JP2015077530A - Water production method and water production device - Google Patents

Water production method and water production device Download PDF

Info

Publication number
JP2015077530A
JP2015077530A JP2012011727A JP2012011727A JP2015077530A JP 2015077530 A JP2015077530 A JP 2015077530A JP 2012011727 A JP2012011727 A JP 2012011727A JP 2012011727 A JP2012011727 A JP 2012011727A JP 2015077530 A JP2015077530 A JP 2015077530A
Authority
JP
Japan
Prior art keywords
membrane
water
membrane module
separation membrane
aspirator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012011727A
Other languages
Japanese (ja)
Inventor
池田 啓一
Keiichi Ikeda
啓一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2012011727A priority Critical patent/JP2015077530A/en
Priority to TW102102440A priority patent/TW201334858A/en
Priority to PCT/JP2013/051487 priority patent/WO2013111826A1/en
Publication of JP2015077530A publication Critical patent/JP2015077530A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning method of a membrane module and a water production method where equipment cost, the installation space of equipment and electricity charge can be reduced and contaminants adhered to the whole surface of a separation membrane can be significantly peeled and removed.SOLUTION: In a water production method where raw water is supplied to the lower side of the separation membrane primary side of a membrane module 4 which is disposed so that the direction of a separation membrane is vertical and membrane-filtered water is obtained from a separation membrane secondary side by filtering the raw water with the separation membrane, a cleaning step where aspirator supply water is supplied to an aspirator 12 and a gas-liquid mixed fluid discharged from the aspirator 12 is supplied to the lower side of the separation membrane primary side of the membrane module 4 is temporarily performed.

Description

本発明は、分離膜を備えた膜モジュールに原水を供給して膜ろ過水を得る造水方法および造水装置、特に膜モジュールの洗浄方法に関するものである。   The present invention relates to a fresh water generating method and a fresh water generating apparatus for supplying raw water to a membrane module having a separation membrane to obtain membrane filtered water, and more particularly to a method for cleaning a membrane module.

膜分離法は、省エネルギー・省スペース、およびろ過水質向上等の特長を有するため、様々な分野での使用が拡大している。例えば、精密ろ過膜や限外ろ過膜は、河川水や地下水や下水処理水から工業用水や水道水を製造する浄水プロセスへの適用や、海水淡水化逆浸透膜処理工程における前処理への適用が挙げられる。ナノろ過膜や逆浸透膜は、精密ろ過膜や限外ろ過膜で除去しきれないカビ臭、色度、硬度成分等を除去する高度浄水プロセスへの適用や、海水淡水化、かん水淡水化、純水製造等への適用が挙げられる。   Membrane separation methods have features such as energy saving, space saving, and improved filtered water quality, and therefore are widely used in various fields. For example, microfiltration membranes and ultrafiltration membranes are applied to water purification processes that produce industrial water and tap water from river water, groundwater and sewage treated water, and to pretreatment in seawater desalination reverse osmosis membrane treatment processes. Is mentioned. Nanofiltration membranes and reverse osmosis membranes can be applied to advanced water purification processes that remove mold odor, chromaticity, hardness components, etc. that cannot be removed with microfiltration membranes or ultrafiltration membranes, seawater desalination, brine water desalination, Application to pure water production and the like can be mentioned.

原水の膜ろ過を継続すると、膜ろ過水量に伴って、分離膜表面や分離膜細孔内には懸濁物質、フミン質、微生物由来のタンパク質等の膜汚染物質の付着量が増大していき、ろ過流量の低下あるいは膜ろ過差圧の上昇が問題となってくる。   If membrane filtration of raw water is continued, the amount of membrane contaminants such as suspended matter, humic substances, and microorganism-derived proteins increases on the surface of the separation membrane and in the pores of the separation membrane as the amount of membrane filtration water increases. A decrease in filtration flow rate or an increase in membrane filtration differential pressure becomes a problem.

そこで、分離膜一次側(原水側)に気泡を供給し、分離膜を揺動させ、分離膜同士を触れ合わせることにより分離膜表面に付着していた汚染物質を掻き落とす空気洗浄や、膜二次側(膜ろ過水側)から分離膜一次側へ膜のろ過方法とは逆方向に膜ろ過水あるいは清澄水を圧力で押し込み、分離膜表面や分離膜細孔内に付着していた汚染物質を排除する逆圧洗浄、膜一次側に原水を高流量で流通し、膜面流速を上げて、水流による剪断力で分離膜表面に付着していた汚染物質を剥離するフラッシング洗浄等の物理洗浄が実用化されている(特許文献1)。   Therefore, air is supplied to the primary side (raw water side) of the separation membrane, the separation membrane is swung, and the separation membranes are brought into contact with each other to remove contaminants adhering to the separation membrane surface. Contaminants adhered to the surface of the separation membrane or in the pores of the separation membrane by pushing the membrane filtration water or clarified water with pressure from the secondary side (membrane filtration water side) to the separation membrane primary side in the opposite direction to the membrane filtration method Physical cleaning such as back-pressure cleaning that removes contaminants attached to the separation membrane surface by increasing the flow velocity of the membrane surface and increasing the flow velocity on the membrane surface and shearing force generated by the water flow Has been put into practical use (Patent Document 1).

前記空気洗浄としては、膜モジュール内の水位を上方および/または下方に移動させながら気泡を供給する方法が提案されている(特許文献1−4)。水面は、気泡の崩壊で極めて大きく強い波の脈動面となっている。従って、この脈動面が上方から下方、あるいは下方から上方へ移動することによって、分離膜表面に付着していた汚染物質は効果的に剥離される。さらに剥離された膜モジュール内の汚染物質は短時間で膜モジュール系外に排出されるので、分離膜の擦過が起きにくく、膜モジュールの寿命を延ばす長所を有する。   As the air cleaning, a method of supplying bubbles while moving the water level in the membrane module upward and / or downward has been proposed (Patent Documents 1-4). The water surface is a pulsating surface of extremely large and strong waves due to the collapse of bubbles. Therefore, when the pulsating surface moves from above to below or from below to above, the contaminants adhering to the separation membrane surface are effectively peeled off. Further, since the pollutants in the peeled membrane module are discharged out of the membrane module system in a short time, the separation membrane is hardly rubbed, and there is an advantage that the life of the membrane module is extended.

また、前記フラッシング洗浄としては、原水をアスピレーターに供給し、アスピレーターから吐出された気液混合流体を膜モジュール内に供給する方法が提案されている(特許文献5、6)。ブロワーあるいはコンプレッサーを用いずに、水流と気泡の剪断力によって分離膜表面の汚染物質を剥離除去する長所を有する。   In addition, as the flushing cleaning, there has been proposed a method of supplying raw water to an aspirator and supplying a gas-liquid mixed fluid discharged from the aspirator into the membrane module (Patent Documents 5 and 6). There is an advantage in that contaminants on the surface of the separation membrane are peeled and removed by a water flow and a shearing force of bubbles without using a blower or a compressor.

特開平11−342320号公報JP 11-342320 A 特開平4−126528号公報Japanese Patent Laid-Open No. 4-126528 特開平7−47245号公報JP 7-47245 A 特開2006−281163号公報JP 2006-281163 A 特公昭52−38947号公報Japanese Patent Publication No. 52-38947 特開昭54−56082号公報JP 54-56082 A

しかし、膜モジュール内の水位を上方に移動させながら気泡を供給する方法は原水を膜モジュール内に供給する原水供給ポンプと空気を膜モジュール内に供給するブロワーあるいはコンプレッサーの両方を稼働する必要があり、設備費および設備の設置スペースが大きく、電気代も高いという問題があった。   However, in the method of supplying bubbles while moving the water level in the membrane module upward, it is necessary to operate both the raw water supply pump that supplies raw water into the membrane module and the blower or compressor that supplies air into the membrane module. However, there was a problem that the equipment cost and the installation space for the equipment were large, and the electricity bill was high.

一方、原水をアスピレーターに供給し、アスピレーターから吐出された気液混合流体を膜モジュール内に供給する特許文献5,6に記載された方法は、膜モジュールが横置き、すなわち気液混合流体の流れが地面に対して平行に設置されているため、モジュールの設置が容易であるという特長を有するものの、内圧中空糸膜や内圧管状膜やモノリス膜以外の外圧式加圧型の膜モジュールが長い場合には、気液混合流体の気泡は気液混合流体の流入口から遠ざかるにつれて、膜モジュールの上方に移動してしまうため、気泡は不均一となってしまう。とりわけ流入口から1m以上の距離に達すると膜モジュール下部の分離膜表面は気泡に接触することはなく、分離膜表面の汚染物質を剥離除去する効果が著しく低下する問題があった。   On the other hand, in the methods described in Patent Documents 5 and 6 in which raw water is supplied to an aspirator and the gas-liquid mixed fluid discharged from the aspirator is supplied into the membrane module, the membrane module is placed horizontally, that is, the flow of the gas-liquid mixed fluid Is installed in parallel to the ground, so that it is easy to install the module, but when external pressure type membrane modules other than internal pressure hollow fiber membranes, internal pressure tubular membranes and monolith membranes are long Since the bubbles of the gas-liquid mixed fluid move upward from the membrane module as they move away from the inlet of the gas-liquid mixed fluid, the bubbles become non-uniform. In particular, when reaching a distance of 1 m or more from the inflow port, the separation membrane surface below the membrane module does not come into contact with bubbles, and there is a problem that the effect of peeling and removing contaminants on the separation membrane surface is remarkably reduced.

そのため、本発明は、膜モジュールの洗浄方法において、設備費、設備の設置スペース、電気代を削減することが可能であり、膜表面全体に付着していた汚染物質を著しく剥離除去することが可能な洗浄工程を含む造水方法および造水装置を提供することにある。   Therefore, according to the present invention, in the method for cleaning the membrane module, it is possible to reduce the equipment cost, the installation space of the equipment, and the electricity bill, and it is possible to remarkably peel and remove the contaminants attached to the entire membrane surface. Another object of the present invention is to provide a fresh water generation method and a fresh water generation apparatus including a simple washing step.

上記課題を解決するため、本発明の造水方法、および造水装置は、次の特徴を有するものである。   In order to solve the above problems, a fresh water generation method and a fresh water generator of the present invention have the following characteristics.

(1)分離膜が鉛直方向となるように設置された膜モジュールの前記分離膜一次側の下部に原水を供給し、前記分離膜で前記原水をろ過して前記分離膜二次側から膜ろ過水を得る造水方法であって、アスピレーター供給水をアスピレーターに供給して前記アスピレーターから吐出された気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給する洗浄工程を一時的に行うことを特徴とする、造水方法。   (1) The raw water is supplied to the lower part of the separation membrane primary side of the membrane module installed so that the separation membrane is in the vertical direction, and the raw water is filtered by the separation membrane, and the membrane filtration is performed from the separation membrane secondary side. A water production method for obtaining water, comprising temporarily supplying aspirator supply water to an aspirator and supplying a gas-liquid mixed fluid discharged from the aspirator to a lower part of the separation membrane primary side of the membrane module A method for producing fresh water, characterized in that it is performed.

(2)アスピレーター供給水の少なくとも一部が原水または膜ろ過水である、(1)に記載の造水方法。   (2) The fresh water generation method according to (1), wherein at least a part of the aspirator supply water is raw water or membrane filtered water.

(3)気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給する前に前記膜モジュールの前記分離膜一次側の水を系外に排出する、(1)または(2)に記載の造水方法。   (3) Before supplying the gas-liquid mixed fluid to the lower part of the separation membrane primary side of the membrane module, the water on the separation membrane primary side of the membrane module is discharged out of the system. (1) or (2) The fresh water generation method of description.

(4)前記気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給し、前記膜モジュールの前記分離膜一次側から排出された水の少なくとも一部を回収し、前記原水に混合する、(1)〜(3)のいずれかに記載の造水方法。   (4) Supplying the gas-liquid mixed fluid to the lower part of the separation membrane primary side of the membrane module, collecting at least part of the water discharged from the separation membrane primary side of the membrane module, and mixing it with the raw water The fresh water generation method according to any one of (1) to (3).

(5)回収した前記膜モジュールの前記分離膜一次側から排出された水を懸濁物質と清澄水に分離処理し、前記清澄水を前記原水に混合する、(4)に記載の造水方法。   (5) The fresh water generation method according to (4), wherein the water discharged from the primary side of the separation membrane of the collected membrane module is separated into suspended matter and clarified water, and the clarified water is mixed with the raw water. .

(6)前記分離膜が精密ろ過膜または限外ろ過膜である、(1)〜(5)のいずれかに記載の造水方法。   (6) The fresh water generation method according to any one of (1) to (5), wherein the separation membrane is a microfiltration membrane or an ultrafiltration membrane.

(7)前記気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給する前および/または同時に、前記膜ろ過水を前記膜モジュールの前記分離膜二次側から前記膜モジュールの前記分離膜一次側に圧送する逆圧洗浄を実施する、(6)に記載の造水方法。   (7) Before supplying the gas-liquid mixed fluid to the lower part of the separation membrane primary side of the membrane module and / or simultaneously, supplying the membrane filtrate from the separation membrane secondary side of the membrane module to the membrane module. The fresh water generation method according to (6), wherein reverse pressure washing is performed by pumping to the separation membrane primary side.

(8)逆圧洗浄を実施する際の前記膜ろ過水に酸化剤を添加する、(7)に記載の造水方法。   (8) The fresh water generation method according to (7), wherein an oxidizing agent is added to the membrane filtrate when performing back-pressure washing.

