JP2000000438A - Membrane separator and production of permeated water - Google Patents

Membrane separator and production of permeated water

Info

Publication number
JP2000000438A
JP2000000438A JP17121198A JP17121198A JP2000000438A JP 2000000438 A JP2000000438 A JP 2000000438A JP 17121198 A JP17121198 A JP 17121198A JP 17121198 A JP17121198 A JP 17121198A JP 2000000438 A JP2000000438 A JP 2000000438A
Authority
JP
Japan
Prior art keywords
water
hollow fiber
treated
fiber membrane
filtration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17121198A
Other languages
Japanese (ja)
Inventor
Shinichi Minegishi
進一 峯岸
Kenji Sakai
憲司 酒井
Masahide Taniguchi
雅英 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17121198A priority Critical patent/JP2000000438A/en
Publication of JP2000000438A publication Critical patent/JP2000000438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the leakage of water to be treated to which particulates are added even when hollow fiber membranes are damaged and to suppress the degradation in the quality of permeated water by subjecting the water to be treated to external pressure filtration through the hollow fiber membranes. SOLUTION: The water to be treated side is set at the pressure higher on the outer side of the hollow fiber membranes by using a pressurizing means, such as a pump, and the water to be treated is supplied and is permeated fully or partly to the inner side of the hollow fiber membrane. The impurities larger than the pores of the membranes among the impurities included in the water to be treated are blocked by the skin layers on the outside surfaces of the hollow fiber membranes and are accumulated on the outside surfaces of the hollow fiber membranes. The filtration is continued in this state while the impurities accumulated on the outside surfaces of the hollow fiber membranes are removed by physical washing, such as backflow washing, for passing clean water and gas from the inner side toward the outer side of the hollow fiber membranes and, thereafter, the water contaminated water in the hollow fiber membrane module is once discharged to the outside of the hollow fiber membrane module and the filtration is repeated by again supplying the water to be treated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は中空糸膜を用いた膜
分離装置に関する。さらに詳しくは、中空糸膜を用いて
外圧式ろ過運転を行う膜分離装置において、被処理水の
給水時に、該被処理水に微粒子を添加する膜分離装置お
よび該被処理水に微粒子を添加することを特徴とする透
過水製造方法に関するものである。
The present invention relates to a membrane separation device using a hollow fiber membrane. More specifically, in a membrane separation device that performs an external pressure filtration operation using a hollow fiber membrane, a membrane separation device that adds fine particles to the water to be treated and a fine particle to the water to be treated when water to be treated is supplied. The present invention relates to a method for producing permeated water.

【0002】[0002]

【従来の技術】精密ろ過膜や限外ろ過膜などの分離膜は
食品工業や医療分野、用水製造、排水処理分野等をはじ
めとして様々な方面で利用されている。特に近年では、
飲料水製造分野すなわち浄水処理過程においても分離膜
が使われるようになってきている。
2. Description of the Related Art Separation membranes such as microfiltration membranes and ultrafiltration membranes are used in various fields including the food industry, the medical field, water production, and wastewater treatment. Especially in recent years,
Separation membranes have been used in the field of drinking water production, that is, in the purification process.

【0003】これは、分離膜を用いることによって、従
来の浄水処理における殺菌技術である塩素処理で死なな
いクリプトスポリジウムなどの病原性微生物を完全に阻
止でき、安全で水質良好な飲料水を得ることが可能にな
るためである。
[0003] By using a separation membrane, it is possible to completely prevent pathogenic microorganisms such as cryptosporidium which are not killed by chlorination, which is a sterilization technique in the conventional water purification treatment, to obtain safe and high quality drinking water. This is because it becomes possible.

【0004】分離膜の形態としては、平膜積層型、スパ
イラル型、管状型、中空糸膜型などが挙げられるが、特
に浄水処理では処理量が多いため、装置単位体積当りの
有効膜面積が大きくとれる中空糸膜型の分離膜を用いる
のが一般的になっている。
[0004] Examples of the form of the separation membrane include a flat membrane lamination type, a spiral type, a tubular type, and a hollow fiber membrane type. In particular, since the treatment amount is large in the water purification treatment, the effective membrane area per unit volume of the device is small. It is common to use a hollow fiber membrane type separation membrane that can be made large.

