end portions of the membrane module include epoxy resin, urethane resin, and silicone rubber.
Further, by mixing a filler such as silica, carbon black, or carbon fluoride into these resins, the strength of the resin partition wall may be improved and the curing shrinkage may be reduced.
Examples of materials used for the module case of the membrane module include polyolefins such as polyethylene, polypropylene, and polybutene; polytetrafluoroethylene (P
TFE), PFA, FEP, EPE, ETFE, PCT
Fluorine resins such as FE, ECTFE and PVDF; chlorine resins such as polyvinyl chloride and polyvinylidene chloride; acrylic resins such as polysulfone resin, polyether sulfone resin, polyallyl sulfone resin, polyphenyl ether resin, PMMA, and acrylonitrile-butadiene -Styrene copolymer resin (ABS), acrylonitrile-styrene copolymer resin, polyphenylene sulfide resin, polyamide resin, polycarbonate resin, polyether ketone resin, polyether ether ketone resin alone or a mixture thereof, and aluminum, stainless steel Metals such as steel are exemplified.

【0012】膜モジュールの膜端部接着固定部の片方に
は、原水及びエアスクラビング用気体導入のための孔が
もうけられる。孔の大きさは、3mm以上10cm以下
が好ましい。孔の大きさが、3mmより小さいと、モジ
ュールに導入された気泡の大きさが小さく、エアスクラ
ビング時に膜の揺れが激しく無く、孔の大きさが10c
mより大きいと、モジュール内の膜充填本数を下げるの
で、好ましくない。
A hole for introducing raw water and gas for air scrubbing is formed in one of the adhesive fixing portions at the membrane end of the membrane module. The size of the hole is preferably 3 mm or more and 10 cm or less. When the size of the hole is smaller than 3 mm, the size of the air bubbles introduced into the module is small, the film does not shake greatly during air scrubbing, and the size of the hole is 10 c.
If it is larger than m, the number of membranes in the module decreases, which is not preferable.

【0013】[多孔膜の濾過方法]濾過方式としては、
全量濾過方式でもクロスフロー濾過方式でもよい。ま
た、加圧濾過方式でも陰圧濾過方式でもよいが、加圧濾
過方式がより高い濾過流束が得られるため好ましい。
[Filtering method of porous membrane]
Either a full filtration method or a cross flow filtration method may be used. In addition, a pressure filtration method or a negative pressure filtration method may be used, but the pressure filtration method is preferable because a higher filtration flux can be obtained.

【0014】[多孔膜の洗浄方法]本発明の、原水導入
配管に気体を導入し、モジュールに設置された原水導入
口を介してモジュールに気体を導入するエアスクラビン
グとは、気体発生ノズルを用いず、原水導入配管に直接
気体を注入する単純な装置を用い、モジュールに設置さ
れた原水導入口の大きさを制御して、モジュール内の気
体の大きさを変え、濾過と濾過の間の洗浄時に、気体を
混入させた原水または気体のみを膜モジュール内に供給
する事により、モジュール内の膜表面及び膜間に蓄積し
た懸濁物質を脱離、排出する操作を指す。
[Method for Cleaning Porous Membrane] The air scrubbing according to the present invention, in which gas is introduced into a raw water introduction pipe and gas is introduced into the module through a raw water introduction port installed in the module, uses a gas generation nozzle. Using a simple device that injects gas directly into the raw water inlet pipe, controls the size of the raw water inlet installed in the module, changes the size of the gas inside the module, and cleans between filtration Occasionally, this refers to an operation of removing and discharging suspended substances accumulated on the membrane surface and between membranes in a module by supplying only raw water or gas mixed with gas into the membrane module.

【0015】本発明の、膜の濾水側に、気体または液体
を導入して、膜の濾水側から原水側に気体または液体を
透過させる逆流洗浄とは、懸濁水をろ過した、ろ水の一
部を使用し、膜のろ水側(外圧式ろ過の場合では、内表
面側)から原水側(外圧式ろ過の場合では、外表面側)
へと、定常状態のろ過とは逆方向に気体または液体の流
れを発生させる操作を指す。この場合、気体と液体の混
合物を用いることも含まれる。
The backwashing of the present invention in which a gas or a liquid is introduced into the filtrate side of the membrane and the gas or the liquid permeates from the filtrate side to the raw water side is the filtration water in which the suspended water is filtered. From the filtrate side (inner surface side in case of external pressure filtration) to raw water side (outer surface side in case of external pressure filtration)
Refers to the operation of generating a gas or liquid flow in the opposite direction to steady state filtration. In this case, use of a mixture of gas and liquid is also included.

