JP2007289847A - Raw tap water purification method and its apparatus - Google Patents

Raw tap water purification method and its apparatus Download PDF

Info

Publication number
JP2007289847A
JP2007289847A JP2006120082A JP2006120082A JP2007289847A JP 2007289847 A JP2007289847 A JP 2007289847A JP 2006120082 A JP2006120082 A JP 2006120082A JP 2006120082 A JP2006120082 A JP 2006120082A JP 2007289847 A JP2007289847 A JP 2007289847A
Authority
JP
Japan
Prior art keywords
water
membrane
filtration
tap water
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006120082A
Other languages
Japanese (ja)
Inventor
Yoichi Hirose
洋一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSO KENSETSU KOGYO
Fuso Kensetsu Kogyo KK
Original Assignee
FUSO KENSETSU KOGYO
Fuso Kensetsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUSO KENSETSU KOGYO, Fuso Kensetsu Kogyo KK filed Critical FUSO KENSETSU KOGYO
Priority to JP2006120082A priority Critical patent/JP2007289847A/en
Publication of JP2007289847A publication Critical patent/JP2007289847A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Physical Water Treatments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a raw tap water purification method which can reduce the load of pollutants on membrane filtration, reduce the installation area of an apparatus and system and a construction cost, and reduce the volume of wastewater from the whole plant. <P>SOLUTION: After adding an inorganic coagulant D to raw tap water A containing organic matter, rapid agitation and slow agitation are carried out to form coagulated flocs. The raw tap water is introduced a single treatment tank 3 where a pressure floatation part is formed in the upper space, and an immersed filtration membrane module 13 is installed in the lower space. In the treatment tank 3, the coagulated flocs are subjected to a pressure floatation in the upward direction, and at the same time the raw tap water is subjected to suction filtration through the immersed filtration membrane module 13 to obtain purified water B. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、濁質、細菌類、病原性微生物、藻類、鉄、マンガン、フミン等の有機物を含む水道原水を浄水処理して衛生的な水道水を得るための浄水処理方法及び浄水処理装置に関する。   The present invention relates to a water purification treatment method and a water purification treatment apparatus for purifying raw tap water containing organic matter such as turbidity, bacteria, pathogenic microorganisms, algae, iron, manganese, and humin to obtain sanitary tap water. .

近年、水道浄水処理の分野において、水道原水に含まれる濁質、細菌類、病原性微生物等を、ほぼ完全に除去できる精密ろ過(MF)あるいは限外ろ過(UF)といった膜ろ過装置を用いた膜ろ過浄水処理が普及が急速に進みつつある。
この膜ろ過浄水処理に適用されるろ過膜(MF膜、UF膜)は、セルロース化合物、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリエチレン、ポリプロピレン、ポリオレフィン、ポリイミド等の有機化合物を材質とする有機膜と高純度アルミナを焼成したセラミックスを材質とする無機膜とに大別される(例えば、非特許文献1参照)。
また、最近では耐薬品性等の化学的特性に優れているポリフッ化ビニリデン製のろ過膜も開発され、浄水処理に使用されている。
In recent years, membrane filtration devices such as microfiltration (MF) or ultrafiltration (UF) that can remove almost completely turbidity, bacteria, pathogenic microorganisms, etc. contained in tap water are used in the field of water purification. Membrane filtration water treatment is rapidly spreading.
Filtration membranes (MF membranes, UF membranes) applied to this membrane filtration water purification treatment are organic membranes made of organic compounds such as cellulose compounds, polysulfone, polyethersulfone, polyacrylonitrile, polyethylene, polypropylene, polyolefin, polyimide, and the like. It is roughly classified into inorganic films made of ceramics obtained by firing high-purity alumina (for example, see Non-Patent Document 1).
Recently, a filtration membrane made of polyvinylidene fluoride, which has excellent chemical properties such as chemical resistance, has been developed and used for water purification treatment.

また、膜ろ過浄水処理に使用される膜の形状としては、中空糸、スパイラル(のり巻き)、チューブラー(のり巻き)、平膜があり、一定以上の膜面積を確保するために、これらの膜をケーシング、缶体、外枠等に収容あるいは集積して形成した膜モジュールとして実用に供している。   In addition, the membranes used for membrane filtration water treatment include hollow fibers, spirals (winding), tubulars (winding), and flat membranes. It is practically used as a membrane module formed by housing or accumulating membranes in casings, cans, outer frames or the like.

膜ろ過浄水処理の方式としては、膜モジュールがケーシングと一体化された形又はケーシング内に多数のエレメントとして収納されて被処理水(水道原水)をポンプで加圧して膜ろ過する方式(ケーシング一体型又はケーシング収納型/ポンプ加圧方式)と、処理槽内に枠組みにより一体化した膜モジュールを浸漬した状態に設置しポンプによって吸引ろ過する方式(浸漬型/ポンプ吸引方式)とに大別される(例えば、非特許文献2参照)。   As a method of membrane filtration water purification treatment, a membrane module is integrated with a casing or accommodated as a number of elements in a casing, and water to be treated (raw water) is pressurized with a pump and subjected to membrane filtration. Body type or casing storage type / pump pressurization method) and a system (immersion type / pump suction method) in which a membrane module integrated with a framework is immersed in a treatment tank and suction filtered with a pump (See, for example, Non-Patent Document 2).

膜ろ過は、膜表面の孔径又は分画分子量によって、精密ろ過(MF)と限外ろ過(UF)とに分けられる。
精密ろ過(MF)膜表面には径が概ね0.05〜0.5μmの孔が、限外ろ過(UF)膜表面には分子量が概ね1万〜100万ダルトンのものを分画できる孔があけられている。
水道浄水処理には、これらのいずれもが適用されている。
そして、水道原水を膜ろ過することにより、膜表面に多数あけられている微細な孔の篩作用によって、水道原水に含まれる濁質、細菌類、病原性微生物等が除去されることにより、浄水処理される。
Membrane filtration is divided into microfiltration (MF) and ultrafiltration (UF) depending on the pore diameter or molecular weight cut off on the membrane surface.
The microfiltration (MF) membrane surface has pores with a diameter of approximately 0.05 to 0.5 μm, and the ultrafiltration (UF) membrane surface has pores that can fractionate those with a molecular weight of approximately 10,000 to 1 million daltons. It has been opened.
All of these are applied to water purification.
Then, by filtering the raw tap water, the turbidity, bacteria, pathogenic microorganisms, etc. contained in the raw tap water are removed by the sieving action of a large number of fine holes opened on the membrane surface. It is processed.