【0005】[0005]

【発明が解決しようとする課題】一般に、分離膜は処理
効率を上げるため膜の厚さをなるべく薄くして透過抵抗
を小さくする方策を採っている。これにより、従来技術
である凝集沈澱、砂ろ過法などと比べて非常に高効率で
コンパクトなシステムを提供できることが可能となっ
た。しかし、膜の厚さが薄いために、膜が損傷してしま
うこともあり、この場合、この損傷した箇所を通って従
来法では起こりにくかった被処理水の漏出が起こってし
まい、処理水質が大きく低下していた。特に飲料水製造
においては、前述のクリプトスポリジウムなどが透過水
に混入することにもなり、大きな問題となっている。
Generally, in order to increase the processing efficiency of the separation membrane, a measure is taken to reduce the thickness of the membrane as much as possible to reduce the transmission resistance. As a result, it has become possible to provide a very efficient and compact system as compared with the coagulation sedimentation, the sand filtration method, and the like, which are conventional techniques. However, the membrane may be damaged due to the small thickness of the membrane, and in this case, the water to be treated leaks through the damaged portion, which is difficult with the conventional method, and the quality of the treated water is reduced. It had dropped significantly. Particularly in the production of drinking water, the above-mentioned Cryptosporidium and the like are mixed in the permeated water, which is a serious problem.

【0006】[0006]

【課題を解決するための手段】本発明は、上記従来技術
の課題を解決せんとするものであり、中空糸膜が損傷し
た場合においても、被処理水の漏れを止めることで、透
過水質の悪化を抑える膜分離装置および透過水製造方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art. Even if the hollow fiber membrane is damaged, the leakage of the water to be treated is stopped so that the quality of the permeated water can be reduced. It is an object of the present invention to provide a membrane separation device and a method for producing permeated water that suppress deterioration.

【0007】すなわち本発明は、「微粒子が添加された
被処理水を中空糸膜を通じて外圧ろ過を行うことを特徴
とする透過水の製造方法。」であり、またその方法に使
用される「中空糸膜、中空糸膜の外部に存在する被処理
水の蓄液部、および被処理水に対して微粒子を添加する
手段を有する透過水製造装置。」を提供するものであ
る。
[0007] That is, the present invention relates to "a method for producing permeated water, characterized in that the water to be treated to which fine particles are added is subjected to external pressure filtration through a hollow fiber membrane." A permeated water producing apparatus having a liquid storage section for water to be treated existing outside the fiber membrane and the hollow fiber membrane, and means for adding fine particles to the water to be treated. "

【0008】[0008]

【発明の実施の形態】以下、発明の実施の形態について
説明する。
Embodiments of the present invention will be described below.

【0009】本発明の中空糸膜を用いた外圧式ろ過は、
被処理水側をポンプ等の加圧手段、または透過水側にお
ける吸引手段を用いることにより中空糸膜の外側の方を
高い圧力として、被処理水を供給し、全量もしくは一部
を中空糸膜の内側へ透過させ、中空糸膜の開口した端部
から清澄な透過液を取り出す。被処理水中に含まれる不
純物のうち膜の細孔より大きいものは、中空糸膜外表面
のスキン層で阻止され、中空糸膜外表面に蓄積する。こ
のため、中空糸膜の内側から外側に向かって清澄水や気
体を流す逆流洗浄や、中空糸膜の外側に空気を導入して
中空糸膜を揺らすエアースクラビング洗浄などの物理洗
浄で中空糸膜外表面に蓄積した不純物を取り除きながら
ろ過を継続する。この物理洗浄終了後には、いったん中
空糸膜モジュール内の汚れた水を中空糸膜モジュール外
へ排水した後、再度、被処理水を供給してろ過を繰り返
す。
[0009] External pressure filtration using the hollow fiber membrane of the present invention comprises:
By using a pressure means such as a pump on the side of the water to be treated or a suction means on the side of the permeated water, the pressure outside the hollow fiber membrane is increased, and the water to be treated is supplied. And a clear permeate is taken out from the open end of the hollow fiber membrane. Of the impurities contained in the water to be treated, those larger than the pores of the membrane are blocked by the skin layer on the outer surface of the hollow fiber membrane and accumulate on the outer surface of the hollow fiber membrane. For this reason, the hollow fiber membrane is subjected to physical cleaning such as backwashing in which clear water or gas flows from the inside to the outside of the hollow fiber membrane or air scrubbing washing in which air is introduced into the outside of the hollow fiber membrane to shake the hollow fiber membrane. Filtration is continued while removing impurities accumulated on the outer surface. After the completion of the physical cleaning, once the contaminated water in the hollow fiber membrane module is drained out of the hollow fiber membrane module, the water to be treated is supplied again and the filtration is repeated.

【0010】本発明は、この被処理水の供給時に、該被
処理水に微粒子を添加し、中空糸膜に損傷が起こった場
合には、この被処理水に添加した微粒子が、損傷した部
分に詰まり、損傷箇所からの被処理水の漏れを止めるこ
とで、透過水質の悪化を抑えるものである。
According to the present invention, when fine particles are added to the water to be treated at the time of supplying the water to be treated and the hollow fiber membrane is damaged, the fine particles added to the water to be treated are replaced with the damaged part. And stop the leakage of the water to be treated from the damaged portion, thereby suppressing the deterioration of the quality of the permeated water.