【0016】原水導入配管に気体を導入し、モジュール
に設置された原水導入口を介してモジュールに気体を導
入する事により、モジュール内に配置された気泡発生ノ
ズルから小さい気体を噴出させる方法に比べて、気泡を
大きくする事ができるので、膜をより大きく揺らす事が
でき、膜の洗浄効果も大きいが、このエアスクラビング
を単独で行う場合、該懸濁物質を介して膜の外表面同士
がより激しく擦れ、膜表面が潰れることにより、表面開
孔が閉塞し、ろ過運転の安定性が損なわれてしまう場合
がある。特に、原水の中の粒子の粒径が大きく、従っ
て、濾過中に膜表面に蓄積した懸濁物質の粒径が大き
く、膜表面に蓄積する量が多い時に、本願の様な激しい
エアスクラビングを行うと、その現象が顕著に起こる。
そこで、本発明では、上記エアバブリングを行うとき
に、同時に、膜の濾水側に、気体または液体を導入し
て、膜の濾水側から原水側に気体または液体を透過させ
る逆流洗浄を行うことが必須である。
By introducing a gas into the raw water introduction pipe and introducing the gas into the module through the raw water introduction port installed in the module, compared to a method in which a small gas is ejected from a bubble generating nozzle arranged in the module. Therefore, the bubbles can be enlarged, so that the membrane can be shaken more greatly, and the cleaning effect of the membrane is also great.However, when this air scrubbing is performed alone, the outer surfaces of the membranes are separated via the suspended substance. When the membrane is rubbed more violently and the membrane surface is crushed, the surface pores may be closed, and the stability of the filtration operation may be impaired. In particular, when the particle size of the particles in the raw water is large, and therefore the particle size of the suspended matter accumulated on the membrane surface during filtration is large and the amount accumulated on the membrane surface is large, intense air scrubbing as in the present application is performed. If you do, that phenomenon will occur noticeably.
Therefore, in the present invention, when performing the air bubbling, at the same time, a gas or a liquid is introduced into the drainage side of the membrane, and a backflow cleaning is performed in which the gas or the liquid permeates from the filtrate side to the raw water side. It is essential.

【0017】濾過とエアスクラビング、逆流洗浄のそれ
ぞれの時間は、適宜選択出来、濾過流量の回復性と、濾
過水の回収率を勘案して、適宜決めればよい。通常、洗
浄と洗浄の間の濾過時間の1/10000〜1/5の時
間をエアバブリング、逆流洗浄の時間にあてる事が好ま
しい。1/10000より頻度が少ないと、洗浄効果が
少なく、1/5より頻度が多いと、濾水の回収率が悪い
ので、好ましくない。
The respective times of filtration, air scrubbing, and backwashing can be appropriately selected, and may be appropriately determined in consideration of the recovery of the filtration flow rate and the recovery rate of filtered water. Usually, it is preferable to set 1/1000 to 1/5 of the filtration time between washings to the time of air bubbling and backwashing. When the frequency is less than 1/10000, the washing effect is small, and when the frequency is more than 1/5, the recovery rate of the filtrate is poor, which is not preferable.

【0018】エアスクラビングの供給エアーの単位時間
あたりの流量は標準状態において、単位時間あたりの濾
過流量の0.1〜20倍の流量を供給するのが好まし
く、0.5〜10倍の流量であることがより好ましい。
これらの流量以下では、洗浄効果が低く、これら流量以
上では、膜の乾燥等が起こる可能性がある。逆流洗浄の
気体、液体、気体及び液体の単位時間あたりの逆洗流量
は、濾水回収率と膜擦れ合い防止とのかね合いから、単
位時間あたりの濾過流量の0.01〜10倍の流量が好
ましく、0.1〜3倍の流量が特に好ましい。これら逆
洗流量より低いと、膜の擦れ合いを防止する効果が低
く、洗浄の効果も低くなり、これら単位時間あたりの逆
洗流量より、流量が高いと、濾水の回収率低くなり、好
ましくない。
The flow rate of air supplied per unit time of the air scrubbing in a standard state is preferably 0.1 to 20 times the filtration flow rate per unit time, preferably 0.5 to 10 times. More preferably, there is.
Below these flow rates, the cleaning effect is low, and above these flow rates, drying of the film and the like may occur. The backwash flow rate per unit time of gas, liquid, gas and liquid for backwashing is 0.01 to 10 times the filtration flow rate per unit time in consideration of the drainage recovery rate and prevention of membrane rubbing. Is preferable, and a flow rate of 0.1 to 3 times is particularly preferable. When the flow rate is lower than the backwash flow rate, the effect of preventing rubbing of the membrane is low, and the cleaning effect is also low. Absent.