ところで、膜ろ過を継続すると、除去された物質が膜の表面に蓄積されることにより、ろ過抵抗が増加し、ろ過水量が一定となるような制御を行うと、膜を介しての差圧(膜差圧)が上昇する。
これを防止し一定のろ過性能を保持するために、概ね15分〜90分毎に、膜ろ過水をポンプ加圧して、ろ過水側(二次側)から、ろ過時とは逆の方向に送水することにより、膜表面に蓄積した汚れを除去するための操作を行う。この操作を逆圧水洗浄(逆洗)と呼んでいる。この時、洗浄に用いる膜ろ過水中に次亜塩素酸ナトリウム溶液を注入して物理洗浄効果を高めることが知られている。
また、逆洗を行わずに、膜モジュールの下方から粗大な気泡を送り、この気泡が膜表面に沿って上昇する際に発生する水流のせん断力によって、膜表面の汚れを除去する方法(エアバブリング又はエアスクラビング)あるいはこの方法と逆洗とを併用することも膜の物理洗浄方法として知られている。
By the way, if the membrane filtration is continued, the removed substance accumulates on the surface of the membrane, the filtration resistance is increased, and when the control is performed so that the amount of filtered water is constant, the pressure difference across the membrane ( (Membrane differential pressure) increases.
In order to prevent this and maintain a constant filtration performance, the membrane filtrate is pumped approximately every 15 to 90 minutes, from the filtrate side (secondary side) in the direction opposite to that during filtration. By feeding water, an operation for removing dirt accumulated on the membrane surface is performed. This operation is called back pressure water washing (back washing). At this time, it is known to enhance the physical cleaning effect by injecting a sodium hypochlorite solution into the membrane filtrate used for cleaning.
In addition, a method of removing dirt on the membrane surface (air) by sending coarse bubbles from the lower side of the membrane module without backwashing, and using the shear force of the water flow generated when the bubbles rise along the membrane surface. Bubbling or air scrubbing) or a combination of this method and backwashing is also known as a physical cleaning method for membranes.

しかしながら、物理洗浄方法と膜ろ過を繰り返すサイクルで膜ろ過を継続すると、短期的には物理洗浄の効果はみられるものの、長期的には膜差圧が次第に上昇する。
これは、物理洗浄では除去しきれない有機物、鉄、マンガン等が膜表面又は膜の孔の内部に付着するためである。
膜あるいは膜モジュールの種類、膜ろ過装置に応じて、あらかじめ定められた上限の膜差圧に達する前に、薬品溶液を膜モジュールに送り、薬品溶液と膜とを一定時間接触させることにより、これらの汚れ成分を溶液中に溶出させることにより、膜ろ過性能を回復させる操作を行う。この操作を薬品洗浄と呼んでおり、使用する薬品としては、有機物起因の汚れ除去用としては次亜塩素酸ナトリウム溶液又は苛性ソーダ溶液あるいは、これらの組み合わせが、鉄、マンガン等の金属起因の汚れ除去用としては無機酸あるいは有機酸溶液が効果があることが知られている。この薬品洗浄は、膜ろ過装置の運転を1〜2日間程度停止して行う必要があり、その際、薬品洗浄に伴う排液が発生し、その処理・処分に費用を要することから、その頻度は少ない方が望ましいが、処理対象の水道原水の水質、膜ろ過流速(膜ろ過流量)の設定値とも関係することから、概ね年に1〜2度程度で済むように、膜ろ過装置の設計及び運転因子を決定するのが一般的である。
However, if membrane filtration is continued in a cycle in which the physical cleaning method and membrane filtration are repeated, the effect of physical cleaning is observed in the short term, but the membrane differential pressure gradually increases in the long term.
This is because organic substances, iron, manganese, and the like that cannot be removed by physical cleaning adhere to the film surface or the inside of the film pores.
Depending on the type of membrane or membrane module and the membrane filtration device, the chemical solution is sent to the membrane module and the chemical solution and the membrane are brought into contact with each other for a certain period of time before reaching a predetermined upper limit membrane differential pressure. An operation for recovering the membrane filtration performance is carried out by eluting the soil components of the solution into the solution. This operation is called chemical cleaning, and the chemical used is for removing soil caused by metals, such as sodium hypochlorite solution or caustic soda solution, or a combination of these. It is known that an inorganic acid or organic acid solution is effective for use. This chemical cleaning needs to be performed after stopping the operation of the membrane filtration apparatus for about 1 to 2 days. At that time, waste liquid is generated due to the chemical cleaning, and it costs money for its treatment and disposal. Although it is desirable to have less water, it is also related to the quality of the raw water to be treated and the set value of the membrane filtration flow rate (membrane filtration flow rate), so the membrane filtration device design should be about once or twice a year. It is common to determine the operating factors.

濁質、細菌類、病原性微生物、藻類、鉄、マンガン、フミン等の有機物を含む水道原水を膜ろ過によって浄水処理する場合に、上記薬品洗浄の頻度を少なくするために、水道原水を、あらかじめ凝集沈殿により、あるいは、それらに後設する急速ろ過との組み合わせにより前処理を行い、膜ろ過への上記汚濁物質の負荷を軽減する方法が知られている(非特許文献3参照)。
非特許文献3に記載されている方法によれば、膜を目詰まりさせる水道原水中の濁質、細菌類、病原性微生物、藻類、鉄、マンガン、フミン等の有機物をあらかじめ除去することにより、膜ろ過への、これらの物質の負荷を軽減することにより、膜ろ過が安定するとともに、ろ過膜モジュールの薬品洗浄の頻度を少なくすることが可能となるが、浄水処理プロセスを構成する単位操作が増えるとともに、浄水施設に必要な水槽等の構造物も増えることから、設置面積の増加、建設費の増加を招くという問題がある。また、前処理設備として設置する凝集沈殿や急速ろ過からの排水があらたに発生することから、浄水処理施設全体としての水回収率が低下するという問題もある。
国包章一監修「水道膜ろ過法入門」日本水道新聞社、平成14年1月28日、P.32、37 膜分離技術振興協会・膜浄水委員会監修「浄水膜」技報堂出版、2003年6月10日、P.74−78 膜分離技術振興協会・膜浄水委員会監修「浄水膜」技報堂出版、2003年6月10日、P.13
In order to reduce the frequency of the above chemical cleaning when water raw water containing organic substances such as turbidity, bacteria, pathogenic microorganisms, algae, iron, manganese, humin, etc. is purified by membrane filtration, A method is known in which pretreatment is performed by coagulation sedimentation or in combination with rapid filtration that is provided after them to reduce the load of the contaminants on membrane filtration (see Non-Patent Document 3).
According to the method described in Non-Patent Document 3, by removing in advance the organic matter such as turbidity, bacteria, pathogenic microorganisms, algae, iron, manganese, humin, etc. in the tap water that clogs the membrane, By reducing the load of these substances on the membrane filtration, it is possible to stabilize the membrane filtration and reduce the frequency of chemical cleaning of the filtration membrane module. Along with the increase, the number of structures such as water tanks necessary for water purification facilities also increases, which causes a problem of increasing the installation area and the construction cost. Moreover, since the coagulation sedimentation installed as a pretreatment facility and the waste water from rapid filtration generate | occur | produce newly, there also exists a problem that the water recovery rate as the whole water purification treatment facility falls.
Supervised by National Emblem of Japan, “Introduction to Water Membrane Filtration Method”, Nihon Suido Shimbun, January 28, 2002, p. 32, 37 Membrane Separation Technology Promotion Association, Membrane Water Purification Committee, “Purified Water Membrane” Gihodo Publishing, June 10, 2003, p. 74-78 Membrane Separation Technology Promotion Association, Membrane Water Purification Committee, “Purified Water Membrane” Gihodo Publishing, June 10, 2003, p. 13