(9)前記膜ろ過水をナノろ過膜モジュールまたは逆浸透膜モジュールに供給して透過水と濃縮水とに分離し、前記濃縮水の少なくとも一部をアスピレーター供給水とすることを特徴とする、(6)〜(8)のいずれかに記載の造水方法。   (9) The membrane filtrate is supplied to a nanofiltration membrane module or a reverse osmosis membrane module and separated into permeated water and concentrated water, and at least a part of the concentrated water is used as an aspirator supply water, (6) The fresh water generation method in any one of (8).

(10)前記分離膜がナノろ過膜または逆浸透膜である、(1)〜(5)のいずれかに記載の造水方法。   (10) The fresh water generation method according to any one of (1) to (5), wherein the separation membrane is a nanofiltration membrane or a reverse osmosis membrane.

(11)前記原水を前記膜モジュールの前記分離膜一次側の下部に供給する前に、前記膜モジュールの前段に設置した第2の膜モジュールである精密ろ過膜モジュールまたは限外ろ過膜モジュールで膜ろ過する、(10)に記載の造水方法。   (11) Before supplying the raw water to the lower part of the membrane module on the primary side of the separation membrane, a membrane is formed by a microfiltration membrane module or an ultrafiltration membrane module which is a second membrane module installed in the previous stage of the membrane module The fresh water generation method according to (10), wherein filtration is performed.

(12)前記気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給し、前記膜モジュールの前記分離膜一次側から排出された水の少なくとも一部を回収し、前記第2の膜モジュールに供給する、(11)に記載の造水方法。   (12) supplying the gas-liquid mixed fluid to a lower part of the separation membrane primary side of the membrane module, recovering at least a part of the water discharged from the separation membrane primary side of the membrane module, The fresh water generation method according to (11), which is supplied to the membrane module.

(13)鉛直方向に設置された分離膜で原水をろ過して前記分離膜二次側から膜ろ過水を排出する膜モジュールと、前記膜モジュールの前記分離膜一次側の下部に原水を供給する原水供給ユニットと、アスピレーター供給水の一部および気体を混合して気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給するアスピレーターと、前記アスピレーター供給水を前記アスピレーターに供給するアスピレーター供給水供給ユニットとを備えた造水装置。   (13) A membrane module that filters raw water through a separation membrane installed in a vertical direction and discharges the membrane filtrate from the secondary side of the separation membrane, and supplies raw water to a lower portion of the separation membrane primary side of the membrane module A raw water supply unit, an aspirator for mixing a part of aspirator supply water and gas and supplying a gas-liquid mixed fluid to the lower part of the separation membrane primary side of the membrane module, and an aspirator for supplying the aspirator supply water to the aspirator A fresh water generator comprising a supply water supply unit.

(14)前記原水が前記膜モジュールの前記分離膜一次側の下部に供給される原水供給配管が分岐しており、前記アスピレーター供給水供給ユニットは前記原水を前記アスピレーター供給水として前記アスピレーターに供給することを特徴とする(13)に記載の造水装置。   (14) The raw water supply pipe through which the raw water is supplied to the lower part of the membrane module on the primary side of the separation membrane is branched, and the aspirator supply water supply unit supplies the raw water to the aspirator as the aspirator supply water. (13) The fresh water generator described in (13).

(15)前記膜ろ過水が前記膜モジュールの前記分離膜二次側から排出される膜ろ過水排出配管が分岐しており、前記アスピレーター供給水供給ユニットは前記膜ろ過水を前記アスピレーター供給水として前記アスピレーターに供給することを特徴とする(13)に記載の造水装置。   (15) The membrane filtrate discharge pipe from which the membrane filtrate is discharged from the separation membrane secondary side of the membrane module is branched, and the aspirator supply water supply unit uses the membrane filtrate as the aspirator supply water. The fresh water generator according to (13), wherein the fresh water generator is supplied to the aspirator.

本発明の膜モジュールの洗浄方法においては、ブロワー、コンプレッサー等の空気供給設備を使用せずに、アスピレーターと既存の原水ポンプを利用するので、設備費、設備の設置スペース、電気代を削減できる。また、膜モジュールを鉛直方法に設置することにより、気泡が分離膜表面全体に接触し、分離膜表面全体に付着していた汚染物質を著しく剥離除去することが可能となる。   In the method for cleaning a membrane module of the present invention, since an aspirator and an existing raw water pump are used without using air supply equipment such as a blower and a compressor, equipment costs, equipment installation space, and electricity costs can be reduced. In addition, by installing the membrane module in a vertical method, bubbles come into contact with the entire separation membrane surface, and contaminants attached to the entire separation membrane surface can be markedly removed.

本発明の第1の実施形態が適用される造水装置(加圧型膜モジュール)の一例を示す装置概略フロー図である。It is an apparatus schematic flowchart which shows an example of the desalination apparatus (pressure type membrane module) to which the 1st Embodiment of this invention is applied. 本発明の第1の実施形態が適用される造水装置(加圧型膜モジュール)の別の一例を示す装置概略フロー図である。It is an apparatus general | schematic flowchart which shows another example of the fresh water generator (pressurization type membrane module) to which the 1st Embodiment of this invention is applied. 本発明の第1の実施形態が適用される造水装置(加圧型膜モジュール)のさらに別の一例を示す装置概略フロー図である。It is an apparatus schematic flowchart which shows another example of the fresh water generator (pressurization type membrane module) to which the 1st Embodiment of this invention is applied. 本発明の第1の実施形態が適用される造水装置(浸漬型膜モジュール)の一例を示す装置概略フロー図である。It is an apparatus schematic flowchart which shows an example of the desalination apparatus (immersion type membrane module) to which the 1st Embodiment of this invention is applied. 本発明の第1の実施形態が適用される造水装置(浸漬型膜モジュール)の別の一例を示す装置概略フロー図である。It is an apparatus schematic flowchart which shows another example of the fresh water generator (immersion type membrane module) to which the 1st Embodiment of this invention is applied. 本発明の第2の実施形態が適用される造水装置の一例を示す装置概略フロー図である。It is an apparatus general | schematic flowchart which shows an example of the desalinator to which the 2nd Embodiment of this invention is applied. 本発明の第2の実施形態が適用される造水装置の別の一例を示す装置概略フロー図である。It is an apparatus general | schematic flowchart which shows another example of the fresh water generator to which the 2nd Embodiment of this invention is applied. 従来の造水装置の一例を示す装置概略フロー図である。It is an apparatus schematic flowchart which shows an example of the conventional fresh water generator. 従来の造水装置の別の一例を示す装置概略フロー図である。It is an apparatus schematic flowchart which shows another example of the conventional fresh water generator.

(第1の実施形態)
以下、図面に示す実施態様に基づいて本発明の第1の実施形態をさらに詳細に説明する。なお、本発明は以下の実施態様に限定されるものではない。
(First embodiment)
Hereinafter, the first embodiment of the present invention will be described in more detail based on the embodiments shown in the drawings. In addition, this invention is not limited to the following embodiments.

本発明で対象となる造水装置は、例えば、図1に示すように、原水を貯留する原水貯留槽1と、原水を供給する原水供給ポンプ2と、原水供給時に開となる原水弁3と、原水を膜ろ過する精密ろ過膜/限外ろ過膜モジュール4と、膜ろ過時に開となるろ過水弁5と、精密ろ過膜/限外ろ過膜モジュール4によって得られた膜ろ過水を貯留する精密ろ過膜/限外ろ過膜ろ過水貯留槽6と、膜ろ過水を精密ろ過膜/限外ろ過膜モジュール4に供給して逆圧洗浄する時に稼働する逆洗ポンプ7と、逆圧洗浄する時に開となる逆洗弁8と、逆圧洗浄水に酸化剤を添加する時に稼働する酸化剤供給ポンプ9と、酸化剤を貯留する酸化剤貯留槽10と、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に気液混合流体を供給する場合に開となる空洗弁11と、原水および空気を供給して気液混合流体を吐出するアスピレーター12と、アスピレーター12への逆流を防止する逆止弁13と、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の水を下部から排出する場合に開となる排水弁14と、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の空気や水を上方から排出する場合に開となるエア抜き弁15と、精密ろ過膜/限外ろ過膜モジュール4の上方からエア抜き弁15を通過して排出された水を回収する回収槽16と、回収槽16内の水を懸濁物質と清澄水に分離処理する沈殿槽17が設けられている。   For example, as shown in FIG. 1, a fresh water generator targeted by the present invention includes a raw water storage tank 1 that stores raw water, a raw water supply pump 2 that supplies raw water, and a raw water valve 3 that is opened when the raw water is supplied. The membrane filtration water obtained by the microfiltration membrane / ultrafiltration membrane module 4 for membrane filtration of the raw water, the filtration water valve 5 opened during membrane filtration, and the microfiltration membrane / ultrafiltration membrane module 4 are stored. Microfiltration membrane / ultrafiltration membrane filtrate storage tank 6, backwash pump 7 that operates when supplying membrane filtration water to microfiltration membrane / ultrafiltration membrane module 4 and backwashing, and backwashing A backwash valve 8 that is sometimes opened, an oxidant supply pump 9 that operates when an oxidant is added to the backwash water, an oxidant storage tank 10 that stores the oxidant, and a microfiltration membrane / ultrafiltration membrane Open when supplying gas-liquid mixed fluid to the lower part of the separation membrane primary side of the module 4 A flush valve 11, an aspirator 12 that supplies raw water and air to discharge a gas-liquid mixed fluid, a check valve 13 that prevents backflow to the aspirator 12, and a separation membrane of the microfiltration membrane / ultrafiltration membrane module 4 Drain valve 14 that opens when the primary side water is discharged from the bottom, and air vent that opens when the primary side air and water of the separation membrane of the microfiltration membrane / ultrafiltration membrane module 4 are discharged from above A recovery tank 16 for recovering water discharged through the air vent valve 15 from above the valve 15 and the microfiltration membrane / ultrafiltration membrane module 4; A settling tank 17 is provided for separation.

上述の造水装置において、通常のろ過工程では、原水弁3が開の状態で原水供給ポンプ2を稼働することで、原水貯留槽1に貯留されている原水を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給し、ろ過水弁5を開にすることで精密ろ過膜/限外ろ過膜モジュール4の加圧ろ過が行われる。膜ろ過水は分離膜二次側からろ過水弁5を経て精密ろ過膜/限外ろ過膜ろ過水貯留槽6へと移送される。全量ろ過の場合、逆洗弁8、空洗弁11、排水弁14、エア抜き弁15はいずれも閉である。ろ過時間は原水水質や膜透過流束等に応じて適宜設定するのが好ましいが、定流量ろ過の場合は、所定の膜ろ過差圧や膜ろ過水量[m]、定圧ろ過の場合は、所定の膜ろ過流量[m/日]や膜ろ過水量[m]に到達するまでろ過時間を継続させてもよい。なお、膜ろ過流量とは単位時間あたりの膜ろ過水量のことである。 In the above-described fresh water generator, in a normal filtration process, the raw water stored in the raw water storage tank 1 is converted into a microfiltration membrane / ultrafiltration membrane by operating the raw water supply pump 2 with the raw water valve 3 open. The microfiltration membrane / ultrafiltration membrane module 4 is pressure-filtered by supplying it to the lower part of the separation membrane primary side of the module 4 and opening the filtrate water valve 5. The membrane filtrate is transferred from the secondary side of the separation membrane to the microfiltration membrane / ultrafiltration membrane filtrate storage tank 6 through the filtration water valve 5. In the case of the total amount filtration, the backwash valve 8, the air wash valve 11, the drain valve 14, and the air vent valve 15 are all closed. The filtration time is preferably set as appropriate according to the raw water quality, membrane permeation flux, etc., but in the case of constant flow filtration, the predetermined membrane filtration differential pressure or membrane filtration water volume [m 3 ], in the case of constant pressure filtration, The filtration time may be continued until a predetermined membrane filtration flow rate [m 3 / day] or membrane filtration water amount [m 3 ] is reached. The membrane filtration flow rate is the amount of membrane filtration water per unit time.

上記のような造水装置において、本発明の造水方法に係る洗浄方法は例えば次のように実施する。   In the fresh water generator as described above, the cleaning method according to the fresh water generation method of the present invention is performed, for example, as follows.

