JP6289802B2 - Filtration membrane cleaner and filtration membrane cleaning method - Google Patents

Filtration membrane cleaner and filtration membrane cleaning method Download PDF

Info

Publication number
JP6289802B2
JP6289802B2 JP2012145542A JP2012145542A JP6289802B2 JP 6289802 B2 JP6289802 B2 JP 6289802B2 JP 2012145542 A JP2012145542 A JP 2012145542A JP 2012145542 A JP2012145542 A JP 2012145542A JP 6289802 B2 JP6289802 B2 JP 6289802B2
Authority
JP
Japan
Prior art keywords
filtration membrane
membrane
cleaning
wastewater
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012145542A
Other languages
Japanese (ja)
Other versions
JP2013031839A (en
Inventor
靖子 北川
靖子 北川
京平 酢谷
京平 酢谷
信也 末吉
信也 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012145542A priority Critical patent/JP6289802B2/en
Publication of JP2013031839A publication Critical patent/JP2013031839A/en
Application granted granted Critical
Publication of JP6289802B2 publication Critical patent/JP6289802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、濾過膜を洗浄する際に使用される濾過膜洗浄剤に関する。また、濾過膜を洗浄する方法に関する。   The present invention relates to a filtration membrane cleaning agent used when cleaning a filtration membrane. Moreover, it is related with the method of wash | cleaning a filtration membrane.

油分や難分解性の着色成分を含む排水を浄化処理する方法として、中空糸膜等の濾過膜を用いて排水を濾過する方法が知られている(特許文献1,2)。濾過膜においては、濾過時間が長くなるにつれて汚れが付着して濾過性能が低下するため、通常は、定期的に洗浄して濾過性能を回復させている。特許文献3には、含油排水を濾過処理した耐強アルカリ性を有する濾過膜を、水酸化ナトリウム等の強アルカリ薬剤を用いて洗浄する方法が開示されている。   As a method for purifying wastewater containing oil and hardly-decomposable coloring components, methods for filtering wastewater using a filtration membrane such as a hollow fiber membrane are known (Patent Documents 1 and 2). In the filtration membrane, dirt is attached as the filtration time becomes longer and the filtration performance is lowered. Therefore, the filtration performance is usually recovered by washing periodically. Patent Document 3 discloses a method of washing a strong alkaline resistant filtration membrane obtained by filtering oil-containing wastewater using a strong alkaline agent such as sodium hydroxide.

特開昭56−152781号公報JP-A-56-152781 特開平5−245472号公報JP-A-5-245472 特開2010−36183号公報JP 2010-361183 A

排水に含まれる油分が疎水性の高い炭化水素化合物や芳香族化合物である場合又は排水に難分解性の着色成分が含まれる場合、排水の濾過に使用した濾過膜を水酸化ナトリウム水溶液で洗浄する際には、汚れの除去性を高めるために、高濃度の薬液での洗浄が必要となる。しかし、高濃度の水酸化ナトリウム水溶液を用いた洗浄は、薬液の取り扱いの危険性や薬品コストが高くなるため、実使用に適していなかった。
本発明は、炭化水素化合物や芳香族化合物等の油分又は難分解性の着色成分を含む排水の処理に使用した濾過膜の汚れを容易に除去できる濾過膜洗浄剤および濾過膜の洗浄方法を提供することを目的とする。
When the oil contained in the wastewater is a highly hydrophobic hydrocarbon compound or aromatic compound, or when the wastewater contains a hardly decomposable coloring component, the filtration membrane used for filtering the wastewater is washed with an aqueous sodium hydroxide solution. At this time, in order to improve the removal property of dirt, it is necessary to wash with a high concentration chemical solution. However, cleaning using a high-concentration sodium hydroxide aqueous solution is not suitable for actual use because it increases the risk of handling chemical solutions and the chemical cost.
The present invention provides a filtration membrane cleaning agent and a filtration membrane cleaning method capable of easily removing dirt on a filtration membrane used for the treatment of wastewater containing an oil component such as a hydrocarbon compound or an aromatic compound or a hardly decomposable coloring component. The purpose is to do.

本発明は、以下の態様を含む。
[1]次亜塩素酸又はその塩と界面活性剤とを含む混合溶液からなり、排水の処理に使用された材質がフッ素系樹脂の濾過膜を洗浄する際に使用される濾過膜洗浄剤であって、前記次亜塩素酸又はその塩の遊離塩素濃度が0.01〜3.0%であり、前記界面活性剤の濃度が0.05〜3.0質量%である、濾過膜洗浄剤。
[2]前記界面活性剤がノニオン系界面活性剤である、[1]に記載の濾過膜洗浄剤。
]前記排水が油分を含む排水であることを特徴とする[1]又は[2]に記載の濾過膜洗浄剤。
]前記排水が難分解性の着色成分を含む色度50以上の排水であることを特徴とする[1]〜[3]のいずれかに記載の濾過膜洗浄剤。
]濾過膜洗浄剤によって、排水の処理に使用した材質がフッ素系樹脂の濾過膜を洗浄する濾過膜の洗浄方法であって、前記濾過膜洗浄剤として、次亜塩素酸又はその塩と界面活性剤とを含み、前記次亜塩素酸又はその塩の遊離塩素濃度が0.01〜3.0%の範囲内にあり、前記界面活性剤の濃度が0.05〜3.0質量%である混合溶液を用いる濾過膜の洗浄方法。
]前記界面活性剤がノニオン系界面活性剤である、[]に記載の濾過膜の洗浄方法。
]前記排水が油分を含む排水であることを特徴とする[5]又は[6]に記載の濾過膜の洗浄方法。
]前記排水が難分解性の着色成分を含む色度50以上の排水であることを特徴とする[5]〜[7]のいずれかに記載の濾過膜の洗浄方法。
]前記排水の処理が、生物処理と膜分離処理とを組み合わせた膜分離活性汚泥処理である、[5]〜[8]のいずれに記載の濾過膜の洗浄方法。
10]前記濾過膜洗浄剤を用いた洗浄の前又は後に、濾過膜を酸性水溶液によって処理する、[5]〜[9]のいずれかに記載の濾過膜の洗浄方法。
11]前記酸性水溶液が、塩酸、硫酸、クエン酸水溶液及びシュウ酸の水溶液からなる群から選ばれる少なくとも1以上の水溶液である、[10]に記載の濾過膜の洗浄方法。
The present invention includes the following aspects.
[1] A filter membrane cleaning agent comprising a mixed solution containing hypochlorous acid or a salt thereof and a surfactant, and used for cleaning a filter membrane made of fluororesin as a material used for wastewater treatment. there, the free chlorine concentration in the hypochlorous acid or its salt Ri from 0.01 to 3.0% der, the concentration of the surfactant is 0.05 to 3.0 wt%, the filtration membrane cleaning Agent.
[2] The filtration membrane cleaner according to [1], wherein the surfactant is a nonionic surfactant.
[ 3 ] The filtration membrane cleaner according to [1] or [2] , wherein the wastewater is wastewater containing oil.
[ 4 ] The filtration membrane cleaner according to any one of [1] to [3], wherein the wastewater is wastewater having a chromaticity of 50 or more containing a hardly decomposable coloring component.
[ 5 ] A filtration membrane cleaning method for cleaning a filtration membrane made of a fluororesin using a filtration membrane cleaner, wherein hypochlorous acid or a salt thereof is used as the filtration membrane cleaner. and a surfactant, the concentration of free chlorine of hypochlorous acid or its salt Ri near the range of 0.01 to 3.0%, the concentration of the surfactant is 0.05 to 3.0 mass A method for washing a filtration membrane using a mixed solution that is% .
[ 6 ] The filtration membrane cleaning method according to [ 5 ], wherein the surfactant is a nonionic surfactant.
[ 7 ] The filtration membrane cleaning method according to [5] or [6] , wherein the wastewater is wastewater containing oil.
[ 8 ] The method for cleaning a filtration membrane according to any one of [5] to [7] , wherein the wastewater is wastewater having a chromaticity of 50 or more containing a hardly decomposable coloring component.
[ 9 ] The method for cleaning a filtration membrane according to any one of [5] to [8] , wherein the wastewater treatment is a membrane separation activated sludge treatment in which a biological treatment and a membrane separation treatment are combined.
[ 10 ] The filtration membrane cleaning method according to any one of [5] to [9] , wherein the filtration membrane is treated with an acidic aqueous solution before or after washing with the filtration membrane cleaner.
[ 11 ] The method for washing a filtration membrane according to [ 10 ], wherein the acidic aqueous solution is at least one aqueous solution selected from the group consisting of an aqueous solution of hydrochloric acid, sulfuric acid, an aqueous solution of citric acid, and an oxalic acid.

