JPH10225682A - Method of removing boron in reverse osmosis seawater desalination - Google Patents

Method of removing boron in reverse osmosis seawater desalination

Info

Publication number
JPH10225682A
JPH10225682A JP9031567A JP3156797A JPH10225682A JP H10225682 A JPH10225682 A JP H10225682A JP 9031567 A JP9031567 A JP 9031567A JP 3156797 A JP3156797 A JP 3156797A JP H10225682 A JPH10225682 A JP H10225682A
Authority
JP
Japan
Prior art keywords
membrane
water tank
reverse osmosis
boron
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9031567A
Other languages
Japanese (ja)
Inventor
Torataro Minegishi
寅太郎 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP9031567A priority Critical patent/JPH10225682A/en
Publication of JPH10225682A publication Critical patent/JPH10225682A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To provide a method of removing boron in a reverse osmosis seawater desalination device in which method a filter membrane separation device compact and easy to maintain is used as a pretreatment of a reverse osmosis membrane device to highly and effectively remove boron and clean water for finish is not needed in a final process. SOLUTION: Raw seawater to which a pH modifier and a coagulant for forming a boron containing insoluble deposit are added is fed into a circulating water tank. A supernatant in the circulating water tank is filtered by a microfilter membrane or an ultrafilter membrane and unfiltered component concentrated water of the microfilter membrane or the ultrafilter membrane is circulated to the circulating water tank and filtered water is permeated through a reverse osmosis membrane, allowing fresh water which seawater gets rid of boron to form to be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、海水中のホウ素を
高度にかつ効率的に除去することのできる逆浸透法海水
淡水化方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reverse osmosis seawater desalination method capable of highly and efficiently removing boron in seawater.

【0002】[0002]

【従来の技術】逆浸透膜を利用した海水の淡水化技術は
種々開発されているが、その多くは原海水を砂等の濾過
材で濾過して清澄化するものである(化学工業便覧改訂
四版,938頁、丸善,昭和53年,日本の科学と技
術,26巻,235号,85頁,1985年)。
2. Description of the Related Art Various technologies for desalination of seawater using reverse osmosis membranes have been developed, and most of them are those that clarify raw seawater by filtering it with a filter medium such as sand (revised Chemical Industry Handbook). Fourth Edition, p. 938, Maruzen, 1978, Science and Technology in Japan, Vol. 26, No. 235, p. 85, 1985).

【0003】この従来の逆浸透法海水淡水化は、たとえ
ば図2に示すような装置を利用して行なわれていた。同
図に示すように、原海水が配管101よりポンプ102
で砂ろ過装置105に供給される過程において、原海水
中に含まれる微生物、バクテリア等を殺菌するための殺
菌剤および原海水中に含まれる懸濁物質、コロイド物質
を凝集させるための凝集剤(塩化第二鉄が主に使用され
ている)が、それぞれ配管103、104より予め添加
される。次いで、砂ろ過装置105により懸濁物質が除
去された処理水106が貯留槽107に導入される。さ
らに、処理水106は高圧ポンプ108によって約70
kg/cm2まで加圧され、逆浸透膜装置109に供給
されて淡水化される。淡水は配管110より回収され、
濃縮水は配管111より回収される。さらに、淡水中の
ホウ素含有濃度を水道法による水質監視項目値である
0.2mg/l以下にするために、生産水槽112にお
いて配管113より供給される水道水とブレンドさせた
後に飲料水として適した製造水を得るのである。
[0003] This conventional reverse osmosis seawater desalination has been performed using, for example, an apparatus as shown in FIG. As shown in FIG.
In the process of being supplied to the sand filtration device 105, a disinfectant for disinfecting microorganisms, bacteria and the like contained in the raw seawater and a flocculant for flocculating suspended substances and colloidal substances contained in the raw seawater ( Ferric chloride is mainly used) is added in advance through the pipes 103 and 104, respectively. Next, the treated water 106 from which suspended matter has been removed by the sand filtration device 105 is introduced into the storage tank 107. Further, the treated water 106 is supplied to the
It is pressurized to kg / cm 2 and supplied to the reverse osmosis membrane device 109 for desalination. Fresh water is collected from pipe 110,
The concentrated water is collected from the pipe 111. Further, in order to make the concentration of boron in fresh water 0.2 mg / l or less, which is a water quality monitoring item value according to the tap water method, it is suitable as drinking water after blending with tap water supplied from the pipe 113 in the production water tank 112. The production water is obtained.

【0004】[0004]

【発明が解決しようとする課題】上記の従来技術では、
逆浸透法で飲料に適する淡水を得ることができる地域は
最終工程でブレンドするために必要な水道水を充分に補
給することのできる地域のみに限られる。そのため、逆
浸透法海水淡水化装置を慢性的な水不足で悩んでいる地
域あるいは緊急時の渇水および災害対策用として用いる
ことが不可能であった。
In the above prior art,
The area where fresh water suitable for drinking can be obtained by the reverse osmosis method is limited to an area where tap water necessary for blending in the final step can be sufficiently supplied. For this reason, it has been impossible to use the reverse osmosis seawater desalination apparatus in an area suffering from chronic water shortage or for emergency drought and disaster countermeasures.