まず、原水弁3とろ過水弁5を閉にして、原水供給ポンプ2を停止して精密ろ過膜/限外ろ過膜モジュール4のろ過工程を停止する。その後、エア抜き弁15と排水弁14を開にして、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の水を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部から排水弁14を経て系外に排出すると、精密ろ過膜/限外ろ過膜モジュール4内の水位が下がっていき、膜一次側周囲が気体となった状態となる。ここで、分離膜一次側とはろ過対象となる原水を供給する側のことであり、分離膜二次側とは原水を膜でろ過することが得られた膜ろ過水が存在する側のことをいう。このように、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の水全量を排出した後、排水弁14を閉、空洗弁11を開にして、原水供給ポンプ2を稼働すると、原水はアスピレーター12内を通過することで自動的に空気と混合される。原水と空気の気液混合流体は逆止弁13を経て、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給される。アスピレーター12はT字管になっており、T字の水平線にあたる管の一方を原水供給ポンプ2側に、もう一方を精密ろ過膜/限外ろ過膜モジュール4側に接続する。T字の垂直線にあたる管が空気吸い込み口となる。水平線にあたる管の内部は一部細くなっており、ここから分岐して垂直線にあたる管が付く。水平方向に水を流すと、管内の細くなった部分で流速が増すため、ベンチュリ効果によって圧力が低下する。この減圧になった水流に空気が吸い込まれる。   First, the raw water valve 3 and the filtrate water valve 5 are closed, the raw water supply pump 2 is stopped, and the filtration process of the microfiltration membrane / ultrafiltration membrane module 4 is stopped. Thereafter, the air vent valve 15 and the drain valve 14 are opened, and the water on the primary side of the separation membrane of the microfiltration membrane / ultrafiltration membrane module 4 is removed from the lower side of the primary side of the separation membrane of the microfiltration membrane / ultrafiltration membrane module 4. When the water is discharged out of the system through the drain valve 14, the water level in the microfiltration membrane / ultrafiltration membrane module 4 is lowered, and the periphery of the membrane primary side becomes a gas state. Here, the primary side of the separation membrane is the side that supplies the raw water to be filtered, and the secondary side of the separation membrane is the side where the membrane filtered water obtained by filtering the raw water through the membrane is present. Say. Thus, after discharging the total amount of water on the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4, the drainage valve 14 is closed, the flush valve 11 is opened, and the raw water supply pump 2 is operated. The raw water is automatically mixed with air by passing through the aspirator 12. The gas-liquid mixed fluid of raw water and air is supplied to the lower part of the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4 through the check valve 13. The aspirator 12 is a T-shaped tube, and one of the tubes corresponding to the T-shaped horizontal line is connected to the raw water supply pump 2 side, and the other is connected to the microfiltration membrane / ultrafiltration membrane module 4 side. A tube corresponding to a T-shaped vertical line serves as an air suction port. The inside of the pipe corresponding to the horizontal line is partially thinned, and a pipe corresponding to the vertical line branches off from here. When water is flowed in the horizontal direction, the flow rate is increased in the narrowed portion of the pipe, and therefore the pressure is reduced due to the venturi effect. Air is sucked into this depressurized water stream.

その結果、精密ろ過膜/限外ろ過膜モジュール4内の水位を上方に移動させながら気泡を供給することになり、分離膜表面に付着していた汚染物質は効果的に剥離される。また、精密ろ過膜/限外ろ過膜モジュール4内の水位が上限に達すると、気液混合流体は分離膜表面から剥離した汚染物質とともに精密ろ過膜/限外ろ過膜モジュール4の上部側面に位置するサイドノズルからエア抜き弁15を経て系外に排出される。アスピレーター12に供給する原水流量が大きいほど、アスピレーター12に吸い込まれる空気流量が大きくなり、分離膜表面に付着していた汚染物質を剥離し、精密ろ過膜/限外ろ過膜モジュール4の系外に排出する効果が大きいので好ましいが、分離膜の損傷を起こさない範囲内に適宜設定する。原水流量:空気流量の混合比としては、汚染物質の剥離効果が大きい1:1〜5:1程度が好ましい。   As a result, bubbles are supplied while moving the water level in the microfiltration membrane / ultrafiltration membrane module 4 upward, and the contaminants adhering to the separation membrane surface are effectively peeled off. When the water level in the microfiltration membrane / ultrafiltration membrane module 4 reaches the upper limit, the gas-liquid mixed fluid is located on the upper side surface of the microfiltration membrane / ultrafiltration membrane module 4 together with contaminants separated from the separation membrane surface. The air is discharged from the side nozzle through the air vent valve 15. As the raw water flow rate supplied to the aspirator 12 increases, the air flow rate sucked into the aspirator 12 increases and the contaminants adhering to the surface of the separation membrane are peeled off and removed from the system of the microfiltration membrane / ultrafiltration membrane module 4. Although it is preferable since the effect of discharging is great, it is appropriately set within a range in which the separation membrane is not damaged. The mixing ratio of the raw water flow rate to the air flow rate is preferably about 1: 1 to 5: 1, which has a great effect of removing contaminants.

ここで、本発明の造水方法に係る洗浄工程において、アスピレーターに供給されるアスピレーター供給水としては、本発明の要旨を逸脱しないものであればどのような水でも使用することができ、例えば、図1を用いて上述したように原水を使用してもよく、図2を用いて後述するように精密ろ過膜/限外ろ過膜ろ過水貯留槽6内の膜ろ過水を使用しても良い。また、水道水、工業用水、地下水等、原水とは別途の水を使用しても良い。   Here, in the washing step according to the fresh water generation method of the present invention, as the aspirator supply water to be supplied to the aspirator, any water can be used as long as it does not depart from the gist of the present invention. The raw water may be used as described above with reference to FIG. 1, or the membrane filtrate in the microfiltration membrane / ultrafiltration membrane filtrate storage tank 6 may be used as described later with reference to FIG. . Moreover, you may use water separate from raw | natural water, such as tap water, industrial water, and ground water.

上記洗浄時におけるアスピレーター12からの吐出圧力によっては、通常のろ過工程よりろ過流量が小さいものの、ろ過水弁5を開にすることでアスピレーター12から吐出された気液混合流体を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給する洗浄工程を実施しながらろ過することも可能である。すなわち、分離膜の洗浄とろ過を同時に実施できる。また、上述したように原水供給ポンプ2を一旦停止させず、原水供給ポンプ2を稼働した状態で空洗弁11、エア抜き弁15を開、原水弁3を閉にしてもよく、そのときのろ過水弁5の開閉は任意である。   Depending on the discharge pressure from the aspirator 12 at the time of the above washing, the filtration flow rate is smaller than that in the normal filtration process, but the gas-liquid mixed fluid discharged from the aspirator 12 by opening the filtrate water valve 5 is a microfiltration membrane / limitation. It is also possible to perform filtration while carrying out a cleaning process that supplies the lower part of the outer filtration membrane module 4 on the primary side of the separation membrane. That is, the separation membrane can be washed and filtered at the same time. Further, as described above, the raw water supply pump 2 may not be stopped temporarily, but the raw flush valve 11 and the air vent valve 15 may be opened while the raw water supply pump 2 is in operation, and the raw water valve 3 may be closed. The filtration water valve 5 can be opened and closed arbitrarily.

前記気液混合流体を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給する前および/または同時に、逆洗弁8を開にして、逆洗ポンプ7を稼動することで、精密ろ過膜/限外ろ過膜ろ過水貯留槽6内の膜ろ過水を用いた逆圧洗浄を行ったほうが汚染物質を分離膜表面から剥離し、精密ろ過膜/限外ろ過膜モジュール4の系外に排出する効果が大きいことから、好ましい。   Before the gas-liquid mixed fluid is supplied to the lower part of the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4 and / or at the same time, the backwash valve 8 is opened and the backwash pump 7 is operated. When the microfiltration membrane / ultrafiltration membrane filtration water storage tank 6 is backwashed with membrane filtration water, the contaminants are peeled off from the separation membrane surface, and the microfiltration membrane / ultrafiltration membrane module 4 This is preferable because the effect of discharging out of the system is great.

前記気液混合流体を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給する前に逆圧洗浄する場合には、エア抜き弁15と排水弁14を開にして、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の水を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部から排水弁14を経て系外に排出して、分離膜一次側周囲が気体となった状態で排水弁14を開にしたまま、逆洗弁8を開にして、逆洗ポンプ7を稼動するほうが好ましい。逆圧洗浄時の水圧による抵抗がなくなるため、分離膜表面に付着していた懸濁物質が剥離しやすくなり、また、剥離した懸濁物質は分離膜表面をしたたり落ちながら、分離膜と分離膜との間に滞留することなく、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部から排水弁14を経て系外に排出される。その後、逆洗弁8を閉にして、逆洗ポンプ7を停止し、排水弁14を閉、空洗弁11を開にして、原水供給ポンプ2を稼働して、前記気液混合流体による洗浄を実施する。   When the gas-liquid mixed fluid is back-pressure washed before being supplied to the lower part of the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4, the air vent valve 15 and the drain valve 14 are opened to make the precision The water on the primary side of the separation membrane of the filtration membrane / ultrafiltration membrane module 4 is discharged from the lower side of the primary side of the separation membrane of the microfiltration membrane / ultrafiltration membrane module 4 through the drain valve 14 to the outside of the system. It is preferable that the backwash valve 8 is opened and the backwash pump 7 is operated while the drain valve 14 is opened in a state where the side periphery is gas. Since there is no resistance due to water pressure during back pressure washing, suspended substances attached to the surface of the separation membrane are easily separated, and the separated suspended substances are separated from the separation membrane while falling or falling on the surface of the separation membrane. Without staying between the membrane, the microfiltration membrane / ultrafiltration membrane module 4 is discharged from the lower part of the separation membrane primary side through the drain valve 14 to the outside of the system. Thereafter, the backwash valve 8 is closed, the backwash pump 7 is stopped, the drain valve 14 is closed, the air wash valve 11 is opened, the raw water supply pump 2 is operated, and washing with the gas-liquid mixed fluid is performed. To implement.

一方、前記気液混合流体を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給すると同時に逆圧洗浄する場合には、排水弁14を閉にしたまま、逆洗弁8、空洗弁11、エア抜き弁15を開にして、原水供給ポンプ2、逆洗ポンプ7を稼動するほうが好ましい。   On the other hand, when the gas-liquid mixed fluid is supplied to the lower part of the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4 and at the same time backwashing, the backwashing valve 8 is kept with the drain valve 14 closed. It is preferable to operate the raw water supply pump 2 and the backwash pump 7 by opening the air washing valve 11 and the air vent valve 15.

前記逆圧洗浄を実施する場合には、酸化剤供給ポンプ9を稼動して逆圧洗浄に使用される膜ろ過水に酸化剤を添加したほうが、分離膜表面や分離膜細孔内に蓄積していた有機物を分解除去する効果があるので好ましい。酸化剤は次亜塩素酸ナトリウム、二酸化塩素、オゾン等いずれでもよいが、分離膜の化学的劣化が進行しないように、酸化剤の種類や濃度は膜素材に応じて適宜設定することが好ましい。   When performing the back pressure cleaning, it is more likely that the oxidizing agent is added to the membrane filtrate used for back pressure cleaning by operating the oxidizing agent supply pump 9 and accumulates on the surface of the separation membrane or in the pores of the separation membrane. This is preferable because it has the effect of decomposing and removing the organic matter. The oxidizing agent may be any of sodium hypochlorite, chlorine dioxide, ozone and the like, but it is preferable to appropriately set the type and concentration of the oxidizing agent according to the membrane material so that chemical degradation of the separation membrane does not proceed.

逆圧洗浄の流量を高くするほど、懸濁物質を分離膜表面から剥離する効果が上がるものの、流量が高すぎると分離膜一次側に背圧が生じ、懸濁物質の分離膜表面からの剥離を阻害することがある。よって精密ろ過膜/限外ろ過膜モジュール4の構造や前記気液混合流体の流量に応じて逆圧洗浄の流量を適宜制御することが好ましい。   Although the effect of separating suspended substances from the separation membrane surface increases as the back-pressure washing flow rate increases, if the flow rate is too high, back pressure is generated on the primary side of the separation membrane, and the suspended matter is separated from the separation membrane surface. May be inhibited. Therefore, it is preferable to appropriately control the flow rate of the back pressure cleaning according to the structure of the microfiltration membrane / ultrafiltration membrane module 4 and the flow rate of the gas-liquid mixed fluid.

また、原水の懸濁物質濃度が高く、アスピレーター12内の管路が詰まりやすい場合には、懸濁成分を含有しない清澄水をアスピレーター12に供給すればよく、好ましくは、図2の造水装置のように、原水供給ポンプ2を停止した状態で、逆洗弁8、空洗弁11、エア抜き弁15を開にして、逆洗ポンプ7を稼動して、精密ろ過膜/限外ろ過膜ろ過水貯留槽6内の膜ろ過水をアスピレーター12に供給し、アスピレーター12から吐出された膜ろ過水と空気の気液混合流体を逆止弁13を経て、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給すると同時に逆圧洗浄を実施することが好ましい。   In addition, when the concentration of suspended solids in the raw water is high and the pipe line in the aspirator 12 is likely to be clogged, clear water not containing suspended components may be supplied to the aspirator 12, and preferably the fresh water generator of FIG. In the state where the raw water supply pump 2 is stopped, the backwash valve 8, the air washing valve 11 and the air vent valve 15 are opened, and the backwash pump 7 is operated, so that the microfiltration membrane / ultrafiltration membrane is operated. The membrane filtrate in the filtrate storage tank 6 is supplied to the aspirator 12, and the membrane filtrate discharged from the aspirator 12 and the gas-liquid mixed fluid of air pass through the check valve 13, and the microfiltration membrane / ultrafiltration membrane module 4 is preferably supplied to the lower part of the primary side of the separation membrane 4 and at the same time back pressure cleaning is performed.

水回収率を上げるために、分離膜表面から剥離した汚染物質とともに精密ろ過膜/限外ろ過膜モジュール4の上部側面に位置するサイドノズルからエア抜き弁15を経て系外に排出された気液混合流体の少なくとも一部を回収槽16に流入した後、原水貯留槽1などの精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側に返送することが好ましい。前述のとおり逆圧洗浄に使用される膜ろ過水に酸化剤を添加することができるが、高濃度に薬液を添加した場合は、中和処理などの薬品の処理を行った後に原水貯留槽1に戻すのが望ましい。   In order to increase the water recovery rate, the gas-liquid discharged from the system through the air vent valve 15 from the side nozzle located on the upper side surface of the microfiltration membrane / ultrafiltration membrane module 4 together with the contaminants separated from the separation membrane surface After at least a part of the mixed fluid flows into the recovery tank 16, it is preferably returned to the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4 such as the raw water storage tank 1. As described above, an oxidizing agent can be added to the membrane filtrate used for back pressure washing. However, when a chemical solution is added at a high concentration, the raw water storage tank 1 is subjected to chemical treatment such as neutralization treatment. It is desirable to return to

また、図3の造水装置のように精密ろ過膜/限外ろ過膜モジュール4の膜ろ過水をナノろ過膜/逆浸透膜モジュール20でろ過する造水方法においては、水回収率を上げるために、ナノろ過膜/逆浸透膜モジュール20の濃縮水の少なくとも一部をアスピレーター12に供給して、アスピレーター12から吐出された気液混合流体を逆止弁13を経て、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給する洗浄を実施してもよい。   Further, in the fresh water generation method of filtering the membrane filtration water of the microfiltration membrane / ultrafiltration membrane module 4 with the nanofiltration membrane / reverse osmosis membrane module 20 as in the fresh water generator of FIG. 3, in order to increase the water recovery rate. In addition, at least a part of the concentrated water of the nanofiltration membrane / reverse osmosis membrane module 20 is supplied to the aspirator 12, and the gas-liquid mixed fluid discharged from the aspirator 12 is passed through the check valve 13 to the microfiltration membrane / ultraviolet. You may implement the washing | cleaning supplied to the lower part of the separation membrane primary side of the filtration membrane module 4. FIG.