【0019】本発明によれば、エアスクラビングにより
気体を導入する際は常に逆流洗浄と同時に行うと良い
が、気体の導入(同時に逆流洗浄)に先立ち逆流洗浄の
みを行っても良い。あるいは気体の導入(同時に逆流洗
浄)を行った後逆流洗浄のみを行っても良い。さらに、
同時に原水を導入しながら気体を導入し同時に逆流洗浄
しても良いし、原水を導入せずに行っても良い。あるい
は、これらを交互に組み合わせても良い。気体の導入
(同時に逆流洗浄)に先立ち原水のみ導入を行っても良
い。あるいは気体の導入(同時に逆流洗浄)を行った後
原水のみ導入を行っても良い。
According to the present invention, when introducing a gas by air scrubbing, it is good to always carry out the backwashing simultaneously, but it is also possible to carry out only the backflow washing prior to the introduction of the gas (simultaneously backwashing). Alternatively, only backflow cleaning may be performed after gas introduction (simultaneous backflow cleaning). further,
At the same time, gas may be introduced while introducing raw water, and backwash may be performed at the same time, or the cleaning may be performed without introducing raw water. Alternatively, these may be alternately combined. Prior to the introduction of gas (simultaneously backwashing), only the raw water may be introduced. Alternatively, only the raw water may be introduced after the introduction of the gas (backwashing at the same time).

【0020】[原水水質]本発明の原水に含まれる濁質
成分とは、鉄、マンガン、アルミニウム、シリコン等の
金属及びその酸化物の単独及び混合物、及び/又は、そ
れらが、有機物、例えば、フミン酸、フルボ酸等により
凝集したものを指し、該微粒子の大きさは、0.1〜5
00μmの範囲内のものを含むものである。河川水等に
は、それ以上の粒径の粒子も含まれているが、通常、膜
モジュールに導入される原水は、スクリーンメッシュ等
による前処理が行われるので500μmを超える様な微
粒子がろ過膜モジュールへ供給される可能性は、極めて
少ない。本発明のろ過方法でいう、微粒子の粒径は、レ
ーザー回折/散乱式の粒度分布測定装置により、測定し
た値である。
[Raw water quality] The turbid components contained in the raw water of the present invention include metals such as iron, manganese, aluminum and silicon and their oxides alone and in mixtures, and / or when they are organic substances, for example, It refers to those aggregated by humic acid, fulvic acid, etc., and the size of the fine particles is 0.1 to 5
This includes those within the range of 00 μm. Although river water and the like also contain particles having a larger particle size, the raw water introduced into the membrane module is usually subjected to a pretreatment using a screen mesh or the like, so that fine particles exceeding 500 μm are filtered through a filtration membrane. The probability of being supplied to the module is extremely low. The particle size of the fine particles in the filtration method of the present invention is a value measured by a laser diffraction / scattering type particle size distribution measuring device.

【0021】また、本発明の濁度とは、日間平均濁度で
あり、JIS K0101 9.2に準拠して複数日、
測定し、平均した値である。本願の様な、原水をモジュ
ールに送る配管の途中に気体を導入し、モジュールに設
置された原水導入口を介してモジュールに気体を導入す
るエアスクラビングを逆流洗浄と別に行う場合、そのエ
アスクラビングを行う時点で単位膜面積あたりに蓄積し
ている濁質の量が多いと、膜表面がより傷つく。単位膜
面積(m2 )を洗浄と洗浄の間に透過する総濾過水量
(m3 )とその原水の濁度(度)を乗じた値が0.01
以上の場合、上記の様な、激しいエアスクラビングを単
独で行うと、膜表面が傷つくが、本発明によれば、高い
膜濾過流束で、高品質の処理水が得られる。
The turbidity of the present invention is an average daily turbidity, and is defined as a plurality of days based on JIS K0101 9.2.
It is a value measured and averaged. As in the present application, when gas is introduced in the middle of a pipe for sending raw water to the module, and air scrubbing for introducing gas to the module through a raw water introduction port installed in the module is performed separately from backwashing, the air scrubbing is performed. If the amount of turbidity accumulated per unit membrane area at the time of performing is large, the membrane surface is more damaged. A value obtained by multiplying the total filtered water amount (m 3 ) permeating the unit membrane area (m 2 ) between washings by the turbidity (degree) of the raw water is 0.01.
In the above case, the membrane surface is damaged if the above-described severe air scrubbing is performed alone. However, according to the present invention, high quality treated water can be obtained with a high membrane filtration flux.