【0005】本発明は、上記の従来技術の欠点を克服す
べくなされたものであって、逆浸透膜装置の前処理とし
てコンパクトかつ維持管理の容易な濾過膜分離装置を用
いて、高度にかつ効率的にホウ素を除去することので
き、最終工程で仕上のための清浄水を必要としない逆浸
透法海水淡水化装置におけるホウ素の除去方法を提供す
ることを目的としている。
The present invention has been made to overcome the above-mentioned drawbacks of the prior art, and uses a compact and easy-to-maintain filtration membrane separation apparatus as a pretreatment for a reverse osmosis membrane apparatus. An object of the present invention is to provide a method for removing boron in a reverse osmosis seawater desalination apparatus which can efficiently remove boron and does not require clean water for finishing in the final step.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明の逆浸透法海水淡水化におけるホウ素の除去
方法は、原海水にpH調整剤およびホウ素含有不溶性沈
殿物を生成させうる凝集剤を添加して循環水槽に供給
し、該循環水槽の上澄を精密濾過膜または限外濾過膜で
濾過し、該精密濾過膜または限外濾過膜の非濾過成分濃
縮水は前記循環水槽へ循環し、濾過水は逆浸透膜で透過
することを特徴として構成されている。
In order to solve the above-mentioned problems, a method for removing boron in a reverse osmosis seawater desalination according to the present invention is directed to a method for forming a pH-adjusting agent and a boron-containing insoluble precipitate in raw seawater. An agent is added and supplied to a circulating water tank, and the supernatant of the circulating water tank is filtered through a microfiltration membrane or an ultrafiltration membrane. It is configured to circulate and permeate filtered water through a reverse osmosis membrane.

【0007】上記方法において、原海水のpHを9以上
に調整し、凝集剤にカルシウム化合物またはアルミニウ
ム化合物を用い、あるいは精密濾過膜または限外濾過膜
の洗浄排水を循環水槽へ供給することによって、上記目
的はより好ましく達成される。
In the above method, the pH of the raw seawater is adjusted to 9 or more, a calcium compound or an aluminum compound is used as a flocculant, or the washing wastewater of a microfiltration membrane or an ultrafiltration membrane is supplied to a circulating water tank. The above object is more preferably achieved.

【0008】本発明で対象とする原海水中には、約4m
g/lのホウ素が含まれており、通常はホウ酸又はホウ
酸塩の形態で存在している。
In the raw seawater targeted by the present invention, about 4 m
g / l of boron, usually present in the form of boric acid or borate.

【0009】本発明においては、精密濾過膜または限外
濾過膜の非濾過成分濃縮水を循環水槽へ返送することに
よって共沈作用等によるホウ素の析出率が高まり、その
結果、濾過水のホウ素含有量を原海水の20%以下にす
ることができる。そして、さらに逆浸透膜装置において
75〜85%程度除去することができる。したがって、
最終的に得られた製造水中のホウ素含有濃度は、水道法
による水質監視項目値である0.2mg/l以下にする
ことができ、最終段階で清浄な水道水を使用することな
く飲料水として適した製造水を得ることができる。
In the present invention, the rate of boron deposition due to coprecipitation and the like is increased by returning non-filtration component concentrated water of the microfiltration membrane or ultrafiltration membrane to the circulating water tank. The amount can be less than 20% of the raw seawater. And about 75-85% can be further removed in the reverse osmosis membrane device. Therefore,
The boron content in the final production water can be reduced to 0.2 mg / l or less, which is the monitoring value of water quality by the Water Supply Law, and can be used as drinking water without using clean tap water in the final stage. Suitable production water can be obtained.

【0010】この方法においては、原海水のpHを9以
上に調整し、凝集剤にカルシウム化合物またはアルミニ
ウム化合物を用い、あるいは精密濾過膜または限外濾過
膜の洗浄排水を循環水槽へ供給することによって、ホウ
素の除去率をさらに高めることができる。
In this method, the pH of the raw seawater is adjusted to 9 or more, a calcium compound or an aluminum compound is used as a coagulant, or the cleaning wastewater of a microfiltration membrane or an ultrafiltration membrane is supplied to a circulation water tank. The removal rate of boron can be further increased.