分離膜表面から剥離した汚染物質とともに精密ろ過膜/限外ろ過膜モジュール4の上部側面に位置するサイドノズルからエア抜き弁15を経て系外に排出された気液混合流体の汚染物質の濃度が高い場合には、回収槽16の後段に、汚染物質と清澄水(上澄水)に分離するための沈殿槽17を設けたほうが好ましい。分離手段としては、沈殿槽17を設けた沈殿分離の他に、凝集沈殿分離、加圧浮上分離、遠心分離、砂ろ過分離、精密ろ過膜/限外ろ過膜のろ過分離、ろ布のろ過分離、繊維状フィルターのろ過分離、カートリッジフィルターのろ過分離、ディスクフィルター分離、フィルタープレス、ベルトプレス、真空脱水、多重円板脱水などの手段が選択できるが、汚染物質は比重が大きく、沈降性が高いことから沈殿分離が適している。また、設備コスト、処理コストなどの観点からも沈殿分離が好ましい。   The concentration of contaminants in the gas-liquid mixed fluid discharged from the side nozzle located on the upper side surface of the microfiltration membrane / ultrafiltration membrane module 4 through the air vent valve 15 together with the contaminants separated from the separation membrane surface is If it is high, it is preferable to provide a sedimentation tank 17 for separating the pollutant and the clear water (supernatant water) after the collection tank 16. As a separation means, in addition to precipitation separation provided with a precipitation tank 17, coagulation precipitation separation, pressurized flotation separation, centrifugation, sand filtration separation, microfiltration / ultrafiltration membrane filtration separation, filter cloth filtration separation , Filtration filter separation, cartridge filter filtration separation, disk filter separation, filter press, belt press, vacuum dewatering, multiple disk dewatering, etc. can be selected, but pollutants have high specific gravity and high sedimentation Therefore, precipitation separation is suitable. Also, precipitation separation is preferable from the viewpoint of equipment cost, processing cost, and the like.

その後、逆洗弁8、空洗弁11を閉にして、原水供給ポンプ2、逆洗ポンプ7を停止して、気液混合流体による洗浄や逆圧洗浄を停止した後は、一旦排水弁14を開にして、精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の水を系外に全量排出した後、排水弁14を閉にして、原水弁3を開にして、原水供給ポンプ2を稼動して、原水を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側を満水にしても構わないし、全量排水せずに、そのまま原水弁3を開にして、原水供給ポンプ2を稼動して、原水を精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側を満水にしても構わない。   After that, the backwash valve 8 and the air washing valve 11 are closed, the raw water supply pump 2 and the backwash pump 7 are stopped, and after the washing with the gas-liquid mixed fluid and the back pressure washing are stopped, the drain valve 14 is temporarily stopped. Is opened, and the water on the primary side of the separation membrane of the microfiltration membrane / ultrafiltration membrane module 4 is discharged out of the system, and then the drain valve 14 is closed, the raw water valve 3 is opened, and the raw water supply pump 2 may be used to fill the primary side of the separation membrane of the microfiltration membrane / ultrafiltration membrane module 4 with the raw water, and the raw water supply pump 2 may be opened by directly opening the raw water valve 3 without draining the entire amount. The primary side of the separation membrane of the microfiltration membrane / ultrafiltration membrane module 4 may be filled with raw water.

精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側を満水にした後は、ろ過水弁5を開にして、エア抜き弁15を閉にすれば、精密ろ過膜/限外ろ過膜モジュール4のろ過工程に戻り、上記工程を繰り返すことで造水を継続することができる。   After the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4 is filled with water, the filtration water valve 5 is opened and the air vent valve 15 is closed, so that the microfiltration membrane / ultrafiltration membrane module Returning to the filtration step 4, water production can be continued by repeating the above steps.

精密ろ過膜/限外ろ過膜モジュール4としては、外圧式でも内圧式であっても差し支えはないが、分離膜表面と接触する気液混合流体の流速が高く、本発明の洗浄効果が発揮されやすいことから内圧式が好ましい。また膜ろ過方式としては全量ろ過型膜モジュールでもクロスフローろ過型膜モジュールであっても差し支えはないが、エネルギー消費量が少ないという点から全量ろ過型膜モジュールが好ましい。さらに加圧型膜モジュールであっても浸漬型膜モジュールであっても差し支えはないが、高流束でのろ過運転が可能であるという点から加圧型膜モジュールが好ましい。精密ろ過膜/限外ろ過膜モジュール4の形状としては、加圧型膜モジュールの場合、円筒や直方体の加圧容器内に中空糸膜や管状膜やモノリス膜等を収納したものが挙げられ、原水の供給口の位置が膜モジュールの下部底面あるいは下部側面となり、膜モジュールの上部から膜ろ過水が得られるよう、分離膜が鉛直方向となるように縦置きに設置する。浸漬型膜モジュールの場合、例えば図4、図5のように原水あるいは膜ろ過水の一部をアスピレーターに供給し、前記アスピレーターから吐出された気液混合流体を精密ろ過膜/限外ろ過膜モジュール4の膜表面全体に接触できるよう、気液混合流体を精密ろ過膜/限外ろ過膜モジュール4の下方から供給できれば、円筒や直方体やシート型等いずれでも良く、膜ろ過水の取水口の位置もどこでも構わない。   The microfiltration membrane / ultrafiltration membrane module 4 can be either an external pressure type or an internal pressure type, but the flow rate of the gas-liquid mixed fluid contacting the separation membrane surface is high, and the cleaning effect of the present invention is exhibited. The internal pressure type is preferred because it is easy. The membrane filtration method may be a total filtration membrane module or a cross-flow filtration membrane module, but a total filtration membrane module is preferred from the viewpoint of low energy consumption. Furthermore, although it may be a pressurization type membrane module or an immersion type membrane module, the pressurization type membrane module is preferable from the viewpoint that a filtration operation with a high flux is possible. Examples of the shape of the microfiltration membrane / ultrafiltration membrane module 4 include, in the case of a pressurized membrane module, a hollow fiber membrane, a tubular membrane, a monolith membrane, or the like housed in a cylindrical or cuboid pressurized container. The position of the supply port is the lower bottom surface or the lower side surface of the membrane module, and the separation membrane is installed vertically so that the membrane filtrate is obtained from the upper portion of the membrane module. In the case of a submerged membrane module, for example, as shown in FIGS. 4 and 5, a part of raw water or membrane filtration water is supplied to an aspirator, and the gas-liquid mixed fluid discharged from the aspirator is used as a microfiltration membrane / ultrafiltration membrane module. As long as the gas-liquid mixed fluid can be supplied from the lower side of the microfiltration membrane / ultrafiltration membrane module 4 so that it can contact the entire membrane surface of the membrane 4, it can be any cylinder, rectangular parallelepiped, sheet type, etc. Can be anywhere.

また、ろ過工程で精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給する原水には、有機系もしくは無機系の凝集剤を添加することも可能である。凝集剤を添加することで、膜ファウリングの抑制や膜ろ過中の有機物濃度を低減する効果がある。機系凝集剤としては、ジメチルアミン系やポリアクリルアミド系のカチオン高分子凝集剤、などを使用することができる。一方、無機系凝集剤としては、ポリ塩化アルミニウムやポリ硫酸アルミニウム、塩化第二鉄、ポリ硫酸第二鉄、硫酸第二鉄、ポリシリカ鉄等を使用できる。   In addition, an organic or inorganic flocculant can be added to the raw water supplied to the lower part of the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4 in the filtration step. By adding a flocculant, there is an effect of suppressing membrane fouling and reducing the concentration of organic substances during membrane filtration. As the mechanical flocculant, dimethylamine-based or polyacrylamide-based cationic polymer flocculants can be used. On the other hand, polyaluminum chloride, polyaluminum sulfate, ferric chloride, ferric sulfate, ferric sulfate, polysilica iron, etc. can be used as the inorganic flocculant.

精密ろ過膜/限外ろ過膜モジュール4で使用される分離膜としては、多孔質状のものであれば特に限定されないが、所望の処理水の水質や水量によって、精密ろ過膜を用いたり、限外ろ過膜を用いたり、あるいは両者を併用したりする。例えば、濁質成分、大腸菌、クリプトスポリジウム等を除去したい場合は精密ろ過膜でも限外ろ過膜のどちらを用いても構わないが、ウィルスや高分子有機物等も除去したい場合は、限外ろ過膜を用いるのが好ましい。   The separation membrane used in the microfiltration membrane / ultrafiltration membrane module 4 is not particularly limited as long as it is porous, but depending on the desired quality and amount of treated water, An outer filtration membrane is used, or both are used in combination. For example, if you want to remove turbid components, Escherichia coli, Cryptosporidium, etc., you can use either a microfiltration membrane or an ultrafiltration membrane. Is preferably used.

分離膜の形状としては、中空糸膜、平膜、管状膜等があるが、いずれでも構わない。   Examples of the shape of the separation membrane include a hollow fiber membrane, a flat membrane, and a tubular membrane, and any of them may be used.

分離膜の材質としては、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、およびクロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、酢酸セルロース、ポリビニルアルコールおよびポリエーテルスルホン等からなる群から選ばれる少なくとも1種類を含んでいると好ましく、さらに膜強度や耐薬品性の点からはポリフッ化ビニリデン(PVDF)がより好ましく、親水性が高く耐汚れ性が強いという点からはポリアクリロニトリルがより好ましい。   The material of the separation membrane is polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetra Including at least one selected from the group consisting of a fluoroethylene-perfluoroalkyl vinyl ether copolymer, and a chlorotrifluoroethylene-ethylene copolymer, polyvinylidene fluoride, polysulfone, cellulose acetate, polyvinyl alcohol, and polyethersulfone. Polyvinylidene fluoride (PVDF) is more preferable from the viewpoint of film strength and chemical resistance, and from the viewpoint of high hydrophilicity and strong stain resistance. Rironitoriru is more preferable.

ろ過運転の制御方法としては、定流量ろ過であっても定圧ろ過であってもよいが、一定の処理水量が得られ、また、全体の制御が容易であるという点から定流量ろ過が好ましい。   The control method for the filtration operation may be constant flow filtration or constant pressure filtration, but constant flow filtration is preferred from the viewpoint that a constant amount of treated water can be obtained and the overall control is easy.

以上の本発明の造水方法に係る膜モジュールの洗浄方法によれば、設備費、設備の設置スペース、電気代を削減することが可能であり、分離膜表面全体に付着していた汚染物質を著しく剥離除去することができるので、定流量運転の場合、膜ろ過差圧が従来技術よりも長期間安定する。ただし、有機物を完全には除去することは難しく、凝集剤由来のアルミニウムや鉄が付着したり、酸化剤によって酸化された鉄やマンガン等が分離膜表面に徐々に析出したりすることがある。そのため、膜ろ過差圧が精密ろ過膜/限外ろ過膜モジュール4の耐圧限界近くまで到達した場合には、高濃度の薬品洗浄を実施することが好ましい。   According to the method for cleaning a membrane module according to the above-described water production method of the present invention, it is possible to reduce the equipment cost, the installation space of the equipment, and the electricity bill. Since separation and removal can be performed remarkably, in the case of constant flow operation, the membrane filtration differential pressure is more stable for a longer period than in the prior art. However, it is difficult to completely remove the organic matter, and aluminum or iron derived from the flocculant may adhere, or iron or manganese oxidized by the oxidizing agent may gradually precipitate on the surface of the separation membrane. Therefore, when the membrane filtration differential pressure reaches near the pressure limit of the microfiltration membrane / ultrafiltration membrane module 4, it is preferable to carry out high concentration chemical cleaning.

薬品洗浄に用いる薬品としては、分離膜が劣化しない程度の濃度および保持時間を適宜設定した上で選択することができるが、次亜塩素酸ナトリウム、二酸化塩素、過酸化水素、オゾン等を少なくとも1つ以上含有した方が、有機物に対して洗浄効果が高くなるので好ましい。また、塩酸、硫酸、硝酸、クエン酸、シュウ酸等を少なくとも1つ以上含有した方が、アルミニウム、鉄、マンガン等に対して洗浄効果が高くなるので好ましい。   The chemical used for the chemical cleaning can be selected after appropriately setting the concentration and the retention time so that the separation membrane does not deteriorate. At least one of sodium hypochlorite, chlorine dioxide, hydrogen peroxide, ozone and the like can be selected. It is preferable to contain at least two because the cleaning effect on the organic matter is enhanced. In addition, it is preferable to contain at least one of hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid and the like because the cleaning effect on aluminum, iron, manganese and the like is increased.