本発明は、上記従来の水道原水を膜ろ過によって浄水処理する方法の有する問題点に鑑み、膜ろ過への汚濁物質の負荷を軽減するとともに、装置、設備の設置面積と建設費を低減し、施設全体からの排水量も減量できる、膜ろ過浄水処理方法及び装置を提供することを目的とする。   In view of the problems of the above-described conventional method of purifying water by membrane filtration, the present invention reduces the load of pollutants on membrane filtration, and reduces the installation area and construction cost of the equipment and equipment, It aims at providing the membrane filtration water treatment method and apparatus which can also reduce the amount of drainage from the whole facility.

上記目的を達成するため、本発明の水道原水の浄水処理方法は、有機物を含む水道原水に、無機凝集剤を添加した後、急速攪拌と緩速攪拌を行い、凝集フロックを形成させ、上部空間に加圧浮上分離部を形成し、下部空間に浸漬ろ過膜モジュールを設置した単一の処理槽に導入し、該処理槽において上向き方向に凝集フロックを加圧浮上させて分離するとともに、浸漬ろ過膜モジュールを介して吸引ろ過により浄水を得ることを特徴とする。   In order to achieve the above object, the raw water purification method for tap water of the present invention adds an inorganic flocculant to tap water containing organic matter, and then performs rapid stirring and slow stirring to form an aggregate floc, The pressure levitation separation part is formed in a single treatment tank having an immersion filtration membrane module installed in the lower space, and the aggregated flocs are separated by pressure levitation in the treatment tank in the upward direction, and immersion filtration is performed. Purified water is obtained by suction filtration through a membrane module.

また、本発明の水道原水の浄水処理装置は、有機物を含む水道原水の浄水処理装置において、無機凝集剤の添加手段と、急速攪拌と緩速攪拌を行い、凝集フロックを形成させる手段と、フロック形成済みの水道原水が導水される処理槽とを備え、該処理槽の上部空間に加圧浮上分離部を形成し、下部空間に浸漬ろ過膜モジュールを設置し、該処理槽において上向き方向に凝集フロックを加圧浮上させて分離するとともに、浸漬ろ過膜モジュールを介して吸引ろ過手段により浄水を得るようにしたことを特徴とする。   In addition, the water purification apparatus for raw water of the present invention is a water purification apparatus for raw water containing organic matter, an inorganic flocculant adding means, means for performing rapid stirring and slow stirring to form a flocs floc, A treatment tank to which the formed raw water is introduced, a pressurized floating separation part is formed in the upper space of the treatment tank, an immersion filtration membrane module is installed in the lower space, and the treatment tank is agglomerated in the upward direction. The floc is floated and separated by pressure, and purified water is obtained by suction filtration means through an immersion filtration membrane module.

本発明の水道原水の浄水処理方法及びその装置によれば、濁質、細菌類、病原性微生物、藻類、鉄、マンガン、フミン等の有機物を含む広範な水道原水に対応する膜ろ過浄水処理が可能となり、このような水道原水を膜ろ過浄水処理する場合であっても、前処理としての凝集加圧浮上分離と膜ろ過とを同一かつ単一の処理槽において行えるので、安全で衛生的な水道水を得るために、従来の方法及び装置と比較して、施設設置面積がコンパクトとなるため、建設費を低減できる効果が得られる。また、凝集加圧浮上により発生する排水は、濃縮された状態で排出されること(さらに、膜モジュールの逆洗時に発生する排水は排水槽を経て水道原水の流入部へ返送するようにできること)から、浄水処理施設全体から発生する排水量を大幅に低減することができるとともに、排出される汚泥も高濃度のものが得られるという効果が得られる。   According to the water purification method and apparatus for raw water of the present invention, membrane filtration water purification corresponding to a wide range of raw water containing organic matter such as turbidity, bacteria, pathogenic microorganisms, algae, iron, manganese, humin, etc. Even when such raw tap water is subjected to membrane filtration and purification treatment, coagulation, pressure flotation and membrane filtration as pretreatment can be performed in the same and single treatment tank, so it is safe and hygienic. Compared with the conventional method and apparatus for obtaining tap water, the installation area of the facility becomes compact, so that the construction cost can be reduced. In addition, wastewater generated by cohesive pressurization flotation should be discharged in a concentrated state (in addition, wastewater generated during backwashing of the membrane module can be returned to the inflow section of tap water through a drainage tank) Thus, the amount of waste water generated from the entire water purification treatment facility can be greatly reduced, and the discharged sludge can be obtained with a high concentration.

以下、本発明の水道原水の浄水処理方法及びその装置の実施の形態を図面に基づいて説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a water purification method and apparatus for raw water according to the present invention will be described with reference to the drawings.

