JP4433276B2 - Hollow fiber membrane filtration module and cleaning method thereof - Google Patents

Hollow fiber membrane filtration module and cleaning method thereof Download PDF

Info

Publication number
JP4433276B2
JP4433276B2 JP2003384476A JP2003384476A JP4433276B2 JP 4433276 B2 JP4433276 B2 JP 4433276B2 JP 2003384476 A JP2003384476 A JP 2003384476A JP 2003384476 A JP2003384476 A JP 2003384476A JP 4433276 B2 JP4433276 B2 JP 4433276B2
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
core tube
membrane
filtration module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003384476A
Other languages
Japanese (ja)
Other versions
JP2005144305A (en
Inventor
幸一 馬場
敏幸 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2003384476A priority Critical patent/JP4433276B2/en
Publication of JP2005144305A publication Critical patent/JP2005144305A/en
Application granted granted Critical
Publication of JP4433276B2 publication Critical patent/JP4433276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は河川水、湖沼水、地下水、かん水、海水などの懸濁物質を含む水を処理して、これらに含まれる微粒子や微生物等を除去する中空糸膜ろ過モジュールに関するものであり、さらに詳しくは、膜面および中空糸膜束に付着した懸濁物質等の固形成分の逆洗による洗浄ならびに固形分の排出性の良い中空糸膜モジュールに関するものである。   The present invention relates to a hollow fiber membrane filtration module that treats water containing suspended solids such as river water, lake water, ground water, brine, seawater, etc., and removes fine particles, microorganisms, and the like contained therein. Relates to a hollow fiber membrane module having good washing performance by backwashing solid components such as suspended substances adhering to the membrane surface and hollow fiber membrane bundle, and having good discharge of solid content.

河川水や湖沼水、地下水、かん水、海水などの懸濁物質を含む水を直接または前処理後に、中空糸膜モジュールを用いてろ過する場合、水中に含まれる膜不透過性の物質が徐々に中空糸膜表面および膜細孔表面に付着、蓄積して、膜の透水速度を下げる現象が見られる。通常の運転では、膜透水性能が所定の性能以下に低下した時点、すなわち、定圧運転の場合では濾過流量が所定値以下に低下した時点、定流量運転の場合は膜間圧力差が所定値以上に上昇した時点、または、一定の運転時間が経過した時点で、膜の洗浄が行うことにより、膜透水性能を回復させる操作が行われる。   When water containing suspended substances such as river water, lake water, ground water, brine, seawater, etc. is filtered directly or after pretreatment using a hollow fiber membrane module, the membrane-impermeable substances contained in the water gradually A phenomenon is observed in which the water permeation rate of the membrane is lowered by adhering and accumulating on the hollow fiber membrane surface and the membrane pore surface. In normal operation, when the membrane permeation performance drops below a predetermined value, that is, when the filtration flow rate drops below a predetermined value in the case of constant pressure operation, the transmembrane pressure difference exceeds a predetermined value in the case of constant flow operation. When the temperature rises to a certain point or when a certain operation time has elapsed, the membrane is washed to perform the operation of restoring the membrane water permeability.

膜の洗浄に関しては様々な方式があるが、たとえば、膜の透過側より逆に水を流して行う逆圧洗浄、いわゆる逆洗に加えて、芯管より外周方向に原水を供給する逆流洗浄、芯管から空気を押し出す空洗が提案されている。(例えば、特許文献1参照)。ただし、この場合のモジュール構造は、芯管部に中空糸膜を巻回した、いわゆる糸巻きカートリッジ型のエレメントが用いられており、中空糸膜を平行に配置したモジュールでは糸が結束されていないために、逆流洗浄や空気洗浄時に糸がダメージをうけるといった問題があった。また、逆洗と同時に芯管からの空気洗浄を行う方法が開示されている(例えば、特許文献2参照)が、これも糸巻きカートリッジ型エレメントを使ったものであり、特許文献1と同様の問題がある。一方、通常の逆洗のみでは、中空糸膜表面に流れる水量が少なく、膜から剥がれた固形成分を容器内から完全に流し出す能力が低いため、残留した固形分が次のろ過操作時にすぐ膜面に付着してしまう問題があった。このため、上記のような膜の外側を水と圧縮空気で押し出す方法も取られるが、糸のダメージを抑えるために逆線の流速を抑えること、さらに水と圧縮空気が一方向から供給されるため、供給口から遠い側の膜表面では洗浄水流速が遅くなり、汚れが効率よく除去できないという問題があった。このことはモジュールの大きさが大きくなるほど顕著であり、洗浄水または空気の供給口から遠い位置にある膜は、その距離が長くなることで逆洗水の流量が不足し、膜面の付着物除去が不十分になるとともに、上流から排出された固形分が蓄積するという問題がある。
特開2000−79390号公報(2頁〜4頁) 特開2002−239350号公報(2頁〜3頁)
There are various methods for cleaning the membrane. For example, in addition to back pressure cleaning performed by flowing water in reverse from the permeate side of the membrane, so-called back cleaning, back flow cleaning that supplies raw water in the outer peripheral direction from the core tube, The air washing which pushes out air from a core pipe is proposed. (For example, see Patent Document 1). However, the module structure in this case uses a so-called thread-wound cartridge type element in which a hollow fiber membrane is wound around the core tube part, and the yarn is not bound in the module in which the hollow fiber membranes are arranged in parallel. In addition, there was a problem that the yarn was damaged during backwashing and air washing. In addition, a method of performing air cleaning from the core tube simultaneously with backwashing is disclosed (for example, see Patent Document 2), but this also uses a thread-wound cartridge type element, and the same problem as in Patent Document 1 There is. On the other hand, with only normal backwashing, the amount of water flowing on the surface of the hollow fiber membrane is small, and the ability to completely drain the solid component peeled off from the membrane is low. There was a problem of sticking to the surface. For this reason, a method of extruding the outside of the membrane with water and compressed air as described above can also be taken, but in order to suppress damage to the yarn, the reverse flow rate is suppressed, and further, water and compressed air are supplied from one direction. For this reason, there is a problem that the flow rate of the washing water becomes slow on the membrane surface far from the supply port, and the dirt cannot be removed efficiently. This is more conspicuous as the size of the module increases, and the membrane located far from the cleaning water or air supply port has a longer flow rate, resulting in insufficient flow of backwash water, and deposits on the membrane surface. There are problems that the removal becomes insufficient and the solid matter discharged from the upstream accumulates.
JP 2000-79390 A (pages 2 to 4) JP 2002-239350 A (pages 2 to 3)

一方、封止端部に原水供給口とエアレーション用の空気の供給口を設けたモジュール構造が提案されている。(例えば、特許文献3参照)。この場合、封止端部に設けられた原水供給口は逆先時の排水には用いらないため、モジュール底部に蓄積した固形物が抜けにくいという欠点がある。
特開平9−220446号公報(2頁〜4頁)
On the other hand, a module structure has been proposed in which a raw water supply port and an aeration air supply port are provided at the sealed end. (For example, see Patent Document 3). In this case, since the raw water supply port provided at the sealing end is not used for drainage in the reverse direction, there is a disadvantage that the solid matter accumulated at the bottom of the module is difficult to escape.
JP-A-9-220446 (pages 2 to 4)

本発明は、このような従来技術の問題点を解決することを目的とするものであって、中空糸膜表面を効率よく洗浄でき、かつ洗浄で膜表面から剥離した濁質等の固形成分を効率よく容器内から排出できるモジュールおよびその洗浄方法を提供するものである。   The object of the present invention is to solve such problems of the prior art, and the surface of the hollow fiber membrane can be efficiently washed, and solid components such as turbidity separated from the membrane surface by washing can be removed. It is an object of the present invention to provide a module that can be efficiently discharged from a container and a cleaning method thereof.

本発明者らは、上記課題を克服すべく鋭意検討を重ねた結果、本発明に到達した。すなわち、モジュール容器の中央に中空糸膜と平行になる芯管を有し、その周囲に中空糸膜を配置して膜モジュールを構成し、使用の際は縦方向に配置する。その芯管には下部付近に閉止栓を有し、その芯管側面にはいくつかの穴を設ける。その閉止栓より下部の穴より洗浄用に圧縮空気をろ過室に供給することで、中空糸膜を揺らし、かつ気泡が上昇する力で膜表面の濁質成分を剥がし、エアースクラビングを行うことで、より効率の良い洗浄をすることができる。また、剥がれた濁質成分は水および圧縮空気とともに芯管の上部側の穴よりモジュール外部に排出することで、剥がれた濁質成分を効率よく排出できるモジュール構造を見出した。また、芯管に仕切り板を設けることで、気泡の流路を規制し、中空糸膜を揺らす効果が上がることを見出した。   The inventors of the present invention have arrived at the present invention as a result of intensive studies to overcome the above problems. That is, a core tube that is parallel to the hollow fiber membrane is provided at the center of the module container, and a hollow fiber membrane is arranged around the core tube to constitute a membrane module, which is arranged in the longitudinal direction when used. The core tube has a stopper plug near the lower part, and several holes are provided on the side surface of the core tube. By supplying compressed air to the filtration chamber for cleaning from the hole below the stopper plug, the hollow fiber membrane is shaken, and the turbid components on the membrane surface are peeled off with the force of rising bubbles, and air scrubbing is performed. More efficient cleaning. Moreover, the module structure which discharged | emitted the turbid component which peeled off efficiently was discharged | emitted by discharging | emitting outside the module from the hole of the upper side of a core pipe with water and compressed air. Further, it has been found that by providing a partition plate in the core tube, the effect of regulating the flow path of bubbles and shaking the hollow fiber membrane is improved.