【0022】[0022]

【発明の実施の形態】以下、この発明に用いられる膜及
び、膜モジュールの製法例と、懸濁水のろ過方法の例を
説明する。なお、例3〜6の濁度、粒度の測定は、 濁度:測定装置は、島津製作所製のUV−160A、5
0mmセルを使用し、測定方法は、JIS K0101
9.2に準拠して実施した。 微粒子の粒径:測定装置は、堀場製作所製のLA−91
0粒度分布計を使用して測定した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example of a method for producing a membrane and a membrane module used in the present invention and an example of a method for filtering suspended water will be described. The turbidity and particle size of Examples 3 to 6 were measured as follows: Turbidity: The measuring device was UV-160A, 5 manufactured by Shimadzu Corporation.
Using a 0 mm cell, the measurement method is JIS K0101
Performed according to 9.2. Particle size of fine particles: The measuring device is LA-91 manufactured by HORIBA, Ltd.
Measured using a 0 particle size distribution meter.

【0023】[0023]

【例1】(膜の製造例)PVDFパウダー(呉羽化学社
製、KF#1000)、疎水性シリカ(日本アエロジル
社製、R−972[平均1次粒子径0.016μm、比
表面積110m 2 /g、Mw値=50%])、DOP
(チッソ社製、CSサイザー)、DBP(チッソ社製)
をそれぞれ40.0/23.0/30.8/6.2重量
部取り分け、ヘンシェルミキサーにより混合した後、2
軸押し出し機により、ペレットを作成した。
[Example 1] (Production example of membrane) PVDF powder (Kureha Chemical Co., Ltd.)
Manufactured by KF # 1000), hydrophobic silica (Nippon Aerosil)
R-972 [average primary particle diameter 0.016 μm, ratio
110m surface area Two/ G, Mw value = 50%]), DOP
(Chisso, CS sizer), DBP (Chisso)
40.0 / 23.0 / 30.8 / 6.2 weight respectively
After mixing with a Henschel mixer,
Pellets were prepared with an axial extruder.

【0024】上記ペレットを、バレル温度260℃、ヘ
ッド温度235℃、紡口温度230℃の温度条件の2軸
押し出し機から、寸法:1.70mmφ/0.90mm
φ/0.50mmφの2重紡口を経て、紡口から30c
m下方の温度40℃の冷却・固化浴(水温40℃の温
水)中に溶融押し出しした。この中空糸膜をワインダー
に巻き取り、該中空糸膜束をジクロロメタンを使用し、
以下の抽出条件で中空糸膜中のDOPとDBPを抽出し
た。
The above pellets were obtained from a twin-screw extruder under the conditions of a barrel temperature of 260 ° C., a head temperature of 235 ° C., and a spinning temperature of 230 ° C., dimensions: 1.70 mmφ / 0.90 mm.
30c from the spout through a double spout of φ / 0.50mmφ
The mixture was melt-extruded into a cooling / solidification bath (water temperature: 40 ° C.) at a temperature of 40 ° C. below. The hollow fiber membrane is wound around a winder, and the hollow fiber membrane bundle is
DOP and DBP in the hollow fiber membrane were extracted under the following extraction conditions.

【0025】処理条件:室温(25〜27℃)、中空糸
膜の単純体積(内/外径、長さより算出)に対する該ジ
クロロメタンの体積:20倍量、処理時間:5時間。次
に50%エタノール水溶液に上記中空糸膜束を30分浸
漬し、次いで、重量パーセント濃度20%の水酸化ナト
リウム水溶液を使用し、以下の抽出条件で中空糸膜中の
シリカを抽出した。 処理温度:60℃、中空糸膜の単純体積(内/外径、長
さより算出)に対する該水溶液の体積:20倍量(疎水
性シリカに対する当量比で8倍当量)、処理時間:2時
間。
Treatment conditions: room temperature (25-27 ° C.), the volume of the dichloromethane relative to the simple volume of the hollow fiber membrane (calculated from the inside / outside diameter and length): 20 times the amount, treatment time: 5 hours. Next, the hollow fiber membrane bundle was immersed in a 50% aqueous ethanol solution for 30 minutes, and then a 20% by weight sodium hydroxide aqueous solution was used to extract silica in the hollow fiber membrane under the following extraction conditions. Treatment temperature: 60 ° C, volume of the aqueous solution with respect to the simple volume of the hollow fiber membrane (calculated from the inner / outer diameter, and length): 20 times (8 times equivalent to hydrophobic silica), treatment time: 2 hours.

【0026】その後、該水酸化ナトリウム水溶液と同一
体積の60℃温水での温水洗浄を1時間行い、この温水
洗浄を合計10回繰り返した。以上により、内/外径:
0.70/1.25mmφ、空孔率70%、平均孔径
0.18μmである中空糸多孔質膜を得た。
Thereafter, washing with warm water of the same volume as the aqueous sodium hydroxide solution at 60 ° C. was performed for 1 hour, and this washing with warm water was repeated 10 times in total. From the above, the inner / outer diameter:
A hollow fiber porous membrane having 0.70 / 1.25 mmφ, a porosity of 70%, and an average pore diameter of 0.18 μm was obtained.