まず、図4に、濁質、細菌類、病原性微生物、藻類、鉄、マンガン、フミン等の有機物を含む水道原水を膜ろ過によって浄水処理する従来の浄水処理方法のフロー図を示す。
従来の浄水処理方法では、水道原水Aを急速攪拌工程34に連続的に導入し、次亜塩素酸ナトリウム等の酸化剤C及びポリ塩化アルミニウム、塩化第二鉄、ポリシリカ鉄、硫酸バンド等の無機凝集剤Dを注入して急速攪拌を行って微細なフロックを形成させた後、さらに緩速攪拌工程35において、一定時間緩やかに攪拌を行って、フロックを成長させて、その径を大きくして、凝集沈殿工程37において、凝集フロックと上澄水とに分離する。その後、膜ろ過工程36において最終的な浄水処理を行って浄水Bを得るようにしている。なお、37に図示する工程には、凝集沈殿に加えて急速ろ過を含む場合がある。また、水道原水A中に含まれる鉄、マンガンが既に酸化されている状態で存在する場合は、次亜塩素酸ナトリウム等の酸化剤Cの注入は不要となる。
First, FIG. 4 shows a flow chart of a conventional water purification treatment method in which raw water containing organic substances such as turbidity, bacteria, pathogenic microorganisms, algae, iron, manganese and humin is purified by membrane filtration.
In the conventional water purification treatment method, raw tap water A is continuously introduced into the rapid stirring step 34, and an oxidizing agent C such as sodium hypochlorite and inorganic such as polyaluminum chloride, ferric chloride, polysilica iron, and sulfate bands. After the flocculant D is injected and rapid stirring is performed to form fine flocs, in the slow stirring step 35, the flocs are grown by gradually stirring for a certain period of time to increase the diameter thereof. In the coagulation sedimentation step 37, the coagulation floc and the supernatant water are separated. Thereafter, in the membrane filtration step 36, the final purified water treatment is performed to obtain purified water B. In addition, the process illustrated in 37 may include rapid filtration in addition to coagulation sedimentation. Moreover, when iron and manganese contained in the tap water A are already oxidized, it is not necessary to inject an oxidizing agent C such as sodium hypochlorite.

一方、図3に、濁質、細菌類、病原性微生物、藻類、鉄、マンガン、フミン等の有機物を含む水道原水を膜ろ過によって浄水処理する本発明の浄水処理方法の一実施態様のフロー図を示す。
本発明の浄水処理方法では、水道原水Aを急速攪拌工程34に連続的に導入し、次亜塩素酸ナトリウム等の酸化剤C及びポリ塩化アルミニウム、塩化第二鉄、ポリシリカ鉄、硫酸バンド等の無機凝集剤Dを注入して急速攪拌を行って微細なフロックを形成させた後、さらに緩速攪拌工程35において、一定時間緩やかに攪拌を行って、フロックを成長させて、その径を大きくした後、単一の処理槽に導入し、この処理槽の上部空間において加圧浮上分離を行い、処理槽の下部に設置した、浸漬ろ過膜モジュールを介して吸引ろ過する膜ろ過工程36において最終的な浄水Bを得るようにしている。なお、本発明の浄水処理方法においても、水道原水A中に含まれる鉄、マンガンが既に酸化されている状態で存在する場合は、次亜塩素酸ナトリウム等の酸化剤Cの注入は不要となることは従来の浄水処理方法と同様である。
On the other hand, FIG. 3 is a flow diagram of one embodiment of the water purification method of the present invention in which raw water containing organic matter such as turbidity, bacteria, pathogenic microorganisms, algae, iron, manganese, and humin is purified by membrane filtration. Indicates.
In the water purification method of the present invention, the raw water A is continuously introduced into the rapid stirring step 34, and an oxidizing agent C such as sodium hypochlorite and polyaluminum chloride, ferric chloride, polysilica iron, sulfuric acid band, etc. After injecting the inorganic flocculant D and performing rapid stirring to form fine flocs, in the slow stirring step 35, the flocs were grown by increasing the diameter by gently stirring for a certain period of time. After that, it is introduced into a single treatment tank, subjected to pressure levitation separation in the upper space of this treatment tank, and finally in a membrane filtration step 36 for suction filtration through a submerged filtration membrane module installed in the lower part of the treatment tank. To get clean water B. In the water purification method of the present invention, when iron and manganese contained in the raw water A are already oxidized, it is not necessary to inject an oxidizing agent C such as sodium hypochlorite. This is the same as the conventional water purification method.

次に、図1に本発明の浄水処理方法を実施する浄水処理装置の第1実施形態を示す。
この浄水処理装置は、水道原水Aを急速攪拌手段7を備えた急速攪拌槽1に自動弁23を介して連続的に導入し、水道原水A中に含まれる鉄、マンガン等の被酸化物を酸化するのに足りる量の次亜塩素酸ナトリウム等の酸化剤C及びポリ塩化アルミニウム、塩化第二鉄、ポリシリカ鉄、硫酸バンド等の無機凝集剤Dを注入して急速攪拌を行って微細なフロックを形成させる。
Next, 1st Embodiment of the water purification apparatus which implements the water purification method of this invention in FIG. 1 is shown.
This water purification apparatus continuously introduces raw water tap water A into a rapid stirring tank 1 equipped with a quick stirring means 7 through an automatic valve 23 to remove oxides such as iron and manganese contained in the raw water tap water A. Fine flocs are prepared by injecting a sufficient amount of oxidizing agent C such as sodium hypochlorite and inorganic flocculant D such as polyaluminum chloride, ferric chloride, polysilica iron, sulfuric acid band, etc. To form.

次に、急速攪拌槽1に連通する緩速攪拌手段8を備えた緩速攪拌槽2において、一定時間緩やかに攪拌を行って、フロックを成長させて、単一の処理槽である加圧浮上膜分離槽3に流入させる。   Next, in the slow agitation tank 2 provided with the slow agitation means 8 communicating with the rapid agitation tank 1, the agitation is gently performed for a certain period of time to grow a floc, and the pressure floatation that is a single processing tank It flows into the membrane separation tank 3.

加圧浮上膜分離槽3の流入部には、その下方一端が槽底面から概ね10〜20cmになるように設置された垂直バッフル18とその下方一端が槽底面に固定され、上方一端と加圧浮上膜分離槽3の定常水面との距離が概ね40〜100cmの範囲にあるように、かつ底面との角度が45〜75゜、好ましくは、概ね60゜となるようになした傾斜バッフル19とが備えられている。   A vertical baffle 18 installed so that the lower end thereof is approximately 10 to 20 cm from the bottom surface of the tank and the lower end thereof are fixed to the bottom surface of the pressurized floating membrane separation tank 3, and the upper end and the pressurization are pressurized. An inclined baffle 19 so that the distance from the stationary water surface of the levitation membrane separation tank 3 is in the range of approximately 40 to 100 cm and the angle with the bottom surface is 45 to 75 °, preferably approximately 60 °; Is provided.