本発明のモジュールを用いることにより、中空糸膜表面を効率よく洗浄でき、かつ洗浄で膜表面から剥離した濁質等の固形成分を効率よく容器内から排出できるため、膜の寿命が長くでき、長期間安定した浄水処理が可能となる。   By using the module of the present invention, the hollow fiber membrane surface can be efficiently washed, and solid components such as turbidity separated from the membrane surface by washing can be efficiently discharged from the container, so that the lifetime of the membrane can be extended, Water purification that is stable for a long time is possible.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における芯管とは、供給流体入り口から供給される流体を中空糸膜集合体に分配させる機能を有する管状部材である。好適な一例としては、多孔管があげられる。芯管は中空糸膜の集合体の好ましくは中心部に位置させる。芯管の径は大き過ぎると、膜ろ過モジュール内の中空糸膜が占める割合が減少し、結果として膜ろ過モジュールの膜面積が減少するため処理量が低下することがある。また、芯管の径が小さすぎると、芯管内を供給流体が流動する際に圧力損失が大きくなり、結果として中空糸膜にかかる有効差圧が小さくなり分離効率が低下することがある。また、強度が低下して、供給流体が中空糸膜層を流れる際に受ける中空糸膜の張力により芯管が破損する場合がある。これらの影響を、総合的に考慮し、最適な径を設定することが重要である。モジュール容器断面積に対して芯管断面積の占める面積割合として4〜20%、好ましくは5〜15%である。   The core tube in the present invention is a tubular member having a function of distributing the fluid supplied from the supply fluid inlet to the hollow fiber membrane assemblies. A suitable example is a perforated tube. The core tube is preferably located in the center of the aggregate of hollow fiber membranes. If the diameter of the core tube is too large, the proportion of the hollow fiber membrane in the membrane filtration module is reduced, and as a result, the membrane area of the membrane filtration module is reduced, so that the throughput may be reduced. On the other hand, if the diameter of the core tube is too small, the pressure loss increases when the supply fluid flows in the core tube, and as a result, the effective differential pressure applied to the hollow fiber membrane decreases and the separation efficiency may decrease. In addition, the core tube may be damaged due to the strength of the hollow fiber membrane that is reduced when the supply fluid flows through the hollow fiber membrane layer due to a decrease in strength. It is important to set an optimum diameter by comprehensively considering these effects. The area ratio of the core tube cross-sectional area to the module container cross-sectional area is 4 to 20%, preferably 5 to 15%.

選択透過性を有するとは、懸濁物質を含む水を処理する場合、中空糸膜の透水性能が高い方が低圧でろ過操作ができ、供給ポンプの所用動力等の面で有利であるが、膜透水性を上げることは、一般的に膜細孔径をアップさせることとなり、より大きな物質が膜細孔内に入り込むことになる。また、透水性能アップはモジュール当たりの処理能力を上げるため、単位面積当たりのろ過量が増えることで、膜表面への汚れの蓄積が増加し、逆洗での洗浄性が悪くなることがある。このため、膜の透水性能としては50〜1000L/m2/hr/100kPaの間にあることが望ましい。より好ましくは100〜800L/m2/hr/100kPaである。一方、膜構造に関しては、膜外表面、内表面に緻密層を有し、膜の中央部にマクロボイドや指状(フィンガーライク)構造を持つ非対称膜や全体がスポンジ状の均一構造からなる均質膜等があるが、懸濁物質を含む水の処理には、膜内部に懸濁物質が入りにくい構造が望ましい。従って、外圧型の膜ろ過用中空糸膜では、懸濁物質が膜内部に入り込まないように中空糸膜外表面に緻密層を有することが望ましいが、逆ろ過等の操作で、膜内部に入り込んだ懸濁物質が、外に向かって出やすくなる、内表面から外表面に向かって細孔径が大きくなるような傾斜構造を持つようなものであってもよい。 Having selective permeability means that when water containing suspended solids is treated, the higher the water permeability of the hollow fiber membrane can be filtered at a low pressure, which is advantageous in terms of the required power of the supply pump, Increasing the membrane water permeability generally increases the membrane pore diameter, and a larger substance enters the membrane pores. In addition, the improvement in water permeability increases the processing capacity per module, so that the amount of filtration per unit area increases, the accumulation of dirt on the membrane surface increases, and the detergency in backwashing may deteriorate. For this reason, it is desirable that the water permeability of the membrane is between 50 and 1000 L / m 2 / hr / 100 kPa. More preferably, it is 100-800L / m < 2 > / hr / 100kPa. On the other hand, the membrane structure has a dense layer on the outer and inner surfaces of the membrane, and an asymmetric membrane with a macrovoid or finger-like structure at the center of the membrane, or a homogeneous sponge-like uniform structure as a whole. Although there are membranes and the like, for the treatment of water containing suspended substances, a structure in which suspended substances do not easily enter the membrane is desirable. Accordingly, it is desirable that the external pressure type hollow fiber membrane for membrane filtration has a dense layer on the outer surface of the hollow fiber membrane so that suspended substances do not enter the inside of the membrane. However, the suspended matter may have an inclined structure in which the pore diameter increases from the inner surface to the outer surface, which makes it easier to go outward.

ろ過モジュール内の中空糸膜の配置としては、平行配置、交差配置いずれでもよいが、逆洗時、膜の外面に付着した固形懸濁成分を効率よく洗浄するためには、中空糸膜が流れによって少し揺れたり振動したりすることが好ましい。交差配置では中空糸膜が固定されたようになるため、逆洗時の水の通り道が固定されてしまい、水の流れが偏ることで、膜面全体の洗浄が難しくなる可能性がある。従って、中空糸膜間にある程度の空隙を持たせるために充填率を60vol%以下、かつ中空糸膜が接着部以外で固定されていない平行配置が好ましい。また、糸と糸との接触を小さくする目的で、中空糸膜に巻縮(クリンプ)等がついていても良い。   The arrangement of the hollow fiber membranes in the filtration module may be either a parallel arrangement or a cross arrangement, but the hollow fiber membranes flow in order to efficiently wash the solid suspended components adhering to the outer surface of the membrane during backwashing. It is preferable to shake or vibrate a little. Since the hollow fiber membranes are fixed in the crossing arrangement, the passage of water during backwashing is fixed, and the flow of water is biased, which may make it difficult to clean the entire membrane surface. Therefore, a parallel arrangement in which the filling rate is 60 vol% or less and the hollow fiber membrane is not fixed except for the bonded portion is preferable in order to provide a certain amount of voids between the hollow fiber membranes. Further, for the purpose of reducing the contact between yarns, the hollow fiber membrane may be crimped or the like.

本発明における、中空糸膜の両端部が別々に樹脂で固定されるとは、中空糸膜の集合体の両端部を別々に接着用樹脂でポッティングするなどして中空糸膜間で流体が漏れない状態に密閉固定されていることを意味する。使用する接着樹脂としては、処理流体の特性、使用条件によって、エポキシ系樹脂、ウレタン系樹脂、シリコン系樹脂などから選ぶことができる。接着剤で固定された端部は、切断するなどして中空糸膜の中空孔が開口するように処理して中空糸膜ろ過モジュールとする。   In the present invention, both ends of the hollow fiber membranes are separately fixed with the resin, so that fluid leaks between the hollow fiber membranes by potting both ends of the aggregate of the hollow fiber membranes separately with an adhesive resin. It means that it is hermetically fixed in the absence. The adhesive resin to be used can be selected from an epoxy resin, a urethane resin, a silicon resin, and the like depending on the characteristics of the processing fluid and the use conditions. The end portion fixed with the adhesive is cut so that the hollow hole of the hollow fiber membrane is opened to obtain a hollow fiber membrane filtration module.

樹脂端部の両側を開口させた両端開口型では、外圧式で用いる場合には容器の側面に設けた1箇所のポート口より原水を供給する必要があり、ポート口での水流の影響から中空糸膜が破損しやすい問題がある。   In the case of the both-end opening type with both ends of the resin end opened, when using the external pressure type, it is necessary to supply raw water from one port port provided on the side of the container, and it is hollow due to the influence of the water flow at the port port. There is a problem that the yarn membrane is easily damaged.