(第2の実施形態)
以下、本発明の第2の実施形態をさらに詳細に説明する。本発明の第2の実施形態で対象となる造水装置は、例えば、図6に示すように、精密ろ過膜/限外ろ過膜ろ過水を貯留する精密ろ過膜/限外ろ過膜ろ過水貯留槽6と、ナノろ過膜/逆浸透膜モジュール20と、ナノろ過膜/逆浸透膜モジュール20の分離膜一次側の下部に気液混合流体を供給する場合に開となる空洗弁11と、精密ろ過膜/限外ろ過膜ろ過水に空気を供給するアスピレーター12と、アスピレーター12への逆流を防止する逆止弁13と、ナノろ過膜/逆浸透膜モジュール20の分離膜一次側の水を下部から排出する場合に開となる排水弁14と、精密ろ過膜/限外ろ過膜ろ過水をナノろ過膜/逆浸透膜モジュール20に供給する高圧ポンプ18と、ナノろ過膜/逆浸透膜モジュール20の膜ろ過時に開となるナノろ過膜/逆浸透膜供給水弁19と、ナノろ過膜/逆浸透膜モジュール20の濃縮水流量を調整するためのナノろ過膜/逆浸透膜濃縮水弁21、ナノろ過膜/逆浸透膜モジュール20の分離膜一次側の下部に気液混合流体を供給する場合に開となるナノろ過膜/逆浸透膜濃縮水エア抜き弁22が設けられている。
(Second Embodiment)
Hereinafter, the second embodiment of the present invention will be described in more detail. As shown in FIG. 6, for example, as shown in FIG. 6, the desalination apparatus targeted in the second embodiment of the present invention stores a microfiltration membrane / ultrafiltration membrane filtrate water storing microfiltration membrane / ultrafiltration membrane filtrate water. A tank 6, a nanofiltration membrane / reverse osmosis membrane module 20, and an air washing valve 11 that is opened when supplying a gas-liquid mixed fluid to the lower part of the separation membrane primary side of the nanofiltration membrane / reverse osmosis membrane module 20, Aspirator 12 for supplying air to the microfiltration membrane / ultrafiltration membrane filtered water, a check valve 13 for preventing backflow to the aspirator 12, and water on the separation membrane primary side of the nanofiltration membrane / reverse osmosis membrane module 20 A drain valve 14 that opens when discharged from the lower part, a high-pressure pump 18 that supplies microfiltration membrane / ultrafiltration membrane filtrate to the nanofiltration membrane / reverse osmosis membrane module 20, and a nanofiltration membrane / reverse osmosis membrane module Nanofiltration membrane that opens when 20 membranes are filtered / An osmosis membrane supply water valve 19, a nanofiltration membrane / reverse osmosis membrane concentration water valve 21 for adjusting the concentrated water flow rate of the nanofiltration membrane / reverse osmosis membrane module 20, and a separation membrane of the nanofiltration membrane / reverse osmosis membrane module 20 A nanofiltration membrane / reverse osmosis membrane concentrated water air vent valve 22 that is opened when supplying a gas-liquid mixed fluid to the lower part on the primary side is provided.

上述の造水装置において、通常のろ過工程では、ナノろ過膜/逆浸透膜供給水弁19が開、空洗弁11、排水弁14、ナノろ過膜/逆浸透膜濃縮水エア抜き弁22が閉の状態で高圧ポンプ18を稼働することで、精密ろ過膜/限外ろ過膜ろ過水貯留槽6内に貯留されている精密ろ過膜/限外ろ過膜ろ過水をナノろ過膜/逆浸透膜モジュール20の分離膜一次側の下部に供給し、ナノろ過膜/逆浸透膜濃縮水弁21の開度を調整することでナノろ過膜/逆浸透膜モジュール20の加圧クロスフローろ過が行われる。ナノろ過膜/逆浸透膜モジュール20の膜ろ過水流量と濃縮水流量の割合は原水水質に応じて適宜設定するのが好ましい。   In the above-mentioned fresh water generator, in the normal filtration step, the nanofiltration membrane / reverse osmosis membrane supply water valve 19 is opened, the flush valve 11, the drain valve 14, the nanofiltration membrane / reverse osmosis membrane concentrated water air vent valve 22 By operating the high-pressure pump 18 in the closed state, the microfiltration membrane / ultrafiltration membrane filtrate water stored in the microfiltration membrane / ultrafiltration membrane filtration water storage tank 6 is converted into a nanofiltration membrane / reverse osmosis membrane. Supply to the lower part of the separation membrane primary side of the module 20 and adjust the opening degree of the nanofiltration membrane / reverse osmosis membrane concentrated water valve 21 to perform pressure cross flow filtration of the nanofiltration membrane / reverse osmosis membrane module 20. . The ratio of the membrane filtrate flow rate and the concentrated water flow rate of the nanofiltration membrane / reverse osmosis membrane module 20 is preferably set as appropriate according to the raw water quality.

なお、ナノろ過膜/逆浸透膜モジュール20の原水は濁度が低い清澄水であれば良く、上述の例のように精密ろ過膜/限外ろ過膜ろ過水に限定されない。   The raw water of the nanofiltration membrane / reverse osmosis membrane module 20 may be clear water with low turbidity, and is not limited to microfiltration membrane / ultrafiltration membrane filtration water as in the above example.

ろ過時間は原水水質や膜透過流束等に応じて適宜設定するのが好ましいが、定流量ろ過の場合は、所定の膜ろ過差圧や膜ろ過水量[m]、定圧ろ過の場合は、所定の膜ろ過流量[m/日]や膜ろ過水量[m]に到達するまでろ過時間を継続させてもよい。なお、膜ろ過流量とは単位時間あたりの膜ろ過水量のことである。 The filtration time is preferably set as appropriate according to the raw water quality, membrane permeation flux, etc., but in the case of constant flow filtration, the predetermined membrane filtration differential pressure or membrane filtration water volume [m 3 ], in the case of constant pressure filtration, The filtration time may be continued until a predetermined membrane filtration flow rate [m 3 / day] or membrane filtration water amount [m 3 ] is reached. The membrane filtration flow rate is the amount of membrane filtration water per unit time.

上記のような造水装置において、本発明の洗浄方法は例えば次のように実施する。   In the fresh water generator as described above, the cleaning method of the present invention is performed, for example, as follows.

まず、ナノろ過膜/逆浸透膜供給水弁19を閉にして、高圧ポンプ18を停止して、ナノろ過膜/逆浸透膜モジュール20のろ過工程を停止する。その後、排水弁14、ナノろ過膜/逆浸透膜濃縮水エア抜き弁22を開にして、ナノろ過膜/逆浸透膜モジュール20の分離膜一次側の水をナノろ過膜/逆浸透膜モジュール20下部の排水弁14を経て系外に排出すると、ナノろ過膜/逆浸透膜モジュール20内の水位が下がっていき、分離膜一次側周囲が気体となった状態となる。ここで、分離膜一次側とはろ過対象となる精密ろ過膜/限外ろ過膜ろ過水を供給する側のことであり、分離膜二次側とは精密ろ過膜/限外ろ過膜ろ過水をナノろ過膜/逆浸透膜でろ過することが得られた膜ろ過水が存在する側のことをいう。このように、ナノろ過膜/逆浸透膜モジュール20の分離膜一次側の水全量を排出した後、排水弁14を閉、空洗弁11を開にして、高圧ポンプ18を稼働すると、精密ろ過膜/限外ろ過膜ろ過水はアスピレーター12内を通過することで自動的に空気と混合される。精密ろ過膜/限外ろ過膜ろ過水と空気の気液混合流体は逆止弁13を経て、ナノろ過膜/逆浸透膜モジュール20の分離膜一次側の下部に供給される。アスピレーター12はT字管になっており、T字の水平線にあたる管の一方を高圧ポンプ18側に、もう一方をナノろ過膜/逆浸透膜モジュール20側に接続する。T字の垂直線にあたる管が空気吸い込み口となる。水平線にあたる管の内部は一部細くなっており、ここから分岐して垂直線にあたる管が付く。水平方向に水を流すと、管内の細くなった部分で流速が増すため、ベンチュリ効果によって圧力が低下する。この減圧になった水流に空気が吸い込まれる。   First, the nanofiltration membrane / reverse osmosis membrane supply water valve 19 is closed, the high-pressure pump 18 is stopped, and the filtration process of the nanofiltration membrane / reverse osmosis membrane module 20 is stopped. Thereafter, the drain valve 14 and the nanofiltration membrane / reverse osmosis membrane concentrated water air release valve 22 are opened, and the water on the separation membrane primary side of the nanofiltration membrane / reverse osmosis membrane module 20 is removed from the nanofiltration membrane / reverse osmosis membrane module 20. When discharged to the outside of the system through the lower drain valve 14, the water level in the nanofiltration membrane / reverse osmosis membrane module 20 is lowered, and the periphery of the separation membrane primary side becomes a gas state. Here, the primary side of the separation membrane is the side that supplies the microfiltration membrane / ultrafiltration membrane filtrate to be filtered, and the secondary side of the separation membrane is the microfiltration membrane / ultrafiltration membrane filtration water. This refers to the side on which membrane filtered water obtained by filtering with a nanofiltration membrane / reverse osmosis membrane is present. In this way, when the total amount of water on the primary side of the separation membrane of the nanofiltration membrane / reverse osmosis membrane module 20 is discharged, the drain valve 14 is closed, the flush valve 11 is opened, and the high pressure pump 18 is operated. Membrane / ultrafiltration membrane filtrate is automatically mixed with air by passing through the aspirator 12. The gas / liquid mixed fluid of the microfiltration membrane / ultrafiltration membrane filtered water and air is supplied to the lower part of the separation membrane primary side of the nanofiltration membrane / reverse osmosis membrane module 20 through the check valve 13. The aspirator 12 is a T-shaped tube, and one of the tubes corresponding to the T-shaped horizontal line is connected to the high-pressure pump 18 side, and the other is connected to the nanofiltration membrane / reverse osmosis membrane module 20 side. A tube corresponding to a T-shaped vertical line serves as an air suction port. The inside of the pipe corresponding to the horizontal line is partially thinned, and a pipe corresponding to the vertical line branches off from here. When water is flowed in the horizontal direction, the flow rate is increased in the narrowed portion of the pipe, and therefore the pressure is reduced due to the venturi effect. Air is sucked into this depressurized water stream.

また、高圧ポンプ18を一旦停止して、ろ過工程を停止することなく、高圧ポンプ18稼働を維持し、でナノろ過膜/逆浸透膜供給水弁19が開の状態で、空洗弁11を開いてから、ナノろ過膜/逆浸透膜供給水弁19を閉にしてもよい。   Further, the high pressure pump 18 is temporarily stopped to maintain the operation of the high pressure pump 18 without stopping the filtration process, and the nanofiltration membrane / reverse osmosis membrane supply water valve 19 is opened, and the flush valve 11 is set to open. After opening, the nanofiltration membrane / reverse osmosis membrane supply water valve 19 may be closed.

その結果、ナノろ過膜/逆浸透膜モジュール20内の水位を上方に移動させながら気泡を供給することになり、分離膜表面に付着していた有機物や微生物等の汚染物質は効果的に剥離される。また、ナノろ過膜/逆浸透膜モジュール20内の水位が上限に達すると、気液混合流体は分離膜表面から剥離した有機物や微生物等の汚染物質とともにナノろ過膜/逆浸透膜モジュール20の上部に位置する濃縮水配管からナノろ過膜/逆浸透膜濃縮水エア抜き弁22を経て系外に排出される。アスピレーター12に供給する原水流量が大きいほど、アスピレーター12に吸い込まれる空気流量が大きくなり、分離膜表面に付着していた汚染物質を剥離し、ナノろ過膜/逆浸透膜モジュール20の系外に排出する効果が大きいので好ましいが、分離膜の損傷を起こさない範囲内に適宜設定する。原水流量:空気流量の混合比としては、汚染物質の剥離効果が大きい1:1〜5:1程度が好ましい。上記洗浄時におけるアスピレーター12からの吐出圧力によっては、通常のろ過工程よりろ過流量が小さいものの、ろ過水弁5を開にすることでアスピレーター12から吐出された気液混合流体をナノろ過膜/逆浸透膜モジュール20の分離膜一次側の下部に供給する洗浄工程を実施しながらろ過することも可能である。すなわち、分離膜の洗浄とろ過を同時に実施できる。   As a result, bubbles are supplied while moving the water level in the nanofiltration membrane / reverse osmosis membrane module 20 upward, and pollutants such as organic matter and microorganisms adhering to the separation membrane surface are effectively peeled off. The When the water level in the nanofiltration membrane / reverse osmosis membrane module 20 reaches the upper limit, the gas-liquid mixed fluid is mixed with contaminants such as organic substances and microorganisms separated from the surface of the separation membrane, and the upper part of the nanofiltration membrane / reverse osmosis membrane module 20. From the concentrated water pipe located in the, the nanofiltration membrane / reverse osmosis membrane concentrated water air vent valve 22 is discharged out of the system. As the raw water flow rate supplied to the aspirator 12 increases, the air flow rate sucked into the aspirator 12 increases and the contaminants adhering to the separation membrane surface are peeled off and discharged out of the nanofiltration membrane / reverse osmosis membrane module 20 system. This is preferable because it has a large effect, but it is appropriately set within a range in which the separation membrane is not damaged. The mixing ratio of the raw water flow rate to the air flow rate is preferably about 1: 1 to 5: 1, which has a great effect of removing contaminants. Depending on the discharge pressure from the aspirator 12 at the time of the washing, although the filtration flow rate is smaller than that in the normal filtration step, the gas-liquid mixed fluid discharged from the aspirator 12 by opening the filtered water valve 5 is converted into a nanofiltration membrane / reverse. It is also possible to perform filtration while carrying out a cleaning process that supplies the lower part of the permeable membrane module 20 on the primary side of the separation membrane. That is, the separation membrane can be washed and filtered at the same time.