本発明の濾過膜洗浄剤および濾過膜の洗浄方法によれば、炭化水素化合物や芳香族化合物等の油分を含む排水又は難分解性の着色成分を含む色度50以上の排水の処理に使用した濾過膜の汚れを効率的に除去できる。
また、洗浄剤を用いた洗浄の前後に濾過膜を酸溶液で洗浄することによって無機物からなる閉塞物も除去できる。
According to the filtration membrane cleaning agent and the filtration membrane cleaning method of the present invention, the filtration membrane cleaning agent and the filtration membrane cleaning method are used for the treatment of wastewater containing oils such as hydrocarbon compounds and aromatic compounds or wastewater having a chromaticity of 50 or more containing hardly decomposable coloring components. The filter membrane dirt can be efficiently removed.
Moreover, the obstruction | occlusion matter which consists of inorganic substances can also be removed by wash | cleaning a filtration membrane with an acid solution before and behind washing | cleaning using a cleaning agent.

実施例III−13における、洗浄前の中空糸膜エレメントの外観の写真である。It is a photograph of the external appearance of the hollow fiber membrane element before washing | cleaning in Example III-13. 実施例III−13における、洗浄途中の中空糸膜エレメントの外観の写真である。It is a photograph of the external appearance of the hollow fiber membrane element in the middle of washing | cleaning in Example III-13. 実施例III−13における、洗浄後の中空糸膜エレメントの外観の写真である。It is a photograph of the external appearance of the hollow fiber membrane element after washing | cleaning in Example III-13.

本発明の濾過膜洗浄剤は、塩素酸又はその塩と界面活性剤とを含む混合溶液からなる。当該混合溶液の溶媒は、塩素酸又はその塩及び界面活性剤の共溶媒を用いることができるが、取り扱いの簡便さや洗浄後の廃水としての安全性から水を用いることが好ましい。   The filtration membrane cleaner of the present invention comprises a mixed solution containing chloric acid or a salt thereof and a surfactant. As the solvent of the mixed solution, a co-solvent of chloric acid or a salt thereof and a surfactant can be used, but it is preferable to use water from the viewpoint of ease of handling and safety as waste water after washing.

塩素酸又はその塩としては、次亜塩素酸ナトリウム、次亜塩素酸カリウム等が挙げられる。
濾過膜洗浄剤における塩素酸又はその塩の遊離塩素濃度は0.01〜3.0%であり、0.03〜2.0%であることが好ましい。塩素酸又はその塩の遊離塩素濃度が前記下限値未満であると、濾過膜の洗浄が不充分になり、前記上限値を超えると、洗浄後の洗浄剤の廃液処理が困難になる。なお、遊離塩素濃度はJIS K 0102(2008)に記載のDPD法により求めることができる。
Examples of chloric acid or salts thereof include sodium hypochlorite and potassium hypochlorite.
The free chlorine concentration of chloric acid or a salt thereof in the filter membrane cleaner is 0.01 to 3.0%, preferably 0.03 to 2.0%. When the free chlorine concentration of chloric acid or a salt thereof is less than the lower limit value, the filtration membrane is not sufficiently washed, and when the upper limit value is exceeded, it becomes difficult to treat the waste liquid after washing. The free chlorine concentration can be determined by the DPD method described in JIS K 0102 (2008).

界面活性剤は、濾過膜の洗浄性により優れる点、コストメリットや取り扱い性が優れる点から、低発泡性のノニオン系界面活性剤がより好ましい。また、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤の1種以上を混合してもよい。   The surfactant is more preferably a low-foaming nonionic surfactant from the viewpoints of better cleaning performance of the filtration membrane and superior cost merit and handleability. Moreover, you may mix 1 or more types of anionic surfactant, a cationic surfactant, and an amphoteric surfactant.

ノニオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンポリスチリルフェニルエーテル、ポリオキシエチレン−ポリオキシプロピレングリコール、ポリオキシエチレン−ポリオキシプロピレンアルキルエーテル、多価アルコール脂肪酸部分エステル、ポリオキシエチレン多価アルコール脂肪酸部分エステル、ポリオキシエチレン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ポリオキシエチレン化ヒマシ油、脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルアミン、トリエタノールアミン脂肪酸部分エステル、トリアルキルアミンオキサイド等が挙げられる。   Nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene polystyryl phenyl ether, polyoxyethylene-polyoxypropylene glycol, polyoxyethylene-polyoxypropylene alkyl ether, polyvalent Alcohol fatty acid partial ester, polyoxyethylene polyhydric alcohol fatty acid partial ester, polyoxyethylene fatty acid ester, polyglycerin fatty acid ester, polyoxyethylenated castor oil, fatty acid diethanolamide, polyoxyethylene alkylamine, triethanolamine fatty acid partial ester, Examples include trialkylamine oxide.

アニオン系界面活性剤としては、アルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルカルボン酸、アルキルナフタレンスルホン酸、α−オレフィンスルホン酸、ジアルキルスルホコハク酸、α−スルホン化脂肪酸、N−メチル−N−オレイルタウリン、石油スルホン酸、アルキル硫酸、硫酸化油脂、ポリオキシエチレンアルキルエーテル硫酸、ポリオキシエチレンスチレン化フェニルエーテル硫酸、アルキルリン酸、ポリオキシエチレンアルキルエーテルリン酸、ポリオキシエチレンアルキルフェニルエーテルリン酸、ナフタレンスルホン酸ホルムアルデヒド縮合物、これらの塩等が挙げられる。   Examples of the anionic surfactant include alkyl sulfonic acid, alkyl benzene sulfonic acid, alkyl carboxylic acid, alkyl naphthalene sulfonic acid, α-olefin sulfonic acid, dialkyl sulfosuccinic acid, α-sulfonated fatty acid, N-methyl-N-oleyl taurine, Petroleum sulfonic acid, alkyl sulfuric acid, sulfated oil and fat, polyoxyethylene alkyl ether sulfuric acid, polyoxyethylene styrenated phenyl ether sulfuric acid, alkyl phosphoric acid, polyoxyethylene alkyl ether phosphoric acid, polyoxyethylene alkyl phenyl ether phosphoric acid, naphthalene sulfone Examples include acid formaldehyde condensates and salts thereof.

カチオン系界面活性剤としては、第一〜第三脂肪アミン、四級アンモニウム、テトラアルキルアンモニウム、トリアルキルベンジルアンモニウムアルキルピリジニウム、2−アルキル−1−アルキル−1−ヒドロキシエチルイミダゾリニウム、N,N−ジアルキルモルホリニウム、ポリエチレンポリアミン脂肪酸アミド、ポリエチレンポリアミン脂肪酸アミドの尿素縮合物、ポリエチレンポリアミン脂肪酸アミドの尿素縮合物の第四級アンモニウムおよびこれらの塩等が挙げられる。   Cationic surfactants include primary to tertiary fatty amines, quaternary ammonium, tetraalkylammonium, trialkylbenzylammonium alkylpyridinium, 2-alkyl-1-alkyl-1-hydroxyethylimidazolinium, N, N -Dialkylmorpholinium, polyethylene polyamine fatty acid amide, urea condensate of polyethylene polyamine fatty acid amide, quaternary ammonium of urea condensate of polyethylene polyamine fatty acid amide, and salts thereof.

両性界面活性剤としては、ベタイン類(N,N−ジメチル−N−アルキル−N−カルボキシメチルアンモニウムベタイン、N,N,N−トリアルキル−N−スルホアルキレンアンモニウムベタイン、N,N−ジアルキル−N,N−ビスポリオキシエチレンアンモニウム硫酸エステルベタイン、2−アルキル−1−カルボキシメチル−1−ヒドロキシエチルイミダゾリニウムベタイン等)、アミノカルボン酸類(N,N−ジアルキルアミノアルキレンカルボン酸塩等)等が挙げられる。   Amphoteric surfactants include betaines (N, N-dimethyl-N-alkyl-N-carboxymethylammonium betaine, N, N, N-trialkyl-N-sulfoalkyleneammonium betaine, N, N-dialkyl-N N-bispolyoxyethylene ammonium sulfate betaine, 2-alkyl-1-carboxymethyl-1-hydroxyethylimidazolinium betaine, etc.), aminocarboxylic acids (N, N-dialkylaminoalkylene carboxylate, etc.), etc. Can be mentioned.