本願発明において用いる中空糸膜ろ過モジュールは、外圧式全量ろ過型であることが好ましい。従来、精密ろ過(MF)膜や限外ろ過(UF)膜のような膜を使ってろ過を実施する場合は、クロスフローろ過が用いられてきた。クロスフローろ過では、膜表面に形成されるゲル層やケーク層などの付着層を供給液の流れで剥がし取り、ろ過による蓄積と流れによる濁質の剥離が平衡になることで、ろ過性能を安定化させようとするものである。しかしながら、供給液流速に対するろ過液流速の比率を高めようとすると、付着層を剥離する力が弱くなるため、ある程度過剰に供給液を流す必要がある。また、非ろ過成分の濃縮された濃縮液をそのまま廃棄すると全体の回収率が低くなってしまうため、再度供給液に戻す、循環操作が行われる。しかし、このような循環操作を行うと、供給液ポンプ流量が上がるためポンプ消費動力が大きくなったり、濃縮液還流系の配管を増やす必要があることから装置が複雑化し、設備コストがアップするなどの問題がある。一方、全量ろ過型では、供給水がすべてろ過されるため、ろ過工程での回収率は100%である。しかしながら、懸濁物質を含む水の処理では、膜に膜不透過の成分が蓄積するため、経時的な膜ろ過性能の低下を避けられない。このため、膜性能が低下した時点もしくは一定時間間隔で逆洗をする必要がある。この逆洗時に消費する処理水量を下げ、濃度の高い膜ろ過排水とすることができれば、簡便な膜ろ過システムによる、高回収率で排水等の少ない効率的な膜ろ過システムを構成することができる。この効率的な逆洗システムとするために必要な膜ろ過モジュール構造が本発明の主要な目的である。本願発明では、中空糸膜の膜面積を有効に利用するため、また、洗浄時の濁質の流路を大きく確保するために外圧式全量ろ過方式を採用するのが好ましい。   The hollow fiber membrane filtration module used in the present invention is preferably an external pressure total volume filtration type. Conventionally, when performing filtration using a membrane such as a microfiltration (MF) membrane or an ultrafiltration (UF) membrane, cross-flow filtration has been used. In cross-flow filtration, the adhesive layer such as gel layer and cake layer formed on the membrane surface is peeled off by the flow of the supply liquid, and the accumulation by filtration and the separation of turbidity by the flow are balanced, thereby stabilizing the filtration performance. It is intended to make it. However, if an attempt is made to increase the ratio of the filtrate flow rate to the supply solution flow rate, the force for peeling off the adhesion layer becomes weak, and therefore it is necessary to flow the supply solution excessively to some extent. Further, if the concentrated liquid in which the non-filtered components are concentrated is discarded as it is, the overall recovery rate is lowered, and therefore, a circulation operation is performed to return to the supply liquid again. However, when such a circulation operation is performed, the pump consumption power increases due to an increase in the flow rate of the supply liquid pump, and it is necessary to increase the piping of the concentrate recirculation system. There is a problem. On the other hand, in the all-volume filtration type, since all the feed water is filtered, the recovery rate in the filtration step is 100%. However, in the treatment of water containing suspended solids, a membrane-impermeable component accumulates in the membrane, and thus a decrease in membrane filtration performance over time cannot be avoided. For this reason, it is necessary to perform backwashing at the time when the membrane performance is reduced or at regular time intervals. If the amount of treated water consumed at the time of backwashing can be reduced and a membrane filtration wastewater having a high concentration can be obtained, an efficient membrane filtration system with a high recovery rate and a small amount of wastewater can be configured by a simple membrane filtration system. . The membrane filtration module structure required to make this efficient backwash system is the main object of the present invention. In the present invention, it is preferable to adopt an external pressure type total amount filtration method in order to effectively use the membrane area of the hollow fiber membrane and to ensure a large turbid flow path at the time of washing.

円筒状の容器1の中心に芯管2を有し、芯管2についた仕切り板により少なくとも2つ以上に分割されたろ過室に中空糸膜束3を収納する。容器1の2つの接着端部のうち、一方は容器と中空糸膜束3との間に接着剤4を注入し、接着剤硬化後に端部の外側にある中空糸膜束3と接着端部4を切削して中空糸膜を開口させた開口端8とする。もう一方は中空糸膜束3の端部を接着剤4で封止した封止端部9とする。この封止端部9には中空糸膜束3と容器1との間にある接着剤4の部分に、仕切板で区切られたろ過室ごとに少なくとも1つのスリット10を設ける。このようにしてできた中空糸膜束を配置させた芯管付き容器1の両端にキャップ5およびゴムパッキン6を取り付け、クランプバンド7で固定することにより、中空糸膜ろ過モジュールを構成する。仕切り板の数は3〜12が好ましく、4〜6がより好ましい。仕切り板がない、または数が少ないと、仕切り板による気泡の上昇場所を規制しにくくなり糸揺らしの効果を弱め、延いては中空糸膜全体を効率良く洗浄できない可能性がある。逆に、仕切り板の数が多すぎると、仕切り板間の間隔が狭くなるため、芯管にエアー供給および排出用の十分な大きさと数の穴を設けることが困難となる場合がある。また仕切り板間の角度が鋭角となるため、中空糸膜の充填が困難になることがある。   A hollow fiber membrane bundle 3 is accommodated in a filtration chamber having a core tube 2 at the center of a cylindrical container 1 and divided into at least two by a partition plate attached to the core tube 2. One of the two bonded end portions of the container 1 is injected with an adhesive 4 between the container and the hollow fiber membrane bundle 3, and the hollow fiber membrane bundle 3 and the bonded end portion outside the end portion after the adhesive is cured. An opening end 8 is formed by cutting 4 to open the hollow fiber membrane. The other is a sealed end 9 in which the end of the hollow fiber membrane bundle 3 is sealed with an adhesive 4. The sealed end 9 is provided with at least one slit 10 in the portion of the adhesive 4 between the hollow fiber membrane bundle 3 and the container 1 for each filtration chamber partitioned by a partition plate. The cap 5 and the rubber packing 6 are attached to both ends of the core tube-equipped container 1 in which the hollow fiber membrane bundles thus formed are arranged, and fixed with the clamp band 7 to constitute a hollow fiber membrane filtration module. 3-12 are preferable and, as for the number of a partition plate, 4-6 are more preferable. If there is no partition plate or the number is small, it is difficult to regulate the location where bubbles rise due to the partition plate, and the effect of yarn swinging is weakened. As a result, there is a possibility that the entire hollow fiber membrane cannot be washed efficiently. On the other hand, if the number of partition plates is too large, the interval between the partition plates becomes narrow, so that it may be difficult to provide a sufficient size and number of holes for air supply and discharge in the core tube. In addition, since the angle between the partition plates becomes an acute angle, it may be difficult to fill the hollow fiber membrane.

本発明の中空糸膜は、たとえば、河川水や湖沼水、地下水、海水等の懸濁物質を含む原水から除濁して、水道用や工業用の浄水を得る用途や、海水淡水化の逆浸透膜システムの前処理として用いられる場合には、精密ろ過膜や限外濾過膜の中空糸膜が広く用いられており、膜の形状も内径が200〜2,000μmに至る広範囲のものがあるが、これらの膜は本発明の中空糸膜ろ過モジュールの中空糸膜として用いることができる。洗浄のしやすさを考慮すると、中空糸膜内径は好ましくは200〜600μm、より好ましくは200〜550μm、さらに好ましくは200〜500μmである。また、中空糸膜外径は300〜1000μmが好ましく、300〜950μmがより好ましく、300〜900μmがさらに好ましい。糸径が細すぎるものは糸が弱くなるため逆洗等の工程で糸切れし易くなり、洗浄の条件、頻度が制限されることがある。また、中空糸膜が太すぎる場合は、容積当たりの膜面積が小さくなるため、膜面積当たりのろ過水量が多くなり、膜面へのよごれの蓄積量が増えるとともに、糸の剛性が上がって、逆洗時の糸揺れが起きず、膜表面に付着した懸濁物質等の剥離性が下がることがある。   The hollow fiber membrane of the present invention can be used, for example, to remove turbidity from raw water containing suspended substances such as river water, lake water, groundwater, seawater, and to obtain purified water for water and industrial use, and reverse osmosis of seawater desalination. When used as a pretreatment for a membrane system, hollow fiber membranes such as microfiltration membranes and ultrafiltration membranes are widely used, and there are a wide variety of membrane shapes with an inner diameter of 200 to 2,000 μm. These membranes can be used as the hollow fiber membrane of the hollow fiber membrane filtration module of the present invention. Considering ease of cleaning, the inner diameter of the hollow fiber membrane is preferably 200 to 600 μm, more preferably 200 to 550 μm, and further preferably 200 to 500 μm. The outer diameter of the hollow fiber membrane is preferably 300 to 1000 μm, more preferably 300 to 950 μm, and further preferably 300 to 900 μm. If the yarn diameter is too small, the yarn becomes weak, so that it is easy to break the yarn in a process such as back washing, and the washing condition and frequency may be limited. Also, if the hollow fiber membrane is too thick, the membrane area per volume is small, so the amount of filtered water per membrane area increases, the amount of dirt accumulated on the membrane surface increases, and the stiffness of the yarn increases, The yarn does not sway during backwashing, and the releasability of suspended substances attached to the membrane surface may decrease.