【0011】[0011]

【発明の実施の形態】本発明に用いられる凝集剤は海水
に含有しているホウ酸イオンと反応してホウ素含有不溶
性沈殿物を生成させうるものであり、例えば、カルシウ
ム化合物やアルミニウム化合物が用いられる。カルシウ
ム化合物の例としては、水酸化カルシウム等が挙げられ
る。アルミニウム化合物の例としては、硫酸アルミニウ
ム、ポリ塩化アルミニウム(PAC)等が挙げられる。
添加量(Al化合物とCa化合物を併用するときには合
計量)は原海水に対して、1〜1000mg/l程度、
好ましくは5〜100mg/l程度とするのがよい。た
だし、原海水水質に応じて増減できることはいうまでも
ない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The coagulant used in the present invention is capable of reacting with borate ions contained in seawater to form a boron-containing insoluble precipitate. For example, a calcium compound or an aluminum compound is used. Can be Examples of the calcium compound include calcium hydroxide. Examples of the aluminum compound include aluminum sulfate, polyaluminum chloride (PAC), and the like.
The addition amount (total amount when the Al compound and the Ca compound are used together) is about 1 to 1000 mg / l with respect to the raw seawater,
Preferably, the amount is about 5 to 100 mg / l. However, it goes without saying that it can be increased or decreased according to the quality of the raw seawater.

【0012】pH調整剤としては、例えば水酸化ナトリ
ウム等を用いることができ水酸化カルシウム等に兼用さ
せることもできる。pH調整剤は原海水のpHを7以
上、好ましくは8以上、さらに好ましくは9以上とす
る。一方、pHの上限は11程度、好ましくは10程度
である。
As the pH adjuster, for example, sodium hydroxide or the like can be used and calcium hydroxide or the like can also be used. The pH adjuster makes the pH of the raw seawater 7 or more, preferably 8 or more, and more preferably 9 or more. On the other hand, the upper limit of the pH is about 11, preferably about 10.

【0013】原海水にはそのほか必要に応じて殺菌剤、
その他の薬剤を添加することができる。殺菌剤には塩
素、次亜塩素酸ナトリウム等が使用される。殺菌剤の添
加量は1〜10mg/l程度、通常1〜5mg/l程度
になるよう添加される。
In the raw seawater, a disinfectant, if necessary,
Other agents can be added. As a disinfectant, chlorine, sodium hypochlorite, or the like is used. The fungicide is added in an amount of about 1 to 10 mg / l, usually about 1 to 5 mg / l.

【0014】凝集剤は水溶液にして添加すればよく、濃
度は5〜50mg/l程度でよい。凝集剤が添加される
原海水の温度は特に調節する必要はなくそのままでよい
が、後の濾過や透過速度を向上させる目的で20〜30
℃に調整することは好ましい。
The coagulant may be added in the form of an aqueous solution, and the concentration may be about 5 to 50 mg / l. The temperature of the raw seawater to which the flocculant is added does not need to be particularly adjusted and may be left as it is.
It is preferred to adjust to ° C.

【0015】pH調整剤および凝集剤の添加は原海水を
循環水槽に供給する配管で行なってもよく、循環水槽に
直接投入してもよい。
The addition of the pH adjuster and the coagulant may be carried out through a pipe for supplying the raw seawater to the circulating water tank, or may be directly introduced into the circulating water tank.

【0016】循環水槽は、精密濾過膜または限外濾過膜
を装着した装置との間で循環ラインを形成して、該精密
濾過膜または限外濾過膜の非濾過成分濃縮水をこの水槽
に返送させる構造を有するものである。原海水はこの水
槽内でホウ素含有不溶性沈澱物を凝集沈降させる。循環
水槽の容積は原海水の滞留時間(通過時間)が1〜10時
間程度、好ましくは2〜5時間程度になるように設計さ
れる。
The circulating water tank forms a circulation line with a device equipped with a microfiltration membrane or an ultrafiltration membrane, and returns the non-filtration component concentrated water of the microfiltration membrane or the ultrafiltration membrane to the water tank. It has a structure to make it. The raw seawater causes the boron-containing insoluble precipitate to coagulate and settle in this tank. The volume of the circulating water tank is designed so that the residence time (passage time) of the raw seawater is about 1 to 10 hours, preferably about 2 to 5 hours.

【0017】前段の濾過装置には精密濾過膜または限外
濾過膜が装着される。
A microfiltration membrane or an ultrafiltration membrane is mounted on the filtration device at the preceding stage.

【0018】限外濾過膜は、孔径が0.01〜0.1μ
m程度で、分画分子量が1000以上、通常1千〜10
万程度である。本発明に好ましいものは分画分子量が1
万〜10万程度のものである。材質は酢酸セルロース
系、ポリアクリロニトリル系、ポリアミド−イミド系、
ポリアミド系、ポリスルホン系、ポリフッ化ビニリデン
系、ポリオレフィン系のものなどがあってそのいずれで
もよいが、好ましいものはポリアクリロニトリル系、ポ
リオレフィン系等である。
The ultrafiltration membrane has a pore size of 0.01 to 0.1 μm.
m, the molecular weight cut-off is 1000 or more, usually 1,000 to 10
It is about ten thousand. Preferred in the present invention are those having a molecular weight cut off of 1
It is about 100,000 to 100,000. The material is cellulose acetate, polyacrylonitrile, polyamide-imide,
There are polyamide-based, polysulfone-based, polyvinylidene fluoride-based, and polyolefin-based ones, and any of them may be used. Preferred are polyacrylonitrile-based and polyolefin-based ones.