濾過膜洗浄剤における界面活性剤の濃度は0.05〜3.0質量%であることが好ましく、0.3〜1.5質量%であることがより好ましい。界面活性剤濃度が前記下限値以上であれば、充分に濾過膜を洗浄できる。しかし、前記上限値を超えても、洗浄性向上の効果は頭打ちになるため、コストが高くなるばかりである。
また、塩素酸又はその塩の遊離塩素濃度を1とした際の界面活性剤の割合は、より高い洗浄性が得られることから、0.3〜1.5であることが好ましい。
The concentration of the surfactant in the filter membrane cleaner is preferably 0.05 to 3.0% by mass, and more preferably 0.3 to 1.5% by mass. If the surfactant concentration is not less than the lower limit, the filtration membrane can be sufficiently washed. However, even if the upper limit is exceeded, the effect of improving the cleaning performance reaches its peak, and the cost only increases.
Further, the ratio of the surfactant when the free chlorine concentration of chloric acid or a salt thereof is set to 1 is preferably 0.3 to 1.5 because higher detergency can be obtained.

上記濾過膜洗浄剤は、炭化水素化合物や芳香族化合物等の油分又は難分解性の着色成分を含む色度50以上の排水の処理に使用された濾過膜を洗浄する際に使用される。
上記濾過膜洗浄剤を用いた濾過膜の洗浄方法としては、例えば、塩素酸又はその塩と界面活性剤とを溶媒で希釈した濾過膜洗浄剤溶液を容器中に入れておき、その濾過膜洗浄剤に、油分又は難分解性の着色成分を含む排水処理に使用された濾過膜を浸漬する方法が挙げられる。また、濾過膜の透過側から処理対象物質に接触する側へ洗浄剤を通液する、いわゆる逆通液洗浄を用いてもよい。また、洗浄剤を油分が付着した排水処理に使用された濾過膜表面に塗布して、濾過膜を洗浄してもよい。
上記濾過膜は、中空糸膜であってもよいし、平膜であってもよい。濾過膜の材質としては、例えば、ポリフッ化ビニリデン(PVDF)やポリテトラフルオロエチレン(PTFE)などのフッ素系樹脂、酢酸セルロースなどのセルロース系樹脂、ポリオレフィン系樹脂、ポリスルフォン系樹脂、架橋ポリアミド、などの樹脂が挙げられる。これらの中でも、フッ素系樹脂は上記濾過膜洗浄剤による洗浄が適している。フッ素系樹脂は親油性が高く、疎水性の高い油分や着色成分の汚れを除去しにくいため、本発明の効果がとりわけ発揮される。
The said filter membrane cleaning agent is used when wash | cleaning the filter membrane used for the process of the waste_water | drain whose chromaticity is 50 or more containing oil components, such as a hydrocarbon compound and an aromatic compound, or a hardly decomposable coloring component.
As a method for cleaning the filtration membrane using the above-mentioned filtration membrane cleaning agent, for example, a filtration membrane cleaning solution obtained by diluting chloric acid or a salt thereof and a surfactant with a solvent is placed in a container, and the filtration membrane cleaning is performed. Examples of the agent include a method of immersing a filtration membrane used for wastewater treatment containing an oil component or a hardly decomposable coloring component. Moreover, you may use what is called reverse liquid washing | cleaning which flows a cleaning agent from the permeation | transmission side of a filtration membrane to the side which contacts a process target substance. Alternatively, the filtration membrane may be washed by applying a cleaning agent to the surface of the filtration membrane used in the wastewater treatment to which oil has adhered.
The filtration membrane may be a hollow fiber membrane or a flat membrane. Examples of the material of the filtration membrane include fluorine resins such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), cellulose resins such as cellulose acetate, polyolefin resins, polysulfone resins, and crosslinked polyamides. These resins are mentioned. Among these, the fluororesin is suitable for cleaning with the filtration membrane cleaner. Since the fluorine-based resin has high lipophilicity and it is difficult to remove highly hydrophobic oil and stains of the coloring component, the effect of the present invention is particularly exerted.

本発明で濾過膜が処理する対象とする油分を含む排水は、石油精製工場の排水、石油化学工場の排水、石炭化学工場の排水、高純度テレフタル酸製造工場の排水、エンジニアプラスチック製造工場の排水などが挙げられる。これらの排水には、切削油剤、タービンオイル、鉱物油、コールタール、界面活性剤などが含まれ、成分としては、主に常温で液体〜半固形の脂肪族炭化水素、芳香族炭化水素のほか、テルペン、長鎖カルボン酸、タール、ワックス、パラフィン類、脂肪酸エステル、などが主に含まれている。   Wastewater containing oil to be treated by the filtration membrane in the present invention includes oil refinery factory wastewater, petrochemical factory wastewater, coal chemical factory wastewater, high-purity terephthalic acid production factory wastewater, engineer plastic production factory wastewater. Etc. These wastewaters include cutting oils, turbine oils, mineral oils, coal tars, surfactants, etc., and the components are mainly liquid to semi-solid aliphatic hydrocarbons and aromatic hydrocarbons at room temperature. Terpenes, long chain carboxylic acids, tars, waxes, paraffins, fatty acid esters, and the like.

本発明で濾過膜が処理する対象とする難分解性の着色成分を含む排水は、石炭加熱排水又は、紙パルプ製造、石油精製、アルコール醸造等の工場から生じた排水などが挙げられ、これらの排水には難分解性の着色成分として、フミン酸、フルボ酸、ヒューミン、リグニン分解物等が含まれている。   Examples of the wastewater containing a hardly decomposable coloring component to be processed by the filtration membrane in the present invention include coal-heated wastewater or wastewater generated from factories such as paper pulp manufacturing, petroleum refining, and alcohol brewing. The wastewater contains humic acid, fulvic acid, humin, lignin decomposition products, etc. as a hardly decomposable coloring component.

石炭加熱排水としては、例えば、石炭乾留、石炭ガス化、石炭液化、コークス化等における各工程から生ずる排水等が挙げられる。加熱温度としては、例えば石炭液化工程におけるベルギウス法では約450℃、フィッシャー・トロプシュ法では200〜400℃、コークス化工程における高温乾留法では約900℃以上が普通である。
発生したガスは、冷却、スクラバ等によって回収され、引き続き分留や抽出等の工程により様々な化学種として分離、回収され、精製される。
また、加熱した石炭と水の反応である水性ガス化や、カルシウムカーバイド製造に供される場合もある。
石炭加熱排水はこれらの工程で、ガス回収、化学種の分離、回収、精製、機器洗浄等に伴い発生する排水であり、生活排水や産業排水、水や海水等を含む場合もある。
石炭加熱排水に含有している物質としては、フェノール類、シアン、アンモニア、硫化水素イオン、チオシアン、タール状油分、フミン質、炭化水素化合物、芳香族化合物等が挙げられる。
Examples of the coal heating waste water include waste water generated from each process in coal dry distillation, coal gasification, coal liquefaction, coking, and the like. As the heating temperature, for example, about 450 ° C. in the Bergius method in the coal liquefaction process, 200 to 400 ° C. in the Fischer-Tropsch process, and about 900 ° C. or more in the high temperature dry distillation method in the coking process are usually used.
The generated gas is recovered by cooling, scrubber or the like, and subsequently separated, recovered and purified as various chemical species by a process such as fractional distillation or extraction.
Moreover, it may be used for the water gasification which is reaction of the heated coal and water, and calcium carbide manufacture.
Coal heating wastewater is wastewater generated by gas recovery, chemical species separation, recovery, purification, equipment washing, etc. in these processes, and may include domestic wastewater, industrial wastewater, water, seawater, and the like.
Examples of substances contained in coal-heated wastewater include phenols, cyanide, ammonia, hydrogen sulfide ions, thiocyanate, tar oil, humic substances, hydrocarbon compounds, aromatic compounds, and the like.

紙パルプ製造排水としては、例えば、調木、蒸解、洗浄、漂白等の工程から生ずる排水が挙げられる。紙パルプ製造排水に含有している物質としては、ヘミセルロース、リグニン化合物、サルファイト塩、有機系硫黄化合物、染料等が挙げられる。   Examples of paper pulp manufacturing wastewater include wastewater generated from processes such as wood processing, cooking, washing, and bleaching. Examples of substances contained in paper pulp manufacturing wastewater include hemicellulose, lignin compounds, sulfite salts, organic sulfur compounds, and dyes.

アルコール醸造排水としては、もろみやでんぷん、果実等の原料処理や、洗浄、蒸留等の工程から生じる排水が挙げられる。アルコール醸造排水に含有している物質としては、脂肪酸類、アルコール類、タンパク、アミノ酸類、糖類、フミン質等が挙げられる。   Examples of alcohol brewing wastewater include wastewater generated from processes such as moromi, starch and fruit processing, washing and distillation. Examples of substances contained in alcoholic brewing wastewater include fatty acids, alcohols, proteins, amino acids, saccharides, and humic substances.