中空糸膜の強度に関して、ろ過時や逆洗時などに発生する糸切れリークを防止するために中空糸膜単糸当たり60g以上の破断強度があることが望ましい。本発明のモジュール構造では、糸に向かって垂直な流れをできる限り小さくする工夫がなされており、極端に大きな力が掛からないようにされているが、逆洗の効果を上げるためには、中空糸膜を揺らし、表面の付着物を押し流す流量が必要である。このため、糸の接着部のつけ根、特に縦置きの場合は上部のつけ根に力が集中し、糸傷や糸切れを発生させてしまうため、中空糸膜としては単糸当たり60g以上の破断強度を有することが好ましい。より好ましくは70g以上、さらに好ましくは80g以上、よりさらに好ましくは90g以上、特に好ましくは100g以上である。   Regarding the strength of the hollow fiber membrane, it is desirable that the hollow fiber membrane has a breaking strength of 60 g or more per single yarn of the hollow fiber membrane in order to prevent a thread breakage leak that occurs during filtration or backwashing. In the module structure of the present invention, a device is devised to make the vertical flow toward the yarn as small as possible, so that an extremely large force is not applied. A flow rate that shakes the yarn film and pushes out deposits on the surface is necessary. For this reason, the force concentrates on the root of the bonded part of the yarn, particularly in the case of vertical installation, and the thread damage and thread breakage occur. Therefore, the hollow fiber membrane has a breaking strength of 60 g or more per single yarn. It is preferable to have. More preferably, it is 70 g or more, More preferably, it is 80 g or more, More preferably, it is 90 g or more, Most preferably, it is 100 g or more.

膜素材に関しても、セルロースエステル類、ポリオレフィン類、ポリカーボネートやポリスルホン、ポリエーテルスルホンなどのエステル系合成高分子、ポリ塩化ビニルやポリフッ化ビニリデン、テトラフルオロエチレンなどの含ハロゲン高分子など様々な膜素材の中空糸膜を使うことができる。耐バクテリア性の面から、好ましくはポリスルホン、ポリエーテルスルホンが好ましい。また耐塩素性、耐圧性の面からセルロースアセテート、セルローストリアセテートが好ましい。   Regarding membrane materials, various membrane materials such as cellulose esters, polyolefins, ester-based synthetic polymers such as polycarbonate, polysulfone, and polyethersulfone, and halogen-containing polymers such as polyvinyl chloride, polyvinylidene fluoride, and tetrafluoroethylene are used. Hollow fiber membranes can be used. From the viewpoint of bacterial resistance, polysulfone and polyethersulfone are preferred. Cellulose acetate and cellulose triacetate are preferable from the viewpoint of chlorine resistance and pressure resistance.

外圧型全ろ過操作の場合、モジュール容器の内径Dと中空糸膜有効長Lとの関係は、膜の透水性能、中空糸膜内外径、充填率から最適値を求めうるが、膜モジュールの取り扱い性から、モジュール長としては1.5m以下が適当である。また逆洗時の洗浄性、モジュールを縦置きにしたときの糸自重による上部接着部の糸に掛かる力などからも1m前後がより望ましい。モジュール長に関してはモジュール直径に関しては、芯管からの洗浄水の流れを糸外周部まで効率よく流すため、容器内径として30〜500mmが望ましい。したがって、L/Dは3〜50であることが好ましい。L/Dが大きすぎると圧力損失が大きくなるため、透過水が出にくくなったり、ろ過効率が低下することがある。また、L/Dが小さすぎると中空糸膜有効長が短すぎて分離効率が低下する可能性がある。より好ましくは3〜45、さらに好ましくは3〜40、よりさらに好ましくは3〜35である。   In the case of external pressure type total filtration operation, the relationship between the inner diameter D of the module container and the effective length L of the hollow fiber membrane can be determined optimally from the water permeability of the membrane, the inner and outer diameter of the hollow fiber membrane, and the filling rate. From the standpoint of performance, a module length of 1.5 m or less is appropriate. Moreover, about 1 m is more desirable from the washing | cleaning property at the time of backwashing, and the force applied to the thread | yarn of the upper adhesion part by the weight of the thread | yarn when a module is installed vertically. Regarding the module length, regarding the module diameter, the inner diameter of the container is preferably 30 to 500 mm in order to efficiently flow the washing water from the core tube to the outer periphery of the yarn. Therefore, L / D is preferably 3-50. If L / D is too large, the pressure loss increases, so that it is difficult for permeate to come out and the filtration efficiency may be reduced. On the other hand, if the L / D is too small, the effective length of the hollow fiber membrane is too short and the separation efficiency may decrease. More preferably, it is 3-45, More preferably, it is 3-40, More preferably, it is 3-35.

膜モジュールのろ過室における中空糸膜の充填率は、膜ろ過の容積効率と逆洗時の洗浄性を確保する上で重要なファクターであり、ろ過室の体積に対する中空糸膜体積の比率(vol%)で30vol%〜60vol%であることが必要であり、さらに望ましくは40vol%〜55vol%の間であることが好ましい。充填率が30vol%以下の場合は、単位モジュールあたり、単位圧力でのろ過流量が低くなり、モジュール容積、設置面積やポンプ動力消費の面で不利になることがある。一方、充填率が高すぎる場合は、逆洗時の洗浄水線速が早くなり、中空糸膜に掛かる力が大きくなるのに加えて、糸束の動きが小さくなり、糸充填の粗密のばらつきが固定化され、逆洗水の偏流が起こることで中空糸膜が密に入った部分の洗浄ができなくなり、固形成分が蓄積して膜性能の低下を引き起こす現象が見られることがある。このため、ろ過室での糸充填率としては30vol%〜60vol%、好ましくは40vol%〜55vol%である。   The filling rate of the hollow fiber membrane in the filtration chamber of the membrane module is an important factor for ensuring the volumetric efficiency of membrane filtration and the washability during backwashing, and the ratio of the volume of the hollow fiber membrane to the volume of the filtration chamber (vol %) Is required to be 30 vol% to 60 vol%, and more preferably 40 vol% to 55 vol%. When the filling rate is 30 vol% or less, the filtration flow rate per unit pressure per unit module is low, which may be disadvantageous in terms of module volume, installation area, and pump power consumption. On the other hand, when the filling rate is too high, the washing water line speed during backwashing is increased, the force applied to the hollow fiber membrane is increased, the movement of the yarn bundle is reduced, and the variation in the yarn filling is uneven. As a result of imbalance of the backwash water, it becomes impossible to wash the portion where the hollow fiber membrane is densely packed, and a phenomenon may occur in which solid components accumulate and cause a reduction in membrane performance. For this reason, the yarn filling rate in the filtration chamber is 30 vol% to 60 vol%, preferably 40 vol% to 55 vol%.

ろ過操作において、キャップ5のAよりモジュールに供給された水は、封止端のスリット10を通り中空糸膜束3に供給される。中空糸膜を透過した水は、中空糸膜の開口端より、透過水口Bに集水されモジュール外に出ていく。ろ過操作は全ろ過で実施されるため、原水中に含まれる懸濁物質が徐々に膜面に蓄積し、定圧操作ではろ過水量が経時的に低下し、低流量コントロールの場合は、膜間圧力差が上昇し、供給圧をあげていくことが必要になる。定圧操作ではろ過水量が設定値以下に低下した場合、定流量操作では膜間圧力差が設定値以上に上がった場合、逆洗操作を行うことになる。ここで、原水の水質が安定しており、濁質成分の濃度が比較的低く安定している場合には、一定時間間隔で逆洗操作を行うことも可能であり、本発明の場合においてはどの方式による逆洗も可能である。   In the filtration operation, water supplied to the module from A of the cap 5 is supplied to the hollow fiber membrane bundle 3 through the slit 10 at the sealing end. The water that has permeated through the hollow fiber membrane is collected from the opening end of the hollow fiber membrane to the permeate port B and goes out of the module. Since the filtration operation is carried out by total filtration, suspended substances contained in the raw water gradually accumulate on the membrane surface, the amount of filtered water decreases with time in constant pressure operation, and in the case of low flow control, the transmembrane pressure The difference will rise and it will be necessary to increase the supply pressure. In the constant pressure operation, the backwash operation is performed when the amount of filtered water decreases below the set value, and in the constant flow operation, when the transmembrane pressure difference increases above the set value. Here, when the water quality of the raw water is stable and the concentration of the turbid component is relatively low and stable, it is possible to perform a backwash operation at regular time intervals. Backwashing by any method is possible.