【0027】[0027]

【例2】(膜モジュールの製造例)例1で製膜した中空
糸多孔質膜を1800本束ねた。次に、この束の片側端
面中空部を目止め処理した後、内径83mmφ、長さ1
000mmの、ポリ塩化ビニル製円筒状モジュールケー
スに収納し、目止め処理を行った端部には、接着冶具の
みを、他方端部には、中空糸多孔質膜と平行に、外径
11mmφのポリプロピレン製棒状物を合計5本配置し
た後に接着冶具を取り付けた。上記、接着冶具が両側に
取り付けられたモジュールケースを2液性エポキシ接着
剤により、遠心注型を行った。
Example 2 (Production Example of Membrane Module) 1,800 hollow fiber porous membranes produced in Example 1 were bundled. Next, after the hollow portion on one end surface of the bundle was filled, the inner diameter was 83 mmφ, and the length was 1 mm.
000 mm, housed in a cylindrical module case made of polyvinyl chloride and subjected to the filling process, only the bonding jig is provided at the end, and the outer diameter is parallel to the hollow fiber porous membrane at the other end.
After arranging a total of five 11 mmφ polypropylene rods, an adhesive jig was attached. The module case having the bonding jigs attached on both sides was centrifugally cast with a two-liquid epoxy adhesive.

【0028】遠心注型終了後、接着冶具、ポリプロピレ
ン製棒状物を取り除き、目止め処理を行った側の接着端
部を切断し、中空糸中空部を開口させた。以上の様にし
て、中空糸膜モジュールを作成した。この膜モジュール
をエタノールで親水化し、さらに、水への置換処理を行
った後、純水透過水量を測定した。その後、1気圧の圧
縮空気により、リーク検査を行ったが、リークの発生
は、確認されなかった。
After completion of the centrifugal casting, the bonding jig and the polypropylene rod were removed, and the bonded end on the side subjected to the filling treatment was cut to open the hollow fiber hollow portion. As described above, a hollow fiber membrane module was prepared. This membrane module was hydrophilized with ethanol, and further subjected to a replacement treatment with water, and then the amount of pure water permeated water was measured. Thereafter, a leak test was performed using 1 atm of compressed air, but no occurrence of a leak was confirmed.

【0029】[0029]

【例3】(実施例)例2の中空糸膜モジュールを使用し
て、原水1として、濁度が0.1〜5度、水中の微粒子
の粒径が0.9〜30μm(中央値は、9μm)、水温
が12℃の河川表流水を用いた。図1に示すように、原
水1は循環タンク2を経て原水供給ポンプ3により膜モ
ジュール4へ圧送され、得られた濾過水は濾水タンク5
に貯められる。逆洗時に、濾水タンク5中の濾過水は逆
洗ポンプ6により膜モジュール4に送られる。また、エ
アーバブリングは、コンプレッサー7で発生した空気
を、膜モジュール4の1次側の原水導入配管に注入して
行った。
Example 3 (Example) Using the hollow fiber membrane module of Example 2, as raw water 1, the turbidity was 0.1 to 5 degrees, and the particle size of the fine particles in the water was 0.9 to 30 μm (median value was , 9 μm) and river surface water having a water temperature of 12 ° C. was used. As shown in FIG. 1, raw water 1 is sent through a circulation tank 2 to a membrane module 4 by a raw water supply pump 3 under pressure.
It is stored in. At the time of back washing, the filtered water in the filtrate tank 5 is sent to the membrane module 4 by the back washing pump 6. The air bubbling was performed by injecting the air generated by the compressor 7 into the raw water introduction pipe on the primary side of the membrane module 4.

【0030】濾過は膜モジュール4へ原水1を一定流量
8.4m3 /m2 /日で供給する定流量濾過とし、ま
た、膜濾過水量と循環水量の比を1対1としたクロスフ
ロー方式で行い、濾過水量は、一定水量4.2m3 /m
2 /日で運転した。運転条件は、濾過を20分間行った
後、濾水による逆流洗浄を20秒間行うという操作を繰
り返し、1時間毎に濾過水による逆流洗浄と毎時2Nm
3 の空気によるエアースクラビングを同時に2分間行っ
た。 (原水の濁度(度))×(洗浄と洗浄の間に膜を透過す
る総濾過水量(m3 ))/(膜表面積(m2 ))の値は
0.44であった。
The filtration is a constant flow filtration in which the raw water 1 is supplied to the membrane module 4 at a constant flow rate of 8.4 m 3 / m 2 / day, and a cross flow system in which the ratio of the membrane filtration water amount to the circulating water amount is 1: 1. The amount of filtered water is 4.2 m 3 / m
Driving 2 / day. The operation conditions were as follows: after filtration was performed for 20 minutes, the operation of performing backwashing with filtered water for 20 seconds was repeated, and every hour, backwashing with filtered water and 2 Nm per hour were performed.
Air scrubbing with air of 3 was performed simultaneously for 2 minutes. The value of (turbidity of raw water (degree)) × (total amount of filtered water permeating the membrane between washings (m 3 )) / (membrane surface area (m 2 )) was 0.44.

