JP2007289899A - Membrane washing method for membrane separation means, and water treatment apparatus - Google Patents

Membrane washing method for membrane separation means, and water treatment apparatus Download PDF

Info

Publication number
JP2007289899A
JP2007289899A JP2006122992A JP2006122992A JP2007289899A JP 2007289899 A JP2007289899 A JP 2007289899A JP 2006122992 A JP2006122992 A JP 2006122992A JP 2006122992 A JP2006122992 A JP 2006122992A JP 2007289899 A JP2007289899 A JP 2007289899A
Authority
JP
Japan
Prior art keywords
membrane
water
chemical solution
raw water
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006122992A
Other languages
Japanese (ja)
Other versions
JP2007289899A5 (en
Inventor
Hiroshi Shimazaki
弘志 島崎
Shoichi Samejima
正一 鮫島
Kumiko Imai
久美子 今井
Shinya Miyamoto
新也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2006122992A priority Critical patent/JP2007289899A/en
Publication of JP2007289899A publication Critical patent/JP2007289899A/en
Publication of JP2007289899A5 publication Critical patent/JP2007289899A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress fouling of a separation membrane to be supplied to a membrane separation technique. <P>SOLUTION: A pump P1 injects a chlorine-based chemical solution stored in a washing chemical solution tank 14 into filtrate discharged from a membrane treating unit 12 for obtaining washing water supplied for washing the separation membrane of the treating unit 12 being a membrane separation means filtering raw water introduced from natural water systems, e.g., rivers. The pump P1 injects the chemical solution to the filtrate at an injection rate of hypochlorite based on the turbidity of the raw water in the membrane washing process of the membrane treating unit 12. In the injection process of the chemical solution, the turbidity of the raw water is recommended to be used as a control factor for feed-forward controlling the injection rate of the chemical solution, and also residual chlorine concentration in washing drain of the treating unit 12 is recommended to be used as a control factor for feed-back controlling the injection rate of the chemical solution. Electrical conductivity of raw water can be used as the control factor for feed-forward controlling in place of the turbidity of the raw water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、河川等に例示される自然水系由来の原水の水処理装置、特に上水道施設に設置される水処理装置に適用される膜分離技術に関する。   TECHNICAL FIELD The present invention relates to a membrane separation technique applied to a water treatment apparatus for raw water derived from a natural water system exemplified by a river or the like, particularly a water treatment apparatus installed in a water supply facility.

平成17年3月時点での上水道施設における膜分離装置の累積実績件数は全国で442件であり、前年度調査より68件増加している(2005年3月付けの財団法人水道技術研究センター調査結果)。規模別件数では、500m3/日未満の設備が67%と2分の3を占めている。膜分離技術の普及は順調に伸びており、今後も継続していくものと予想される。 As of March 2005, the cumulative number of membrane separators in waterworks facilities was 442 nationwide, an increase of 68 from the previous year's survey (Survey on Research Center for Water Technology, March 2005). result). In terms of the number of cases by scale, facilities with less than 500 m 3 / day account for 67%, or 3/2. The spread of membrane separation technology is growing steadily and is expected to continue in the future.

膜分離技術としては特許文献1〜特許文献7に開示されたものが例示される。   Examples of the membrane separation technique include those disclosed in Patent Documents 1 to 7.

すなわち、特許文献1記載の水製造装置は、アンモニアを含有する原水を精密ろ過膜及びまたは限外ろ過膜でろ過し、このろ過処理水を逆浸透膜及びまたはナノろ過膜によってさらにろ過する。特許文献2記載の中空糸膜ろ過装置はUF膜モジュールからなる。   That is, the water production apparatus described in Patent Document 1 filters the raw water containing ammonia through a microfiltration membrane and / or an ultrafiltration membrane, and further filters this filtered water through a reverse osmosis membrane and / or a nanofiltration membrane. The hollow fiber membrane filtration device described in Patent Document 2 includes a UF membrane module.