膜の逆洗においては、まず、透過水口Bより中空糸膜内部に向けて洗浄水を供給し、膜の逆ろ過により膜表面についた濁質を剥がしとる、逆ろ過洗浄を行う。洗浄水の圧力は、0.01〜0.3MPaの範囲が好ましい。洗浄水の圧力が低すぎると、中空糸膜全体に水が行き渡らず、洗浄が不均一となって洗浄効率が悪くなることがある。逆に洗浄水の圧力が高すぎる場合は、供給圧が膜の耐圧性を超え、この結果、膜の変形(潰れなど)が起こったり、細孔構造の変化(圧密化など)による性能の低下や、糸の弱い部分では破裂が生じリークが発生することがある。特に接着界面では、接着部は樹脂により糸形状が固定化されているのに対して、樹脂のない部分では糸が膨らむ変形を起こし、樹脂界面で剪断力が生じる。高分子膜は剪断力に比較的弱く、このような状況を繰り返すと糸の破断が起き、リークを起こす可能性がある。このため、逆ろ過時の圧力は上記範囲に設定するのが好ましい。このときの洗浄水には膜ろ過水を用いることができ、必要により次亜塩素酸ソーダ等の薬剤をこの洗浄水に添加することもできる。使用できる薬剤としては次亜塩素酸ソーダや過酸化水素などの酸化剤、ホルマリンなどの還元剤、硝酸、リン酸、塩酸、硫酸、クエン酸などの酸類、水酸化ナトリウムや炭酸ナトリウムなどのアルカリ類、エチレンジアミン四酢酸(EDTA)などのキレート剤、各種界面活性剤やこれらの混合物を用いうるが、これらに限定されるものではない。例としてポリエーテルスルホン膜で次亜塩素酸ソーダを添加する場合では、有効塩素濃度として1〜50ppm程度が望ましい。ただし、膜素材と原水の特性により、必要な濃度は最適化する必要がある。   In the backwashing of the membrane, first, washing water is supplied from the permeate port B toward the inside of the hollow fiber membrane, and turbidity attached to the membrane surface is peeled off by backfiltration of the membrane to perform backfiltration washing. The pressure of the washing water is preferably in the range of 0.01 to 0.3 MPa. If the pressure of the washing water is too low, the water does not spread over the entire hollow fiber membrane, so that the washing becomes uneven and the washing efficiency may deteriorate. On the other hand, if the pressure of the washing water is too high, the supply pressure exceeds the pressure resistance of the membrane, and as a result, the membrane is deformed (collapsed, etc.) or the performance is degraded due to changes in the pore structure (consolidation, etc.). Or, a weak portion of the yarn may rupture and leak. In particular, at the bonding interface, the thread shape of the bonded portion is fixed by the resin, whereas the portion where there is no resin is deformed so that the yarn swells, and shear force is generated at the resin interface. The polymer film is relatively weak in shearing force, and if such a situation is repeated, the yarn breaks and may cause a leak. For this reason, it is preferable to set the pressure at the time of reverse filtration to the said range. Membrane filtered water can be used as the washing water at this time, and a chemical such as sodium hypochlorite can be added to the washing water as necessary. Usable agents include oxidizing agents such as sodium hypochlorite and hydrogen peroxide, reducing agents such as formalin, acids such as nitric acid, phosphoric acid, hydrochloric acid, sulfuric acid and citric acid, and alkalis such as sodium hydroxide and sodium carbonate Chelating agents such as ethylenediaminetetraacetic acid (EDTA), various surfactants, and mixtures thereof can be used, but are not limited thereto. For example, when sodium hypochlorite is added using a polyethersulfone membrane, the effective chlorine concentration is preferably about 1 to 50 ppm. However, the required concentration needs to be optimized due to the characteristics of the membrane material and raw water.

また、逆洗時にモジュール下部より圧縮空気をモジュール内に送り込むのも好ましい実施態様である。圧縮空気は芯管2内を通り閉止栓12より下部に設けられた穴13より中空糸膜束部に気泡となって流れ込み、中空糸膜を揺らしながら上方へと移動する。このとき、芯管下部側面の穴径は1mm〜4mmであることが好ましい。穴径が小さすぎると、気泡が細かすぎて中空糸膜を振動させる力が小さいため膜面に付着した濁質を剥離させることができないことがある。また、穴径が大きすぎると気泡が大きくなるため、中空糸膜束を均一に洗浄することができないことがある。したがって、芯管下部側面の穴径は1.5mm〜3.5mmがより好ましく、2mm〜3mmがさらに好ましい。また、芯管下部側面の穴数は6〜20個が好ましい。この範囲にすることにより、中空糸膜表面の濁質を剥がすのに好ましいサイズおよび量の気泡が得られ、洗浄能力を高めることができる。より好ましくは8〜16個である。芯管内に設けられた閉止栓12の位置は、芯管下部より芯管の長さの1/10〜2/10の位置に設けるのが好ましい。この範囲に閉止栓を設けることにより、中空糸膜束下部から上部まで中空糸膜束全体を効率良く洗浄することができる。膜面から剥離した濁質は気泡に吸着し、気泡と共にモジュール上方に移動する。モジュール上部まで移動した気泡は、芯管上部に空けられた穴より芯管内部に入りモジュール外に排出される。ここで、芯管上部の穴径は5mm〜10mmが好ましい。この範囲にすることにより、濁質の付着した気泡が芯管内部に抜けやすくなるので濁質が中空糸膜面に再吸着しにくくなる。芯管上部側面の穴数は好ましくは 20〜50個である。穴数をこの範囲にすることにより、排出抵抗を小さくでき、濁質を含む廃水をモジュール外部に速やかに排出することが可能となる。圧縮空気の圧力は0.1〜0.4MPaの範囲が好ましい。洗浄水の圧力と圧縮空気の圧力差が、気泡の量および上昇速度に影響するので、圧縮空気の圧力を高くする必要があり、その差を0.01〜0.3MPaにするのが好ましい。   It is also a preferred embodiment that compressed air is sent into the module from the bottom of the module during backwashing. Compressed air passes through the core tube 2 and flows into the hollow fiber membrane bundle through a hole 13 provided below the stopper plug 12, and moves upward while shaking the hollow fiber membrane. At this time, it is preferable that the hole diameter of the lower side surface of the core tube is 1 mm to 4 mm. If the hole diameter is too small, the air bubbles are too fine and the force to vibrate the hollow fiber membrane is so small that the turbidity adhering to the membrane surface may not be peeled off. Moreover, since a bubble will become large when a hole diameter is too large, a hollow fiber membrane bundle may not be wash | cleaned uniformly. Therefore, the hole diameter on the lower side surface of the core tube is more preferably 1.5 mm to 3.5 mm, and further preferably 2 mm to 3 mm. Further, the number of holes on the lower side surface of the core tube is preferably 6-20. By setting it in this range, bubbles having a size and amount preferable for peeling off the turbidity on the surface of the hollow fiber membrane can be obtained, and the cleaning ability can be enhanced. More preferably, it is 8-16. The position of the closing plug 12 provided in the core tube is preferably provided at a position 1/10 to 2/10 of the length of the core tube from the bottom of the core tube. By providing the closure plug in this range, the entire hollow fiber membrane bundle can be efficiently washed from the lower part to the upper part of the hollow fiber membrane bundle. The turbidity separated from the film surface is adsorbed by the bubbles and moves upward along with the bubbles. Bubbles that have moved up to the top of the module enter the inside of the core tube through holes formed in the top of the core tube and are discharged out of the module. Here, the hole diameter of the upper part of the core tube is preferably 5 mm to 10 mm. By setting the amount within this range, bubbles with adhering turbidity can easily escape into the core tube, so that the turbidity is less likely to be re-adsorbed on the hollow fiber membrane surface. The number of holes on the upper side surface of the core tube is preferably 20-50. By setting the number of holes within this range, the discharge resistance can be reduced, and waste water containing turbidity can be quickly discharged outside the module. The pressure of compressed air is preferably in the range of 0.1 to 0.4 MPa. Since the pressure difference between the pressure of the washing water and the compressed air affects the amount of bubbles and the rising speed, it is necessary to increase the pressure of the compressed air, and the difference is preferably set to 0.01 to 0.3 MPa.

中空糸膜ろ過モジュールの開口端側を上にして垂直に取り付け、下部の封止端側より純水を流し、全量ろ過する。モジュール入口での原水供給圧力を100kPaになるよう調整して、その際のろ過側の水量を測定する。
本願発明の中空糸膜モジュールの純水ろ過速度は0.5〜30m3/hrであることが好ましい。該純水ろ過速度が大きすぎると、浄水場にて全量ろ過方式で用いる場合、膜表面に濁質が圧密化し、洗浄しても濁質が除去しにくく、膜の寿命を下げるような不具合が出る可能性がある。逆に、純水ろ過速度が小さすぎると、中空糸膜ろ過モジュールの必要本数が増え、設置スペースが大きくなり、また設備コストが高くなるような問題が生じる可能性がある。したがって、純水ろ過速度は0.5〜30m3/hrがより好ましく、1.0〜8m3/hrがさらに好ましい。
The hollow fiber membrane filtration module is mounted vertically with the open end side up, and pure water is poured from the lower sealed end side, and the whole amount is filtered. The raw water supply pressure at the module inlet is adjusted to 100 kPa, and the amount of water on the filtration side at that time is measured.
The pure water filtration rate of the hollow fiber membrane module of the present invention is preferably 0.5 to 30 m 3 / hr. If the pure water filtration rate is too high, the turbidity will become compacted on the membrane surface when used in a full-water filtration system at a water purification plant, and it will be difficult to remove the turbidity even after washing, reducing the life of the membrane. There is a possibility of coming out. On the other hand, if the pure water filtration rate is too low, the required number of hollow fiber membrane filtration modules increases, installation space becomes large, and there is a possibility that the equipment cost will increase. Therefore, pure water filtration rate is more preferably 0.5 to 30 m 3 / hr, more preferably 1.0~8m 3 / hr.