【0031】上記運転条件で12ヶ月間運転した後の膜
間平均差圧は、1.9kg/cm2、であった。その
後、モジュールを装置から取り外し、リーク検査を行っ
たが、リークは確認されなかった。また、運転後の膜モ
ジュールを解体し、単糸を次亜塩素酸ナトリウムと苛性
ソーダの混合液と蓚酸と硝酸の混合液で薬品洗浄した
後、純水透水量を測定したところ、未使用の膜の透水量
の95%に相当する透水量であり、膜外表面を倍率5,
000倍の走査型電子顕微鏡で観察したところ、膜の外
表面の傷つきは軽微であった。
The average transmembrane pressure after operating under the above operating conditions for 12 months was 1.9 kg / cm 2 . Thereafter, the module was removed from the apparatus and a leak test was performed, but no leak was confirmed. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. Is a water permeability equivalent to 95% of the water permeability of the membrane, and a magnification of 5,
Observation with a scanning electron microscope at a magnification of 000 × revealed that the outer surface of the film was slightly damaged.

【0032】[0032]

【例4】(実施例)例3で使用したのと同じモジュール
を使用し、膜濾過の運転条件を、濾過を60分間行った
後、濾過水による逆流洗浄と空気を用いたエアースクラ
ビングを同時に2分間行う運転方式に変更した以外は例
3と、同じ実験を行った。 (原水の濁度(度))×(洗浄と洗浄の間に膜を透過す
る総濾過水量(m3 ))/(膜表面積(m2 ))の値は
0.44であった。
Example 4 (Example) Using the same module as used in Example 3, the operation conditions for membrane filtration were as follows: after filtration was performed for 60 minutes, backwashing with filtered water and air scrubbing using air were simultaneously performed. The same experiment as in Example 3 was performed except that the operation method was changed to a two-minute operation method. The value of (turbidity of raw water (degree)) × (total amount of filtered water permeating the membrane between washings (m 3 )) / (membrane surface area (m 2 )) was 0.44.

【0033】上記運転条件で12ヶ月間運転した後の膜
間平均差圧は、2.1kg/cm2であった。その後、
モジュールを装置から取り外し、リーク検査を行った
が、リークは確認されなかった。また、運転後の膜モジ
ュールを解体し、単糸を次亜塩素酸ナトリウムと苛性ソ
ーダの混合液と蓚酸と硝酸の混合液で薬品洗浄した後、
純水透水量を測定したところ、未使用の膜の透水量の9
5%に相当する透水量であり、膜外表面を倍率5,00
0倍の走査型電子顕微鏡で観察したところ、膜の外表面
の傷つきは軽微であった。
The average transmembrane pressure after operating for 12 months under the above operating conditions was 2.1 kg / cm 2 . afterwards,
The module was removed from the device and a leak test was performed, but no leak was confirmed. After the operation, the membrane module was dismantled, and the single yarn was chemically washed with a mixture of sodium hypochlorite and caustic soda and a mixture of oxalic acid and nitric acid.
When the pure water permeability was measured, the water permeability of the unused membrane was 9%.
The water permeability is equivalent to 5%, and the outer surface of the membrane is magnified by 5,000.
Observation with a 0 × scanning electron microscope revealed that the outer surface of the film was slightly damaged.

【0034】[0034]

【例5】(比較例)例3において、濾過水による逆流洗
浄と空気を用いたエアースクラビングを同時に行うのに
換えて、エアーのみのスクラビングを行って、例3と同
様の実験を行った。6ヶ月後の膜間平均差圧は、2.5
kg/cm2 であり、これ以上の濾過運転の継続はでき
なかった。また、運転後の膜モジュールを解体し、単糸
を次亜塩素酸ナトリウムと苛性ソーダの混合液と蓚酸と
硝酸の混合液で薬品洗浄した後、純水透水量を測定した
ところ、未使用の膜の透水量の80%に相当する透水量
であった。膜外表面を倍率5,000倍の走査型電子顕
微鏡で観察したところ、膜表面が荒れ、膜表面の開孔の
一部が閉塞しており、透過水量の低下の要因と推定され
た。
Example 5 (Comparative Example) The same experiment as in Example 3 was performed, except that scrubbing using only air was performed instead of performing backwashing with filtered water and air scrubbing using air at the same time. The average transmembrane pressure after 6 months is 2.5
kg / cm 2 , and the filtration operation could not be continued any more. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. Was equivalent to 80% of the amount of water permeated. Observation of the outer surface of the membrane with a scanning electron microscope at a magnification of 5,000 times revealed that the membrane surface was rough, and some of the openings on the membrane surface were closed, which was considered to be a cause of a decrease in the amount of permeated water.