本発明が適用される排水の色度は50以上であるが、排水の色度が50未満である場合には、難分解性の着色成分は少なく、本発明はあまり有効ではない。
本発明における色度とは、容量50mLの比色管を用い、試料を純水にて希釈を行い、標準液である純水と比較し、試料の色と標準液の色との区別が不能となる希釈倍率のことである。
The chromaticity of the wastewater to which the present invention is applied is 50 or more, but when the chromaticity of the wastewater is less than 50, there are few hardly decomposable coloring components, and the present invention is not very effective.
The chromaticity in the present invention is a colorimetric tube with a capacity of 50 mL, and the sample is diluted with pure water, and compared with pure water as a standard solution, the color of the sample cannot be distinguished from the color of the standard solution. Is the dilution ratio.

また、本発明は、その効果がとりわけ発揮されることから、前記排水の処理が、生物処理と膜分離処理とを組み合わせた膜分離活性汚泥処理である場合に好適に使用される。   Moreover, since the effect is exhibited especially, this invention is used suitably when the process of the said waste_water | drain is the membrane separation activated sludge process which combined the biological treatment and the membrane separation process.

さらに本発明においては、洗浄剤での洗浄処理の前処理又は後処理として、濾過膜を、酸性水溶液によって処理することが、無機物・金属由来の膜付着物の洗浄を行う点で好ましい。酸性水溶液による処理方法としては、酸性水溶液中への濾過膜の浸漬、酸性水溶液の逆通液洗浄、濾過膜への酸性水溶液の塗布が挙げられる。また、酸性水溶液としては、洗浄性及びコストの点から、塩酸、硫酸、クエン酸水溶液及びシュウ酸の水溶液からなる群から選ばれる少なくとも1以上の水溶液が好ましい。   Furthermore, in the present invention, it is preferable that the filtration membrane is treated with an acidic aqueous solution as a pre-treatment or a post-treatment of the washing treatment with the cleaning agent in terms of washing the inorganic / metal-derived film deposits. Examples of the treatment method using the acidic aqueous solution include immersion of the filtration membrane in the acidic aqueous solution, reverse flow cleaning of the acidic aqueous solution, and application of the acidic aqueous solution to the filtration membrane. The acidic aqueous solution is preferably at least one aqueous solution selected from the group consisting of hydrochloric acid, sulfuric acid, citric acid aqueous solution, and oxalic acid aqueous solution from the viewpoint of detergency and cost.

塩素酸又はその塩は親水性の高い化合物であり、そのままでは、膜に付着した親水性の低い炭化水素化合物や芳香族化合物等の油分又は難分解性の着色成分に浸透しにくく、膜の透水性能を低下させる付着物を除去しにくい。しかし、上記濾過膜洗浄剤では、共存する界面活性剤によって濾過使用膜への洗浄剤の浸透性が向上し、膜付着物の分解や乳化・分散が起こる。したがって、炭化水素化合物や芳香族化合物等の油分や着色成分を含む排水の処理に使用した濾過膜の汚れを容易に除去できる。   Chloric acid or a salt thereof is a highly hydrophilic compound, and as it is, it hardly permeates oils such as hydrocarbon compounds and aromatic compounds having low hydrophilicity or aromatic compounds attached to the membrane, or the water permeability of the membrane. It is difficult to remove deposits that degrade performance. However, in the filtration membrane cleaning agent, the coexisting surfactant improves the permeability of the cleaning agent into the membrane used for filtration, and decomposition, emulsification and dispersion of the membrane deposits occur. Therefore, it is possible to easily remove the dirt of the filtration membrane used for the treatment of waste water containing oils and coloring components such as hydrocarbon compounds and aromatic compounds.

<実施例I>
(試験膜の調製)
生活排水を原水として供給、処理しているメンブレンバイオリアクター(MBR)槽内にタービンオイル(出光興産社製ダフニータービンオイル32)を槽内濃度15,000mg/Lとなるように添加・攪拌して、模擬汚泥を調製した。
次いで、その模擬汚泥の膜濾過を以下の手順で行った。
膜エレメント(三菱レイヨン株式会社製ステラポアーSADF)を散気部、膜濾過水集水部を持つ構造体(以下、モジュール)に固定し、このモジュールを前記模擬汚泥の入った水槽内に浸漬した。散気部とブロア、膜エレメントと吸引ポンプを接続し、ブロアを起動しエアーによる散気を行った状態で、吸引ポンプを起動し前記模擬汚泥の膜濾過を行った。
運転初期の膜吸引圧力から−25kPaとなった時点で膜エレメントを引き上げた。次いで、その引き上げた膜エレメントから中空糸膜を約7cm切り出し、これを試験膜とした。
<Example I>
(Preparation of test membrane)
Add and agitate turbine oil (Dafney Turbine Oil 32, manufactured by Idemitsu Kosan Co., Ltd.) to a concentration of 15,000 mg / L in the membrane bioreactor (MBR) tank that supplies and treats domestic wastewater as raw water. A simulated sludge was prepared.
Next, membrane filtration of the simulated sludge was performed according to the following procedure.
A membrane element (Stella Pore SADF manufactured by Mitsubishi Rayon Co., Ltd.) was fixed to a structure (hereinafter referred to as a module) having an air diffuser and a membrane filtered water collecting part, and this module was immersed in the water tank containing the simulated sludge. The diffuser and the blower, the membrane element and the suction pump were connected, the blower was started, and the air was diffused by air, and the suction pump was started and membrane filtration of the simulated sludge was performed.
The membrane element was pulled up when the membrane suction pressure at the initial stage of operation became -25 kPa. Next, about 7 cm of a hollow fiber membrane was cut out from the pulled membrane element, and this was used as a test membrane.

(洗浄試験膜の作成)
上記試験膜の調製にて使用した膜エレメントから洗浄対象の膜を切り出し、洗浄試験膜を作成した。
(Creation of cleaning test film)
A membrane to be cleaned was cut out from the membrane element used in the preparation of the test membrane to prepare a cleaning test membrane.

(実施例I−1)
遊離塩素濃度12質量%の次亜塩素酸ナトリウム(対松堂社製)を250mLの容器に入れ、水で希釈することによってその遊離塩素濃度が0.3質量%になるように調製した。その溶液に、ノニオン系界面活性剤であるエチレングリコールプロピレングリコールモノアルキルエーテルを98質量%含む洗剤(共栄社化学社製ライトオイルハンター)を、エチレングリコールプロピレングリコールモノアルキルエーテル濃度が0.3質量%になるように添加して、洗浄液を調製した。なお、遊離塩素濃度の測定はJIS K 0102(2008)に記載のDPD法により行った。具体的には、遊離塩素測定キット(HACH Pocket Colorimeter)によって測定した値を用いた。
次いで、その洗浄液に上記洗浄試験膜を24時間浸漬した後、引き上げることで洗浄を行った。
洗浄後の中空糸膜について、100kPa(ゲージ圧)に加圧した純水を中空糸膜の外側から内側に透水させることによって、透過水量を測定した。そして、[(洗浄後の中空糸膜の透過水量)/(未使用の中空糸膜の濾過水量)]×100(%)の式より透水性能保持率を求めた。透水性能保持率の結果を表1に示す。なお、透水性能保持率が高い程、洗浄によって濾過性能が回復したことを意味する。
(Example I-1)
Sodium hypochlorite having a free chlorine concentration of 12% by mass (manufactured by Matsudo Co., Ltd.) was placed in a 250 mL container and diluted with water to prepare a free chlorine concentration of 0.3% by mass. In the solution, a detergent (light oil hunter made by Kyoeisha Chemical Co., Ltd.) containing 98% by mass of ethylene glycol propylene glycol monoalkyl ether which is a nonionic surfactant was added to a concentration of 0.3% by mass of ethylene glycol propylene glycol monoalkyl ether. Was added to prepare a washing solution. The free chlorine concentration was measured by the DPD method described in JIS K 0102 (2008). Specifically, the value measured with a free chlorine measurement kit (HACH Pocket Colorimeter) was used.
Next, the cleaning test film was immersed in the cleaning solution for 24 hours, and then cleaned by pulling up.
About the hollow fiber membrane after washing | cleaning, the permeated water amount was measured by making the pure water pressurized to 100 kPa (gauge pressure) permeate | transmit the inside from the outer side of a hollow fiber membrane. And the water-permeable performance retention was calculated | required from the formula [(Amount of permeated water of the hollow fiber membrane after washing) / (Amount of filtered water of the unused hollow fiber membrane)] × 100 (%). Table 1 shows the results of water permeability retention. In addition, it means that the filtration performance recovered | restored by washing | cleaning, so that water permeability performance retention rate is high.