なお、海水淡水化のような高圧ポンプ18の吐出圧力が高い場合には、アスピレーター12の耐圧性能を考慮して、インバーター等で吐出圧力を制御することが好ましい。   In addition, when the discharge pressure of the high pressure pump 18 such as seawater desalination is high, it is preferable to control the discharge pressure with an inverter or the like in consideration of the pressure resistance performance of the aspirator 12.

また、図7のようにナノろ過膜/逆浸透膜濃縮水エア抜き弁22を通過した気液混合流体の少なくとも一部をそのまま精密ろ過膜/限外ろ過膜モジュール4の分離膜一次側の下部に供給して、精密ろ過膜/限外ろ過膜モジュール4も同時洗浄したほうが、水回収率が上昇するので好ましい。   Further, as shown in FIG. 7, at least a part of the gas-liquid mixed fluid that has passed through the nanofiltration membrane / reverse osmosis membrane concentrated water air vent valve 22 is directly below the separation membrane primary side of the microfiltration membrane / ultrafiltration membrane module 4. It is preferable to wash the microfiltration membrane / ultrafiltration membrane module 4 at the same time because the water recovery rate increases.

その後、空洗弁11を閉にして、高圧ポンプ18を停止して、気液混合流体による洗浄を停止した後は、一旦排水弁14を開にして、ナノろ過膜/逆浸透膜モジュール20の分離膜一次側の水を系外に全量排出後、排水弁14を閉にして、ナノろ過膜/逆浸透膜供給水弁19を開にして、高圧ポンプ18を稼動して、精密ろ過膜/限外ろ過膜ろ過水をナノろ過膜/逆浸透膜モジュール20の分離膜一次側を満水にしても構わないし、全量排水せずに、そのままナノろ過膜/逆浸透膜供給水弁19を開にして、高圧ポンプ18を稼動して、精密ろ過膜/限外ろ過膜ろ過水をナノろ過膜/逆浸透膜モジュール20の分離膜一次側を満水にしても構わない。   Thereafter, the air washing valve 11 is closed, the high-pressure pump 18 is stopped, and the washing with the gas-liquid mixed fluid is stopped. Then, the drain valve 14 is once opened to open the nanofiltration membrane / reverse osmosis membrane module 20. After all the water on the primary side of the separation membrane has been discharged out of the system, the drain valve 14 is closed, the nanofiltration membrane / reverse osmosis membrane supply water valve 19 is opened, the high-pressure pump 18 is operated, and the microfiltration membrane / The ultrafiltration membrane filtered water may be filled with the primary side of the separation membrane of the nanofiltration membrane / reverse osmosis membrane module 20, and the nanofiltration membrane / reverse osmosis membrane supply water valve 19 is opened as it is without draining the entire amount. Then, the high-pressure pump 18 may be operated so that the microfiltration membrane / ultrafiltration membrane filtrate is filled with the primary side of the separation membrane of the nanofiltration membrane / reverse osmosis membrane module 20.

ナノろ過膜/逆浸透膜モジュール20の分離膜一次側を満水にした後は、ナノろ過膜/逆浸透膜濃縮水エア抜き弁22を閉にすれば、ナノろ過膜/逆浸透膜モジュール20はろ過工程に戻り、上記工程を繰り返すことで造水を継続することができる。   After the primary side of the separation membrane of the nanofiltration membrane / reverse osmosis membrane module 20 is filled with water, if the nanofiltration membrane / reverse osmosis membrane concentrated water air release valve 22 is closed, the nanofiltration membrane / reverse osmosis membrane module 20 becomes Returning to the filtration step, the above steps can be repeated to continue the water production.

ナノろ過膜/逆浸透膜モジュール20で使用されるナノろ過膜/逆浸透膜としては、被分離混合液中の一部の成分、例えば溶媒を透過させ他の成分を透過させない、実質的に逆浸透分離が可能な半透性の分離膜であって、ナノろ過膜の脱塩率は5%以上93%未満(評価条件 NaCl濃度:500mg/l、操作圧力:0.1MPa)、逆浸透膜の脱塩率は93%以上(評価条件 NaCl濃度:500mg/l、操作圧力:0.1MPa)と定義する。要求される膜ろ過水の水質や利用目的に応じて、ナノろ過膜/逆浸透膜を適宜選定すればよい。その素材には酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が使用できる。またその分離膜構造は分離膜の少なくとも片面に緻密層を持ち、緻密層から分離膜内部あるいはもう片方の面に向けて徐々に大きな孔径の微細孔を有する非対称分離膜、非対称分離膜の緻密層の上に別の素材で形成された非常に薄い分離機能層を有する複合分離膜がある。分離膜形態には中空糸膜、平膜がある。本発明は、これら分離膜素材、分離膜構造や分離膜形態によらず実施することができいずれも効果があるが、代表的な分離膜としては、例えば酢酸セルロース系やポリアミド系の非対称分離膜およびポリアミド系、ポリ尿素系の分離機能層を有する複合分離膜などがあり、造水量、耐久性、塩排除率の観点から、酢酸セルロース系の非対称分離膜、ポリアミド系の複合分離膜を用いることが好ましい。   The nanofiltration membrane / reverse osmosis membrane used in the nanofiltration membrane / reverse osmosis membrane module 20 includes a component that is partially permeated in the liquid mixture to be separated, such as a solvent that does not allow other components to permeate. A semi-permeable separation membrane capable of osmotic separation, and the desalination rate of the nanofiltration membrane is 5% or more and less than 93% (evaluation conditions NaCl concentration: 500 mg / l, operating pressure: 0.1 MPa), reverse osmosis membrane Is defined as 93% or more (evaluation conditions NaCl concentration: 500 mg / l, operating pressure: 0.1 MPa). The nanofiltration membrane / reverse osmosis membrane may be appropriately selected according to the required water quality and purpose of use of the membrane filtration water. The material can be a polymer material such as cellulose acetate polymer, polyamide, polyester, polyimide, vinyl polymer. The separation membrane structure also has a dense layer on at least one side of the separation membrane, and an asymmetric separation membrane having fine pores with gradually increasing pore diameters from the dense layer to the inside of the separation membrane or the other side, and the dense layer of the asymmetric separation membrane. There is a composite separation membrane having a very thin separation functional layer formed of another material on the top. Separation membranes include hollow fiber membranes and flat membranes. The present invention can be carried out regardless of the separation membrane material, the separation membrane structure and the separation membrane form, and is effective. However, typical separation membranes include, for example, cellulose acetate type and polyamide type asymmetric separation membranes. In addition, there are composite separation membranes having a separation function layer of polyamide type and polyurea type, and cellulose acetate type asymmetric separation membranes and polyamide type composite separation membranes should be used from the viewpoint of water production, durability, and salt rejection rate. Is preferred.

このような性能を有するナノろ過膜/逆浸透膜は、実際に使用するためにスパイラル、チューブラー、プレート・アンド・フレーム等のエレメントに組み込まれ、また中空糸膜は束ねた上でエレメントに組み込まれて使用されるが、本発明はこれらの逆浸透膜エレメントの形態に左右されるものではない。   Nanofiltration membranes / reverse osmosis membranes with such performance are incorporated into elements such as spirals, tubulars, and plate-and-frames for actual use, and hollow fiber membranes are bundled and incorporated into the elements. However, the present invention does not depend on the form of these reverse osmosis membrane elements.

また、本発明において、ナノろ過膜/逆浸透膜モジュール20は、前記ナノろ過膜/逆浸透膜エレメントを1〜数本圧力容器の中に収めたモジュールはもちろんであるが、このモジュールを複数本並列に配置したものをも含むものである。組合せ、本数、配列は目的に応じて任意に行うことができる。ナノろ過膜/逆浸透膜モジュール20の形状としては、円筒の加圧容器内に平膜を円筒状に集積したスパイラル型エレメントあるいは中空糸膜を円筒状に集積した中空糸膜円筒型エレメントを収納したものが挙げられ、原水の供給口の位置が膜モジュールの下部底面あるいは下部側面となり、膜モジュールの上部から膜ろ過水が得られるよう、分離膜が鉛直方向となるように縦置きに設置する。   In the present invention, the nanofiltration membrane / reverse osmosis membrane module 20 is not limited to a module in which one or several nanofiltration membrane / reverse osmosis membrane elements are housed in a pressure vessel. Including those arranged in parallel. Combination, number, and arrangement can be arbitrarily performed according to the purpose. As the shape of the nanofiltration membrane / reverse osmosis membrane module 20, a spiral type element in which flat membranes are integrated in a cylindrical shape or a hollow fiber membrane cylindrical element in which hollow fiber membranes are integrated in a cylindrical shape is accommodated in a cylindrical pressurized container. Installed vertically so that the separation membrane is in the vertical direction so that the raw water supply port is located at the bottom or side of the bottom of the membrane module and membrane filtrate is obtained from the top of the membrane module .

以上の本発明の膜モジュールの洗浄方法によれば、設備費、設備の設置スペース、電気代を削減することが可能であり、分離膜表面全体に付着していた汚染物質を著しく剥離除去することができるので、定流量運転の場合、膜ろ過差圧が従来技術よりも長期間安定する。しかし、有機物や微生物は完全には除去できず、またカルシウムやマグネシウムのスケールが分離膜表面に徐々に析出するので、膜ろ過差圧がナノろ過膜/逆浸透膜モジュール20の耐圧限界近くまで到達した場合、薬液洗浄を実施する必要がある。ここで、洗浄に用いる薬液としては、分離膜が劣化しない程度の濃度および保持時間を適宜設定した上で選択することができるが、有機物に対しては水酸化ナトリウムや水酸化カリウム等のアルカリを少なくとも1つ以上含有した方が、洗浄効果が高くなるので好ましく、カルシウムやマグネシウムのスケールに対しては塩酸、硫酸、硝酸、クエン酸等の酸を少なくとも1つ以上含有した方が、洗浄効果が高くなるので好ましい。また、微生物に対しては次亜塩素酸、二酸化塩素、過酸化水素、クロラミンを少なくとも1つ以上含有した方が、洗浄効果が高くなるので好ましい。   According to the membrane module cleaning method of the present invention described above, it is possible to reduce equipment costs, installation space for equipment, and electricity bills, and remarkably peel and remove contaminants attached to the entire separation membrane surface. Therefore, in the case of constant flow operation, the membrane filtration differential pressure is more stable for a longer period than in the prior art. However, organic matter and microorganisms cannot be removed completely, and scales of calcium and magnesium gradually precipitate on the surface of the separation membrane, so that the membrane filtration differential pressure reaches near the pressure limit of the nanofiltration membrane / reverse osmosis membrane module 20. In this case, it is necessary to perform chemical cleaning. Here, the chemical solution used for washing can be selected after appropriately setting the concentration and holding time to such an extent that the separation membrane does not deteriorate. For organic substances, an alkali such as sodium hydroxide or potassium hydroxide is used. The one containing at least one is preferable because the cleaning effect is high, and the one containing at least one acid such as hydrochloric acid, sulfuric acid, nitric acid, citric acid is more effective for the scale of calcium or magnesium. Since it becomes high, it is preferable. For microorganisms, it is preferable to contain at least one of hypochlorous acid, chlorine dioxide, hydrogen peroxide, and chloramine because the cleaning effect is enhanced.

(実施例1)
図1に示すように、精密ろ過膜/限外ろ過膜モジュール4には東レ(株)製の分画分子量15万Daのポリフッ化ビニリデン製中空糸限外ろ過膜でモジュール全長2m、膜面積11.5mの加圧型膜モジュール5本を並列に鉛直方向に設置し、原水弁3とろ過水弁5を開いて、原水供給ポンプ2を稼動して、平均濁度8NTU(Nephelometric Turbidity Unit:比濁計濁度単位)、平均TOC(Total Organic Carbon:全有機炭素)5mg/lの下水二次処理水を膜ろ過流束2m/m/日で全量ろ過した。
(Example 1)
As shown in FIG. 1, the microfiltration membrane / ultrafiltration membrane module 4 is a hollow fiber ultrafiltration membrane made of polyvinylidene fluoride having a molecular weight cut off of 150,000 Da made by Toray Industries, Inc. .5m 2 pressurized membrane modules are installed in parallel in the vertical direction, the raw water valve 3 and the filtered water valve 5 are opened, the raw water supply pump 2 is operated, and an average turbidity of 8 NTU (Nephelometric Turbidity Unit: ratio Turbidimeter turbidity unit), average TOC (Total Organic Carbon) 5 mg / l of sewage secondary treated water was filtered at a membrane filtration flux of 2 m 3 / m 2 / day.