【0035】[0035]

【例6】(比較例)例5において、原水1を、濁度0.
1度の水に変更し、膜濾過の運転条件を、濾過3分間行
った後、エアーのみのスクラビングに変更した以外は例
5と、同じ実験を行った。 (原水の濁度(度))×(洗浄と洗浄の間に膜を透過す
る総濾過水量(m3 ))/(膜表面積(m2 ))の値は
0.009であった。上記運転条件で12ヶ月間運転し
た後の膜間平均差圧は、2.5kg/cm2 であり、こ
れ以上の濾過運転の継続はできなかった。その後、モジ
ュールを装置から取り外し、リーク検査を行ったが、リ
ークは確認されなかった。また、運転後の膜モジュール
を解体し、単糸を次亜塩素酸ナトリウムと苛性ソーダの
混合液と蓚酸と硝酸の混合液で薬品洗浄した後、純水透
水量を測定したところ、未使用の膜の透水量の95%に
相当する透水量であり、膜外表面を倍率5,000倍の
走査型電子顕微鏡で観察したところ、膜の外表面の傷つ
きは軽微であった。
Example 6 (Comparative Example) In Example 5, raw water 1 was replaced with turbidity of 0.
The same experiment as in Example 5 was performed except that the operation condition of membrane filtration was changed to water once, the filtration was performed for 3 minutes, and then scrubbing using only air was performed. The value of (turbidity of raw water (degree)) × (total amount of filtered water permeating the membrane between washings (m 3 )) / (membrane surface area (m 2 )) was 0.009. The average transmembrane pressure after operating for 12 months under the above operating conditions was 2.5 kg / cm 2 , and further filtration operation could not be continued. Thereafter, the module was removed from the apparatus and a leak test was performed, but no leak was confirmed. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. Of the membrane was observed by a scanning electron microscope at a magnification of 5,000 times, and the outer surface of the membrane was slightly damaged.

【0036】[0036]

【例7】(比較例)例3で使用したのと同じモジュール
を使用し、コンプレッサー7で発生した圧縮空気を、モ
ジュール内の膜下方に設置した、2mmのノズル孔径を
持った気泡発生ノズルを通し、エアスクラビングを行っ
た以外は、例3と、同じ実験を行った。上記運転条件で
3ヶ月間運転した後の膜間平均差圧は、2.5kg/c
2であり、これ以上の濾過運転の継続はできなかっ
た。。その後、モジュールを装置から取り外し、リーク
検査を行ったが、リークは確認されなかった。また、運
転後の膜モジュールを解体し、単糸を次亜塩素酸ナトリ
ウムと苛性ソーダの混合液と蓚酸と硝酸の混合液で薬品
洗浄した後、純水透水量を測定したところ、未使用の膜
の透水量の95%に相当する透水量であり、膜外表面を
倍率5,000倍の走査型電子顕微鏡で観察したとこ
ろ、膜の外表面の傷つきは軽微であった。
Example 7 (Comparative Example) Using the same module as used in Example 3, the compressed air generated by the compressor 7 was installed below the membrane in the module to form a bubble generating nozzle having a nozzle hole diameter of 2 mm. The same experiment as in Example 3 was performed, except that air scrubbing was performed. The average transmembrane pressure after operating for 3 months under the above operating conditions is 2.5 kg / c.
m 2 , and the filtration operation could not be continued any more. . Thereafter, the module was removed from the apparatus and a leak test was performed, but no leak was confirmed. In addition, the membrane module after operation was disassembled, and the single yarn was chemically washed with a mixed solution of sodium hypochlorite and caustic soda, and a mixed solution of oxalic acid and nitric acid. Of the membrane was observed by a scanning electron microscope at a magnification of 5,000 times, and the outer surface of the membrane was slightly damaged.