以下、実施例によって本発明を具体的に説明するが、本発明はこれによって限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by this.

(中空糸膜内径、外径の測定)
中空糸膜内外径の測定は、以下のような方法で実施した。まず、1.5〜2mm程度の厚みをもつ金属板に2〜3mmφの穴を開けたものを用意し、この穴に中空糸膜を自重では抜けない程度の本数を挿入し、両側の面に沿って、カミソリで中空糸膜をカットして測定用サンプルを調整する。この中空糸膜サンプルを、たとえば、ニコン製万能投影機V−12Aで観察し、1μm単位で移動量が測定できるステージを移動させ、垂直な2軸方向で膜の外径、内径の大きさを記録する。5本〜10本の中空糸膜を測定し、平均をとって中空糸膜の内外径とする。
(Measurement of hollow fiber membrane inner and outer diameters)
The hollow fiber membrane inner and outer diameters were measured by the following method. First, prepare a metal plate having a thickness of about 1.5 to 2 mm with a hole of 2 to 3 mmφ, and insert the number of hollow fiber membranes into the hole so that the hollow fiber membrane cannot be removed by its own weight. Then, cut the hollow fiber membrane with a razor to adjust the measurement sample. This hollow fiber membrane sample is observed with, for example, a Nikon universal projector V-12A, and a stage that can measure the amount of movement in units of 1 μm is moved, and the outer diameter and inner diameter of the membrane are measured in two perpendicular directions. Record. Five to ten hollow fiber membranes are measured, and the average is taken as the inner and outer diameters of the hollow fiber membranes.

(充填率の計算)
充填率の計算は、容器内壁、仕切板、芯管表面および接着部で囲まれるろ過室体積(Vr)と中空糸膜外径と有効長、各ろ過室での糸本数で計算される中空糸膜外径基準体積(Vh)の比率であり、Vh/Vr×100(%)で求められる。
(Calculation of filling rate)
The filling rate is calculated by the filtration chamber volume (Vr) and hollow fiber membrane outer diameter and effective length surrounded by the inner wall of the container, the partition plate, the core tube surface and the bonded portion, and the hollow fiber calculated by the number of yarns in each filtration chamber. It is the ratio of the outer volume diameter reference volume (Vh) and is obtained by Vh / Vr × 100 (%).

(透水性能の測定法)
純水の透水性能の評価は、RO装置を用いて調整された、濁度0.005度以下の純水を室温で膜モジュールに供給圧約100kPaで供給し、30分間流す。30分後に水温、供給圧、ろ過流量を測定し、25℃、単位面積当たり、0.1MPaでのろ過流速(L/m2/hr/100kPa)に換算する。温度補正は、純水の各温度における粘度の比で換算する。
使用時の透水性能の測定は、同様に水温、供給圧、ろ過流量から、25℃、単位面積当たり、100kPaでのろ過流速に換算する。
(Measurement method of water permeability)
Evaluation of the water permeation performance of pure water is performed by supplying pure water with a turbidity of 0.005 degrees or less, adjusted using an RO device, to the membrane module at a supply pressure of about 100 kPa at room temperature and flowing for 30 minutes. After 30 minutes, the water temperature, supply pressure, and filtration flow rate are measured and converted to a filtration flow rate (L / m 2 / hr / 100 kPa) at 25 ° C. and a unit area of 0.1 MPa. The temperature correction is converted by the ratio of the viscosity at each temperature of pure water.
The measurement of the water permeation performance at the time of use is similarly converted from the water temperature, the supply pressure, and the filtration flow rate to a filtration flow rate at 100 kPa per unit area at 25 ° C.

(破断強度の測定法)
膜の強伸度は、テンシロン万能試験機を用い、中空糸膜1本を10cmの長さに切断したサンプルの破断点の強度(g)と伸び率(伸度)(%)を測定する。中空糸膜10本を測定し、各強度と伸度の平均をとって膜の破断強度とする。ただし、チャック部で糸切れした場合はデータを除外し、チャック部以外で糸切れしたデータを用いる。
(Measurement method of breaking strength)
The tensile strength of the membrane is measured by using a Tensilon universal testing machine to measure the strength (g) and the elongation (elongation) (%) at the breaking point of a sample obtained by cutting one hollow fiber membrane into a length of 10 cm. Ten hollow fiber membranes are measured, and the average of each strength and elongation is taken as the breaking strength of the membrane. However, if the yarn breaks at the chuck portion, the data is excluded and the data at which the yarn breaks at other than the chuck portion is used.

(実施例1)
内径125mm、外径145mm、長さ1,000mmのポリ塩化ビニル製円筒容器に、外径124mmで4枚の仕切板をもつ芯管を挿入し、4つのろ過室を持つモジュール容器を組み立てた。内径400μm、外径640μm、分画分子量50万、透水性能560L/hr/m2/100kPa(25℃)のポリエーテルスルホン製中空糸限外濾過膜8600本の糸束を4本作製して、ろ過モジュール容器の4つのろ過室に挿入した後、エポキシ樹脂を用いて端部接着を行った。このときの中空糸膜充填率は50vol%、L/Dは8であった。接着の際、封止端となる接着部にスリット形成用のプラスチック製の型を各ろ過室に1つずつセットして接着し、樹脂の硬化後にこのプラスチック製の型を取り除きスリット部を形成した。開口端側は樹脂硬化後に中空糸膜が開口するように一部を切削し、膜ろ過モジュールとした。芯管部は接着の際プラグを挿入し、接着樹脂が芯管内部に入らないようにした。芯管は長さL=1075mm、外径32mm、内径28mmのポリ塩化ビニル製のパイプに封止端側より120mmの位置に閉止栓を、芯管下部穴径2mm、穴数8個、芯管上部穴径5mm、穴数80個の形状を有するものを使用した。モジュール内径に対する芯管の面積比率は6.5%であった。
このように形成された膜モジュール容器にキャップを取り付けて膜ろ過モジュールを構成した。このモジュールの純水透過量は0.1MPaで、3m3/hrであった。
Example 1
A core tube having an outer diameter of 124 mm and four partition plates was inserted into a polyvinyl chloride cylindrical container having an inner diameter of 125 mm, an outer diameter of 145 mm, and a length of 1,000 mm, and a module container having four filtration chambers was assembled. Internal diameter 400 [mu] m, outer diameter 640 .mu.m, fractional molecular weight of 500,000, water permeation performance 560L / hr / m 2 / 100kPa (25 ℃) polyethersulfone hollow fiber ultrafiltration membrane 8600 pieces of fiber bundle 4 to prepare a of, After inserting into the four filtration chambers of the filtration module container, end bonding was performed using an epoxy resin. The hollow fiber membrane filling rate at this time was 50 vol%, and L / D was 8. At the time of bonding, a plastic mold for slit formation is set in each filtration chamber and bonded to the bonded portion that becomes the sealing end, and after the resin is cured, the plastic mold is removed to form a slit portion. . A part of the opening end side was cut so that the hollow fiber membrane opened after the resin was cured to obtain a membrane filtration module. A plug was inserted into the core tube portion when bonding, so that the adhesive resin did not enter the core tube. The core tube has a length L = 1075 mm, an outer diameter of 32 mm, an inner diameter of 28 mm, a polyvinyl chloride pipe with a stopper plug at a position of 120 mm from the sealing end side, the core tube lower hole diameter of 2 mm, the number of holes, 8 core tubes An upper hole diameter of 5 mm and a shape having 80 holes were used. The area ratio of the core tube to the inner diameter of the module was 6.5%.
A membrane filtration module was configured by attaching a cap to the membrane module container thus formed. The pure water permeation amount of this module was 0.1 MPa and 3 m 3 / hr.

このように構成された膜ろ過モジュールを使い、平均濁度1.7の湖沼水を圧力0.07MPaで供給し、30分に1回、エアースクラビング+逆ろ過洗浄30秒で洗浄を実施した。この運転を1ヶ月間連続的に実施し、ろ過流量、ろ過水濁度を測定した。初期ろ過速度は0.8m3/hrであり、1ヶ月後のろ過速度は0.8m3/hrと安定したろ過性能を示し、ろ過水濁度も初期が0.01度以下、1ヶ月後が0.01度以下と変化がなく、リーク等の発生も見られなかった。 Using the membrane filtration module configured as described above, lake water having an average turbidity of 1.7 was supplied at a pressure of 0.07 MPa, and washing was performed once every 30 minutes with air scrubbing + back filtration washing for 30 seconds. This operation was carried out continuously for one month, and the filtration flow rate and filtrate water turbidity were measured. The initial filtration rate is 0.8 m 3 / hr, and the filtration rate after 1 month is 0.8 m 3 / hr and shows stable filtration performance. No change was observed at 0.01 degrees or less, and no leakage or the like was observed.

(比較例1)
芯管内に閉止栓を設けない以外は、実施例1と同様のモジュールを作製した。
(Comparative Example 1)
A module similar to that of Example 1 was produced except that no closing plug was provided in the core tube.