垂直バッフル18と槽壁とで形成される流入部には、加圧水槽6と自動弁28及び加圧水マニホールド15を介して連結された微細気泡発生装置16が槽底面からの距離が概ね概ね10〜20cmになるように設置されている。
この微細気泡発生装置16は、膜ろ過処理水槽4に貯留された膜ろ過水の一部を加圧水ポンプ10によって加圧すると同時に、加圧水ポンプ10の吸引側において空気Eを吸引して加圧水槽6に送ることにより、圧力に応じた量の空気を溶解させた加圧水を大気圧に減圧することにより、直径が概ね数10ミクロンの微細な気泡を発生させる装置であり、ニードル弁あるいはオリフィス板と同様の作用を発揮するものである。
At the inflow portion formed by the vertical baffle 18 and the tank wall, the microbubble generator 16 connected via the pressurized water tank 6 and the automatic valve 28 and the pressurized water manifold 15 is approximately 10 to 20 cm from the tank bottom. It is installed to become.
The microbubble generator 16 pressurizes a part of the membrane filtrate stored in the membrane filtration water tank 4 with the pressurized water pump 10 and simultaneously sucks air E on the suction side of the pressurized water pump 10 to the pressurized water tank 6. This is a device that generates fine bubbles with a diameter of approximately several tens of microns by reducing the pressure water in which an amount of air corresponding to the pressure is dissolved to atmospheric pressure, and is similar to a needle valve or an orifice plate. It is effective.

そして、垂直バッフル18と槽壁とで形成される流入部において、緩速攪拌槽2において形成された凝集フロックに、発生した微細気泡が付着したフロック−気泡会合物は、その見掛けの密度が水よりも小さくなることによって、水流とともに傾斜バッフル19に沿って上方向に移動し、水面に分離される結果、浮上汚泥層Fが形成される。この浮上汚泥には、凝集フロックに取り込まれた濁質、細菌類、病原性微生物、藻類、酸化された鉄、酸化されたマンガン、フミン質等の有機物が含まれる。
したがって、浮上汚泥層Fの下部には、これらが、ある程度除去されて比較的清澄な前処理済みの水層が形成される。
Then, in the inflow part formed by the vertical baffle 18 and the tank wall, the apparent density of the floc-bubble aggregate in which the generated fine bubbles adhere to the aggregated floc formed in the slow stirring tank 2 is water. As a result, the floating sludge layer F is formed as a result of moving upward along the inclined baffle 19 together with the water flow and being separated to the water surface. This levitation sludge contains organic matter such as turbidity, bacteria, pathogenic microorganisms, algae, oxidized iron, oxidized manganese, and humic substances incorporated into the aggregated floc.
Therefore, these are removed to some extent under the floating sludge layer F to form a relatively clear pretreated water layer.

加圧浮上膜分離槽3の下部には膜ろ過吸引ポンプ9に一端が連結された浸漬ろ過膜モジュール13が設置されており、この浸漬ろ過膜モジュール13の浸漬ろ過膜を介して、自動弁24、膜ろ過吸引ポンプ9、自動弁26及び膜ろ過処理水槽4の経路で吸引ろ過を行うことにより浄水処理を行う。
この浸漬ろ過膜モジュール13には、特に限定されるものではないが、ポリフッ化ビニリデン製の外圧中空糸ろ過膜を縦方向に集積した形成したものを好適に用いることができる。
An immersion filtration membrane module 13 having one end connected to a membrane filtration suction pump 9 is installed in the lower part of the pressurized flotation membrane separation tank 3, and an automatic valve 24 is provided via the immersion filtration membrane of the immersion filtration membrane module 13. The water purification treatment is performed by suction filtration through the passage of the membrane filtration suction pump 9, the automatic valve 26 and the membrane filtration treatment water tank 4.
Although it does not specifically limit for this immersion filtration membrane module 13, The thing formed by integrating | stacking the external pressure hollow fiber filtration membrane made from a polyvinylidene fluoride in the vertical direction can be used suitably.

浸漬ろ過膜モジュール13の下方には、物理洗浄散気装置14が設置されており、物理洗浄用ブロワ12から空気を、連続的あるいは間欠的に、又は定期的に送ることにより、ろ過膜表面に付着した目詰まりを起こす物質を、気泡の上昇により生じる水流の物理的作用により剥離させる。   A physical cleaning air diffuser 14 is installed below the submerged filtration membrane module 13, and air is continuously or intermittently or periodically sent from the physical cleaning blower 12 to the surface of the filtration membrane. The adhered clogging substance is peeled off by the physical action of the water flow generated by the rising of the bubbles.

膜ろ過吸引ポンプ9から膜ろ過処理水槽4までの管路には、発信器付流量計22が設置されており、この信号とあらかじめ設定した膜ろ過流量の値とによりインバータ17を介して膜ろ過吸引ポンプ9の回転数を制御することにより、所定量、例えば、常に一定量の膜ろ過水量を得ることができるようにしている。   A flow meter 22 with a transmitter is installed in the pipe line from the membrane filtration suction pump 9 to the membrane filtration treatment water tank 4, and membrane filtration is performed via the inverter 17 based on this signal and a preset value of the membrane filtration flow rate. By controlling the number of rotations of the suction pump 9, a predetermined amount, for example, a constant amount of membrane filtered water can be always obtained.