【0011】添加する微粒子は、損傷した中空糸膜をで
きるだけ速やかに詰まらせることが必要であり、その大
きさは、小さすぎても、大きすぎても損傷箇所を速やか
に詰まらせることができない。小さすぎる場合は、損傷
箇所を詰まらせるどころか、逆に微粒子が透過側に漏出
し、透過水質を悪化してしまう。また、大きすぎる場合
は、詰まらせることができず、透過水質の悪化を抑えら
れない。本発明者らは、様々な微粒子を用いて検討を重
ねた結果、添加する微粒子の最小投影径の好ましい範囲
として中空糸膜の内径の0.1倍以上1.2倍以下、好
ましくは、0.3以上1.1倍以下、さらに好ましく
は、0.6倍以上1.0倍以下であれば、損傷箇所を速
やかに詰まらせ、透過水質の悪化を抑えることが可能に
なることを見出した。当然、上記以外の大きさの粒子を
添加してもなんら差し支えない。
The fine particles to be added need to clog the damaged hollow fiber membrane as quickly as possible. If the size is too small or too large, the damaged portion cannot be quickly clogged. If the particle size is too small, fine particles may leak to the permeation side instead of clogging the damaged portion, thereby deteriorating the quality of permeated water. On the other hand, if it is too large, clogging cannot be performed, and deterioration of permeated water quality cannot be suppressed. The present inventors have repeatedly studied using various fine particles, and as a result, as a preferable range of the minimum projected diameter of the added fine particles, 0.1 to 1.2 times, preferably 0 to 1.2 times the inner diameter of the hollow fiber membrane. It has been found that if it is 0.3 to 1.1 times, and more preferably 0.6 to 1.0 times, the damaged portion can be quickly clogged and deterioration of the permeated water quality can be suppressed. . Naturally, particles having a size other than those described above may be added.

【0012】微粒子の形状は、本発明の主旨から言えば
特に限定されるものではないが、最大投影径が最小投影
径の3倍以下の球形または卵形のものが、一般的で入手
し易く好ましい。
The shape of the fine particles is not particularly limited in view of the gist of the present invention, but a spherical or oval shape having a maximum projected diameter of three times or less the minimum projected diameter is generally available easily. preferable.

【0013】また、本発明を適用する中空糸膜モジュー
ルは、一般的には、中空糸膜と中空糸膜の間、および中
空糸膜とモジュール容器の間を気密にシール(ポッティ
ング)して開口させた形状をとる。これによって、中空
糸膜の外部と内部を中空糸膜自身によって隔離し、膜を
通して分離処理を行うことができる。中空糸膜モジュー
ルの構造としては、中空糸膜の両端部をポッティングし
た後、両端から開口する、例えば、特開平3−2380
27号公報、実開平2−100636号公報、実開平3
−15628号公報、実開平3−59028号公報など
に示されるような「両端開口型」、実開平3−1562
9号公報などに示されるように両端をポッティングした
後に片方だけを開口させる「片端開口型」、実開平3−
54733号公報などに示されるような中空糸膜をU字
状にして中空糸膜端部を片方だけにして開口させる「U
字型」などがある。外圧式全ろ過運転には、物理洗浄お
よび排水がし易い、「U字型」を用いるのが好ましい。
The hollow fiber membrane module to which the present invention is applied is generally airtightly sealed (potted) between the hollow fiber membrane and the hollow fiber membrane and between the hollow fiber membrane and the module container. Take the shape that was made. Thereby, the outside and the inside of the hollow fiber membrane can be isolated by the hollow fiber membrane itself, and the separation treatment can be performed through the membrane. As the structure of the hollow fiber membrane module, both ends of the hollow fiber membrane are potted and then opened from both ends.
No. 27, Japanese Utility Model Application Laid-Open No. 2-100636, Japanese Utility Model Application Laid-open No. 3
JP-A-15628, JP-A-3-59028 and the like, “both-end open type”, JP-A-3-1562.
As disclosed in Japanese Patent Application Publication No. 9-1992, etc., a "single-end open type" in which only one end is opened after both ends are potted,
No. 54733, the hollow fiber membrane is formed in a U-shape, and the hollow fiber membrane is opened with only one end of the hollow fiber membrane open.
Character shape ". For the external pressure type total filtration operation, it is preferable to use a “U-shaped”, which facilitates physical cleaning and drainage.

【0014】中空糸膜の損傷は、中空糸膜を接着固定し
た部分と固定されていない部分の界面、すなわち中空糸
膜の根元部で生じる確率が極めて高いことが種々の検討
の結果判明した。中空糸膜モジュールの形状が「U字
型」の場合、中空糸膜の根元部はモジュールの上部にな
る。このため本発明で添加する微粒子は、中空糸膜の損
傷箇所の近傍すなわちモジュール上部の中空糸膜根元部
に存在していることが好ましく、この場合、中空糸膜の
損傷が起こった時に速やかに損傷箇所に微粒子が集ま
り、詰まらせることができる。
It has been found from various studies that damage to the hollow fiber membrane is extremely high at the interface between the portion where the hollow fiber membrane is bonded and fixed and the portion where the hollow fiber membrane is not fixed, that is, at the root of the hollow fiber membrane. When the shape of the hollow fiber membrane module is “U-shaped”, the root of the hollow fiber membrane is at the top of the module. Therefore, the fine particles to be added in the present invention are preferably present in the vicinity of the damaged portion of the hollow fiber membrane, that is, at the root of the hollow fiber membrane at the upper part of the module. Particles can collect and clog in the damaged area.

【0015】したがって、微粒子の密度が被処理水の密
度より小さければ、微粒子はモジュールの上部に存在で
きるので好ましく、被処理水の密度により異なるが、お
およそ0.7〜1.3g/cm3、好ましくは0.8〜
1.2g/cm3程度である。ここで、微粒子の密度と
は、素材自身の密度ではなく、微粒子そのものの密度で
あり、中空にしたり、多孔質にしたりして微粒子そのも
のの密度を小さくしても構わない。
Therefore, if the density of the fine particles is smaller than the density of the water to be treated, the fine particles can be present at the upper part of the module, and it is preferable that the density varies depending on the density of the water to be treated, but approximately 0.7 to 1.3 g / cm 3 , Preferably 0.8 to
It is about 1.2 g / cm 3 . Here, the density of the fine particles is not the density of the material itself, but the density of the fine particles themselves, and the density of the fine particles themselves may be reduced by making them hollow or porous.

【0016】また、本発明に用いられる微粒子の材質
は、本発明の主旨から言えば特に限定されるものではな
いが、微粒子の安全性やコスト面からポリスチレン、ナ
イロン、PMMA、ポリエチレン、ポリエステルなどが
好ましい。
The material of the fine particles used in the present invention is not particularly limited in terms of the gist of the present invention, but polystyrene, nylon, PMMA, polyethylene, polyester and the like are used in view of the safety and cost of the fine particles. preferable.

【0017】添加する微粒子の量は、ろ過圧力やろ過流
量、中空糸膜内径と微粒子の径の関係によりことなる
が、本発明の効果が発揮される量で、かつ経済性の観点
から決められるべきである。その目安は、中空糸膜モジ
ュールの被処理水側の体積に対して0.001体積%以
上10体積%以下、好ましくは0.01体積%以上1体
積%以下程度である。
The amount of the fine particles to be added depends on the filtration pressure, the filtration flow rate, and the relationship between the inner diameter of the hollow fiber membrane and the diameter of the fine particles, and is determined in view of the effect of the present invention and from the viewpoint of economy. Should. The standard is about 0.001% to 10% by volume, preferably about 0.01% to 1% by volume, based on the volume of the hollow fiber membrane module on the water to be treated.

【0018】本発明に用いられる分離膜は、本発明の主
旨から言えば特に限定されるものではないが、飲料水製
造分野すなわち浄水処理過程、用水製造や排水処理など
の水処理用途には、細孔径が1nm以上10μm以下の
いわゆる精密ろ過膜または限外ろ過膜に分類される分離
膜であることが好ましい。ここで、分離膜の細孔径は、
以下に述べる方法で測定することができる。すなわち、
分離膜の透水性(Lp)と水の膜透過速度(Jv)から、
(1)(2)式の関係を使って計算して求める。 Jv=Lp・ΔP (1)式 Lp=(H/L)・{Rp2/(8η)} (2)式 ここで、(ΔP)は膜間圧力差、(H)は膜含水率、
(L)は膜厚、(Rp)は細孔径、(η)は水の粘性であ
る。
The separation membrane used in the present invention is not particularly limited in view of the gist of the present invention. However, the separation membrane is used in the field of drinking water production, that is, in a water treatment process such as a water purification treatment process, a water production process and a wastewater treatment process. It is preferable that the separation membrane is classified into a so-called microfiltration membrane or an ultrafiltration membrane having a pore diameter of 1 nm or more and 10 μm or less. Here, the pore diameter of the separation membrane is
It can be measured by the method described below. That is,
From the water permeability (Lp) of the separation membrane and the membrane permeation rate (Jv) of water,
(1) It is calculated by using the relationship of the expression (2). Jv = Lp · ΔP Equation (1) Lp = (H / L) · {Rp 2 / (8η)} Equation (2) where (ΔP) is the transmembrane pressure difference, (H) is the water content of the membrane,
(L) is the film thickness, (Rp) is the pore diameter, and (η) is the viscosity of water.

【0019】また、分離膜の素材には、ポリアクリロニ
トリル、ポリスルフォン、ポリフェニレンスルフォン、
ポリフェニレンスルフィドスルフォン、ポリフッ化ビニ
リデン、酢酸セルロース、ポリエチレン、ポリプロピレ
ン、セラミック等の無機素材等を挙げることができ、本
発明の主旨から言って特に限定されないが、飲料水製造
分野すなわち浄水処理過程、用水製造や排水処理などの
水処理用途には、親水性の素材であるポリアクリロニト
リル、酢酸セルロース、ポリフェニレンスルフォン、ポ
リフェニレンスルフィドスルフォンが汚れにくく、洗浄
回復性も良いため好ましい。
The materials for the separation membrane include polyacrylonitrile, polysulfone, polyphenylene sulfone,
Inorganic materials such as polyphenylene sulfide sulfone, polyvinylidene fluoride, cellulose acetate, polyethylene, polypropylene, and ceramics can be cited, and are not particularly limited in view of the gist of the present invention. Polyacrylonitrile, cellulose acetate, polyphenylene sulfone, and polyphenylene sulfide sulfone, which are hydrophilic materials, are preferred for water treatment applications such as water and wastewater treatment because they are less likely to be stained and have good cleaning recovery properties.

【0020】膜分離装置の運転方法には、ろ過流量が一
定でろ過差圧が変化する定流量ろ過と、ろ過差圧が一定
でろ過流量が変化する定圧ろ過とがある。ろ過を継続
し、分離膜表面および分離膜の細孔内に汚れが蓄積して
いくと、分離膜のろ過抵抗(R)が増加する。一般に実
プロセスでは、決められた量の水を処理する場合が多い
ので、定流量ろ過が行われることが多いが、この場合、
一定量のろ過水を得るためには、ろ過差圧を制御しなけ
ればならない。また、定圧ろ過の場合、ろ過の継続に伴
いろ過流量が低下していく。本発明の膜分離装置の運転
方法は定流量ろ過および定圧ろ過のいずれでも構わない
が、定流量ろ過運転が、一定の処理量を得ることができ
一般的で好ましい。
The method of operating the membrane separation device includes a constant flow filtration in which the filtration flow rate is constant and the filtration differential pressure changes, and a constant pressure filtration in which the filtration differential pressure is constant and the filtration flow rate changes. As the filtration is continued and dirt accumulates on the surface of the separation membrane and in the pores of the separation membrane, the filtration resistance (R) of the separation membrane increases. Generally, in a real process, a fixed amount of water is often treated because a fixed amount of water is often treated.
In order to obtain a certain amount of filtered water, the filtration pressure must be controlled. In the case of constant-pressure filtration, the filtration flow rate decreases as the filtration continues. The method of operating the membrane separation device of the present invention may be either constant flow filtration or constant pressure filtration. However, constant flow filtration is a general and preferred method because a constant throughput can be obtained.

【0021】本発明の被処理水は、本発明の主旨から言
えば特に限定されるものではないが、飲料水製造分野す
なわち浄水処理過程、用水製造や排水処理などの水処理
用途には河川水または湖沼水または地下水などが好まし
い。
The water to be treated according to the present invention is not particularly limited in view of the gist of the present invention. However, river water is used in the field of drinking water production, that is, in the water purification process, water treatment and wastewater treatment. Alternatively, lake water or groundwater is preferred.

【0022】また、本発明の透過水の製造方法には、中
空糸膜、中空糸膜の外部に存在する被処理水の蓄液部、
および被処理水に対して微粒子を添加する手段を有する
透過水の製造装置が使用できる。被処理水に対して微粒
子を添加する手段は、蓄液部にあってもよく、蓄液部よ
り前において被処理水に対して供給するものであっても
よい。
In the method for producing permeated water of the present invention, the hollow fiber membrane, the liquid storage section of the water to be treated existing outside the hollow fiber membrane,
Also, a permeated water producing apparatus having means for adding fine particles to the water to be treated can be used. The means for adding the fine particles to the water to be treated may be provided in the liquid storage section, or may be a means for supplying the water to be treated before the liquid storage section.

【0023】以下に具体的実施例を挙げて本発明を説明
するが、本発明はこれら実施例により何ら限定されるも
のではない。
Hereinafter, the present invention will be described with reference to specific examples, but the present invention is not limited to these examples.