【0019】精密濾過膜は、孔径が0.1〜1μm程度
のものである。材質は酢酸セルロース系、ニトロセルロ
ース系、ポリ塩化ビニル系、ポリスルホン系、ポリアミ
ド系ポリカーボネート系、ポリプロピレン系、ポリテト
ラフルオロエチレン系のものなどがあって、そのいずれ
も使用しうるが、好ましいものは、ポリプロピレン系、
ポリスルホン系等である。精密ろ過膜あるいは限外ろ過
膜のモジュールの形状は管型あるいは浸潰槽型のいずれ
であってもよい。
The microfiltration membrane has a pore size of about 0.1 to 1 μm. The material is cellulose acetate, nitrocellulose, polyvinyl chloride, polysulfone, polyamide polycarbonate, polypropylene, polytetrafluoroethylene, etc., and any of them may be used. Polypropylene,
Polysulfone type and the like. The shape of the module of the microfiltration membrane or the ultrafiltration membrane may be either a tube type or a immersion tank type.

【0020】また、これらの濾過膜を装着した装置は複
数を直列あるいは並列に設けてもよい。
Further, a plurality of devices equipped with these filtration membranes may be provided in series or in parallel.

【0021】この前段の濾過膜装置は、主に原海水中の
懸濁物質(コロイド、微生物等を含む。)を除去するも
のであり、循環水槽から流出してくるホウ素含有不溶性
沈澱物もここで捕捉される。
The former filtration membrane device mainly removes suspended substances (including colloids, microorganisms, etc.) in the raw seawater, and the boron-containing insoluble precipitate flowing out of the circulating water tank is also used here. Is captured by

【0022】この濾過膜は目詰まりによる濾過能力の低
下を回復させるために逆洗が行なわれるが、この逆洗排
水を循環水槽に投入することによって循環水槽内のホウ
素含有不溶性沈澱物の濃度を高め、原海水からのホウ素
の析出、沈澱を促進することができる。逆洗手段には原
海水、膜濾過水等を逆洗水として用いてもよく、あるい
は加圧空気等を送入してもよい。
The filtration membrane is backwashed to recover the decrease in filtration ability due to clogging. By introducing the backwash wastewater into the circulation water tank, the concentration of the boron-containing insoluble precipitate in the circulation water tank is reduced. To promote the precipitation and precipitation of boron from raw seawater. Raw seawater, membrane filtered water or the like may be used as the backwash water, or pressurized air or the like may be fed into the backwash means.

【0023】逆浸透膜は合成紙などで作られた膜支持体
の内面にポリアミド系、ポリエチレンイミン系、ポリエ
チレンオキサイド系、酢酸セルロース系、ポリスルホン
系、ポリフラン系のものなどの膜を接着したものであ
る。好ましいものは酢酸セルロース系、ポリアミド系等
である。膜の形状としては平膜型、チューブラー型、ス
パイラル型、中空糸型等各種のものがある。逆浸透膜を
装着した装置も複数を直列あるいは並列に設けてもよ
い。
The reverse osmosis membrane is formed by adhering a polyamide, polyethyleneimine, polyethylene oxide, cellulose acetate, polysulfone or polyfuran membrane to the inner surface of a membrane support made of synthetic paper or the like. is there. Preferred are cellulose acetates, polyamides and the like. As the shape of the membrane, there are various types such as a flat membrane type, a tubular type, a spiral type, and a hollow fiber type. A plurality of devices equipped with reverse osmosis membranes may be provided in series or in parallel.

【0024】この後段の膜装置では主に溶解している無
機塩等を分離して淡水を得るものである。
In the latter membrane apparatus, fresh water is obtained mainly by separating dissolved inorganic salts and the like.

【0025】[0025]

【実施例】【Example】

(実施例1)図1に示す装置を使用した。この装置はラ
インミキサー6、循環水槽8、濾過膜分離装置12、逆
洗手段14、貯留槽18、逆浸透膜装置20及び生産水
槽23よりなっている。ラインミキサー6の入口側には
原海水供給配管1がポンプ2を介して接続されている。
この配管1の途中には殺菌剤供給配管3、pH調整剤供
給配管4および凝集剤供給配管5がそれぞれ接続されて
いる。ラインミキサー6の出口側は配管7によって循環
水槽8に接続されている。この循環水槽8の底部には沈
澱物排出管9が接続され、この管9はバルブ10によっ
て開閉される。循環水槽8の出口側はポンプ11を介し
て濾過膜分離装置12の入口に接続され、濾過膜分離装
置12の非濾過液側出口は非濾過成分濃縮水返送配管1
3が循環水槽8に接続されて全体で循環ラインが形成さ
れている。一方、濾過液側には逆洗水配管15が接続さ
れ、逆洗排水は配管16を通って循環水槽8に投入され
るようになっている。濾過膜分離装置12の出口側配管
17は貯留槽18に接続され、貯留槽18からは高圧ポ
ンプ19を介して逆浸透膜装置20に配管接続されてい
る。逆浸透膜装置20の出口には濃縮水配管22と淡水
配管21が接続されている。淡水配管21は生産水槽2
3に接続されており、そこから淡水が製造水として取り
出される。
(Example 1) The apparatus shown in FIG. 1 was used. This apparatus comprises a line mixer 6, a circulating water tank 8, a filtration membrane separation device 12, a backwash means 14, a storage tank 18, a reverse osmosis membrane device 20, and a production water tank 23. A raw seawater supply pipe 1 is connected to an inlet side of the line mixer 6 via a pump 2.
In the middle of the pipe 1, a disinfectant supply pipe 3, a pH adjusting agent supply pipe 4, and a coagulant supply pipe 5 are connected. The outlet side of the line mixer 6 is connected to a circulating water tank 8 by a pipe 7. A precipitate discharge pipe 9 is connected to the bottom of the circulating water tank 8, and the pipe 9 is opened and closed by a valve 10. The outlet side of the circulating water tank 8 is connected to the inlet of the filtration membrane separator 12 via a pump 11, and the non-filtrate side outlet of the filtration membrane separator 12 is connected to the non-filtration component concentrated water return pipe 1.
3 is connected to the circulating water tank 8 to form a circulating line as a whole. On the other hand, a backwash water pipe 15 is connected to the filtrate side, and the backwash drainage is supplied to the circulating water tank 8 through the pipe 16. The outlet pipe 17 of the filtration membrane separation device 12 is connected to a storage tank 18, and the storage tank 18 is connected to a reverse osmosis membrane device 20 via a high-pressure pump 19. A concentrated water pipe 22 and a fresh water pipe 21 are connected to an outlet of the reverse osmosis membrane device 20. Fresh water pipe 21 is used for production tank 2
3 from which fresh water is withdrawn as production water.

【0026】この装置を用い、次のようにして海水から
ホウ素の除去された淡水を製造した。まず、ホウ素4.
1mg/lを含む原海水を配管1よりポンプ2で循環水
槽8に供給する配管において、水酸化カルシウム70m
g/lおよび硫酸アルミニウム10mg/lをそれぞれ
添加して原海水のpHを9.1にした。これをラインミ
キサー6で配管内において充分に攪拌して不溶性沈殿物
を生成させた後、循環水槽8に投入した。循環水槽8か
らはポンプ11により濾過膜分離装置12に送液し、非
濾過側液は濃縮水返送配管13により循環水槽8に循環
させた。濾過液は配管17から貯留槽18に入れ、ポン
プ19で約60kg/cm2に加圧して逆浸透膜装置2
0に送入した。逆浸透膜装置20の濃縮水は配管22か
ら取り出され、淡水は配管21から出産水槽23に入れ
た。濾過膜分離装置の逆洗排水は循環水槽には投入しな
かった。
Using this apparatus, fresh water from which boron was removed from seawater was produced as follows. First, boron 4.
In a pipe for supplying raw seawater containing 1 mg / l from a pipe 1 to a circulating water tank 8 by a pump 2, calcium hydroxide 70 m
g / l and 10 mg / l of aluminum sulfate were added to adjust the pH of the raw seawater to 9.1. This was sufficiently stirred in a pipe by a line mixer 6 to generate an insoluble precipitate, and then charged into a circulating water tank 8. The liquid was sent from the circulating water tank 8 to the filtration membrane separation device 12 by the pump 11, and the non-filtration side liquid was circulated to the circulating water tank 8 by the concentrated water return pipe 13. The filtrate is put into a storage tank 18 through a pipe 17, and is pressurized to about 60 kg / cm 2 by a pump 19, and
0. The concentrated water of the reverse osmosis membrane device 20 was taken out from the pipe 22, and the fresh water was put into the birth tank 23 from the pipe 21. The backwash wastewater from the filtration membrane separator was not charged into the circulating water tank.

【0027】各膜装置の仕様および運転条件は次の通り
である。
The specifications and operating conditions of each membrane device are as follows.

【0028】精密ろ過膜装置 膜 材 質:ポリプロピレン 膜 形 状:中空糸型 公称孔径 :0.2μm ろ過方式 :外圧型全量ろ過 膜透過流束:1.5m/日 逆洗間隔 :20分ろ過/3分逆洗逆浸透膜装置 膜 材 質:ポリアミド系合成複合膜 膜 形 状:スパイラル型 塩排除率 :99.5% 運転圧力 :60kg/cm2 Microfiltration membrane device Membrane Material: Polypropylene Membrane Shape: Hollow fiber type Nominal pore size: 0.2 μm Filtration method: External pressure type total filtration Membrane flux: 1.5 m / day Backwash interval: 20 minutes filtration / Backwashing reverse osmosis membrane device for 3 minutes Material: Polyamide synthetic composite membrane Shape: Spiral type Salt rejection: 99.5% Operating pressure: 60 kg / cm 2

【0029】上記の実験条件にて通水実験を行い、表1
に示すような結果を得た。
A water flow experiment was conducted under the above experimental conditions.
The result as shown in FIG.

【0030】(実施例2)実施例1において逆洗排水を
循環水槽に投入し、表1に示す結果を得た。
Example 2 Backwash wastewater in Example 1 was charged into a circulating water tank, and the results shown in Table 1 were obtained.

【0031】(実施例3)水酸化カルシウムの添加量を
50mg/lにして原海水のpHを8.0としたほかは
実施例2と同様に処理し、表1に示す結果を得た。
Example 3 The same treatment as in Example 2 was carried out except that the amount of calcium hydroxide added was 50 mg / l and the pH of the raw seawater was 8.0, and the results shown in Table 1 were obtained.

【0032】(比較例1)原海水中に硫酸アルミニウム
および水酸化カルシウムを添加しなかったこと以外は実
施例2と同様の処理を行い、表1に示す結果を得た。
(Comparative Example 1) The same treatment as in Example 2 was carried out except that aluminum sulfate and calcium hydroxide were not added to the raw seawater, and the results shown in Table 1 were obtained.

【0033】[0033]

【表1】 [Table 1]

【0034】(実施例4)図1に示す装置を用いて、ホ
ウ素4.15mg/lを含む原海水中に硫酸アルミニウ
ム5mg/lおよび水酸化カルシウム60mg/lを添
加してpHを9.0に調整し、下記の仕様の限外ろ過膜
装置および逆浸透膜装置を用いて処理した。濾過膜分離
装置の逆洗排水は循環水槽に投入しなかった。
Example 4 Using the apparatus shown in FIG. 1, 5 mg / l aluminum sulfate and 60 mg / l calcium hydroxide were added to raw seawater containing 4.15 mg / l boron to adjust the pH to 9.0. And processed using an ultrafiltration membrane device and a reverse osmosis membrane device having the following specifications. The backwash wastewater from the filtration membrane separator was not charged into the circulating water tank.

【0035】精密ろ過膜装置 膜 材 質:ポリアクリロニトリル 膜 形 状:中空糸型 分画分子量:13000 ろ過方式 :外圧型クロスフローろ過 膜透過流束:0.7m/日 逆洗間隔 :20分ろ過/20秒逆洗 循環水量 :原海水の1.5倍量逆浸透膜装置 膜 材 質:ポリアミド系合成複合膜 膜 形 状:スパイラル型 塩排除率 :99.5% 運転圧力 :60kg/cm2 Microfiltration membrane device Membrane material: Polyacrylonitrile Membrane Shape: Hollow fiber type Molecular weight cut off: 13000 Filtration method: External pressure type cross flow filtration Membrane flux: 0.7 m / day Backwash interval: 20 minutes filtration / 20 seconds backwashing Circulating water volume: 1.5 times the amount of raw seawater Reverse osmosis membrane device Membrane Material: Polyamide-based synthetic composite membrane Membrane shape: Spiral type Salt rejection rate: 99.5% Operating pressure: 60 kg / cm 2

【0036】上記の実験条件にて通水実験を行い、表2
に示すような結果を得た。
A water flow experiment was conducted under the above experimental conditions.
The result as shown in FIG.

【0037】(実施例5)前段の膜分離装置の物理洗浄
洗排水を循環水槽へ返送したこと以外は実施例4と同様
の処理を行い、表2に示すような結果を得た。
(Example 5) The same treatment as in Example 4 was carried out except that the physical cleaning washing wastewater of the former membrane separation apparatus was returned to the circulating water tank, and the results shown in Table 2 were obtained.

【0038】(実施例6)原海水のpHを8.2に調整
したこと以外は実施例5と同様の処理を行い、表2に示
すような結果を得た。
Example 6 The same treatment as in Example 5 was performed except that the pH of the raw seawater was adjusted to 8.2, and the results shown in Table 2 were obtained.

【0039】(比較例2)原海水中に硫酸アルミニウム
および水酸化カルシウムを添加しなかったこと以外は実
施例5と同様の処理を行い、表2に示すような結果を得
た。
Comparative Example 2 The same treatment as in Example 5 was performed except that aluminum sulfate and calcium hydroxide were not added to the raw seawater, and the results shown in Table 2 were obtained.

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【発明の効果】以上述べたように本発明によれば、最終
段の淡水中のホウ素含有濃度を水質監視項目値のほか
0.2mg/l以下に低減することができる。しかも、
逆浸透膜装置の前段に精密ろ過膜あるいは限外ろ過膜の
ような膜分離装置を採用したことにより、装置がよりコ
ンパクトになり、全体のプロセスの運転が簡単になって
操作に熟練を要することなく、無人運転が可能になる等
の効果を有する。
As described above, according to the present invention, the boron-containing concentration in the final stage fresh water can be reduced to 0.2 mg / l or less in addition to the water quality monitoring item value. Moreover,
By adopting a membrane separation device such as a microfiltration membrane or ultrafiltration membrane in front of the reverse osmosis membrane device, the device becomes more compact, the operation of the whole process is simplified, and operation requires skill. And has an effect that unmanned driving becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例におけるホウ素除去方法に
使用された逆浸透法海水淡水化装置の全体構成図であ
る。
FIG. 1 is an overall configuration diagram of a reverse osmosis seawater desalination apparatus used in a boron removal method according to one embodiment of the present invention.

【図2】 従来の逆浸透法海水淡水化装置の1例の全体
構成図である。
FIG. 2 is an overall configuration diagram of an example of a conventional reverse osmosis seawater desalination apparatus.

【符号の説明】[Explanation of symbols]

6……ラインミキサー 8……循環水槽 10…膜分離装置 12…膜透過水 14…逆洗手段 18…貯留槽 20…逆浸透膜装置 23…生産水槽 6 ... line mixer 8 ... circulating water tank 10 ... membrane separation device 12 ... membrane permeated water 14 ... backwashing means 18 ... storage tank 20 ... reverse osmosis membrane device 23 ... production water tank

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 原海水にpH調整剤およびホウ素含有不
溶性沈殿物を生成させうる凝集剤を添加して循環水槽に
供給し、該循環水槽の上澄を精密濾過膜または限外濾過
膜で濾過し、該精密濾過膜または限外濾過膜の非濾過成
分濃縮水は前記循環水槽へ循環し、濾過水は逆浸透膜で
透過することを特徴とする、海水からホウ素の除去され
た淡水を製造する方法
1. A pH adjusting agent and a flocculant capable of forming a boron-containing insoluble precipitate are added to raw seawater and supplied to a circulating water tank, and the supernatant of the circulating water tank is filtered through a microfiltration membrane or an ultrafiltration membrane. The non-filtration component concentrated water of the microfiltration membrane or the ultrafiltration membrane is circulated to the circulating water tank, and the filtered water is permeated by a reverse osmosis membrane to produce fresh water from which boron is removed from seawater. how to
【請求項2】 原海水のpHを9以上に調整することを
特徴とする請求項1記載の方法
2. The method according to claim 1, wherein the pH of the raw seawater is adjusted to 9 or more.
【請求項3】 凝集剤が、カルシウム化合物および/ま
たはアルミニウム化合物であることを特徴とする請求項
1または2記載の方法
3. The method according to claim 1, wherein the coagulant is a calcium compound and / or an aluminum compound.
【請求項4】 精密濾過膜または限外濾過膜の洗浄排水
を循環水槽へ供給することを特徴とする請求項1、2ま
たは3記載の方法
4. The method according to claim 1, wherein the cleaning wastewater of the microfiltration membrane or the ultrafiltration membrane is supplied to a circulating water tank.
JP9031567A 1997-02-17 1997-02-17 Method of removing boron in reverse osmosis seawater desalination Pending JPH10225682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9031567A JPH10225682A (en) 1997-02-17 1997-02-17 Method of removing boron in reverse osmosis seawater desalination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9031567A JPH10225682A (en) 1997-02-17 1997-02-17 Method of removing boron in reverse osmosis seawater desalination

Publications (1)

Publication Number Publication Date
JPH10225682A true JPH10225682A (en) 1998-08-25

Family

ID=12334766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9031567A Pending JPH10225682A (en) 1997-02-17 1997-02-17 Method of removing boron in reverse osmosis seawater desalination

Country Status (1)

Country Link
JP (1) JPH10225682A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003062151A1 (en) * 2002-01-22 2005-05-19 東レ株式会社 Fresh water generation method and fresh water generator
US7097769B2 (en) 2001-02-26 2006-08-29 I.D.E. Technologies Ltd. Method of boron removal in presence of magnesium ions
JP2007038171A (en) * 2005-08-04 2007-02-15 Nec Facilities Ltd Method and apparatus for treating boron-containing drainage
US7442309B2 (en) * 2002-06-13 2008-10-28 Hydranautics Methods for reducing boron concentration in high salinity liquid
US7618538B2 (en) * 2006-08-10 2009-11-17 Acciona Agua, S.A.U. Procedure for elimination of boron from sea-water by reverse osmosis membranes
WO2011010347A1 (en) * 2009-07-22 2011-01-27 株式会社 東芝 System for producing fresh water
KR101030192B1 (en) * 2010-07-13 2011-04-20 서울시립대학교 산학협력단 Method of removing boron in seawater adopting crystallization process
CN102433434A (en) * 2010-09-29 2012-05-02 王辉 Method for increasing recovery rate of lithium separated with lithium-containing brine membrane method by using water as circulating working substance (water washing circulation method)
US8357300B2 (en) 2010-08-16 2013-01-22 Hydranautics Methods and materials for selective boron adsorption from aqueous solution
WO2013111826A1 (en) * 2012-01-24 2013-08-01 東レ株式会社 Desalination method and desalination device
CN103466753A (en) * 2013-08-29 2013-12-25 张英华 Seawater reverse osmosis desalination and seawater concentration method by using concentration polarization and periodic instantaneous flushing principle
WO2014196132A1 (en) * 2013-06-03 2014-12-11 三菱電機株式会社 Method and device for treating boron-containing water
KR101507020B1 (en) * 2014-03-11 2015-04-08 주식회사 포스코건설 Desalination apparatus comprising plural intake-treatment part and Control method the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7097769B2 (en) 2001-02-26 2006-08-29 I.D.E. Technologies Ltd. Method of boron removal in presence of magnesium ions
JPWO2003062151A1 (en) * 2002-01-22 2005-05-19 東レ株式会社 Fresh water generation method and fresh water generator
US7442309B2 (en) * 2002-06-13 2008-10-28 Hydranautics Methods for reducing boron concentration in high salinity liquid
JP2007038171A (en) * 2005-08-04 2007-02-15 Nec Facilities Ltd Method and apparatus for treating boron-containing drainage
US7618538B2 (en) * 2006-08-10 2009-11-17 Acciona Agua, S.A.U. Procedure for elimination of boron from sea-water by reverse osmosis membranes
WO2011010347A1 (en) * 2009-07-22 2011-01-27 株式会社 東芝 System for producing fresh water
KR101030192B1 (en) * 2010-07-13 2011-04-20 서울시립대학교 산학협력단 Method of removing boron in seawater adopting crystallization process
US8357300B2 (en) 2010-08-16 2013-01-22 Hydranautics Methods and materials for selective boron adsorption from aqueous solution
CN102433434A (en) * 2010-09-29 2012-05-02 王辉 Method for increasing recovery rate of lithium separated with lithium-containing brine membrane method by using water as circulating working substance (water washing circulation method)
WO2013111826A1 (en) * 2012-01-24 2013-08-01 東レ株式会社 Desalination method and desalination device
WO2014196132A1 (en) * 2013-06-03 2014-12-11 三菱電機株式会社 Method and device for treating boron-containing water
CN103466753A (en) * 2013-08-29 2013-12-25 张英华 Seawater reverse osmosis desalination and seawater concentration method by using concentration polarization and periodic instantaneous flushing principle
KR101507020B1 (en) * 2014-03-11 2015-04-08 주식회사 포스코건설 Desalination apparatus comprising plural intake-treatment part and Control method the same

Similar Documents

Publication Publication Date Title
US8758621B2 (en) Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
US5501798A (en) Microfiltration enhanced reverse osmosis for water treatment
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
KR101193902B1 (en) Water-purifying system and method using membrane filtration for manufacturing purified water
CA2905926C (en) Process for water treatment prior to reverse osmosis
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
JPH09248429A (en) Separation method and apparatus therefor
JP2003080246A (en) Apparatus and method for treating water
WO2017159303A1 (en) Method for treating waste water having high hardness
JP2003053390A (en) Clear water production system
JPH09220564A (en) Removal of boron in reverse osmosis seawater desalting
Chang et al. Comparison of SAR (sodium adsorption ratio) between RO and NF processes for the reclamation of secondary effluent
Ericsson et al. Membrane applications in raw water treatment with and without reverse osmosis desalination
JP3838689B2 (en) Water treatment system
JP2019076827A (en) Water treatment equipment and water treatment method
JP6467911B2 (en) Water treatment system
JP2002346347A (en) Method and apparatus for filtration
JP3087750B2 (en) Sterilization method of membrane
Abdel-Fatah et al. Industrial wastewater treatment by membrane process
JPH119972A (en) Membrane filtration apparatus and membrane filtration method
Mjali et al. Ultrafiltration Membrane Process for Municipal Wastewater Treatment: A Review
JP3228588B2 (en) Water purification treatment method
US20210354088A1 (en) Method for the production of drinking water
WO2017154624A1 (en) Method for treating high-hardness discharged water
Hillis Full-scale application of membrane microfiltration in North West Water Huntington stage 4, provision of an 80 Mld plant