実施例1と同様の湖沼水を用いて1ヶ月間連続運転を行ったが、芯管内に閉止栓を設けていないため、逆洗時、中空糸膜面に堆積した濁質成分を十分に除去することができず、経時的にろ過性能が低下してしまった。すなわち、1ヶ月後には、ろ過水濁度は変化ないものの、ろ過速度は0.5m3/hrまで低下した。 Although continuous operation was performed for 1 month using the same lake water as in Example 1, since no stopper was provided in the core tube, turbid components deposited on the surface of the hollow fiber membrane were sufficiently removed during backwashing. The filtration performance declined over time. That is, after one month, the filtration water turbidity did not change, but the filtration rate decreased to 0.5 m 3 / hr.

(比較例2)
芯管下部の穴数が4であり、芯管上部の穴数が6である芯管を用いた以外は実施例1と同様のモジュールを作製した。
(Comparative Example 2)
A module similar to that of Example 1 was produced except that a core tube having 4 holes in the lower part of the core tube and 6 holes in the upper part of the core tube was used.

実施例1と同様の湖沼水を用いて1ヶ月間連続運転を行ったが、特に芯管上部の穴数が少ないため、逆洗時、膜面から剥離した濁質成分(固形成分)が効率良くモジュール外に排出されず、モジュール上部に蓄積し、経時的なろ過性能の低下がみられた。   Continuous operation was performed for 1 month using the same lake water as in Example 1, but because the number of holes in the upper part of the core tube is particularly small, the turbid component (solid component) peeled off from the membrane surface during backwashing is efficient. It was not well discharged outside the module, but accumulated at the top of the module, and the filtration performance declined over time.

参考例
仕切り板のない芯管を用いた以外は実施例1と同様のモジュールを作製した。
( Reference example )
A module similar to that of Example 1 was produced except that a core tube without a partition plate was used.

実施例1と同様の湖沼水を用いて1ヶ月間連続運転を行ったが、芯管に仕切り板を設けていないため、エアスクラビング時、気泡が中空糸膜間を均一に分散して移動せず、濁質成分の除去に斑が生じていた。そのため、経時的なろ過性能の低下が観察された。   Continuous operation was carried out for 1 month using the same lake water as in Example 1, but since no partition plate was provided in the core tube, air bubbles were evenly dispersed and moved between the hollow fiber membranes during air scrubbing. In addition, spots were generated in the removal of turbid components. Therefore, a decrease in filtration performance over time was observed.

モジュール容器の中央に中空糸膜と平行になる芯管を有し、その周囲に中空糸膜を配置して膜モジュールを構成し、使用の際は縦方向に配置する。芯管には下部付近に閉止栓を有し、側面には穴を設けることにより、芯管下部の穴より洗浄用の圧縮空気をろ過室に供給することで、中空糸膜を揺らし、かつ気泡が上昇する力で膜表面の濁質成分を剥がし、エアースクラビングを行うことで、より効率の良い洗浄をすることができる。また、剥がれた濁質成分は水および圧縮空気とともに芯管の上部側の穴よりモジュール外部に排出することで、剥がれた濁質成分を効率よく排出できるモジュール構造とすることで、効率の良い逆洗が可能となり、長期間安定したろ過性能を維持することが可能となった。このため、河川水、湖沼水、地下水、かん水、海水などの懸濁物質を含む水を処理して、これらに含まれる微粒子や微生物等を除去する中空糸膜ろ過モジュールとして好適に使用でき、よって産業の発展に寄与することが大である。   The module container has a core tube that is parallel to the hollow fiber membrane, and a hollow fiber membrane is arranged around the core tube to constitute a membrane module. When used, the membrane module is arranged in the vertical direction. The core tube has a stopper near the lower part, and a hole is provided on the side surface. By supplying compressed air for cleaning to the filtration chamber from the hole in the lower part of the core tube, the hollow fiber membrane is shaken and air bubbles By removing the turbid components on the film surface with the force of increasing the pressure and performing air scrubbing, more efficient cleaning can be performed. Also, the separated turbid component is discharged together with water and compressed air from the hole on the upper side of the core tube to the outside of the module, so that the peeled turbid component can be efficiently discharged. It was possible to wash and maintain stable filtration performance for a long time. For this reason, it can be suitably used as a hollow fiber membrane filtration module that treats water containing suspended solids such as river water, lake water, ground water, brine, seawater, etc., and removes fine particles and microorganisms contained in these. It is important to contribute to industrial development.

本発明の中空糸膜モジュールの一例で、容器1に閉止栓12を有する芯管2とそれに取り付けられた4つの仕切板11を持ち、封止端側の接着部にスリット10を有するものの構成図を示す。An example of the hollow fiber membrane module of the present invention, which has a core tube 2 having a closure plug 12 in a container 1 and four partition plates 11 attached thereto, and has a slit 10 in an adhesive portion on the sealing end side. Indicates. 本発明の中空糸膜モジュールの一例であり、中空糸膜開口側断面の簡単な構成図である。It is an example of the hollow fiber membrane module of this invention, and is a simple block diagram of a hollow fiber membrane opening side cross section. 本発明の中空糸膜モジュールの一例であり、封止側接着部断面の簡単な構成図である。It is an example of the hollow fiber membrane module of this invention, and is a simple block diagram of the sealing-side adhesion part cross section. 本発明の中空糸膜モジュールの比較例1の一例で、容器1に閉止栓のない芯管2とそれに取り付けられた4つの仕切板11を持ち、封止端側の接着部にスリット10を有するものの構成図を示す。It is an example of the comparative example 1 of the hollow fiber membrane module of this invention. The container 1 has the core tube 2 without a closure plug, the four partition plates 11 attached to it, and has the slit 10 in the adhesion part of the sealing end side. The block diagram of a thing is shown. 本発明の中空糸膜モジュールの比較例1の一例であり、中空糸膜開口側断面の簡単な構成図である。FIG. 2 is an example of Comparative Example 1 of the hollow fiber membrane module of the present invention, and is a simple configuration diagram of a hollow fiber membrane opening side cross section. 本発明の中空糸膜モジュールの比較例1の一例であり、封止側接着部断面の簡単な構成図である。FIG. 3 is an example of Comparative Example 1 of the hollow fiber membrane module of the present invention, and is a simple configuration diagram of a cross section of a sealing side adhesive portion. 本発明の中空糸膜モジュールの比較例2の一例で、容器1に閉止栓12を有する芯管2とそれに取り付けられた4つの仕切板11を持ち、封止端側の接着部にスリット10を有するが芯管側面の穴数の少ないものの構成図を示す。It is an example of the comparative example 2 of the hollow fiber membrane module of this invention, has the core pipe 2 which has the closure plug 12 in the container 1, and the four partition plates 11 attached to it, and has the slit 10 in the adhesion part by the side of a sealing end. The block diagram of what has it but has few holes on the side surface of a core pipe is shown. 本発明の中空糸膜モジュールの比較例2の一例であり、中空糸膜開口側断面の簡単な構成図である。FIG. 6 is an example of Comparative Example 2 of the hollow fiber membrane module of the present invention, and is a simple configuration diagram of a hollow fiber membrane opening side cross section. 本発明の中空糸膜モジュールの比較例2の一例であり、封止側接着部断面の簡単な構成図である。FIG. 5 is an example of a comparative example 2 of the hollow fiber membrane module of the present invention, and is a simple configuration diagram of a cross section of a sealing side adhesive portion. 本発明の中空糸膜モジュールの比較例3の一例で、容器1に閉止栓12を有するが仕切り板のない芯管2と、封止端側の接着部にスリット10を有するものの構成図を示す。FIG. 3 shows an example of Comparative Example 3 of the hollow fiber membrane module of the present invention, showing a configuration of a container 1 having a closure plug 12 but no partition plate, and a slit 10 at a sealing end side adhesive portion. . 本発明の中空糸膜モジュールの比較例3の一例であり、中空糸膜開口側断面の簡単な構成図である。FIG. 6 is an example of Comparative Example 3 of the hollow fiber membrane module of the present invention, and is a simple configuration diagram of the hollow fiber membrane opening side cross section. 本発明の中空糸膜モジュールの比較例3の一例であり、封止側接着部断面の簡単な構成図である。FIG. 5 is an example of Comparative Example 3 of the hollow fiber membrane module of the present invention, and is a simple configuration diagram of a cross section of a sealing-side adhesive portion.