精密ろ過膜/限外ろ過膜モジュール4で30分ろ過した後、原水弁3とろ過水弁5を閉にして、原水供給ポンプ2を停止して精密ろ過膜/限外ろ過膜モジュール4のろ過工程を停止した。その後、排水弁14、エア抜き弁15を開にして、精密ろ過膜/限外ろ過膜モジュール4内の分離膜一次側の水全量を排出し、排水弁14、エア抜き弁15を開にしたまま、逆洗弁8を開にして、逆洗ポンプ7、酸化剤供給ポンプ9を稼動して、流束2.5m/m/日、塩素濃度10mg/lの次亜塩素酸ナトリウム水溶液による逆圧洗浄を1分実施した。その後、逆洗弁8を閉にして、逆洗ポンプ7、酸化剤供給ポンプ9を停止し、排水弁14を閉、空洗弁11を開にして、原水供給ポンプ2を稼働して、原水と空気の気液混合流体による洗浄を1分実施した。そのときの原水流量は膜モジュール1本当たり20L/分、アスピレーター12からの空気の吸い込み流量は膜モジュール1本当たり14L/分に制御した。その後、空洗弁11を閉にして、原水供給ポンプ2を停止して、気液混合流体による洗浄を停止した後、排水弁14を開にして、精密ろ過膜/限外ろ過膜モジュール4内の水を系外に全量排出した。その後、排水弁14を閉にして、原水弁3を開にして、原水供給ポンプ2を稼動して、原水を精密ろ過膜/限外ろ過膜モジュール4内に供給した後、ろ過水弁5を開にして、エア抜き弁15を閉にして、ろ過工程に戻り、上記工程を繰り返していった。 After 30 minutes of filtration through the microfiltration membrane / ultrafiltration membrane module 4, the raw water valve 3 and the filtration water valve 5 are closed, the raw water supply pump 2 is stopped, and the microfiltration membrane / ultrafiltration membrane module 4 is filtered. The process was stopped. Thereafter, the drain valve 14 and the air vent valve 15 were opened, the total amount of water on the separation membrane primary side in the microfiltration membrane / ultrafiltration membrane module 4 was discharged, and the drain valve 14 and the air vent valve 15 were opened. The backwash valve 8 is opened, the backwash pump 7 and the oxidant supply pump 9 are operated, and a sodium hypochlorite aqueous solution with a flux of 2.5 m 3 / m 2 / day and a chlorine concentration of 10 mg / l. Back pressure washing with was performed for 1 minute. Thereafter, the backwash valve 8 is closed, the backwash pump 7 and the oxidant supply pump 9 are stopped, the drain valve 14 is closed, the air wash valve 11 is opened, the raw water supply pump 2 is operated, And cleaning with a gas-liquid mixed fluid of air was performed for 1 minute. The raw water flow rate at that time was controlled at 20 L / min per membrane module, and the air suction flow rate from the aspirator 12 was controlled at 14 L / min per membrane module. Thereafter, the air flush valve 11 is closed, the raw water supply pump 2 is stopped, the washing with the gas-liquid mixed fluid is stopped, the drain valve 14 is opened, and the inside of the microfiltration membrane / ultrafiltration membrane module 4 is opened. All the water was discharged out of the system. Thereafter, the drain valve 14 is closed, the raw water valve 3 is opened, the raw water supply pump 2 is operated, and the raw water is supplied into the microfiltration membrane / ultrafiltration membrane module 4. The air vent valve 15 was opened, the air vent valve 15 was closed, the flow returned to the filtration step, and the above steps were repeated.

その結果、精密ろ過膜/限外ろ過膜モジュール4の膜ろ過差圧は運転開始直後25kPaに対し、3ヶ月後も48kPaと安定運転が行えており、薬液洗浄をすることはなかった。また、1日当たり平均使用電力量は4.8kWh/日であった。   As a result, the membrane filtration differential pressure of the microfiltration membrane / ultrafiltration membrane module 4 was stable at 48 kPa after 3 months with respect to 25 kPa immediately after the start of operation, and the chemical solution was not washed. The average daily power consumption was 4.8 kWh / day.

(実施例2)
図6に示すように、ナノろ過膜/逆浸透膜モジュール20にはエレメント全長1m、膜面積8mの東レ(株)製逆浸透膜エレメント(TML10F)2本を直列に圧力容器内に装填したものを鉛直方向に設置し、ナノろ過膜/逆浸透膜供給水弁19を開にして、ナノろ過膜/逆浸透膜濃縮水弁21の開度を調整して、高圧ポンプ18を稼働して、実施例1の限外ろ過膜ろ過水を膜ろ過流量20m/日、濃縮水流量20m/日、水回収率50%でクロスフローろ過した。
(Example 2)
As shown in FIG. 6, the nanofiltration membrane / reverse osmosis membrane module 20 was loaded with two reverse osmosis membrane elements (TML10F) manufactured by Toray Industries, Inc. having a total element length of 1 m and a membrane area of 8 m 2 in a pressure vessel in series. The thing is installed in the vertical direction, the nanofiltration membrane / reverse osmosis membrane supply water valve 19 is opened, the opening degree of the nanofiltration membrane / reverse osmosis membrane concentrated water valve 21 is adjusted, and the high pressure pump 18 is operated. The ultrafiltration membrane filtrate of Example 1 was subjected to cross-flow filtration at a membrane filtration flow rate of 20 m 3 / day, a concentrated water flow rate of 20 m 3 / day, and a water recovery rate of 50%.

ナノろ過膜/逆浸透膜モジュール20で3時間ろ過した後、ナノろ過膜/逆浸透膜供給水弁19を閉にして、高圧ポンプ18を停止して、ナノろ過膜/逆浸透膜モジュール20のろ過工程を停止した。その後、排水弁14、ナノろ過膜/逆浸透膜濃縮水エア抜き弁22を開にして、ナノろ過膜/逆浸透膜モジュール20の分離膜一次側の水全量を排出した後、ナノろ過膜/逆浸透膜濃縮水エア抜き弁22を開にしたまま、排水弁14を閉、空洗弁11を開にして、高圧ポンプ18を稼働して、限外ろ過膜ろ過水と空気の気液混合流体による洗浄を10分実施した。そのときの原水流量は20L/分、アスピレーター12からの空気の吸い込み流量は10L/分に制御した。その後、空洗弁11を閉にして、高圧ポンプ18を停止して、気液混合流体による洗浄を停止した後、排水弁14を開にして、ナノろ過膜/逆浸透膜モジュール20内の水を系外に全量排出した。その後、排水弁14を閉にして、ナノろ過膜/逆浸透膜供給水弁19を開にして、高圧ポンプ18を稼動して、限外ろ過膜ろ過水をナノろ過膜/逆浸透膜モジュール20内に供給後、ナノろ過膜/逆浸透膜濃縮水エア抜き弁22を閉にして、ろ過工程に戻り、上記工程を繰り返していった。   After filtering with the nanofiltration membrane / reverse osmosis membrane module 20 for 3 hours, the nanofiltration membrane / reverse osmosis membrane supply water valve 19 is closed, the high-pressure pump 18 is stopped, and the nanofiltration membrane / reverse osmosis membrane module 20 The filtration process was stopped. Thereafter, the drain valve 14 and the nanofiltration membrane / reverse osmosis membrane concentrated water air release valve 22 are opened, and the total amount of water on the separation membrane primary side of the nanofiltration membrane / reverse osmosis membrane module 20 is discharged. With the reverse osmosis membrane concentrated water air vent valve 22 open, the drain valve 14 is closed, the flush valve 11 is opened, and the high pressure pump 18 is operated to mix the ultrafiltration membrane filtrate with air-liquid mixture. Washing with fluid was carried out for 10 minutes. At that time, the raw water flow rate was controlled to 20 L / min, and the air suction flow rate from the aspirator 12 was controlled to 10 L / min. Thereafter, the air washing valve 11 is closed, the high-pressure pump 18 is stopped, the washing with the gas-liquid mixed fluid is stopped, the drain valve 14 is opened, and the water in the nanofiltration membrane / reverse osmosis membrane module 20 is opened. Was discharged out of the system. Thereafter, the drain valve 14 is closed, the nanofiltration membrane / reverse osmosis membrane supply water valve 19 is opened, the high-pressure pump 18 is operated, and the ultrafiltration membrane filtrate is supplied to the nanofiltration membrane / reverse osmosis membrane module 20. After the feed, the nanofiltration membrane / reverse osmosis membrane concentrated water air vent valve 22 was closed, the process was returned to the filtration step, and the above steps were repeated.

その結果、ナノろ過膜/逆浸透膜モジュール20の運転圧力は運転開始直後1.6MPaに対し、3ヶ月後も1.8MPaと安定運転が行えており、薬液洗浄をすることはなかった。また、1日当たり平均使用電力量は36.7kWh/日であった。   As a result, the operation pressure of the nanofiltration membrane / reverse osmosis membrane module 20 was stable at 1.8 MPa even after 3 months with respect to 1.6 MPa immediately after the start of operation, and no chemical cleaning was performed. The average daily power consumption was 36.7 kWh / day.

(比較例1)
図8に示す通り、原水供給ポンプ2とアスピレーター12を稼働して原水と空気の気液混合流体による洗浄を実施する代わりに原水供給ポンプ2とエアブロワー/コンプレッサー23を稼働して原水と空気の気液混合流体による洗浄を実施した以外は、実施例1と全く同じにした。エアブロワー/コンプレッサー23には日立産機システム(株)製のコンプレッサー(LH300FS)を用いた。
(Comparative Example 1)
As shown in FIG. 8, instead of operating the raw water supply pump 2 and the aspirator 12 to perform the cleaning with the gas-liquid mixed fluid of raw water and air, the raw water supply pump 2 and the air blower / compressor 23 are operated to Except for cleaning with a gas-liquid mixed fluid, the procedure was exactly the same as Example 1. As the air blower / compressor 23, a compressor (LH300FS) manufactured by Hitachi Industrial Equipment Systems Co., Ltd. was used.

その結果、精密ろ過膜/限外ろ過膜モジュール4の膜ろ過差圧は運転開始直後25kPaに対し、3ヶ月後も48kPaと安定運転が行えており、薬液洗浄をすることはなかった。また、1日当たり平均使用電力量は5.1kWh/日であり、実施例1より割高であった。   As a result, the membrane filtration differential pressure of the microfiltration membrane / ultrafiltration membrane module 4 was stable at 48 kPa after 3 months with respect to 25 kPa immediately after the start of operation, and the chemical solution was not washed. Moreover, the average daily power consumption was 5.1 kWh / day, which was higher than that of Example 1.

(比較例2)
精密ろ過膜/限外ろ過膜モジュール4を鉛直方法に設置せず、水平に設置した以外は、実施例1と全く同じにした。
(Comparative Example 2)
Except for installing the microfiltration membrane / ultrafiltration membrane module 4 in the vertical method, it was exactly the same as Example 1 except that it was installed horizontally.

その結果、精密ろ過膜/限外ろ過膜モジュール4の膜ろ過差圧は運転開始直後25kPaに対し、18日後に100kPaに達し、薬液洗浄せざるを得なかった。また、1日当たり平均使用電力量は8.9kWh/日であり、実施例1より割高であった。   As a result, the membrane filtration pressure difference of the microfiltration membrane / ultrafiltration membrane module 4 reached 100 kPa after 18 days with respect to 25 kPa immediately after the start of operation, and had to be washed with a chemical solution. The average daily power consumption was 8.9 kWh / day, which was higher than that of Example 1.

(比較例3)
図9に示す通り、高圧ポンプ18とアスピレーター12を稼働して原水と空気の気液混合流体による洗浄を実施する代わりに高圧ポンプ18とエアブロワー/コンプレッサー23を稼働して原水と空気の気液混合流体による洗浄を実施した以外は、実施例2と全く同じにした。エアブロワー/コンプレッサー23には日立産機システム(株)製のコンプレッサー(0.75OP−9.5GSB5/6)を用いた。
(Comparative Example 3)
As shown in FIG. 9, instead of operating the high-pressure pump 18 and the aspirator 12 to perform cleaning with the gas-liquid mixed fluid of raw water and air, the high-pressure pump 18 and the air blower / compressor 23 are operated to operate the gas-liquid of the raw water and air. Except for cleaning with a mixed fluid, the procedure was exactly the same as in Example 2. As the air blower / compressor 23, a compressor (0.75OP-9.5GSB5 / 6) manufactured by Hitachi Industrial Equipment Systems Co., Ltd. was used.

その結果、ナノろ過膜/逆浸透膜モジュール20の運転圧力は運転開始直後1.6MPaに対し、3ヶ月後も1.8MPaと安定運転が行えており、薬液洗浄をすることはなかった。また、1日当たり平均使用電力量は37.2kWh/日であり、実施例1より割高であった。   As a result, the operation pressure of the nanofiltration membrane / reverse osmosis membrane module 20 was stable at 1.8 MPa even after 3 months with respect to 1.6 MPa immediately after the start of operation, and no chemical cleaning was performed. Moreover, the average daily power consumption was 37.2 kWh / day, which was higher than Example 1.

(比較例4)
ナノろ過膜/逆浸透膜モジュール20を鉛直方向に設置せず、水平に設置した以外は、実施例2と全く同じにした。
(Comparative Example 4)
Except that the nanofiltration membrane / reverse osmosis membrane module 20 was not installed in the vertical direction but installed horizontally, it was exactly the same as Example 2.

その結果、ナノろ過膜/逆浸透膜モジュール20の運転圧力は運転開始直後1.6MPaに対し、3ヶ月後は2.4MPaに上昇し、薬液洗浄せざるを得なかった。また、1日当たり平均使用電力量は42.1kWh/日であり、実施例2より割高であった。   As a result, the operating pressure of the nanofiltration membrane / reverse osmosis membrane module 20 increased to 2.4 MPa immediately after the start of operation, and increased to 2.4 MPa after 3 months, and had to be washed with a chemical solution. Moreover, the average daily power consumption was 42.1 kWh / day, which was higher than Example 2.