【0024】[0024]

【実施例】実施例1 内径400μm、平均孔径0.01μmのポリアクリロ
ニトリル製中空糸膜を束ねた、長さ約1m、有効膜面積
12m2の中空糸膜を有するモジュールを用いて、琵琶
湖水の外圧式定流量全ろ過を行った。ろ過線速度は1m
/dとした。この際、被処理水の給水時に、中空糸膜の
内径と等しい直径400μmのポリスチレンビーズを中
空糸膜モジュールの被処理水側の体積に対して1vol
%となるように添加した。この状態で透過水の濁度を測
定したところ、0.01度であった。いったんろ過を止
めて中空糸膜10本の根元部をカミソリで切断し、再び
同様なろ過運転を開始した。ろ過再スタート1分後の透
過水の濁度を測定したところ、0.06度であったが、
ろ過再スタート3分後には、透過水濁度が0.01度に
なり中空糸膜の損傷がない時と同じ濁度になった。以
後、400分後も透過水濁度は0.01度で安定してい
た。
Example 1 Lake Biwa water was used by using a module having a hollow fiber membrane of about 1 m in length and an effective membrane area of 12 m 2 , bundled with a polyacrylonitrile hollow fiber membrane having an inner diameter of 400 μm and an average pore diameter of 0.01 μm. External pressure type constant flow total filtration was performed. Filtration linear speed is 1m
/ D. At this time, at the time of supplying the water to be treated, polystyrene beads having a diameter of 400 μm, which is equal to the inner diameter of the hollow fiber membrane, are added to the volume of the hollow fiber membrane module on the side of the water to be treated at 1 vol.
%. When the turbidity of the permeated water was measured in this state, it was 0.01 degrees. Once the filtration was stopped, the roots of the ten hollow fiber membranes were cut with a razor, and the same filtration operation was started again. When the turbidity of the permeated water 1 minute after the restart of filtration was measured, it was 0.06 °,
Three minutes after the restart of the filtration, the turbidity of the permeated water became 0.01 degree, which was the same turbidity as when there was no damage to the hollow fiber membrane. Thereafter, the permeated water turbidity was stable at 0.01 degree even after 400 minutes.

【0025】比較例1 実施例1と同様の中空糸膜モジュールを用いて、琵琶湖
水の外圧式定流量全ろ過を行った。ろ過線速度は1m/
dとした。この際、被処理水の給水時に微粒子は添加し
なかった。実施例1と同様に、この状態で透過水の濁度
を測定したところ、0.01度であった。いったんろ過
を止めて中空糸膜10本の根元部をカミソリで切断し、
再び同様なろ過運転を開始した。ろ過再スタート1分後
の透過水の濁度を測定したところ、0.06度であり、
ろ過再スタート3分後には、透過水濁度が0.09度に
なった。さらに、400分後は透過水濁度が0.5度に
なり、ろ過差圧の上昇に伴い透過水質が経時的に悪化し
た。
COMPARATIVE EXAMPLE 1 Using the same hollow fiber membrane module as in Example 1, an external pressure type constant flow total filtration of Lake Biwa water was performed. Filtration linear velocity is 1m /
d. At this time, no fine particles were added when supplying the water to be treated. The turbidity of the permeated water was measured in this state in the same manner as in Example 1, and was found to be 0.01 degree. Once filtration was stopped, the root of 10 hollow fiber membranes was cut with a razor,
The same filtration operation was started again. When the turbidity of the permeated water 1 minute after the restart of filtration was measured, it was 0.06 °,
Three minutes after the restart of the filtration, the turbidity of the permeated water was 0.09 degrees. Further, after 400 minutes, the turbidity of the permeated water became 0.5 degree, and the quality of the permeated water deteriorated with the elapse of time as the filtration pressure difference increased.

【0026】比較例2 実施例1と同様の中空糸膜モジュールを用いて、琵琶湖
水の外圧式定流量全ろ過を行った。ろ過線速度は1m/
dとした。この際、被処理水の給水時に、中空糸膜の内
径の0.075倍の直径30μmのポリスチレンビーズ
を中空糸膜モジュールの被処理水側の体積に対して1v
ol%となるように添加した。実施例1と同様に、この
状態で透過水の濁度を測定したところ、0.01度であ
った。いったんろ過を止めて中空糸膜10本の根元部を
カミソリで切断し、再び同様なろ過運転を開始した。ろ
過再スタート3分後の透過水の濁度を測定したところ、
0.2度であり、ろ過再スタート400分後には、透過
水濁度が0.7度になり、ポリスチレンビーズが漏出し
ていることが考えられた。
Comparative Example 2 Using the same hollow fiber membrane module as in Example 1, an external pressure type constant flow total filtration of Lake Biwa water was performed. Filtration linear velocity is 1m /
d. At this time, at the time of supply of the water to be treated, polystyrene beads having a diameter of 30 μm, which is 0.075 times the inner diameter of the hollow fiber membrane, are supplied to the hollow fiber membrane module at a volume of 1 V with respect to the volume of the water to be treated.
ol%. The turbidity of the permeated water was measured in this state in the same manner as in Example 1, and was found to be 0.01 degree. Once the filtration was stopped, the roots of the ten hollow fiber membranes were cut with a razor, and the same filtration operation was started again. When the turbidity of the permeated water was measured 3 minutes after restarting the filtration,
It was 0.2 degrees, and the permeated water turbidity became 0.7 degrees 400 minutes after the restart of filtration. It was considered that the polystyrene beads were leaking.

【0027】比較例3 実施例1と同様の中空糸膜モジュールを用いて、琵琶湖
水の外圧式定流量全ろ過を行った。ろ過線速度は1m/
dとした。この際、被処理水の給水時に、中空糸膜の内
径の2.5倍の直径1000μmのポリスチレンビーズ
を中空糸膜モジュールの被処理水側の体積に対して1v
ol%となるように添加した。実施例1と同様に、この
状態で透過水の濁度を測定したところ、0.01度であ
った。いったんろ過を止めて中空糸膜10本の根元部を
カミソリで切断し、再び同様なろ過運転を開始した。ろ
過再スタート1分後の透過水の濁度を測定したところ、
0.05度であり、ろ過再スタート3分後には、透過水
濁度が0.08度になった。さらに、400分後は透過
水濁度が0.5度になり、ろ過差圧の上昇に伴い透過水
質が経時的に悪化し、比較例1と同様な結果となり本発
明の効果は確認できなかった。
Comparative Example 3 Using the same hollow fiber membrane module as in Example 1, an external pressure type constant flow total filtration of Lake Biwa water was performed. Filtration linear velocity is 1m /
d. At this time, when the water to be treated is supplied, polystyrene beads having a diameter of 1000 μm, which is 2.5 times the inner diameter of the hollow fiber membrane, are applied to the hollow fiber membrane module at a volume of 1 V with respect to the volume of the water to be treated.
ol%. The turbidity of the permeated water was measured in this state in the same manner as in Example 1, and was found to be 0.01 degree. Once the filtration was stopped, the roots of the ten hollow fiber membranes were cut with a razor, and the same filtration operation was started again. When the turbidity of the permeated water was measured one minute after restarting the filtration,
It was 0.05 degrees, and the turbidity of the permeated water was 0.08 degrees after 3 minutes from the restart of the filtration. Further, after 400 minutes, the turbidity of the permeated water becomes 0.5 degree, and the quality of the permeated water deteriorates with the elapse of time with an increase in the filtration pressure difference. Was.

【0028】[0028]

【発明の効果】本発明によって、中空糸膜を用いて外圧
式ろ過運転を行う膜分離装置において、被処理水の給水
時に、該被処理水に微粒子を添加し、中空糸膜に損傷が
起こった場合には、この被処理水に添加した微粒子が、
損傷した部分に詰まり、損傷箇所からの被処理水の漏れ
を止めることで、透過水質の悪化を抑える膜分離装置お
よび透過水の製造方法が提供される。
According to the present invention, in a membrane separation apparatus which performs an external pressure filtration operation using a hollow fiber membrane, fine particles are added to the water to be treated when the water to be treated is supplied, and the hollow fiber membrane is damaged. In this case, the fine particles added to the water to be treated
Provided is a membrane separation device and a method for producing permeated water, which suppress deterioration of the quality of permeated water by stopping leakage of the water to be treated from the damaged portion by clogging the damaged portion.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 71/68 B01D 71/68 Fターム(参考) 4D006 GA06 GA07 HA19 JA67Z KA03 KD30 KE02Q LA04 MA06 MA22 MC18 MC39 MC62 MC63 PA01 PB04 PB05 PB08Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) B01D 71/68 B01D 71/68 F term (reference) 4D006 GA06 GA07 HA19 JA67Z KA03 KD30 KE02Q LA04 MA06 MA22 MC18 MC39 MC62 MC63 PA01 PB04 PB05 PB08