(比較例I−1)
次亜塩素酸ナトリウムおよび界面活性剤を含まない水を洗浄液として用いたこと以外は実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表1に示す。
(Comparative Example I-1)
The washing test membrane was washed in the same manner as in Example I-1 except that sodium hypochlorite and water containing no surfactant were used as the washing solution, and the water permeability retention rate was determined. Table 1 shows the results of water permeability retention.

(実施例I−2〜I−4)
次亜塩素酸ナトリウムおよびノニオン系界面活性剤の添加量を、表1に示すように変更して洗浄液を調製したこと以外は実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表1に示す。
(Examples I-2 to I-4)
The washing test membrane was washed in the same manner as in Example I-1, except that the addition amount of sodium hypochlorite and nonionic surfactant was changed as shown in Table 1 to prepare a washing solution, and the water permeability The performance retention was determined. Table 1 shows the results of water permeability retention.

(比較例I−2〜I−4)
次亜塩素酸ナトリウム単独又はノニオン系界面活性剤単独の洗浄液を、表1に示すように調製し、それを用いたこと以外は実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表1に示す。
(Comparative Examples I-2 to I-4)
A cleaning solution of sodium hypochlorite alone or nonionic surfactant alone was prepared as shown in Table 1, and the cleaning test membrane was washed in the same manner as in Example I-1 except that it was used. The water permeability retention was determined. Table 1 shows the results of water permeability retention.

(比較例I−5)
次亜塩素酸ナトリウム及びノニオン系界面活性剤に代えて、1Nの水酸化ナトリウム水溶液を用いた以外は、実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表1に示す。
(Comparative Example I-5)
Instead of sodium hypochlorite and nonionic surfactant, the above-mentioned cleaning test membrane was washed in the same manner as in Example I-1 except that a 1N sodium hydroxide aqueous solution was used, and the water permeability performance retention rate was determined. It was. Table 1 shows the results of water permeability retention.

<実施例II>
(試験膜の調製)
生活排水を原水として供給、処理しているメンブレンバイオリアクター(MBR)槽内にコールタール(AccuStandard Inc.製コールタール(black))を槽内濃度5,000mg/Lとなるように添加・攪拌して、模擬汚泥を調製した。
次いで、その模擬汚泥の膜濾過を以下の手順で行った。
膜エレメント(三菱レイヨン株式会社製ステラポアーSADF)を散気部、膜濾過水集水部を持つ構造体(以下、モジュール)に固定し、このモジュールを前記模擬汚泥の入った水槽内に浸漬した。散気部とブロア、膜エレメントと吸引ポンプを接続し、ブロアを起動しエアーによる散気を行った状態で、吸引ポンプを起動し前記模擬汚泥の膜濾過を行った。
運転初期の膜吸引圧力から−25kPaとなった時点で膜エレメントを引き上げた。次いで、その引き上げた膜エレメントから中空糸膜を約7cm切り出し、これを試験膜とした。
<Example II>
(Preparation of test membrane)
Coal tar (AccuStandard Inc. coal tar) is added and stirred in the membrane bioreactor (MBR) tank that supplies and treats domestic wastewater as raw water so that the concentration in the tank is 5,000 mg / L. A simulated sludge was prepared.
Next, membrane filtration of the simulated sludge was performed according to the following procedure.
A membrane element (Stella Pore SADF manufactured by Mitsubishi Rayon Co., Ltd.) was fixed to a structure (hereinafter referred to as a module) having an air diffuser and a membrane filtered water collecting part, and this module was immersed in the water tank containing the simulated sludge. The diffuser and the blower, the membrane element and the suction pump were connected, the blower was started, and the air was diffused by air, and the suction pump was started and membrane filtration of the simulated sludge was performed.
The membrane element was pulled up when the membrane suction pressure at the initial stage of operation became -25 kPa. Next, about 7 cm of a hollow fiber membrane was cut out from the pulled membrane element, and this was used as a test membrane.

(洗浄試験膜の作成)
上記試験膜の調製にて使用した膜エレメントから洗浄対象の膜を切り出し、洗浄試験膜を作成した。
(Creation of cleaning test film)
A membrane to be cleaned was cut out from the membrane element used in the preparation of the test membrane to prepare a cleaning test membrane.

(実施例II−1)
上記のように調製した洗浄試験膜を(実施例I−1)と同様の方法で洗浄した。透水性能保持率の結果を表2に示す。
(Example II-1)
The cleaning test membrane prepared as described above was cleaned in the same manner as in (Example I-1). The results of water permeability performance retention are shown in Table 2.

(比較例II−1)
次亜塩素酸ナトリウムおよび界面活性剤を含まない水を洗浄液として用いたこと以外は実施例II−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表2に示す。
(Comparative Example II-1)
The washing test membrane was washed in the same manner as in Example II-1 except that sodium hypochlorite and water containing no surfactant were used as the washing solution, and the water permeability retention rate was determined. The results of water permeability performance retention are shown in Table 2.

(実施例II−2〜II−4)
次亜塩素酸ナトリウムおよびノニオン系界面活性剤の添加量を、表2に示すように変更して洗浄液を調製したこと以外は実施例II−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表2に示す。
(Examples II-2 to II-4)
The washing test membrane was washed in the same manner as in Example II-1, except that the addition amount of sodium hypochlorite and nonionic surfactant was changed as shown in Table 2 to prepare a washing solution, and the water permeability The performance retention was determined. The results of water permeability performance retention are shown in Table 2.

(比較例II−2〜II−4)
次亜塩素酸ナトリウム単独又はノニオン系界面活性剤単独の洗浄液を、表2に示すように調製し、その洗浄液を用いたこと以外は実施例II−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表2に示す。
(Comparative Examples II-2 to II-4)
A cleaning solution of sodium hypochlorite alone or nonionic surfactant alone was prepared as shown in Table 2, and the cleaning test membrane was cleaned in the same manner as in Example II-1, except that the cleaning solution was used. The water permeability retention was determined. The results of water permeability performance retention are shown in Table 2.

(比較例II−5)
次亜塩素酸ナトリウム及びノニオン系界面活性剤に代えて、1Nの水酸化ナトリウム水溶液を用いた以外は実施例II−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表2に示す。
(Comparative Example II-5)
The washing test membrane was washed in the same manner as in Example II-1 except that 1N sodium hydroxide aqueous solution was used in place of sodium hypochlorite and nonionic surfactant, and water permeability performance retention was determined. . The results of water permeability performance retention are shown in Table 2.

<実施例III>
(試験膜の調製)
中空糸膜モジュールを備えた膜分離活性汚泥試験装置を用いて、石炭加熱排水の浄化試験を行った。石炭加熱排水として、NH−Nが2,100〜3,000mg/L、CODMnが3,500〜4,700mg/L、CODCrが3,000〜5,000mg/L、TOCが1,000〜2,000mg/L、色度が400〜800、ノルマルへキサン抽出物が10〜15mg/Lであるコークス化工程によって生じた排水を使用した。
上記石炭加熱排水を、原水:海水:工水=1:0.5〜1.5:1.5〜0.5の割合で3倍に希釈したものを膜分離活性汚泥試験装置の原水として使用した。この原水は、Ca2+が70〜200mg/L、NH−Nが800〜1,200mg/L、CODMnが950〜1,450mg/L、CODCrが600〜1,700mg/L、TOCが300〜700mg/Lを含有しており、色度が130〜300、ノルマルヘキサン抽出物が3〜5mg/Lを示した。
上記原水を用いて、中空糸膜モジュールの透過流束が0.1〜1m/dとなる条件で3ヶ月間浄化処理を行った。次いで、その引き上げた膜エレメントから中空糸膜を約7cm切り出し、これを試験膜とした。
<Example III>
(Preparation of test membrane)
Using a membrane separation activated sludge test apparatus equipped with a hollow fiber membrane module, a purification test of coal heated wastewater was conducted. As coal heating wastewater, NH 4 -N is 2,100 to 3,000 mg / L, COD Mn is 3,500 to 4,700 mg / L, COD Cr is 3,000 to 5,000 mg / L, TOC is 1, Waste water produced by a coking process with 000 to 2,000 mg / L, chromaticity of 400 to 800, and normal hexane extract of 10 to 15 mg / L was used.
The above-mentioned coal heated waste water is used as raw water for a membrane separation activated sludge test apparatus, which is diluted three times at a ratio of raw water: seawater: engineering water = 1: 0.5 to 1.5: 1.5 to 0.5. did. This raw water has Ca 2+ of 70 to 200 mg / L, NH 4 —N of 800 to 1,200 mg / L, COD Mn of 950 to 1,450 mg / L, COD Cr of 600 to 1,700 mg / L, TOC of It contained 300-700 mg / L, the chromaticity was 130-300, and the normal hexane extract showed 3-5 mg / L.
Using the raw water, purification treatment was performed for 3 months under the condition that the permeation flux of the hollow fiber membrane module was 0.1 to 1 m / d. Next, about 7 cm of a hollow fiber membrane was cut out from the pulled membrane element, and this was used as a test membrane.