符号の説明Explanation of symbols

1:膜モジュール容器
2:芯管
3:中空糸膜
4:接着樹脂
5:膜モジュールキャップ
6:パッキン
7:クランプバンド
8:モジュール開口端面
9:モジュール封止端面
10:スリット
11:仕切板
12:閉止栓
13:エアー用の芯管側面穴
14:洗浄廃水排出用の芯管側面穴
a:原水供給口
b:透過水出口
c:洗浄廃水排出口
d:エアー供給口
1: Membrane module container 2: Core tube 3: Hollow fiber membrane 4: Adhesive resin 5: Membrane module cap 6: Packing 7: Clamp band 8: Module opening end face 9: Module sealing end face
10: slit
11: Partition plate
12: Stopcock
13: Core tube side hole for air
14: Core tube side hole for cleaning wastewater discharge a: Raw water supply port b: Permeate outlet c: Cleaning wastewater discharge port d: Air supply port

Claims (8)

芯管の周りに選択透過性を有する複数の中空糸膜が配置され、該中空糸膜の両端部が別々に樹脂で固定され、少なくとも片端部で該中空糸膜が開口している中空糸膜ろ過モジュールであって、芯管内に閉止栓を有し、閉止栓が芯管下部より芯管の長さの1/10〜2/10の位置に設けてあり、閉止栓より下側の芯管側面の穴径(a)を1〜4mm、閉止栓より上側の芯管側面の穴径(b)を5〜10mm、かつb≧aとし、閉止栓より下側の芯管側面の穴数(c)を6〜20個、閉止栓より上側の芯管側面の穴数(d)を20〜50個、かつd≧cとし、芯管上部を排出口としたことを特徴とする中空糸膜ろ過モジュール。 A hollow fiber membrane in which a plurality of hollow fiber membranes having permselectivity are arranged around a core tube, both ends of the hollow fiber membrane are separately fixed with resin, and the hollow fiber membrane is open at least at one end A filtration module having a closing plug in a core tube, the closing plug being provided at a position 1/10 to 2/10 of the length of the core tube from the lower part of the core tube, and a core tube below the closing plug The hole diameter (a) on the side surface is 1 to 4 mm, the hole diameter (b) on the side surface of the core tube above the closing plug is 5 to 10 mm, and b ≧ a, and the hole on the side surface of the core tube below the closing plug The number (c) is 6 to 20, the number of holes (d) on the side surface of the core tube above the stopper plug is 20 to 50, d ≧ c, and the upper portion of the core tube is a discharge port. Yarn membrane filtration module. 外圧式全量ろ過で使用されることを特徴とする請求項1記載の中空糸膜ろ過モジュール。   The hollow fiber membrane filtration module according to claim 1, which is used in external pressure total filtration. 中空糸膜ろ過モジュールのろ過室における中空糸膜の充填率が30〜60vol%であることを特徴とする請求項1または2に記載の中空糸膜ろ過モジュール。 The hollow fiber membrane filtration module according to claim 1 or 2 filling factor of the hollow fiber membranes in the filtration chamber of the hollow fiber membrane filtration module is characterized by a 30~60vol%. 中空糸膜の内径が200〜600μm、外径が300〜1000μmである請求項1乃至3いずれか記載の中空糸膜ろ過モジュール。   The hollow fiber membrane filtration module according to any one of claims 1 to 3, wherein the hollow fiber membrane has an inner diameter of 200 to 600 µm and an outer diameter of 300 to 1000 µm. 中空糸膜が主としてポリエーテルスルホンまたはセルローストリアセテートからなる請求項1乃至4いずれか記載の中空糸膜ろ過モジュール。   The hollow fiber membrane filtration module according to any one of claims 1 to 4, wherein the hollow fiber membrane is mainly composed of polyethersulfone or cellulose triacetate. 中空糸膜ろ過モジュールの中空糸膜有効長Lと容器内径Dの比率(L/D)が3〜50である請求項1乃至5いずれか記載の中空糸膜ろ過モジュール。   The hollow fiber membrane filtration module according to any one of claims 1 to 5, wherein a ratio (L / D) of the effective length L of the hollow fiber membrane filtration module to the inner diameter D of the container is 3 to 50. 芯管の周りに選択透過性を有する複数の中空糸膜が配置され、該中空糸膜の両端部が別々に樹脂で固定され、少なくとも片端部で該中空糸膜が開口している中空糸膜ろ過モジュールの洗浄方法であって、芯管内に閉止栓を有し、閉止栓より下側の芯管側面の穴径(a)を1〜4mm、閉止栓より上側の芯管側面の穴径(b)を5〜10mm、かつb≧aとし、閉止栓より下側の芯管側面の穴数(c)を6〜20個、閉止栓より上側の芯管側面の穴数(d)を20〜50個、かつd≧cとし、閉止栓を芯管下部より芯管の長さの1/10〜2/10の位置とした芯管の下部より圧縮空気を導入し、中空糸膜間を通過させ、芯管上部より抜き出すことを特徴とする中空糸膜ろ過モジュールの洗浄方法。 A hollow fiber membrane in which a plurality of hollow fiber membranes having permselectivity are arranged around a core tube, both ends of the hollow fiber membrane are separately fixed with resin, and the hollow fiber membrane is open at least at one end A method for cleaning a filtration module, which has a stopper plug in the core tube, the hole diameter (a) on the side surface of the core tube below the stopper plug is 1 to 4 mm, and the hole diameter on the side surface of the core tube above the stopper plug (B) is 5 to 10 mm and b ≧ a, the number of holes (c) on the side surface of the core tube below the stopper plug is 6 to 20, and the number of holes on the side surface of the core tube above the stopper plug (d) 20 to 50 and d ≧ c , and compressed air is introduced from the lower part of the core tube with the closure plug located at 1/10 to 2/10 of the length of the core tube from the lower part of the core tube, A method for washing a hollow fiber membrane filtration module, wherein the hollow fiber membrane filtration module is extracted from the upper part of the core tube. さらに、中空糸膜の内側から外側に向かってろ過水を流すことを特徴とする請求項7記載の中空糸膜ろ過モジュールの洗浄方法。   8. The method for washing a hollow fiber membrane filtration module according to claim 7, further comprising flowing filtered water from the inside to the outside of the hollow fiber membrane.
JP2003384476A 2003-11-14 2003-11-14 Hollow fiber membrane filtration module and cleaning method thereof Expired - Fee Related JP4433276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003384476A JP4433276B2 (en) 2003-11-14 2003-11-14 Hollow fiber membrane filtration module and cleaning method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003384476A JP4433276B2 (en) 2003-11-14 2003-11-14 Hollow fiber membrane filtration module and cleaning method thereof

Publications (2)

Publication Number Publication Date
JP2005144305A JP2005144305A (en) 2005-06-09
JP4433276B2 true JP4433276B2 (en) 2010-03-17

Family

ID=34692855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003384476A Expired - Fee Related JP4433276B2 (en) 2003-11-14 2003-11-14 Hollow fiber membrane filtration module and cleaning method thereof

Country Status (1)

Country Link
JP (1) JP4433276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508555A (en) * 2013-10-08 2014-01-15 中国石油天然气集团公司 Reactor for realizing suspension of biofilm carriers under low aeration quantity

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153444B (en) * 2010-09-29 2015-06-17 旭化成化学株式会社 Hollow fiber membrane module, and filtration method and ultrapure water production system using same
KR101765926B1 (en) 2011-02-22 2017-08-08 현대자동차주식회사 Humidification device for fuel cell
CN108744982A (en) * 2018-07-06 2018-11-06 南京久盈膜科技有限公司 A kind of hollow fiber film assembly and its manufacturing method
CN108786473B (en) * 2018-08-29 2023-10-03 郑州恒博环境科技股份有限公司 Hollow fiber ultrafiltration membrane component
CN113041852A (en) * 2021-03-18 2021-06-29 南京俊星金汇膜环保科技有限公司 Hydrophilic hollow fiber ultrafiltration membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103508555A (en) * 2013-10-08 2014-01-15 中国石油天然气集团公司 Reactor for realizing suspension of biofilm carriers under low aeration quantity
CN103508555B (en) * 2013-10-08 2015-04-29 中国石油天然气集团公司 Reactor for realizing suspension of biofilm carriers under low aeration quantity

Also Published As

Publication number Publication date
JP2005144305A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP4951860B2 (en) Method for producing permselective membrane module and permselective membrane module
JP5366316B2 (en) Hollow fiber membrane module and method for purifying suspended water using the same
JP4227651B2 (en) Hollow fiber membrane module and manufacturing method thereof
KR102115106B1 (en) Hollow fiber membrane module and cleaning method
JP4932492B2 (en) Hollow fiber membrane cartridge
WO2005037414A1 (en) Novel device for submerged ultrafiltration
WO2011158559A1 (en) Method for cleaning membrane modules
KR20150133213A (en) Method for cleaning hollow fiber membrane module
KR100733529B1 (en) Membrane cartridge, membrane separating device, and membrane separating method
JP2018023965A (en) Cleaning method for external pressure type filtration module and filtration device
JP4437527B2 (en) Membrane filtration module
JP4433276B2 (en) Hollow fiber membrane filtration module and cleaning method thereof
JP2006281163A (en) Cleaning method of filter membrane
JP2013212497A (en) Water treating method
JP4270644B2 (en) Operating method and cleaning method of spiral membrane element and spiral membrane module
JP2004130307A (en) Method for filtration of hollow fiber membrane
WO2015163429A1 (en) Method for operating clarifying-film module
JP2010188250A (en) Water treatment method
JP3948593B2 (en) Membrane cleaning method
JP7213711B2 (en) Water treatment device and water treatment method
US20240009628A1 (en) Method for washing hollow fiber membrane module
KR102508296B1 (en) A water treatment device using a precision filtration film of a highly permeable hydrophilic cellulose
JPH05212254A (en) Hollow-fiber membrane module filter
JP2007222740A (en) Cleaning method of vertical separation membrane module
JP2002045657A (en) Hollow fiber type permselective membrane element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

R151 Written notification of patent or utility model registration

Ref document number: 4433276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees