JP3228588B2 - Water purification treatment method - Google Patents

Water purification treatment method

Info

Publication number
JP3228588B2
JP3228588B2 JP04764793A JP4764793A JP3228588B2 JP 3228588 B2 JP3228588 B2 JP 3228588B2 JP 04764793 A JP04764793 A JP 04764793A JP 4764793 A JP4764793 A JP 4764793A JP 3228588 B2 JP3228588 B2 JP 3228588B2
Authority
JP
Japan
Prior art keywords
water
hollow fiber
membrane
water purification
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04764793A
Other languages
Japanese (ja)
Other versions
JPH06254359A (en
Inventor
修志 中塚
忠昭 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP04764793A priority Critical patent/JP3228588B2/en
Publication of JPH06254359A publication Critical patent/JPH06254359A/en
Application granted granted Critical
Publication of JP3228588B2 publication Critical patent/JP3228588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は河川水、湖沼水あるいは
池水等の表流水中の懸濁微粒子、有機懸濁物質および細
菌類などを除去し浄水を得るための中空糸分離膜を用い
た浄水化処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a hollow fiber separation membrane for removing purified fine particles, organic suspended substances and bacteria in surface water such as river water, lake water or pond water to obtain purified water. It relates to a water purification treatment method.

【0002】[0002]

【従来の技術】従来、河川水や湖沼水等の表流水から浄
水を得るための浄水化処理方法としては、凝集、沈殿、
砂濾過、消毒という工程を順次行うことにより、原水を
浄化するのが一般的であり、そのための設備に大きな設
置スペースが必要であった。一方、近年、河川等の汚濁
が進み、原水の水質が悪化しており、より安全で美味し
い水を確保するため、従来の浄水化処理方法に生物処
理、オゾン処理、活性炭処理などのシステムを付加する
高度浄水化処理方法の導入が検討されている。しかしな
がら、従来の高度浄水化処理方法に、上述の処理システ
ムを新たに付加することは設備スペースの更なる増加を
招くのみならず、複雑な計測制御技術が必要となり処理
コストも増加するなどの問題点がある。
2. Description of the Related Art Conventionally, water purification treatment methods for obtaining purified water from surface water such as river water or lake water include coagulation, sedimentation, and sedimentation.
It is common to purify raw water by sequentially performing the steps of sand filtration and disinfection, and a large installation space is required for equipment for the purification. On the other hand, in recent years, the quality of raw water has deteriorated due to the pollution of rivers, etc., and systems such as biological treatment, ozone treatment, and activated carbon treatment have been added to conventional water purification treatment methods to secure safer and more delicious water. The introduction of advanced water purification treatment methods is under study. However, the addition of the above-mentioned treatment system to the conventional advanced water purification treatment method not only causes a further increase in equipment space, but also requires a complicated measurement and control technique and increases the treatment cost. There is a point.

【0003】このような状況において、従来の浄水化設
備に比べ大幅にコンパクトで、効率的な浄水化処理方法
を目的とし、分離膜を用いて除濁処理を行うことによ
り、従来の凝集、沈殿、砂濾過を代替し得る処理方法が
開発され始めている。
[0003] Under such circumstances, the purpose of the present invention is to provide a water purification treatment method which is much more compact and efficient than conventional water purification equipment. Processing methods that can replace sand filtration have begun to be developed.

【0004】膜分離技術を利用した浄水化処理は、その
装置のコンパクト性のみならず、凝集剤などの薬注が不
必要になり、薬品費用の削減ができ、また運転管理や維
持管理が容易となるなどの利点を有する。このような浄
水化処理用の分離膜としては、透過速度が大きく、かつ
この速度が経時的に変化しないことが要求されることは
勿論のこと、原水中の懸濁粒子、有機懸濁物質、細菌お
よびウイルスなどを効果的に除去することが求められ
る。
[0004] The water purification treatment using the membrane separation technology not only requires the compactness of the apparatus, but also eliminates the necessity of injecting a coagulant or the like, reduces the cost of chemicals, and facilitates operation management and maintenance. It has advantages such as Such a separation membrane for water purification treatment is required not only to have a high permeation rate and not to change with the passage of time, particles suspended in raw water, organic suspended substances, Effective removal of bacteria and viruses is required.

【0005】最近、家庭用浄水器にも用いられるように
なった精密濾過膜は、懸濁粒子や細菌をほぼ完全に阻止
でき、また、透過速度が大きいという特徴をもつため、
上水道システムへもその適用が検討されている(金属臨
時増刊号、4月、47頁(1991))。しかし、精密濾過膜
では、膜孔径が比較的大きく(0.01〜1.0 μm)、有機ハ
ロゲン化合物の前駆体と言われているフミン質などの有
機物質を、原水中から除去することが難しいため、膜を
透過した大部分のフミン質と殺菌のために注入された塩
素とが反応して、発癌性物質として知られるトリハロメ
タン等を生成しやすいという問題点がある。
[0005] Microfiltration membranes, which have recently been used in household water purifiers, are characterized by being capable of almost completely stopping suspended particles and bacteria and having a high permeation rate.
Its application to water supply systems is also being considered (Metal Extra Number, April, p. 47 (1991)). However, microfiltration membranes have a relatively large membrane pore size (0.01-1.0 μm) and it is difficult to remove organic substances such as humic substances, which are said to be precursors of organic halogen compounds, from raw water. Most of the humic substances that have permeated the water and the chlorine injected for sterilization react with each other to easily generate trihalomethane, which is known as a carcinogen.

【0006】一方、膜処理法として逆浸透(RO)法あ
るいは低圧逆浸透(ルーズRO)法を利用して原水中の
溶存性物質を完全に除去し、よりクリーンな水を得よう
とする試みがなされた(水道協会雑誌、第58巻、第11
号、2頁(1989))。しかしながら、逆浸透法で溶存性
物質を除去しようとすると、カルシウム、マグネシウ
ム、カリウムおよびナトリウムなどのミネラル成分も一
緒に除去されてしまい、飲料水として適さなくなるとい
う問題点があった。また、一般に逆浸透法では、膜間差
圧を増大させて透過速度を大きくするが、このような圧
力の増加は浄水化処理の消費電力を増加させる結果、処
理コストが高くなるという問題点もある。
On the other hand, an attempt to completely remove dissolved substances in raw water by using a reverse osmosis (RO) method or a low-pressure reverse osmosis (loose RO) method as a membrane treatment method to obtain cleaner water. (Water Association of Japan, Vol. 58, No. 11
No. 2, p. 1989). However, when trying to remove dissolved substances by the reverse osmosis method, mineral components such as calcium, magnesium, potassium, and sodium are also removed, and there has been a problem that they are not suitable for drinking water. In general, in the reverse osmosis method, the permeation rate is increased by increasing the transmembrane pressure difference. However, such an increase in the pressure increases the power consumption of the water purification treatment, thereby increasing the processing cost. is there.

【0007】そこで、限外濾過法を浄水化処理に適用す
れば、原水中からの各種ミネラル成分を残存させなが
ら、懸濁物質や微生物を除くと共に、フミン質などの溶
存性有機物質をも効果的に除去できるものと期待され
る。
[0007] Therefore, if the ultrafiltration method is applied to the water purification treatment, suspended minerals and microorganisms are removed while various mineral components from the raw water remain, and the dissolved organic substances such as humic substances are also effective. It is expected that it can be removed.

【0008】限外濾過法を用いてフミン質を除去する例
としては、平膜タイプによるTaylorらの報告(Journal
of AWWA ,79,(8), p.72 (1987)) があるが、その除去
率は僅かに40〜57%であった。また、ポリ塩化アルミニ
ウム凝集剤を併用して平膜で限外濾過処理すると、80〜
90%のフミン酸阻止率が得られることが報告されている
(Environmental Technology,11,1007(1990))が、こ
の場合の限外濾過のみのフミン酸阻止率は、20%以下で
あった。
As an example of removing humic substances using an ultrafiltration method, a report by Taylor et al. On a flat membrane type (Journal
of AWWA, 79 , (8), p. 72 (1987)), but the removal rate was only 40-57%. In addition, when ultrafiltration treatment is performed with a flat membrane using a polyaluminum chloride flocculant together,
It has been reported that a humic acid rejection of 90% can be obtained (Environmental Technology, 11 , 1007 (1990)), but the humic acid rejection of only ultrafiltration in this case was 20% or less.

【0009】[0009]

【課題を解決するための手段】本発明者等は、前記目的
を達成するため鋭意検討を重ねた結果、本発明を完成す
るに至った。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, completed the present invention.

【0010】即ち本発明は、原水に含まれるアルカリ金
属およびアルカリ土類金属のカチオンを99%以上透過さ
せ、かつ重量平均分子量が2万のフミン酸を80%以上阻
止すると共に、膜間差圧1kg/cm 2 、温度25℃における
純水の透過速度が 150リットル/m 2 ・hr以上である中空
糸分離膜を用いて、表流水からの原水を前処理としての
凝集処理をすることなく処理することを特徴とする浄水
化処理方法に関する。
[0010] That is, the present invention relates to alkaline gold contained in raw water.
99% or more permeation of cations of genus and alkaline earth metals
And inhibits humic acid with a weight average molecular weight of 20,000 by 80% or more.
At the same time, at a transmembrane pressure of 1 kg / cm 2 and a temperature of 25 ° C.
Hollow transmission rate of pure water is 150 liters / m 2 · hr or more
Using a yarn separation membrane, raw water from surface water as pre-treatment
Water purification characterized by treatment without coagulation treatment
The present invention relates to a chemical treatment method .

【0011】本発明の分離膜を用いて浄水処理を行う
と、原水に含まれる有用なミネラル成分(Ca++,Mg++
Na+ , K+ など)は膜を透過し、一方、有害なトリハロ
メタンの前駆体であるフミン酸を80%以上除去できる。
更に、低分子量のフミン酸を除去できるため、フミン酸
よりも大きなサイズの高分子量有機物質、コロイドおよ
び懸濁微粒子をほぼ完全に阻止することができる。
When water purification treatment is performed using the separation membrane of the present invention, useful mineral components (Ca ++ , Mg ++ ,
Na + , K +, etc.) can permeate the membrane, while humic acid, a harmful trihalomethane precursor, can be removed by more than 80%.
Further, since humic acid having a low molecular weight can be removed, high-molecular-weight organic substances, colloids and suspended fine particles having a size larger than that of humic acid can be almost completely prevented.

【0012】また、本発明の膜は中空糸構造であるた
め、膜モジュールの体積当たりの膜面積が大きく従って
透過量も大きい。更に、逆洗が可能であるため、透過速
度の低下も抑えることができる。
Further, since the membrane of the present invention has a hollow fiber structure, the membrane area per volume of the membrane module is large, and thus the permeation amount is large. Furthermore, since backwashing is possible, a decrease in permeation speed can be suppressed.

【0013】本発明でいう重量平均分子量が2万のフミ
ン酸とは、市販のフミン酸試薬を濃度10ppm 、pH8およ
び電導度 150μS に調整した溶液のゲルクロマトグラフ
ィーによるポリエチレングリコール換算重量平均分子量
が約20,000のフミン酸のことである。
The term "humic acid having a weight average molecular weight of 20,000" as used herein means a weight average molecular weight in terms of polyethylene glycol by gel chromatography of a solution obtained by adjusting a commercially available humic acid reagent to a concentration of 10 ppm, a pH of 8 and an electric conductivity of 150 μS. 20,000 humic acids.

【0014】本発明の中空糸膜は、上記のフミン酸を80
%以上阻止し、かつアルカリ金属およびアルカリ土類金
属のカチオンを99%以上透過できる限りにおいては膜の
分画分子量が限定されないが、分画分子量が 1,000〜10
0,000 の限外濾過膜であることが望ましい。
The hollow fiber membrane of the present invention comprises the above humic acid
% Or more, and as long as 99% or more of alkali metal and alkaline earth metal cations can be permeated, the molecular weight cut off of the membrane is not limited.
Desirably, the membrane is a 000 ultrafiltration membrane.

【0015】中空糸膜の内径、外径および長さなども特
に限定されるものではないが、原水が中空糸膜の内側を
流れる内圧型濾過では、原水中の懸濁物質が中空糸膜の
流路内部で目づまりしないことと、モジュール当たりの
膜面積を増大することを考慮して、内径は0.3〜1.5mmが
好ましい。また外径は膜の機械的強度を考慮して0.5〜
2.5mm が好ましい。このような内外径を有する中空糸膜
を用いて濾過速度を効果的に増加させるためには、中空
糸長は 0.7〜1.5 mであることが望ましい。
The inner diameter, outer diameter, length and the like of the hollow fiber membrane are not particularly limited. However, in the internal pressure filtration in which raw water flows inside the hollow fiber membrane, suspended matter in the raw water is reduced by the hollow fiber membrane. The inner diameter is preferably 0.3 to 1.5 mm in consideration of not being clogged inside the flow path and increasing the membrane area per module. In addition, the outer diameter should be 0.5 ~ considering the mechanical strength of the membrane.
2.5 mm is preferred. In order to effectively increase the filtration rate using a hollow fiber membrane having such an inner and outer diameter, the length of the hollow fiber is desirably 0.7 to 1.5 m.

【0016】一般に懸濁物を含む原水を分離膜で濾過す
ると、懸濁物により膜面がファウリングし、濾過速度が
経時的に減少する。本発明の中空糸膜は膜面に付着した
このようなファウリング物質をはく離させ濾過速度を向
上させるため、効果的な逆洗が可能な膜構造を有するこ
とが好ましい。すなわち、中空糸膜の内圧型濾過では膜
孔内部へのファウリングを抑えるため、膜断面の内側に
最も緻密な層を有する内スキン構造の中空糸膜が好まし
く、また、外圧型濾過では外スキン構造の中空糸膜であ
ることが好ましいが、外スキン構造の膜では、膜表面に
キズがつき欠陥を生じやすいため、内スキン構造の中空
糸膜がより好ましい。
In general, when raw water containing a suspension is filtered through a separation membrane, the suspension fouls the membrane surface, and the filtration rate decreases with time. The hollow fiber membrane of the present invention preferably has a membrane structure capable of effective backwashing in order to remove such fouling substances attached to the membrane surface and improve the filtration rate. That is, in the internal pressure type filtration of the hollow fiber membrane, a hollow fiber membrane having an inner skin structure having the most dense layer inside the membrane cross section is preferable in order to suppress fouling inside the membrane pores. Although a hollow fiber membrane having a structure is preferable, a membrane having an outer skin structure is more preferable because a hollow fiber membrane having an inner skin structure is more preferable since the surface of the membrane is easily scratched and causes defects.

【0017】本発明の中空糸膜の素材は限定されること
はないが、例えば、酢酸セルロース、芳香族ポリスルホ
ン、芳香族ポリエーテルスルホン、ポリアクリロニトリ
ル、ポリエチレン、ポリプロピレン、ポリビニールアル
コール、脂肪族ポリアミドなどから形成される中空糸膜
を用いることができる。
The material of the hollow fiber membrane of the present invention is not limited, but examples thereof include cellulose acetate, aromatic polysulfone, aromatic polyether sulfone, polyacrylonitrile, polyethylene, polypropylene, polyvinyl alcohol, and aliphatic polyamide. Can be used.

【0018】[0018]

【実施例】以下に本発明を実施例により具体的に説明す
る。
The present invention will be specifically described below with reference to examples.

【0019】実施例1 原水に含まれるミネラル成分のモデル溶液として、塩化
ナトリウム、塩化カリウム、塩化カルシウムおよび塩化
マグネシウムを超純水に溶解し、それぞれの0.2 重量%
水溶液を得た。また、フミン酸水溶液は以下のようにし
て得た。市販のフミン酸試薬(和光純薬工業(株)製)
を 110℃で2時間乾燥後、1.00gを秤量し、 0.1規定の
水酸化ナトリウム水溶液 100mlに加えて、約1時間激し
く攪拌した後、イオン交換水を加えて1リットルとし、
この溶液を0.45μm の孔径を有する精密濾過膜で濾過し
て、溶液中の不溶解成分を除去した。さらにこの溶液を
激しく攪拌しながら、液中に塩化ナトリウム水溶液およ
び 0.001規定の硫酸水溶液を徐々に加えつつ、濃度10pp
m 、電導度 150μS およびpH8のフミン酸水溶液を得
た。本フミン酸水溶液をゲルクロマトグラフを用いて、
吸光度を測定し、単分散の標準ポリエチレングリコール
によりフミン酸の重量平均分子量を求めた。使用したフ
ミン酸のポリエチレングリコール換算重量平均分子量は
約20,000であり、数百から十万以下の幅広い分子量分布
を有する。
Example 1 As a model solution of a mineral component contained in raw water, sodium chloride, potassium chloride, calcium chloride and magnesium chloride were dissolved in ultrapure water, and 0.2% by weight of each was dissolved.
An aqueous solution was obtained. The aqueous humic acid solution was obtained as follows. Commercial humic acid reagent (manufactured by Wako Pure Chemical Industries, Ltd.)
After drying at 110 ° C. for 2 hours, 1.00 g was weighed, added to 100 ml of a 0.1 N sodium hydroxide aqueous solution, vigorously stirred for about 1 hour, and ion-exchanged water was added to make 1 liter.
This solution was filtered through a microfiltration membrane having a pore size of 0.45 μm to remove insoluble components in the solution. Further, while vigorously stirring this solution, while gradually adding an aqueous solution of sodium chloride and an aqueous solution of 0.001 N sulfuric acid to the solution, the concentration was 10 pp.
A humic acid aqueous solution having a conductivity of 150 μS and a pH of 8 was obtained. This humic acid aqueous solution was subjected to gel chromatography,
The absorbance was measured, and the weight average molecular weight of humic acid was determined using monodispersed standard polyethylene glycol. The humic acid used has a weight average molecular weight in terms of polyethylene glycol of about 20,000, and has a wide molecular weight distribution of several hundred to 100,000 or less.

【0020】上述した、ミネラル成分の溶液およびフミ
ン酸水溶液を種々の中空糸膜の内側に充満し、圧力1kg
/cm2 の下で溶液を速度1cm/s で中空糸膜の長さ方向
に流通させつつ膜透過実験を行った。使用した膜はダイ
セル化学工業(株)製ポリエーテルスルホン(PES)中空
糸膜; FUS−0151(分画分子量10,000、内径0.5mm)、FU
S−0382(分画分子量30,000、内径0.8mm)、 FUS−1041
(分画分子量100,000、内径0.4mm)、 FUS−1581(分画
分子量50,000、内径0.8mm)およびダイセル化学工業
(株)製ポリアクリロニトリル(PAN)中空糸膜; FUY−
03A1(分画分子量30,000、内径1.0mm)であり、いずれの
膜も内表面の孔径が最も緻密な非対称中空糸膜である。
原液および膜透過液中の溶質濃度は、ミネラル成分を電
気電導度により、またフミン酸を全有機炭素計により測
定した。種々の膜による各種溶質の透過率、膜間差圧が
1kg/cm2 における25℃純水の透過速度およびフミン酸
の阻止率を表1に示す。いずれの膜においても、ミネラ
ル成分は99%以上透過するがフミン酸は80%以上阻止さ
れる。
The above-mentioned mineral component solution and humic acid aqueous solution are filled inside various hollow fiber membranes, and the pressure is 1 kg.
While the solution was circulated in the longitudinal direction of the hollow fiber membrane at a rate of 1 cm / s under / cm 2 was carried out membrane permeation experiment. The membrane used was a polyethersulfone (PES) hollow fiber membrane manufactured by Daicel Chemical Industries, Ltd .; FUS-0151 (fraction molecular weight 10,000, inner diameter 0.5 mm), FU
S-0382 (fraction molecular weight 30,000, inner diameter 0.8 mm), FUS-1041
(Fraction molecular weight 100,000, inner diameter 0.4 mm), FUS-1581 (fraction molecular weight 50,000, inner diameter 0.8 mm) and Daicel Chemical Industries, Ltd. polyacrylonitrile (PAN) hollow fiber membrane; FUY-
03A1 (fraction molecular weight 30,000, inner diameter 1.0 mm), and all membranes are asymmetric hollow fiber membranes with the finest pore diameters on the inner surface.
The solute concentrations in the undiluted solution and the membrane permeate were measured for the mineral component by electrical conductivity and for humic acid by a total organic carbon meter. Table 1 shows the permeability of various solutes through the various membranes, the permeation rate of pure water at 25 ° C at a transmembrane pressure of 1 kg / cm 2, and the rejection of humic acid. In each case, 99% or more of the mineral component is permeated, while 80% or more of the humic acid is blocked.

【0021】比較例1 実施例1と同様のミネラル溶液およびフミン酸水溶液を
ダイセル化学工業(株)製ポリエーテルスルホン中空糸
膜 FUS−5081(分画分子量500,000 、内径 0.8mm) 、三
菱レーヨン社製ポリエチレン中空糸膜ステラポア−S(登
録商標、孔径0.03μm 、相当分画分子量500,000 、内径
0.3mm)を用いて実施例と同様の膜透過実験を行った。 F
US−5081はスポンジ状の孔が均質に積層された構造であ
り、ステラポアーS はスリット状の孔が均質に積層され
た構造を有する。結果を表1に示す。これらの中空糸膜
によるフミン酸の阻止率は数%以下と小さい。
Comparative Example 1 The same mineral solution and aqueous humic acid solution as in Example 1 were mixed with a polyethersulfone hollow fiber membrane FUS-5081 (manufactured by Daicel Chemical Industries, Ltd., molecular weight cut off 500,000, inner diameter 0.8 mm), manufactured by Mitsubishi Rayon Co., Ltd. Polyethylene hollow fiber membrane Stellapore-S (registered trademark, pore size 0.03 μm, equivalent molecular weight cut off 500,000, inner diameter
0.3 mm), and the same membrane permeation experiment as in the example was performed. F
US-5081 has a structure in which sponge-like holes are uniformly laminated, and Stellapore S has a structure in which slit-like holes are uniformly laminated. Table 1 shows the results. The rejection of humic acid by these hollow fiber membranes is as small as several percent or less.

【0022】比較例2 実施例1と同様のミネラル溶液およびフミン酸水溶液
を、ダイセル化学工業(株)製の酢酸セルロース逆浸透
膜 DRS−97、およびポリアミド逆浸透複合膜DRA−98を
用いて実施例1と同様の膜透過実験を行った。結果を表
1に示す。これらの膜によりミネラル成分は数%しか透
過せず、90%以上阻止される。
Comparative Example 2 The same mineral solution and aqueous humic acid solution as in Example 1 were used using a cellulose acetate reverse osmosis membrane DRS-97 and a polyamide reverse osmosis composite membrane DRA-98 manufactured by Daicel Chemical Industries, Ltd. The same membrane permeation experiment as in Example 1 was performed. Table 1 shows the results. These membranes allow only a few percent of the mineral components to pass through and block more than 90%.

【0023】[0023]

【表1】 [Table 1]

【0024】*1 透過率=(透過液溶質濃度/原液溶
質濃度)×100 *2 PES :ポリエーテルスルホン PAN :ポリアクリロニトリル PE :ポリエチレン CA :酢酸セルロース PA :ポリアミド
* 1 Permeability = (permeate solute concentration / stock solution solute concentration) x 100 * 2 PES: polyether sulfone PAN: polyacrylonitrile PE: polyethylene CA: cellulose acetate PA: polyamide

【0025】[0025]

【発明の効果】河川水や湖沼水などの表流水を浄化し、
水道水を得るための浄水処理操作において、本発明の中
空糸膜を使用すると、飲料水として有用なミネラル成分
が原水中から透過し、一方有害なトリハロメタンの前駆
体であるフミン酸の大部分を阻止することができる。ま
た、中空糸膜構造であるため、膜の外側から内側、もし
くは、内側から外側への逆流洗浄を濾過期間中、効果的
に行うことができ、濾過速度を長時間にわたって大きく
保つことができる。
The present invention purifies surface water such as river water and lake water,
When the hollow fiber membrane of the present invention is used in a water purification treatment operation for obtaining tap water, a mineral component useful as drinking water permeates from raw water, while humic acid, a precursor of harmful trihalomethane, is largely removed. Can be blocked. In addition, because of the hollow fiber membrane structure, backwashing from the outside to the inside or from the inside to the outside of the membrane can be effectively performed during the filtration period, and the filtration rate can be kept large for a long time.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−290591(JP,A) 特開 平2−21930(JP,A) (社)日本化学会「化学便覧 応用化 学編」平成3年7月10日丸善(株)発 行、1182頁 (58)調査した分野(Int.Cl.7,DB名) B01D 61/00 - 69/14 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-290591 (JP, A) JP-A-2-21930 (JP, A) The Chemical Society of Japan, “Chemical Handbook, Applied Chemistry”, Heisei 1991 Published by Maruzen Co., Ltd. on July 10, 2008, p. 1182 (58) Fields investigated (Int. Cl. 7 , DB name) B01D 61/00-69/14

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 原水に含まれるアルカリ金属およびアル
カリ土類金属のカチオンを99%以上透過させ、かつ重量
平均分子量が2万のフミン酸を80%以上阻止すると共
に、膜間差圧1kg/cm2、温度25℃における純水の透過
速度が 150リットル/m2・hr以上である中空糸分離膜を
用いて、表流水からの原水を前処理としての凝集処理を
することなく処理することを特徴とする浄水化処理方
法。
The present invention allows 99% or more of cations of alkali metals and alkaline earth metals contained in raw water to permeate and inhibits 80% or more of humic acid having a weight average molecular weight of 20,000 and a transmembrane pressure of 1 kg / cm. 2. Using a hollow fiber separation membrane whose permeation rate of pure water at a temperature of 25 ° C is 150 liter / m 2 · hr or more, to treat raw water from surface water without coagulation treatment as pretreatment. Characteristic water purification treatment method.
【請求項2】 中空糸膜が、内径0.3〜1.5mm、
外径0.5〜2.5mm、長さ0.7〜1.5mであ
り、その断面構造において、緻密な表面層を少なくとも
中空糸内表面に有する非対称多孔質のものである請求項
記載の浄水化処理方法。
2. The hollow fiber membrane has an inner diameter of 0.3 to 1.5 mm,
An asymmetric porous material having an outer diameter of 0.5 to 2.5 mm and a length of 0.7 to 1.5 m, and having a dense surface layer at least on the inner surface of the hollow fiber in its cross-sectional structure.
1. The water purification treatment method according to 1.
【請求項3】 中空糸膜が、酢酸セルロース、芳香族ポ
リスルホン、芳香族ポリエーテルスルホン、ポリアクリ
ロニトリル、ポリエチレン、ポリプロピレン、ポリビニ
ールアルコール又は脂肪族ポリアミドからなるものであ
る請求項1又は2記載の浄水化処理方法。
3. A hollow fiber membrane, cellulose acetate, aromatic polysulfone, aromatic polyether sulfone, polyacrylonitrile, polyethylene, polypropylene, water purification according to claim 1 or 2 wherein is made of polyvinyl alcohol or an aliphatic polyamide Treatment method.
JP04764793A 1993-03-09 1993-03-09 Water purification treatment method Expired - Fee Related JP3228588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04764793A JP3228588B2 (en) 1993-03-09 1993-03-09 Water purification treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04764793A JP3228588B2 (en) 1993-03-09 1993-03-09 Water purification treatment method

Publications (2)

Publication Number Publication Date
JPH06254359A JPH06254359A (en) 1994-09-13
JP3228588B2 true JP3228588B2 (en) 2001-11-12

Family

ID=12781047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04764793A Expired - Fee Related JP3228588B2 (en) 1993-03-09 1993-03-09 Water purification treatment method

Country Status (1)

Country Link
JP (1) JP3228588B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406626B1 (en) 1999-01-14 2002-06-18 Toray Industries, Inc. Composite semipermeable membrane, processfor producing the same, and method of purifying water with the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(社)日本化学会「化学便覧 応用化学編」平成3年7月10日丸善(株)発行、1182頁

Also Published As

Publication number Publication date
JPH06254359A (en) 1994-09-13

Similar Documents

Publication Publication Date Title
US6743363B2 (en) Method of bacteriostasis or disinfection for permselective membrane
WO2013005369A1 (en) Water purification system and water purification method
Chen et al. Membrane separation: basics and applications
JP3698093B2 (en) Water treatment method and water treatment apparatus
JP6194887B2 (en) Fresh water production method
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
Boffa et al. Potential of nanofiltration technology in recirculating aquaculture systems in a context of circular economy
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
Sillanpaa et al. NOM removal by electrochemical methods
JP2003080246A (en) Apparatus and method for treating water
JP7113454B2 (en) Water treatment method and equipment
JP3228588B2 (en) Water purification treatment method
JP3087750B2 (en) Sterilization method of membrane
JP3353810B2 (en) Reverse osmosis seawater desalination system
JP2002346347A (en) Method and apparatus for filtration
JP2001000970A (en) High-degree treatment of wastewater using membrane module
KR20210069621A (en) Membrane water treatment chemicals and membrane treatment methods
JP2001239136A (en) Treating system and operating method therefor
JP2000033243A (en) Composite semipermeable membrane
Dietze et al. Phosphorus removal with membrane filtration for surface water treatment
JP3220216B2 (en) Water treatment method
JPH05192659A (en) Advanced treatment of sewage
Özdemir A Ceramic Ultrafiltration Membrane System for Producing High Quality Drinking Water.
Abideen et al. Recent Trends of Promising Membrane Technologies for Heavy Metal Removal from Water and Wastewater

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370