特に、膜分離技術に供される分離膜を洗浄する工程を有するものとして、特許文献3記載の洗浄方法、特許文献4記載の膜ろ過モジュールの洗浄方法、膜ろ過装置及び薬品洗浄装置、特許文献5記載の中空糸膜モジュールの洗浄方法、特許文献6記載の透過膜ろ過方法及び装置、特許文献7記載の膜ろ過装置等が挙げられる。   In particular, as a method having a step of cleaning a separation membrane used for membrane separation technology, a cleaning method described in Patent Document 3, a cleaning method for a membrane filtration module described in Patent Document 4, a membrane filtration device and a chemical cleaning device, Patent Literature 5, a method for cleaning a hollow fiber membrane module, a permeation membrane filtration method and apparatus described in Patent Document 6, a membrane filtration apparatus described in Patent Document 7, and the like.

また、膜分離技術では、膜ろ過装置の分離膜でのファウリングを防止するために、膜分離工程に供される原水を凝集沈殿処理、砂ろ過処理、活性炭吸着等によって前処理する工程が導入されている(例えば非特許文献1)。
特開2005−185985 特開2005−13992 特開2004−154707 特開2003−265935 特開2003−251157 特開2002−224540 特開2001−232160 「環境技術・装置大辞典」編集委員会編,「環境技術・装置大辞典I」,初版,産業調査会 事典出版センター,2003年2月17日,pp.720−736
In the membrane separation technology, in order to prevent fouling in the separation membrane of the membrane filtration device, a process for pretreatment of raw water used in the membrane separation process by coagulation sedimentation treatment, sand filtration treatment, activated carbon adsorption, etc. is introduced. (For example, Non-Patent Document 1).
JP2005-185985 JP-A-2005-13992 JP 2004-154707 A JP 2003-265935 A JP2003-251157A JP2002-224540 JP 2001-232160 A “Environmental Technology / Equipment Dictionary” Editorial Committee, “Environmental Technology / Equipment Dictionary I”, first edition, Industrial Research Institute Encyclopedia Publishing Center, February 17, 2003, pp. 720-736

膜分離技術が導入される理由は、全自動運転が可能であると共に、浄水の回収率を高めることが可能であるからである。膜分離技術では原水に含まれるファウリングを発生させる物質への対策として非特許文献1に示されたような凝集沈殿処理等の前処理工程が適用されてファウリングが抑制されている。したがって、河川等の自然水系から導入した原水を直接的に膜分離工程に供給する方法が採用されていない。このことは膜分離技術を適用する施設のコストの増大を招く。また、現状の膜処理設備では、特許文献3〜7に示されたようなファウリングの除去を目的とした分離膜の洗浄方法があっても、ファウリングの抑制を目的とした膜分離設備の分離膜の洗浄制御方法はない。   The reason why the membrane separation technology is introduced is that fully automatic operation is possible and the recovery rate of purified water can be increased. In the membrane separation technique, fouling is suppressed by applying a pretreatment step such as a coagulation sedimentation treatment as shown in Non-Patent Document 1 as a countermeasure against a substance that generates fouling contained in raw water. Therefore, a method of directly supplying raw water introduced from a natural water system such as a river to a membrane separation process has not been adopted. This leads to an increase in the cost of the facility to which the membrane separation technology is applied. Moreover, in the present membrane treatment equipment, even if there is a separation membrane cleaning method for the purpose of removing fouling as shown in Patent Documents 3 to 7, the membrane separation equipment for the purpose of suppressing fouling is used. There is no cleaning control method for the separation membrane.

本発明は以上の事情に鑑みなされたもので、その目的は膜分離技術に供される分離膜のファウリングを抑制できる膜分離手段の膜洗浄方法及び水処理装置の提供にある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a membrane cleaning method of a membrane separation means and a water treatment apparatus capable of suppressing fouling of a separation membrane used in membrane separation technology.

そこで、請求項1記載の膜分離手段の膜洗浄方法は、自然水系から導入した原水を分離膜によってろ過処理する膜分離手段の膜洗浄方法であって、前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段を有し、前記膜分離手段の膜洗浄工程で前記薬液注入手段は前記原水の濁度に基づく薬液注入率で前記薬液を前記ろ過処理水に注入する。   Therefore, the membrane cleaning method of the membrane separation means according to claim 1 is a membrane cleaning method of the membrane separation means for filtering the raw water introduced from the natural water system through the separation membrane, and the cleaning water used for cleaning the separation membrane is used. In order to obtain, there is provided a chemical injection means for injecting a chlorine-based chemical into the filtered water discharged from the membrane separation means, and the chemical injection means is based on the turbidity of the raw water in the membrane cleaning step of the membrane separation means The chemical solution is injected into the filtered water at a chemical solution injection rate.