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 微粒子が添加された被処理水を中空糸膜
を通じて外圧ろ過を行うことを特徴とする透過水の製造
方法。
1. A process for producing permeated water, comprising subjecting treated water to which fine particles have been added to external pressure filtration through a hollow fiber membrane.
【請求項2】 微粒子が、最小投影径で中空糸膜内径の
0.1倍以上1.2倍以下の大きさとして定義されるも
のである請求項1に記載の透過水の製造方法。
2. The method for producing permeated water according to claim 1, wherein the fine particles are defined as having a minimum projected diameter of 0.1 to 1.2 times the inner diameter of the hollow fiber membrane.
【請求項3】 微粒子の密度が、被処理水の密度より小
さいことを特徴とする請求項1または2に記載の透過水
の製造方法。
3. The method for producing permeated water according to claim 1, wherein the density of the fine particles is smaller than the density of the water to be treated.
【請求項4】 微粒子の材質が、ポリスチレン、ナイロ
ン、PMMAまたはポリエチレン、ポリエステルであ
る、請求項1〜3のいずれかに記載の膜分離装置および
透過水製造方法。
4. The method according to claim 1, wherein the material of the fine particles is polystyrene, nylon, PMMA, polyethylene, or polyester.
【請求項5】 微粒子の添加量が被処理水に対して0.
001〜10重量%である請求項1〜3いずれかに記載
の透過水の映像方法。
5. The amount of the fine particles added to the water to be treated is 0.
The method for imaging permeated water according to claim 1, wherein the amount is from 001 to 10% by weight.
【請求項6】 中空糸膜の細孔径が、1nm以上10μ
m以下の精密ろ過膜または限外ろ過膜であることを特徴
とする請求項1〜5のいずれかに記載の透過水の製造方
法。
6. The hollow fiber membrane has a pore diameter of 1 nm or more and 10 μm or more.
The method for producing permeated water according to any one of claims 1 to 5, wherein the membrane is a microfiltration membrane or an ultrafiltration membrane having a diameter of not more than m.
【請求項7】 中空糸膜の素材が、ポリアクリロニトリ
ル、酢酸セルロース、ポリフェニレンスルフォン、また
はポリフェニレンスルフィドスルフォンである、請求項
1〜6のいずれかに記載の透過水の製造方法。
7. The method for producing permeated water according to claim 1, wherein the material of the hollow fiber membrane is polyacrylonitrile, cellulose acetate, polyphenylene sulfide, or polyphenylene sulfide sulfone.
【請求項8】 定流量ろ過を行なうことを特徴とする請
求項1〜6のいずれかに記載の透過水の製造方法。
8. The method for producing permeated water according to claim 1, wherein a constant flow rate filtration is performed.
【請求項9】中空糸膜、中空糸膜の外部に存在する被処
理水の蓄液部、および被処理水に対して微粒子を添加す
る手段を有する透過水製造装置。
9. An apparatus for producing permeated water having a hollow fiber membrane, a liquid storage section for water to be treated existing outside the hollow fiber membrane, and means for adding fine particles to the water to be treated.
【請求項10】 被処理水が河川水、湖沼水または地下
水であることを特徴とする請求項1〜8のいずれかに透
過水の製造方法。
10. The method for producing permeated water according to claim 1, wherein the water to be treated is river water, lake water, or groundwater.
JP17121198A 1998-06-18 1998-06-18 Membrane separator and production of permeated water Pending JP2000000438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17121198A JP2000000438A (en) 1998-06-18 1998-06-18 Membrane separator and production of permeated water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17121198A JP2000000438A (en) 1998-06-18 1998-06-18 Membrane separator and production of permeated water

Publications (1)

Publication Number Publication Date
JP2000000438A true JP2000000438A (en) 2000-01-07

Family

ID=15919105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17121198A Pending JP2000000438A (en) 1998-06-18 1998-06-18 Membrane separator and production of permeated water

Country Status (1)

Country Link
JP (1) JP2000000438A (en)

Similar Documents

Publication Publication Date Title
JP4382294B2 (en) Method for producing hollow fiber membrane bundle
JP3924926B2 (en) Hollow fiber membrane filtration membrane module
JPH10504996A (en) Cleaning of hollow fiber membrane
WO2006080482A1 (en) Method for manufacturing module having selectively permeable membrane and module having selectively permeable membrane
JP2004073950A (en) Membrane washing method
JPH11309351A (en) Washing of hollow fiber membrane module
JPH11319501A (en) Hollow fiber membrane module and use applications thereof
JP5630961B2 (en) Hollow fiber porous membrane and water treatment method
JP4583671B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
JP2006281163A (en) Cleaning method of filter membrane
JP4556150B2 (en) Polymer porous membrane
JP2001029751A (en) Separation apparatus and solid-liquid separation method
JP4437527B2 (en) Membrane filtration module
JP2011110439A (en) Washing method of membrane module
JPH11342320A (en) Operation of hollow fiber membrane module
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP2002035748A (en) Water cleaning treatment apparatus using large pore size filter membrane member
JP2000000438A (en) Membrane separator and production of permeated water
JP3838689B2 (en) Water treatment system
JP4454922B2 (en) Control method of filtration apparatus using hollow fiber type separation membrane
JP2000070685A (en) Metbod for washing solid-liquid separation membrane
JP3948593B2 (en) Membrane cleaning method
JP4583558B2 (en) Method of operating spiral membrane element and spiral membrane module
JP4583557B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
JPH0679147A (en) Filtration method