(洗浄試験膜の作成)
上記試験膜の調製にて使用した膜エレメントから洗浄対象の膜を切り出し、洗浄試験膜を作成した。
(Creation of cleaning test film)
A membrane to be cleaned was cut out from the membrane element used in the preparation of the test membrane to prepare a cleaning test membrane.

(実施例III−1〜III−11)
次亜塩素酸ナトリウム及びノニオン系界面活性剤の添加量を、表3に示すように変更して洗浄液を調製したこと以外は実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表3に示す。
(Examples III-1 to III-11)
The washing test membrane was washed in the same manner as in Example I-1, except that the addition amount of sodium hypochlorite and nonionic surfactant was changed as shown in Table 3 to prepare a washing solution, and the water permeability The performance retention was determined. Table 3 shows the results of the water permeability performance retention rate.

(比較例III−1〜III−17)
次亜塩素酸ナトリウム単独又はノニオン系界面活性剤単独又は水酸化ナトリウム単独の洗浄液を、表3に示すように調製し、その洗浄液を用いたこと以外は実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表3に示す。
(Comparative Examples III-1 to III-17)
A cleaning solution of sodium hypochlorite alone or nonionic surfactant alone or sodium hydroxide alone was prepared as shown in Table 3, and the above washing was performed in the same manner as in Example I-1, except that the washing solution was used. The test membrane was washed and the water permeability retention rate was determined. Table 3 shows the results of the water permeability performance retention rate.

(実施例III−12)
0.5mol/Lの塩酸を含む洗浄液を調製し、実施例III−5で洗浄を行った上記洗浄試験膜を上記洗浄液に2時間浸漬し、透水性能保持率を求めた。透水性能保持率の結果を表3に示す。
(Example III-12)
A cleaning liquid containing 0.5 mol / L hydrochloric acid was prepared, and the cleaning test film cleaned in Example III-5 was immersed in the cleaning liquid for 2 hours to determine water permeability performance retention. Table 3 shows the results of the water permeability performance retention rate.

(比較例III−18〜19)
比較例III−1およびIII−6で洗浄を行った上記洗浄試験膜を使用すること以外は実施例III−8と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表3に示す。
(Comparative Examples III-18 to 19)
The washing test membrane was washed in the same manner as in Example III-8, except that the washing test membrane washed in Comparative Examples III-1 and III-6 was used, and the water permeability retention rate was determined. Table 3 shows the results of the water permeability performance retention rate.

(実施例III−13)
洗浄槽に50L水を入れ、さらに、次亜塩素酸ナトリウムおよびノニオン系界面活性剤の添加量を表4の条件で添加し、洗浄液を調製した。
次いで、その洗浄液に、コークス化工程によって生じた排水の浄化処理に用いた中空糸膜エレメント(全長約100cm)を浸漬し、洗浄した。中空糸膜モジュールを洗浄液に18.5時間浸漬した後に中空糸膜モジュールを引き上げ、水洗後0.5mol/Lの塩酸からなる洗浄液に2時間浸漬した。洗浄した中空糸膜を約7cmに切り取り、実施例I−1と同様の方法で透水性能保持率を求めた。透水性能保持率の結果を表4に示す。
また、洗浄前の中空糸膜エレメントの外観の写真を図1に、洗浄途中の中空糸膜エレメントの外観の写真を図2に、洗浄後の中空糸膜エレメントの外観の写真を図3に示す。
(Example III-13)
50 L water was put into the washing tank, and the addition amounts of sodium hypochlorite and nonionic surfactant were added under the conditions shown in Table 4 to prepare a washing solution.
Next, the hollow fiber membrane element (total length: about 100 cm) used for the purification treatment of the wastewater generated by the coking process was immersed in the cleaning solution and cleaned. The hollow fiber membrane module was immersed in a cleaning solution for 18.5 hours, then the hollow fiber membrane module was pulled up, washed with water, and then immersed in a cleaning solution composed of 0.5 mol / L hydrochloric acid for 2 hours. The washed hollow fiber membrane was cut into about 7 cm, and the water permeability retention rate was determined in the same manner as in Example I-1. Table 4 shows the results of water permeability retention.
Further, a photograph of the appearance of the hollow fiber membrane element before washing is shown in FIG. 1, a photograph of the appearance of the hollow fiber membrane element during washing is shown in FIG. 2, and a photograph of the appearance of the hollow fiber membrane element after washing is shown in FIG. .

<実施例IV>
(試験膜の調製)
中空糸膜モジュールを備えた膜分離活性汚泥装置を用いて、高純度テレフタル酸製造工場排水(CODCr:4,000mg/L)の浄化試験を行った。
運転初期の膜吸引圧力から−25kPaとなった時点で膜エレメントを引き上げた。次いで、その引き上げた膜エレメントから中空糸膜を約7cm切り出し、これを試験膜とした。
<Example IV>
(Preparation of test membrane)
Using a membrane separation activated sludge apparatus equipped with a hollow fiber membrane module, a purification test of high-purity terephthalic acid production factory wastewater (COD Cr : 4,000 mg / L) was conducted.
The membrane element was pulled up when the membrane suction pressure at the initial stage of operation became -25 kPa. Next, about 7 cm of a hollow fiber membrane was cut out from the pulled membrane element, and this was used as a test membrane.

(洗浄試験膜の作成)
上記試験膜の調製にて使用した膜エレメントから洗浄対象の膜を切り出し、洗浄試験膜を作成した。
(Creation of cleaning test film)
A membrane to be cleaned was cut out from the membrane element used in the preparation of the test membrane to prepare a cleaning test membrane.

(実施例IV−1)
次亜塩素酸ナトリウム及びノニオン系界面活性剤の添加量を、表5に示すように変更した以外は、実施例IV−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表5に示す。
(Example IV-1)
The washing test membrane was washed in the same manner as in Example IV-1, except that the addition amounts of sodium hypochlorite and nonionic surfactant were changed as shown in Table 5, and the water permeability performance retention rate was obtained. It was. Table 5 shows the results of water permeability retention.

(比較例IV−1〜IV−2)
次亜塩素酸ナトリウム及びノニオン系界面活性剤の添加量を、表5に示すように変更した以外は、実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表5に示す。
(Comparative Examples IV-1 to IV-2)
The washing test membrane was washed in the same manner as in Example I-1 except that the addition amounts of sodium hypochlorite and nonionic surfactant were changed as shown in Table 5, and the water permeability performance retention rate was obtained. It was. Table 5 shows the results of water permeability retention.

<実施例V>
(試験膜の調製)
中空糸膜モジュールを備えた膜分離活性汚泥装置を用いて、エンジニアリングプラスチック製造工場排水(CODMn:300mg/L)の浄化試験を行った。
運転初期の膜吸引圧力から−25kPaとなった時点で膜エレメントを引き上げた。次いで、その引き上げた膜エレメントから中空糸膜を約7cm切り出し、これを試験膜とした。
<Example V>
(Preparation of test membrane)
Using a membrane separation activated sludge apparatus equipped with a hollow fiber membrane module, a purification test of engineering plastic manufacturing factory effluent (COD Mn : 300 mg / L) was conducted.
The membrane element was pulled up when the membrane suction pressure at the initial stage of operation became -25 kPa. Next, about 7 cm of a hollow fiber membrane was cut out from the pulled membrane element, and this was used as a test membrane.

(洗浄試験膜の作成)
上記試験膜の調製にて使用した膜エレメントから洗浄対象の膜を切り出し、洗浄試験膜を作成した。
(Creation of cleaning test film)
A membrane to be cleaned was cut out from the membrane element used in the preparation of the test membrane to prepare a cleaning test membrane.

(実施例V−1)
次亜塩素酸ナトリウム及びノニオン系界面活性剤の添加量を、表6に示すように変更した以外は、実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表6に示す。
Example V-1
The washing test membrane was washed in the same manner as in Example I-1 except that the addition amounts of sodium hypochlorite and nonionic surfactant were changed as shown in Table 6, and the water permeability performance retention rate was obtained. It was. Table 6 shows the results of the water permeability performance retention rate.