請求項2記載の膜分離手段の膜洗浄方法は、自然水系から導入した原水を分離膜によってろ過処理する膜分離手段の膜洗浄方法であって、前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段を有し、前記膜分離手段の膜洗浄工程で、前記薬液注入手段は、前記原水の濁度と前記膜分離手段から排出された前記分離膜の洗浄排水の残留塩素濃度とに基づく薬液注入率で前記薬液を前記ろ過処理水に注入し、前記薬液の注入過程で、前記原水の濁度は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度は前記薬液の注入率をフィードバック制御する制御因子として利用される。   The membrane cleaning method for a membrane separation means according to claim 2 is a membrane cleaning method for a membrane separation means for filtering raw water introduced from a natural water system through a separation membrane, in order to obtain washing water used for cleaning the separation membrane. A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means, and in the membrane cleaning step of the membrane separation means, the chemical solution injection means includes the turbidity of the raw water and the The chemical solution is injected into the filtered water at a chemical injection rate based on the residual chlorine concentration of the cleaning waste water from the separation membrane discharged from the membrane separation means, and the turbidity of the raw water is determined as the chemical solution in the chemical solution injection process. The residual chlorine concentration in the washing waste water is used as a control factor for feedback control of the injection rate of the chemical solution.

請求項3記載の膜分離手段の膜洗浄方法は、自然水系から導入した原水を分離膜によってろ過処理する膜分離手段の膜洗浄方法であって、前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段を有し、前記膜分離手段の膜洗浄工程で前記薬液注入手段は前記原水の導電率に基づく薬液注入率で前記薬液を前記ろ過処理水に注入する。   The membrane cleaning method for a membrane separation means according to claim 3 is a membrane cleaning method for a membrane separation means for filtering raw water introduced from a natural water system through a separation membrane, in order to obtain washing water for use in cleaning the separation membrane. A chemical injection unit for injecting a chlorine-based chemical into the filtered water discharged from the membrane separation unit, and the chemical injection unit is configured to inject a chemical based on the conductivity of the raw water in the membrane cleaning step of the membrane separation unit. The chemical solution is poured into the filtered water at a rate.

請求項4記載の膜分離手段の膜洗浄方法は、自然水系から導入した原水を分離膜によってろ過処理する膜分離手段の膜洗浄方法であって、前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段を有し、前記膜分離手段の膜洗浄工程で、前記薬液注入手段は、前記原水の導電率と前記膜分離手段から排出された前記分離膜の洗浄排水の残留塩素濃度とに基づく薬液注入率で前記薬液を前記ろ過処理水に注入し、前記薬液の注入過程で、前記原水の導電率は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度は前記薬液の注入率をフィードバック制御する制御因子として利用される。   The membrane cleaning method for membrane separation means according to claim 4 is a membrane cleaning method for membrane separation means for filtering raw water introduced from a natural water system through a separation membrane, in order to obtain washing water for use in washing the separation membrane. A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means, and in the membrane cleaning step of the membrane separation means, the chemical solution injection means includes the conductivity of the raw water and the The chemical solution is injected into the filtered water at a chemical injection rate based on the residual chlorine concentration of the cleaning waste water from the separation membrane discharged from the membrane separation means, and in the process of injecting the chemical solution, the conductivity of the raw water is the chemical solution The residual chlorine concentration in the washing waste water is used as a control factor for feedback control of the injection rate of the chemical solution.

請求項5記載の水処理装置は、自然水系から導入した原水を貯留する原水貯留手段と、この原水貯留手段から供給された原水を分離膜によってろ過処理する膜分離手段と、前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段とを備え、前記薬液注入手段は前記原水貯留手段に貯留された原水の濁度に基づく薬液注入率で前記薬液を前記ろ過処理水に注入する。   The water treatment device according to claim 5 is a raw water storage means for storing raw water introduced from a natural water system, a membrane separation means for filtering raw water supplied from the raw water storage means by a separation membrane, and a cleaning of the separation membrane. A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means to obtain wash water to be provided to the membrane, the chemical solution injection means being a turbidity of the raw water stored in the raw water storage means The chemical solution is injected into the filtered water at a chemical injection rate based on the degree.