膜ろ過を一定時間継続することにより、膜の目詰まりが進行し、一定水量の膜ろ過水を得るための膜差圧が上昇する。あらかじめ設定した膜差圧に達した時点あるいはあらかじめ設定した膜ろ過継続時間経過後に膜モジュールの物理洗浄を行う。
この物理洗浄は、以下の手順で行う。
まず、膜ろ過吸引ポンプ9を停止し、自動弁24及び自動弁26を閉状態にして膜ろ過を停止する。
加圧浮上膜分離槽3には緩速攪拌槽2から依然として凝集フロックを含んだ被処理水が連続的に流入して来るので、加圧浮上膜分離槽3の水位は上昇し、浮上汚泥排出トラフ20より、浮上汚泥層Fとともに越流する。図には示していないが、浮上汚泥層Fは越流水とともに装置系外に排出される。浮上汚泥層Fが排出されるに充分な時間経過後、自動弁23及び自動弁28を閉状態にするとともに、加圧水ポンプ10、急速攪拌手段7、緩速攪拌手段8並びに酸化剤Cの注入及び無機凝集剤Dの注入を停止する。
その後、自動弁29を開状態とすることにより、加圧浮上膜分離槽3の水位を物理洗浄排水トラフ21の天端まで低下させる。
物理洗浄用ブロワ12を運転し、物理洗浄散気装置14により浸漬ろ過膜モジュール13の下方より比較的粗大な気泡を送り、上昇する気泡の揺動と発生する水流のせん断作用とにより膜表面に付着した目詰まり物質を剥離させる。これらと同時に、自動弁25と自動弁27を開状態にし、膜ろ過吸引ポンプ9を運転し、膜ろ過処理水槽4に貯留されている膜ろ過水を自動弁25、膜ろ過吸引ポンプ9及び自動弁27の経路で浸漬ろ過膜モジュール13に、膜ろ過時とは逆方向に概ね1分間送水する。この際、図には示していないが、逆洗に使用する膜ろ過水に有効塩素濃度として1〜5mg/Lとなるように次亜塩素酸ナトリウムを注入すると逆洗をより効果的に行うことができる。
剥離した目詰まり物質を含む逆洗排水は、物理洗浄排水トラフ21より排水槽5に送られる。この物理洗浄排水は、排水返送ポンプ11により、膜ろ過処理時に装置流入部に一定量ずつ返送され水道原水Aと混合されて浄水処理される。
前記の一連の物理洗浄操作が終了すると、自動弁27及び自動弁25を閉状態に、自動弁24、自動弁26、自動弁23及び自動弁28を開状態にし、物理洗浄用ブロワ12を停止し、加圧水ポンプ10、急速攪拌手段7及び急速攪拌手段8を運転して、浄水処理を再開する。
By continuing the membrane filtration for a certain period of time, clogging of the membrane proceeds, and the membrane differential pressure for obtaining a certain amount of membrane filtrate is increased. The membrane module is physically cleaned when the preset membrane differential pressure is reached or after a preset membrane filtration duration.
This physical cleaning is performed according to the following procedure.
First, the membrane filtration suction pump 9 is stopped, the automatic valve 24 and the automatic valve 26 are closed, and membrane filtration is stopped.
Since the to-be-treated water containing the coagulated floc still flows from the slow stirring tank 2 into the pressurized floating membrane separation tank 3, the water level in the pressurized floating membrane separation tank 3 rises and the floating sludge is discharged. It overflows from the trough 20 with the floating sludge layer F. Although not shown in the figure, the levitation sludge layer F is discharged out of the system together with the overflow water. After a sufficient time has passed for the floating sludge layer F to be discharged, the automatic valve 23 and the automatic valve 28 are closed, and the pressurized water pump 10, the rapid stirring means 7, the slow stirring means 8 and the oxidant C are injected. Stop the injection of inorganic flocculant D.
Thereafter, by opening the automatic valve 29, the water level of the pressurized floating membrane separation tank 3 is lowered to the top end of the physical cleaning drainage trough 21.
The physical cleaning blower 12 is operated, relatively coarse bubbles are sent from below the submerged filtration membrane module 13 by the physical cleaning air diffuser 14, and the membrane surface is caused by the rising bubbles and the shearing action of the generated water flow. Remove the clogging material that has adhered. At the same time, the automatic valve 25 and the automatic valve 27 are opened, the membrane filtration suction pump 9 is operated, and the membrane filtrate stored in the membrane filtration water tank 4 is removed from the automatic valve 25, the membrane filtration suction pump 9 and the automatic. Water is fed to the immersion filtration membrane module 13 through the path of the valve 27 for approximately 1 minute in the direction opposite to that during membrane filtration. At this time, although not shown in the figure, when sodium hypochlorite is injected into the membrane filtrate used for backwashing so that the effective chlorine concentration is 1 to 5 mg / L, backwashing is performed more effectively. Can do.
The backwash drainage containing the clogged substances that have been peeled off is sent from the physical wash drainage trough 21 to the drainage tank 5. The physical washing wastewater is returned to the apparatus inflow portion by a fixed amount by the wastewater return pump 11 and mixed with the raw water A to be purified.
When the series of physical cleaning operations is completed, the automatic valve 27 and the automatic valve 25 are closed, the automatic valve 24, the automatic valve 26, the automatic valve 23, and the automatic valve 28 are opened, and the physical cleaning blower 12 is stopped. Then, the pressurized water pump 10, the rapid stirring means 7 and the rapid stirring means 8 are operated to restart the water purification process.

なお、この物理洗浄の操作を定期的に実施しても、膜差圧が回復しないで、膜ろ過を継続することが困難となった場合には、薬品洗浄を実施する。
この薬品洗浄は、いずれの図にも示していないが、処理装置の運転を停止して、浸漬ろ過膜モジュール13を加圧浮上膜分離槽3内に設置したままの状態で、物理洗浄用ブロワ12を運転して、浸漬ろ過膜モジュール13の下方より粗大気泡を送りながらあらかじめ別の貯槽に調整しておいた次亜塩素酸ナトリウム溶液及び/又は苛性ソーダ溶液を、水位差による自然流下によって、又はポンプ注入により、膜ろ過方向とは逆の方向に浸漬ろ過膜モジュール13に送り、その状態で一定時間静置する方法で実施する。
なお、この薬品洗浄は、処理装置の運転を停止して、別途設ける吊り上げ及び移動手段によって、浸漬ろ過膜モジュール13を加圧浮上膜分離槽3から取り出し、あらかじめ適正な濃度に調整しておいた次亜塩素酸ナトリウム溶液及び/又は苛性ソーダ溶液を満たした別の水槽に浸漬する方法によればより効果的に実施することができる。
In addition, even if this physical cleaning operation is performed periodically, if the membrane differential pressure does not recover and it becomes difficult to continue the membrane filtration, chemical cleaning is performed.
Although this chemical cleaning is not shown in any of the drawings, the physical cleaning blower is operated with the operation of the processing apparatus stopped and the submerged filtration membrane module 13 left installed in the pressurized floating membrane separation tank 3. 12, the sodium hypochlorite solution and / or the caustic soda solution prepared in advance in another storage tank while sending coarse bubbles from below the submerged filtration membrane module 13, by natural flow due to water level difference, or By pumping, it is sent to the submerged membrane filter module 13 in the direction opposite to the membrane filtration direction, and left in that state for a certain period of time.
In this chemical cleaning, the operation of the processing apparatus was stopped, and the submerged filtration membrane module 13 was taken out from the pressurized flotation membrane separation tank 3 by a separately provided lifting and moving means, and adjusted to an appropriate concentration in advance. According to the method of immersing in another water tank filled with a sodium hypochlorite solution and / or a caustic soda solution, it can be carried out more effectively.

図中の自動弁、ポンプ類、ブロワ等の機器を、シーケンサを組み込んだ制御装置によって制御することによって、この浄水処理装置は全自動運転が可能となっている。   By controlling devices such as automatic valves, pumps, and blowers in the figure with a control device incorporating a sequencer, this water purification apparatus can be operated fully automatically.

また、水道原水A中に含まれる鉄、マンガンが既に酸化されている状態で存在する場合は、次亜塩素酸ナトリウム等の酸化剤Cの注入は不要となる。   Moreover, when iron and manganese contained in the tap water A are already oxidized, it is not necessary to inject an oxidizing agent C such as sodium hypochlorite.

次に、図2に本発明の浄水処理方法を実施する浄水処理装置の第2実施形態を示す。一実施形態の変形を示す。
この浄水処理装置は、緩速攪拌手段として、複数の多孔板30を水流に垂直になるように設置して構成するようにしている。
また、浮上分離に必要な微細気泡を発生させるための加圧水の調整手段として加圧水槽6内に充填材層33を設置し、コンプレッサ32からの空気と加圧水とを充填材層33内で向流接触させることにより、空気の溶解効率を高めるようにしている。
さらに、加圧水槽6には、槽内水位を検知する発信器付水位計31と、その信号により加圧水ポンプ10からの加圧水の量を制御する手段を備えている。
なお、この浄水処理装置のその他の構成及び作用は、上記第1実施形態の浄水処理装置と同様である。
Next, 2nd Embodiment of the water purification apparatus which enforces the water purification method of this invention in FIG. 2 is shown. 6 illustrates a variation of one embodiment.
This water purification apparatus is configured by installing a plurality of perforated plates 30 so as to be perpendicular to the water flow as slow stirring means.
In addition, a filler layer 33 is provided in the pressurized water tank 6 as a means for adjusting the pressurized water for generating fine bubbles necessary for levitation separation, and the air from the compressor 32 and the pressurized water are brought into countercurrent contact in the filler layer 33. By doing so, the dissolution efficiency of air is increased.
Furthermore, the pressurized water tank 6 includes a water level meter 31 with a transmitter for detecting the water level in the tank, and a means for controlling the amount of pressurized water from the pressurized water pump 10 based on the signal.
In addition, the other structure and effect | action of this water purifier are the same as the water purifier of the said 1st Embodiment.

以上、本発明の水道原水の浄水処理方法及びその装置について、複数の実施形態に基づいて説明したが、本発明は上記実施形態に記載した構成に限定されるものではなく、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the water purification method and the apparatus of the raw water of this invention were demonstrated based on several embodiment, this invention is not limited to the structure described in the said embodiment, and does not deviate from the meaning. The configuration can be changed as appropriate within the range.

本発明の水道原水の浄水処理方法及びその装置は、膜ろ過への汚濁物質の負荷を軽減するとともに、装置、設備の設置面積と建設費を低減し、施設全体からの排水量も減量できるという特性を有していることから、安全で衛生的な水道水を低コストで得るための用途に好適に用いることができる。   The water purification method of raw water of the present invention and the apparatus reduce the load of contaminants on membrane filtration, reduce the installation area and construction cost of the apparatus and equipment, and reduce the amount of waste water from the entire facility. Therefore, it can be used suitably for the use for obtaining safe and sanitary tap water at low cost.

本発明による浄水処理装置の第1実施形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment of the water purification apparatus by this invention. 本発明による浄水処理装置の第2実施形態を示す説明図である。It is explanatory drawing which shows 2nd Embodiment of the water purification apparatus by this invention. 本発明の浄水処理方法の一実施態様を示すフロー図である。It is a flowchart which shows one embodiment of the water purification method of this invention. 従来の浄水処理方法を示すフロー図である。It is a flowchart which shows the conventional water purification method.

符号の説明Explanation of symbols

1 急速攪拌槽
2 緩速攪拌槽
3 加圧浮上膜分離槽(単一の処理槽)
4 膜ろ過処理水槽
5 排水槽
6 加圧水槽
7 急速攪拌装置
8 緩速攪拌装置
9 膜ろ過吸引ポンプ
10 加圧水ポンプ
11 排水返送ポンプ
12 物理洗浄用ブロワ
13 浸漬ろ過膜モジュール
14 物理洗浄散気装置
15 加圧水マニホールド
16 微細気泡発生装置
17 インバータ
18 垂直バッフル
19 傾斜バッフル
20 浮上汚泥排出トラフ
21 物理洗浄排水トラフ
22 発信器付流量計
23〜29 自動弁
30 多孔板
31 発信器付水位計
32 コンプレッサ
33 充填材層
34 急速攪拌工程
35 緩速攪拌工程
36 膜ろ過工程
37 凝集沈殿工程及び/又は急速ろ過工程
A 水道原水
B 浄水
C 酸化剤
D 無機凝集剤
E 空気
F 浮上汚泥層
1 Rapid stirring tank 2 Slow stirring tank 3 Pressurized floating membrane separation tank (single treatment tank)
DESCRIPTION OF SYMBOLS 4 Membrane filtration water tank 5 Drainage tank 6 Pressurized water tank 7 Rapid stirring device 8 Slow stirring device 9 Membrane filtration suction pump 10 Pressurized water pump 11 Drainage return pump 12 Blower for physical washing 13 Immersion filtration membrane module 14 Physical cleaning aeration device 15 Pressurized water Manifold 16 Fine bubble generator 17 Inverter 18 Vertical baffle 19 Inclined baffle 20 Floating sludge discharge trough 21 Physical wash drain trough 22 Flow meter with transmitter 23-29 Automatic valve 30 Perforated plate 31 Water level meter with transmitter 32 Compressor 33 Filler layer 34 Rapid stirring process 35 Slow stirring process 36 Membrane filtration process 37 Coagulation sedimentation process and / or rapid filtration process A Tap water B Clean water C Oxidant D Inorganic flocculant E Air F Floating sludge layer

Claims (2)