1:原水貯留槽
2:原水供給ポンプ
3:原水弁
4:精密ろ過膜/限外ろ過膜モジュール
5:ろ過水弁
6:精密ろ過膜/限外ろ過膜ろ過水貯留槽
7:逆洗ポンプ
8:逆洗弁
9:酸化剤供給ポンプ
10:酸化剤貯留槽
11:空洗弁
12:アスピレーター
13:逆止弁
14:排水弁
15:エア抜き弁
16:回収槽
17:沈殿槽
18:高圧ポンプ
19:ナノろ過膜/逆浸透膜供給水弁
20:ナノろ過膜/逆浸透膜モジュール
21:ナノろ過膜/逆浸透膜濃縮水弁
22:ナノろ過膜/逆浸透膜濃縮水エア抜き弁
23:エアブロワー/コンプレッサー
1: Raw water storage tank 2: Raw water supply pump 3: Raw water valve 4: Microfiltration membrane / ultrafiltration membrane module 5: Filtration water valve 6: Microfiltration membrane / ultrafiltration membrane filtration water storage tank 7: Backwash pump 8 : Backwash valve 9: Oxidant supply pump 10: Oxidant storage tank 11: Air washing valve 12: Aspirator 13: Check valve 14: Drain valve 15: Air vent valve 16: Collection tank 17: Settling tank 18: High pressure pump 19: Nanofiltration membrane / reverse osmosis membrane supply water valve 20: Nanofiltration membrane / reverse osmosis membrane module 21: Nanofiltration membrane / reverse osmosis membrane concentrated water valve 22: Nanofiltration membrane / reverse osmosis membrane concentrated water air release valve 23: Air blower / compressor

Claims (15)

分離膜が鉛直方向となるように設置された膜モジュールの前記分離膜一次側の下部に原水を供給し、前記分離膜で前記原水をろ過して前記分離膜二次側から膜ろ過水を得る造水方法であって、アスピレーター供給水をアスピレーターに供給して前記アスピレーターから吐出された気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給する洗浄工程を一時的に行うことを特徴とする、造水方法。   The raw water is supplied to the lower part of the separation membrane primary side of the membrane module installed so that the separation membrane is in the vertical direction, and the raw water is filtered by the separation membrane to obtain the membrane filtrate from the separation membrane secondary side. A fresh water generation method comprising: temporarily performing a cleaning step of supplying aspirator supply water to an aspirator and supplying a gas-liquid mixed fluid discharged from the aspirator to a lower portion of the separation membrane primary side of the membrane module. A method for producing fresh water. アスピレーター供給水の少なくとも一部が原水または膜ろ過水である、請求項1に記載の造水方法。   The fresh water generation method according to claim 1, wherein at least a part of the aspirator feed water is raw water or membrane filtered water. 気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給する前に前記膜モジュールの前記分離膜一次側の水を系外に排出する、請求項1または2に記載の造水方法。   The fresh water generation method according to claim 1 or 2, wherein water on the separation membrane primary side of the membrane module is discharged out of the system before supplying a gas-liquid mixed fluid to a lower portion of the separation membrane primary side of the membrane module. . 前記気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給し、前記膜モジュールの前記分離膜一次側から排出された水の少なくとも一部を回収し、前記原水に混合する、請求項1〜3のいずれかに記載の造水方法。   The gas-liquid mixed fluid is supplied to a lower part of the separation membrane primary side of the membrane module, and at least a part of the water discharged from the separation membrane primary side of the membrane module is recovered and mixed with the raw water. Item 4. A fresh water generation method according to any one of Items 1 to 3. 回収した前記膜モジュールの前記分離膜一次側から排出された水を懸濁物質と清澄水に分離処理し、前記清澄水を前記原水に混合する、請求項4に記載の造水方法。   The fresh water generation method according to claim 4, wherein the water discharged from the primary side of the separation membrane of the collected membrane module is separated into suspended matter and clarified water, and the clarified water is mixed with the raw water. 前記分離膜が精密ろ過膜または限外ろ過膜である、請求項1〜5のいずれかに記載の造水方法。   The fresh water generation method according to any one of claims 1 to 5, wherein the separation membrane is a microfiltration membrane or an ultrafiltration membrane. 前記気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給する前および/または同時に、前記膜ろ過水を前記膜モジュールの前記分離膜二次側から前記膜モジュールの前記分離膜一次側に圧送する逆圧洗浄を実施する、請求項6に記載の造水方法。   Before and / or simultaneously with supplying the gas-liquid mixed fluid to the lower part of the separation membrane primary side of the membrane module, the membrane filtrate is fed from the separation membrane secondary side of the membrane module to the separation membrane primary of the membrane module. The fresh water generation method of Claim 6 which implements the back pressure washing | cleaning pumped to the side. 逆圧洗浄を実施する際の前記膜ろ過水に酸化剤を添加する、請求項7に記載の造水方法。   The fresh water generation method according to claim 7, wherein an oxidizing agent is added to the membrane filtrate when performing back pressure washing. 前記膜ろ過水をナノろ過膜モジュールまたは逆浸透膜モジュールに供給して透過水と濃縮水とに分離し、前記濃縮水の少なくとも一部をアスピレーター供給水とすることを特徴とする、請求項6〜8のいずれかに記載の造水方法。   The membrane filtration water is supplied to a nanofiltration membrane module or a reverse osmosis membrane module to be separated into permeated water and concentrated water, and at least a part of the concentrated water is used as an aspirator supply water. The fresh water generation method in any one of -8. 前記分離膜がナノろ過膜または逆浸透膜である、請求項1〜5のいずれかに記載の造水方法。   The fresh water generation method according to any one of claims 1 to 5, wherein the separation membrane is a nanofiltration membrane or a reverse osmosis membrane. 前記原水を前記膜モジュールの前記分離膜一次側の下部に供給する前に、前記膜モジュールの前段に設置した第2の膜モジュールである精密ろ過膜モジュールまたは限外ろ過膜モジュールで膜ろ過する、請求項10に記載の造水方法。   Before supplying the raw water to the lower part of the separation membrane primary side of the membrane module, membrane filtration is performed with a microfiltration membrane module or an ultrafiltration membrane module, which is a second membrane module installed in the previous stage of the membrane module, The fresh water generation method according to claim 10. 前記気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給し、前記膜モジュールの前記分離膜一次側から排出された水の少なくとも一部を回収し、前記第2の膜モジュールに供給する、請求項11に記載の造水方法。   The gas-liquid mixed fluid is supplied to the lower part of the separation membrane primary side of the membrane module, and at least a part of the water discharged from the separation membrane primary side of the membrane module is recovered, and the second membrane module The fresh water generation method according to claim 11 to supply. 鉛直方向に設置された分離膜で原水をろ過して前記分離膜二次側から膜ろ過水を排出する膜モジュールと、前記膜モジュールの前記分離膜一次側の下部に原水を供給する原水供給ユニットと、アスピレーター供給水の一部および気体を混合して気液混合流体を前記膜モジュールの前記分離膜一次側の下部に供給するアスピレーターと、前記アスピレーター供給水を前記アスピレーターに供給するアスピレーター供給水供給ユニットとを備えた造水装置。   A membrane module that filters raw water through a separation membrane installed in a vertical direction and discharges membrane filtrate from the secondary side of the separation membrane, and a raw water supply unit that supplies raw water to the lower part of the separation membrane primary side of the membrane module An aspirator that mixes a part of the aspirator supply water and gas and supplies a gas-liquid mixed fluid to the lower part of the separation membrane primary side of the membrane module, and an aspirator supply water supply that supplies the aspirator supply water to the aspirator A fresh water generator comprising a unit. 前記原水が前記膜モジュールの前記分離膜一次側の下部に供給される原水供給配管が分岐しており、前記アスピレーター供給水供給ユニットは前記原水を前記アスピレーター供給水として前記アスピレーターに供給することを特徴とする請求項13に記載の造水装置。   A raw water supply pipe for supplying the raw water to the lower part of the separation membrane primary side of the membrane module is branched, and the aspirator supply water supply unit supplies the raw water as the aspirator supply water to the aspirator. The fresh water generator according to claim 13. 前記膜ろ過水が前記膜モジュールの前記分離膜二次側から排出される膜ろ過水排出配管が分岐しており、前記アスピレーター供給水供給ユニットは前記膜ろ過水を前記アスピレーター供給水として前記アスピレーターに供給することを特徴とする請求項13に記載の造水装置。   The membrane filtrate discharge pipe from which the membrane filtrate is discharged from the separation membrane secondary side of the membrane module is branched, and the aspirator supply water supply unit supplies the membrane filtrate to the aspirator as the aspirator supply water. The fresh water generator according to claim 13, wherein the fresh water generator is supplied.
JP2012011727A 2012-01-24 2012-01-24 Water production method and water production device Pending JP2015077530A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012011727A JP2015077530A (en) 2012-01-24 2012-01-24 Water production method and water production device
TW102102440A TW201334858A (en) 2012-01-24 2013-01-23 Method for generating fresh water and fresh water-generating apparatus
PCT/JP2013/051487 WO2013111826A1 (en) 2012-01-24 2013-01-24 Desalination method and desalination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011727A JP2015077530A (en) 2012-01-24 2012-01-24 Water production method and water production device

Publications (1)

Publication Number Publication Date
JP2015077530A true JP2015077530A (en) 2015-04-23

Family

ID=48873538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011727A Pending JP2015077530A (en) 2012-01-24 2012-01-24 Water production method and water production device

Country Status (3)

Country Link
JP (1) JP2015077530A (en)
TW (1) TW201334858A (en)
WO (1) WO2013111826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026857A1 (en) * 2018-08-02 2020-02-06 王子ホールディングス株式会社 Method for washing membrane filtration device and water treatment method
JP2020131095A (en) * 2019-02-18 2020-08-31 東洋紡株式会社 Method of cleaning semipermeable membrane module

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6444606B2 (en) * 2014-03-27 2018-12-26 株式会社クラレ Water treatment equipment
JP6532471B2 (en) * 2014-09-11 2019-06-19 三菱重工エンジニアリング株式会社 Water treatment apparatus and water treatment method
CN104707494A (en) * 2015-03-30 2015-06-17 上海纳诺巴伯纳米科技有限公司 Preparation device and preparation method for over-saturated hydrogen solution
JP6468384B1 (en) * 2018-03-14 2019-02-13 栗田工業株式会社 Water treatment equipment
US11878273B2 (en) 2018-05-11 2024-01-23 Asahi Kasei Kabushiki Kaisha Method for washing filter and method for desalinating seawater
JP6614277B2 (en) * 2018-05-21 2019-12-04 栗田工業株式会社 Diagnostic device for turbidity system
CN112387118B (en) * 2019-08-19 2023-06-30 北京奥博水处理有限责任公司 On-line self-cleaning ceramic membrane filter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0760197B2 (en) * 1988-07-21 1995-06-28 株式会社荏原製作所 Backwashing method for hollow fiber membrane filters
JPH10225682A (en) * 1997-02-17 1998-08-25 Nkk Corp Method of removing boron in reverse osmosis seawater desalination
JP2000237548A (en) * 1999-02-17 2000-09-05 Tokyo Denki Komusho Co Ltd Hollow fiber membrane type heat storage tank water purifying device
JP4923428B2 (en) * 2005-03-29 2012-04-25 東レ株式会社 Membrane separation method and membrane separation apparatus
JP2007289899A (en) * 2006-04-27 2007-11-08 Meidensha Corp Membrane washing method for membrane separation means, and water treatment apparatus
JP5245216B2 (en) * 2006-06-16 2013-07-24 富士電機株式会社 Hollow fiber membrane water treatment method and water treatment apparatus
JP5232393B2 (en) * 2007-02-28 2013-07-10 三菱レイヨン・クリンスイ株式会社 Water purifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026857A1 (en) * 2018-08-02 2020-02-06 王子ホールディングス株式会社 Method for washing membrane filtration device and water treatment method
JP2020131095A (en) * 2019-02-18 2020-08-31 東洋紡株式会社 Method of cleaning semipermeable membrane module
JP7238234B2 (en) 2019-02-18 2023-03-14 東洋紡株式会社 Semipermeable membrane module cleaning method

Also Published As

Publication number Publication date
WO2013111826A1 (en) 2013-08-01
TW201334858A (en) 2013-09-01

Similar Documents

Publication Publication Date Title
JP2015077530A (en) Water production method and water production device
Singh et al. Introduction to membrane processes for water treatment
JP4968413B2 (en) Separation membrane module cleaning method and fresh water generation method
JP4903113B2 (en) Water treatment system and operation method thereof
JP5804228B1 (en) Water treatment method
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
JP2012239948A (en) Method for washing filter medium, and water treatment apparatus
WO2013176145A1 (en) Cleaning method for separation membrane module
WO2015156242A1 (en) Water treatment method and water treatment apparatus each using membrane
JP2011125822A (en) Method for washing membrane module and fresh water generator
JP2014057931A (en) Water production method
CN104108830A (en) Novel recycled water advanced treatment and recycling system
JP2007289847A (en) Raw tap water purification method and its apparatus
JP6613323B2 (en) Water treatment apparatus and water treatment method
TW201338851A (en) Cleaning method for module of separation membranes
JP2011041907A (en) Water treatment system
WO2013047466A1 (en) Membrane module cleaning method
JP2009214062A (en) Operation method of immersion type membrane module
WO2012057176A1 (en) Water-treatment method and desalinization method
JP6530931B2 (en) Method of desalting, method of cleaning demineralizer and demineralizer
WO2011108589A1 (en) Method for washing porous membrane module, and fresh water generator
JP7284545B1 (en) MEMBRANE FILTRATION DEVICE AND WATER PURIFICATION SYSTEM USING THE SAME
Shirazi et al. for Water Purification and Desalination
KR20160085982A (en) Membrane filtration for advanced water treatment device using hydraulic head differential
JP4853453B2 (en) Removal method of filtration membrane element