【0037】[0037]

【発明の効果】本発明によれば、膜を傷つけずに効果的
に洗浄を行う事ができ、この結果、長期間に渡って高い
膜濾過流速を維持することが可能である。
According to the present invention, the membrane can be effectively cleaned without damaging the membrane, and as a result, a high membrane filtration flow rate can be maintained for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜の洗浄方法を組み込んだ処理フロー
の一例を示したものである。
FIG. 1 shows an example of a processing flow incorporating a method for cleaning a film of the present invention.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA03 GA06 GA07 HA01 KA63 KC03 KC13 KC14 KE02R KE06R MA01 MA03 MA22 PB03 PB04 PB05 PB08  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA03 GA06 GA07 HA01 KA63 KC03 KC13 KC14 KE02R KE06R MA01 MA03 MA22 PB03 PB04 PB05 PB08

Claims (1)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 原水をモジュールに送る配管に気体を導
    入し、モジュールに設けられた原水導入口を介してモジ
    ュール内に気体を導入すると同時に、膜の濾水側に、気
    体または液体を導入して、膜の濾水側から原水側に気体
    または液体を透過させる事を特徴とする膜の洗浄方法。
    1. A gas is introduced into a pipe for sending raw water to a module, a gas is introduced into the module through a raw water introduction port provided in the module, and a gas or a liquid is introduced on the filtrate side of the membrane. A gas or liquid permeating from the filtrate side to the raw water side of the membrane.
JP25792899A 1999-09-10 1999-09-10 Membrane cleaning method Expired - Lifetime JP3948593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25792899A JP3948593B2 (en) 1999-09-10 1999-09-10 Membrane cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25792899A JP3948593B2 (en) 1999-09-10 1999-09-10 Membrane cleaning method

Publications (2)

Publication Number Publication Date
JP2001079364A true JP2001079364A (en) 2001-03-27
JP3948593B2 JP3948593B2 (en) 2007-07-25

Family

ID=17313153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25792899A Expired - Lifetime JP3948593B2 (en) 1999-09-10 1999-09-10 Membrane cleaning method

Country Status (1)

Country Link
JP (1) JP3948593B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265935A (en) * 2002-03-15 2003-09-24 Suido Kiko Kaisha Ltd Membrane filtration module cleaning method, membrane filtration apparatus, and chemical-used cleaning apparatus
JPWO2005052541A1 (en) * 2003-11-28 2007-12-06 独立行政法人農業・食品産業技術総合研究機構 Separation and collection method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013014359B1 (en) 2010-12-09 2020-02-04 Toray Industries method for producing a chemical through continuous fermentation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265935A (en) * 2002-03-15 2003-09-24 Suido Kiko Kaisha Ltd Membrane filtration module cleaning method, membrane filtration apparatus, and chemical-used cleaning apparatus
JPWO2005052541A1 (en) * 2003-11-28 2007-12-06 独立行政法人農業・食品産業技術総合研究機構 Separation and collection method and apparatus
JP5061288B2 (en) * 2003-11-28 2012-10-31 株式会社ニッポンジーン Separation and collection method and apparatus

Also Published As

Publication number Publication date
JP3948593B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
US9821501B2 (en) Production method of deformed porous hollow fiber membrane
TW552154B (en) Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter
US9649602B2 (en) Method of sewage treatment and sewage treatment apparatus
US4547289A (en) Filtration apparatus using hollow fiber membrane
JP4673973B2 (en) Fluid treatment element, method for cleaning fluid treatment element, and method for treating fluid
JP4993901B2 (en) Hollow fiber membrane module
JP4445862B2 (en) Hollow fiber membrane module, hollow fiber membrane module unit, membrane filtration device using the same, and operating method thereof
TW567089B (en) Porous hollow fiber membranes and method of making the same
TWI232773B (en) Treatment system having spiral membrane element and method for operating the treatment system
US6402956B1 (en) Treatment system and treatment method employing spiral wound type membrane module
JP3924926B2 (en) Hollow fiber membrane filtration membrane module
US5132015A (en) Flow control for ultra filtration systems
DE60032087T2 (en) METHOD OF CLEANING DIRT WATER
JPWO2011101961A1 (en) Separation membrane module for oil-containing wastewater treatment, oil-containing wastewater treatment method, and oil-containing wastewater treatment equipment
RU2359742C2 (en) Membrane cartridge from hollow fibers
JP2011115796A (en) Hollow fiber membrane module, process for manufacturing the same, hollow fiber membrane module assembly and method of purifying suspended water with use thereof
JP5844196B2 (en) Desalination apparatus and desalination method
US20060065596A1 (en) Membrane filter cleansing process
AU2003241797B2 (en) Porous membrane and method of manufacturing the porous membrane
JP5561473B2 (en) Filtration device and water treatment device
JP5446416B2 (en) Separation membrane module for oil-containing wastewater treatment, oil-containing wastewater treatment method, and oil-containing wastewater treatment equipment
JP2007130523A (en) Membrane washing method for water treatment system
JP5804228B1 (en) Water treatment method
JP4968413B2 (en) Separation membrane module cleaning method and fresh water generation method
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070412

R150 Certificate of patent or registration of utility model

Ref document number: 3948593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term