(比較例V−1〜V−4)
次亜塩素酸ナトリウム及びノニオン系界面活性剤の添加量を、表6に示すように変更した以外は、実施例I−1と同様にして上記洗浄試験膜を洗浄し、透水性能保持率を求めた。透水性能保持率の結果を表6に示す。
(Comparative Examples V-1 to V-4)
The washing test membrane was washed in the same manner as in Example I-1 except that the addition amounts of sodium hypochlorite and nonionic surfactant were changed as shown in Table 6, and the water permeability performance retention rate was obtained. It was. Table 6 shows the results of the water permeability performance retention rate.

次亜塩素酸ナトリウムとノニオン系界面活性剤の両方を含み且つ次亜塩素酸ナトリウムの遊離塩素濃度が0.01〜3.0質量%の範囲にある洗浄液を用いた各実施例では、洗浄後に濾過性能がより効果的に回復できた。
コークス化工程から生じた排水を処理した膜の洗浄において、洗浄剤による洗浄後に塩酸によって洗浄した実施例III−12,13ではさらに洗浄性が向上した。
水を洗浄液として用いた比較例I−1、比較例II−1、比較例III−1、比較例IV−1、および比較例V−1では、ほとんど洗浄されなかった。
次亜塩素酸ナトリウムおよびノニオン系界面活性剤の少なくとも一方を含まない又は次亜塩素酸ナトリウムの遊離塩素濃度が0.01〜3.0質量%の範囲内にない洗浄液を用いた比較例I−2〜I−5、比較例II−2〜II−5、比較例III−2〜III−17、比較例IV−2および比較例V−2〜V−4では、洗浄後に濾過性能を充分に回復できなかった。
コークス化工程から生じた排水を処理した膜の洗浄において、水又は次亜塩素酸ナトリウムを用いて洗浄した膜をさらに塩酸で洗浄を行った比較例III−18〜III−19でも、充分に濾過性能は回復しなかった。
In each Example using a cleaning solution containing both sodium hypochlorite and a nonionic surfactant and having a free chlorine concentration of sodium hypochlorite in the range of 0.01 to 3.0% by mass, The filtration performance was recovered more effectively.
In the cleaning of the membrane treated with the wastewater generated from the coking process, the cleaning properties were further improved in Examples III-12 and 13 where the cleaning was performed with hydrochloric acid after the cleaning with the cleaning agent.
In Comparative Example I-1, Comparative Example II-1, Comparative Example III-1, Comparative Example IV-1 and Comparative Example V-1, which used water as a cleaning liquid, almost no cleaning was performed.
Comparative Example I- using a cleaning solution that does not contain at least one of sodium hypochlorite and nonionic surfactant or has a free chlorine concentration of sodium hypochlorite in the range of 0.01 to 3.0% by mass 2 to I-5, Comparative Examples II-2 to II-5, Comparative Examples III-2 to III-17, Comparative Example IV-2 and Comparative Examples V-2 to V-4 have sufficient filtration performance after washing. I could not recover.
In the cleaning of the membrane treated with the wastewater generated from the coking process, even in Comparative Examples III-18 to III-19 in which the membrane washed with water or sodium hypochlorite was further washed with hydrochloric acid, the membrane was sufficiently filtered. Performance did not recover.

Claims (11)

次亜塩素酸又はその塩と界面活性剤とを含む混合溶液からなり、排水の処理に使用された材質がフッ素系樹脂の濾過膜を洗浄する際に使用される濾過膜洗浄剤であって、
前記次亜塩素酸又はその塩の遊離塩素濃度が0.01〜3.0%であり、
前記界面活性剤の濃度が0.05〜3.0質量%である、濾過膜洗浄剤。
It consists of a mixed solution containing hypochlorous acid or a salt thereof and a surfactant, and the material used for the treatment of wastewater is a filtration membrane cleaning agent used when cleaning a fluororesin filtration membrane,
The concentration of free chlorine of hypochlorous acid or its salt Ri from 0.01 to 3.0% der,
A filtration membrane cleaning agent , wherein the concentration of the surfactant is 0.05 to 3.0% by mass .
前記界面活性剤がノニオン系界面活性剤である、請求項1に記載の濾過膜洗浄剤。   The filtration membrane cleaning agent according to claim 1, wherein the surfactant is a nonionic surfactant. 前記排水が油分を含む排水であることを特徴とする請求項1又は2に記載の濾過膜洗浄剤。 The filtration membrane cleaning agent according to claim 1 or 2 , wherein the waste water is waste water containing oil. 前記排水が難分解性の着色成分を含む色度50以上の排水であることを特徴とする請求項1〜3のいずれか一項に記載の濾過膜洗浄剤。   The filtration membrane cleaning agent according to any one of claims 1 to 3, wherein the wastewater is wastewater having a chromaticity of 50 or more containing a hardly decomposable coloring component. 濾過膜洗浄剤によって、排水の処理に使用した材質がフッ素系樹脂の濾過膜を洗浄する濾過膜の洗浄方法であって、
前記濾過膜洗浄剤として、次亜塩素酸又はその塩と界面活性剤とを含み、前記次亜塩素酸又はその塩の遊離塩素濃度が0.01〜3.0%の範囲内にあり、前記界面活性剤の濃度が0.05〜3.0質量%である混合溶液を用いる濾過膜の洗浄方法。
The filtration membrane cleaning method uses a filtration membrane cleaning agent to clean the filtration membrane made of fluororesin as a material used for wastewater treatment,
Examples filtration membrane cleaning agent, and a hypochlorous acid or its salt and a surfactant, Ri range near the free chlorine concentration of 0.01 to 3.0 percent of the hypochlorous acid or its salt, A filtration membrane cleaning method using a mixed solution having a concentration of the surfactant of 0.05 to 3.0% by mass .
前記界面活性剤がノニオン系界面活性剤である、請求項に記載の濾過膜の洗浄方法。 The filtration membrane cleaning method according to claim 5 , wherein the surfactant is a nonionic surfactant. 前記排水が油分を含む排水であることを特徴とする請求項5又は6に記載の濾過膜の洗浄方法。 The method for cleaning a filtration membrane according to claim 5 or 6 , wherein the waste water is waste water containing oil. 前記排水が難分解性の着色成分を含む色度50以上の排水であることを特徴とする請求項5〜7のいずれか一項に記載の濾過膜の洗浄方法。 The method for cleaning a filtration membrane according to any one of claims 5 to 7 , wherein the wastewater is wastewater having a chromaticity of 50 or more containing a hardly decomposable coloring component. 前記排水の処理が、生物処理と膜分離処理とを組み合わせた膜分離活性汚泥処理である、請求項5〜8のいずれか一項に記載の濾過膜の洗浄方法。 The method for cleaning a filtration membrane according to any one of claims 5 to 8 , wherein the wastewater treatment is a membrane separation activated sludge treatment in which a biological treatment and a membrane separation treatment are combined. 前記濾過膜洗浄剤を用いた洗浄の前又は後に、濾過膜を酸性水溶液によって処理する、請求項5〜9のいずれか一項に記載の濾過膜の洗浄方法。 The method for cleaning a filtration membrane according to any one of claims 5 to 9 , wherein the filtration membrane is treated with an acidic aqueous solution before or after washing with the filtration membrane cleaner. 前記酸性水溶液が、塩酸、硫酸、クエン酸水溶液及びシュウ酸の水溶液からなる群から選ばれる少なくとも1以上の水溶液である、請求項10に記載の濾過膜の洗浄方法。 The method for washing a filtration membrane according to claim 10 , wherein the acidic aqueous solution is at least one aqueous solution selected from the group consisting of an aqueous solution of hydrochloric acid, sulfuric acid, an aqueous solution of citric acid and an oxalic acid.
JP2012145542A 2011-07-06 2012-06-28 Filtration membrane cleaner and filtration membrane cleaning method Active JP6289802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012145542A JP6289802B2 (en) 2011-07-06 2012-06-28 Filtration membrane cleaner and filtration membrane cleaning method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011150103 2011-07-06
JP2011150103 2011-07-06
JP2012145542A JP6289802B2 (en) 2011-07-06 2012-06-28 Filtration membrane cleaner and filtration membrane cleaning method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016256125A Division JP2017056461A (en) 2011-07-06 2016-12-28 Filtration membrane washing agent and method for washing filtration membrane

Publications (2)

Publication Number Publication Date
JP2013031839A JP2013031839A (en) 2013-02-14
JP6289802B2 true JP6289802B2 (en) 2018-03-07