有機物を含む水道原水に、無機凝集剤を添加した後、急速攪拌と緩速攪拌を行い、凝集フロックを形成させ、上部空間に加圧浮上分離部を形成し、下部空間に浸漬ろ過膜モジュールを設置した単一の処理槽に導入し、該処理槽において上向き方向に凝集フロックを加圧浮上させて分離するとともに、浸漬ろ過膜モジュールを介して吸引ろ過により浄水を得ることを特徴とする水道原水の浄水処理方法。   After adding an inorganic flocculant to tap water containing organic matter, rapid stirring and slow stirring are performed to form an agglomeration floc, a pressure floating separation part is formed in the upper space, and an immersion filtration membrane module is formed in the lower space. Raw tap water characterized in that it is introduced into a single treatment tank installed, and the aggregated floc is lifted and separated in the upward direction in the treatment tank, and purified water is obtained by suction filtration through an immersion filtration membrane module. Water purification method. 有機物を含む水道原水の浄水処理装置において、無機凝集剤の添加手段と、急速攪拌と緩速攪拌を行い、凝集フロックを形成させる手段と、フロック形成済みの水道原水が導水される処理槽とを備え、該処理槽の上部空間に加圧浮上分離部を形成し、下部空間に浸漬ろ過膜モジュールを設置し、該処理槽において上向き方向に凝集フロックを加圧浮上させて分離するとともに、浸漬ろ過膜モジュールを介して吸引ろ過手段により浄水を得るようにしたことを特徴とする水道原水の浄水処理装置。   In a water purification system for raw water containing organic matter, an inorganic flocculant addition means, means for rapid and slow agitation to form coagulated flocs, and a treatment tank to which floc-formed tap raw water is introduced And forming a pressure floating separator in the upper space of the treatment tank, installing an immersion filtration membrane module in the lower space, separating the aggregated floc by pressure floating in the treatment tank in the upward direction, and immersion filtration Purified water treatment apparatus for raw water supply, wherein purified water is obtained by suction filtration means through a membrane module.
JP2006120082A 2006-04-25 2006-04-25 Raw tap water purification method and its apparatus Pending JP2007289847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006120082A JP2007289847A (en) 2006-04-25 2006-04-25 Raw tap water purification method and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006120082A JP2007289847A (en) 2006-04-25 2006-04-25 Raw tap water purification method and its apparatus

Publications (1)

Publication Number Publication Date
JP2007289847A true JP2007289847A (en) 2007-11-08

Family

ID=38760985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006120082A Pending JP2007289847A (en) 2006-04-25 2006-04-25 Raw tap water purification method and its apparatus

Country Status (1)

Country Link
JP (1) JP2007289847A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048623B1 (en) * 2008-12-05 2011-07-14 한국수자원공사 Fusion type water treatment equipment using submerged membrane and dissolved air flotation
KR101068551B1 (en) * 2008-12-05 2011-09-30 한국수자원공사 High speed sedimentation tank with low energy type sludge blanket for spiral water treatment
CN102329021A (en) * 2011-08-10 2012-01-25 戴群 High-eutrophication water advanced purification treatment method and device
JP2014144433A (en) * 2013-01-29 2014-08-14 Panasonic Corp Boron-containing effluent treatment method and boron-containing effluent treatment system
KR101521012B1 (en) 2013-03-27 2015-05-15 현대중공업 주식회사 Dissolved Air Flotation Facility Coupled with Membrane Filtration System
KR101543503B1 (en) * 2013-03-27 2015-08-10 현대중공업 주식회사 Cylindrical Dissolved Air Flotation Facility combined with Membrane Filtration
KR101590142B1 (en) * 2014-08-04 2016-02-02 현대중공업 주식회사 Apparatus for treating water
KR20210027739A (en) * 2019-09-03 2021-03-11 한국산업기술시험원 Water treatment apparatus using ozone bubble

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048623B1 (en) * 2008-12-05 2011-07-14 한국수자원공사 Fusion type water treatment equipment using submerged membrane and dissolved air flotation
KR101068551B1 (en) * 2008-12-05 2011-09-30 한국수자원공사 High speed sedimentation tank with low energy type sludge blanket for spiral water treatment
CN102329021A (en) * 2011-08-10 2012-01-25 戴群 High-eutrophication water advanced purification treatment method and device
JP2014144433A (en) * 2013-01-29 2014-08-14 Panasonic Corp Boron-containing effluent treatment method and boron-containing effluent treatment system
KR101521012B1 (en) 2013-03-27 2015-05-15 현대중공업 주식회사 Dissolved Air Flotation Facility Coupled with Membrane Filtration System
KR101543503B1 (en) * 2013-03-27 2015-08-10 현대중공업 주식회사 Cylindrical Dissolved Air Flotation Facility combined with Membrane Filtration
KR101590142B1 (en) * 2014-08-04 2016-02-02 현대중공업 주식회사 Apparatus for treating water
KR20210027739A (en) * 2019-09-03 2021-03-11 한국산업기술시험원 Water treatment apparatus using ozone bubble
KR102292402B1 (en) * 2019-09-03 2021-08-20 한국산업기술시험원 Water treatment apparatus using ozone bubble

Similar Documents

Publication Publication Date Title
JP2007289847A (en) Raw tap water purification method and its apparatus
MX2015003479A (en) Water treatment process comprising floatation combined with gravity filtration, and corresponding equipment.
WO2012042700A1 (en) Up-flow filtration device characterized by method for stacking filter materials
JP2011088053A (en) Equipment and method for desalination treatment
CN108793642A (en) A kind of dyeing waste water advanced treatment system and processing method
JP2015077530A (en) Water production method and water production device
KR101199583B1 (en) Equipment for treating waste water using integrated membrane-clarification system
US20040217058A1 (en) Integrated dissolved air flotation and immersed membrane filtration apparatus and method for using same
JP4635666B2 (en) Water treatment method
JP6613323B2 (en) Water treatment apparatus and water treatment method
JPH10109095A (en) Water purifying treatment device
CN204281479U (en) A kind for the treatment of system of coating wastewater
JP5181987B2 (en) Cleaning method for submerged membrane module
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP5801249B2 (en) Desalination apparatus and desalination method
JP2002177956A (en) Water cleaning method and water cleaning plant
WO2017159303A1 (en) Method for treating waste water having high hardness
JP5105608B2 (en) Waste water treatment system and operation method thereof
CN208762364U (en) Dyeing waste water advanced treatment system
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2013034938A (en) Method for washing membrane module
JP2005329397A5 (en)
JP2002346347A (en) Method and apparatus for filtration
KR200471174Y1 (en) Filtration apparatus having means for recovering filter material
JP4124957B2 (en) Filter body washing method and apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080930

Free format text: JAPANESE INTERMEDIATE CODE: A02