Family

ID=47440806

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2012145542A Active JP6289802B2 (en) 2011-07-06 2012-06-28 Filtration membrane cleaner and filtration membrane cleaning method
JP2016256125A Pending JP2017056461A (en) 2011-07-06 2016-12-28 Filtration membrane washing agent and method for washing filtration membrane

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016256125A Pending JP2017056461A (en) 2011-07-06 2016-12-28 Filtration membrane washing agent and method for washing filtration membrane

Country Status (2)

Country Link
JP (2) JP6289802B2 (en)
CN (1) CN102861515A (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014005226A (en) * 2012-06-22 2014-01-16 Mitsubishi Chemicals Corp Process for producing terephthalic acid
WO2014208599A1 (en) * 2013-06-28 2014-12-31 三菱レイヨン株式会社 Method for cleaning filtration membrane
CN103316863A (en) * 2013-07-10 2013-09-25 瓮福(集团)有限责任公司 Filter deposit cleaning method
JP2015017683A (en) * 2013-07-12 2015-01-29 株式会社日立製作所 Rotary machine system
JP6048350B2 (en) * 2013-09-13 2016-12-21 栗田工業株式会社 Method for reducing viscosity of oil-impregnated scum and method for reducing viscosity of oil-containing wastewater
JP2015071155A (en) * 2013-10-04 2015-04-16 三菱レイヨン株式会社 Wastewater treatment method and production method of terephthalic acid
JP6364751B2 (en) * 2013-11-19 2018-08-01 栗田工業株式会社 Cleaning agent and cleaning method for aromatic polyamide-based reverse osmosis membrane
CN104437100B (en) * 2014-11-21 2017-03-29 广州市粤新工程技术有限公司 A kind of inorganic ceramic ultra-filtering film abluent and preparation method thereof
JP6540154B2 (en) * 2015-03-27 2019-07-10 栗田工業株式会社 Reverse osmosis membrane cleaning method
EP3438243B1 (en) * 2016-03-30 2021-11-17 Toray Industries, Inc. Method for filtering microbial culture solution using membrane module
JP6685193B2 (en) * 2016-07-12 2020-04-22 水ing株式会社 Cleaning agent for sludge treatment equipment, cleaning method for sludge treatment equipment, cleaning equipment
JP6468305B2 (en) * 2017-03-07 2019-02-13 栗田工業株式会社 Water treatment chemical and its preparation method, and washing method for polyamide-based reverse osmosis membrane
CN109569298B (en) * 2017-09-28 2022-02-08 东丽先端材料研究开发(中国)有限公司 Fermentation liquid membrane filtering method
CN107789990B (en) * 2017-12-01 2020-12-15 昆明滇池水务股份有限公司 Cleaning method for buried membrane module device
JP7222684B2 (en) * 2018-12-07 2023-02-15 オルガノ株式会社 Method and device for regenerating filtration membrane, and method and device for filtering oil-containing wastewater
TWI769425B (en) * 2019-12-31 2022-07-01 財團法人工業技術研究院 Method for cleaning membrane
US11738310B2 (en) 2019-12-31 2023-08-29 Industrial Technology Research Institute Method for cleaning membrane
JP7107332B2 (en) * 2020-06-02 2022-07-27 栗田工業株式会社 Separation membrane cleaning method

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159808A (en) * 1979-05-31 1980-12-12 Osaka Gas Co Ltd Cleaning method of membrane
JPS56111052A (en) * 1980-02-05 1981-09-02 Tokuyama Soda Co Ltd Washing method of ion exchange membrane
JPS58137487A (en) * 1982-02-06 1983-08-15 Nitto Electric Ind Co Ltd Treatment of pulp mill waste liquor
JPS6295795U (en) * 1985-12-06 1987-06-18
JPH078548B2 (en) * 1987-05-29 1995-02-01 東レ株式会社 Polyvinylidene fluoride-based resin porous membrane and method for producing the same
JPH0670155B2 (en) * 1987-11-13 1994-09-07 東レ株式会社 Manufacturing method of polytetrafluoroethylene resin porous membrane
JPH05247868A (en) * 1992-02-28 1993-09-24 Mitsubishi Paper Mills Ltd Treatment of waste water in production of pulp
JP3053550B2 (en) * 1995-07-14 2000-06-19 クリーンケミカル株式会社 How to clean medical equipment
JP3462975B2 (en) * 1997-07-04 2003-11-05 株式会社荏原製作所 Method for backwashing filtration of membrane module for turbidity
JPH11207334A (en) * 1998-01-27 1999-08-03 Kurita Water Ind Ltd Device for purifying pool water
JP2000254459A (en) * 1999-03-05 2000-09-19 Sumitomo Heavy Ind Ltd Method for washing solid-liquid separation element and solid-liquid separator
JP2001219039A (en) * 2000-02-09 2001-08-14 Kurita Water Ind Ltd Leaning method of membrane module
JP4580589B2 (en) * 2001-06-15 2010-11-17 アムテック株式会社 Cleaning method of separation membrane
US7220358B2 (en) * 2004-02-23 2007-05-22 Ecolab Inc. Methods for treating membranes and separation facilities and membrane treatment composition
CN100404657C (en) * 2006-03-15 2008-07-23 江苏久吾高科技股份有限公司 Cleaning agent for ceramic film and its preparation method
US7662289B2 (en) * 2007-01-16 2010-02-16 Nalco Company Method of cleaning fouled or scaled membranes
EP2140928B1 (en) * 2007-04-03 2016-07-20 Asahi Kasei Chemicals Corporation Cleaning agent for separation membrane, process for producing the cleaning agent and cleaning method
JP4840285B2 (en) * 2007-08-10 2011-12-21 東レ株式会社 Cleaning method for submerged membrane module
JP4481345B1 (en) * 2008-11-28 2010-06-16 株式会社神鋼環境ソリューション Seawater desalination method and seawater desalination apparatus
CN101829505A (en) * 2009-03-09 2010-09-15 江西金达莱环保研发中心有限公司 Chemical cleaning method of hollow fiber membrane and device thereof
CN101564650B (en) * 2009-05-22 2011-03-16 南京中医药大学 Ceramic membrane cleaning agent and preparation method and application thereof
CN102059056B (en) * 2010-12-01 2013-12-25 浙江理工大学 Nanofiltration reproduction method of waste reverse osmosis membrane element

Also Published As

Publication number Publication date
JP2017056461A (en) 2017-03-23
JP2013031839A (en) 2013-02-14
CN102861515A (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP6289802B2 (en) Filtration membrane cleaner and filtration membrane cleaning method
US7662289B2 (en) Method of cleaning fouled or scaled membranes
CN102553452B (en) Membrane cleaning agent for cleaning reverse osmosis membrane and application method
CA2997083C (en) Hydrocarbon soluble/dispersible hemiformals as hydrogen sulfide scavengers
KR102293103B1 (en) Reverse osmosis membrane cleaner, cleaning solution, and cleaning method
Tortora et al. Heavy metal removal from liquid wastes by using micellar-enhanced ultrafiltration
US20080271758A1 (en) Method of cleaning fouled and/or scaled membranes
Al-Obeidani et al. Chemical cleaning of oil contaminated polyethylene hollow fiber microfiltration membranes
US20020036168A1 (en) Protection of crossflow membranes from organic fouling
JP2017113729A (en) Membrane cleaning agent, membrane cleaning liquid and cleaning method of membrane
Madaeni et al. Removal of coke particles from oil contaminated marun petrochemical wastewater using PVDF microfiltration membrane
KR101866927B1 (en) Additive and method for removal of calcium from oils containing calcium naphthenate
WO2017017995A1 (en) Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
Mustereţ et al. Removal of persistent organic pollutants from textile wastewater by membrane processes.
CN109607927A (en) A kind of method that the refinery oil product of oil-containing dangerous waste recycles
JP2011067716A (en) Water treatment method
JP6299595B2 (en) Filtration membrane cleaning method
Yamamura et al. Influence of calcium on the evolution of irreversible fouling in microfiltration/ultrafiltration membranes
KR101649918B1 (en) Method for cleaning membrane
JP2016185514A (en) Cleaning method of permeable membrane, and cleaner
JP5237164B2 (en) Filtration membrane cleaning method
JPS58119304A (en) Treatment of osmotic membrane
US8445420B2 (en) Cleaning and purifying compositions and associated method for purifying process water from the refinement of petroleum
KR20180065787A (en) Cleaning method for reuse of waste reverse osmosis membrane
JP2007181773A (en) Filtration film performance recovering method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6289802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150