請求項6記載の水処理装置は、自然水系から導入した原水を貯留する原水貯留手段と、この原水貯留手段から供給された原水を分離膜によってろ過処理する膜分離手段と、前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段とを備え、前記薬液注入手段は、前記原水貯留手段に貯留された原水の濁度と前記膜分離手段から排出された前記分離膜の洗浄排水の残留塩素濃度とに基づく薬液注入率で記薬液を前記ろ過処理水に注入し、前記原水の濁度は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度は前記薬液の注入率をフィードバック制御する制御因子として利用される。   The water treatment apparatus according to claim 6 is a raw water storage means for storing raw water introduced from a natural water system, a membrane separation means for filtering raw water supplied from the raw water storage means with a separation membrane, and a cleaning of the separation membrane. A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain washing water to be provided to the raw material water, the chemical solution injection means comprising: raw water stored in the raw water storage means The chemical solution is injected into the filtered water at a chemical injection rate based on turbidity and the residual chlorine concentration of the cleaning wastewater discharged from the membrane separation means, and the turbidity of the raw water is the injection rate of the chemical solution Is used as a control factor for feedforward control, and the residual chlorine concentration in the washing wastewater is used as a control factor for feedback control of the injection rate of the chemical solution.

請求項7記載の水処理装置は、自然水系から導入した原水を貯留する原水貯留手段と、この原水貯留手段から供給された原水を分離膜によってろ過処理する膜分離手段と、前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段とを備え、前記薬液注入手段は前記原水貯留手段に貯留された原水の導電率に基づく薬液注入率で前記薬液を前記ろ過処理水に注入する。   The water treatment device according to claim 7 is a raw water storage means for storing raw water introduced from a natural water system, a membrane separation means for filtering raw water supplied from the raw water storage means with a separation membrane, and a cleaning of the separation membrane. A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means to obtain wash water for use in the process, wherein the chemical solution injection means conducts the raw water stored in the raw water storage means The chemical solution is injected into the filtered water at a chemical injection rate based on the rate.

請求項8記載の水処理装置は、自然水系から導入した原水を貯留する原水貯留手段と、この原水貯留手段から供給された原水を分離膜によってろ過処理する膜分離手段と、前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段とを備え、前記薬液注入手段は、前記原水貯留手段に貯留された原水の導電率と前記膜分離手段から排出された前記分離膜の洗浄排水の残留塩素濃度とに基づく薬液注入率で記薬液を前記ろ過処理水に注入し、前記原水の導電率は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度は前記薬液の注入率をフィードバック制御する制御因子として利用される。   The water treatment device according to claim 8 is a raw water storage means for storing raw water introduced from a natural water system, a membrane separation means for filtering raw water supplied from the raw water storage means with a separation membrane, and a cleaning of the separation membrane. A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain washing water to be provided to the raw material water, the chemical solution injection means comprising: raw water stored in the raw water storage means The chemical solution is injected into the filtered water at a chemical injection rate based on the electrical conductivity and the residual chlorine concentration of the cleaning waste water discharged from the membrane separation means, and the conductivity of the raw water is the injection rate of the chemical solution Is used as a control factor for feedforward control, and the residual chlorine concentration in the washing wastewater is used as a control factor for feedback control of the injection rate of the chemical solution.

請求項1,2,5及び6記載の発明によれば、膜分離手段の分離膜の洗浄に供する洗浄水を得るために前記膜分離手段のろ過処理水に塩素系の薬液が注入される際に、前記薬液注入の制御因子に前記膜分離手段のファウリング物質の指標である原水(自然水系から導入されたもの)の濁度が利用されるので、前記原水の濁度に依存する前記分離膜のファウリングが抑制される。特に、請求項2及び請求項6記載の発明によれば、前記薬液の注入過程で、前記原水の濁度は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度が前記薬液の注入率をフィードバック制御する制御因子として利用されるので、洗浄排水を自然水系に放流する際に洗浄排水中の残塩濃度を制限できると共にファウリング物質の除去状態を把握できるようになる。   According to the first, second, fifth, and sixth aspects of the present invention, when a chlorine-based chemical solution is injected into the filtered water of the membrane separation means in order to obtain washing water used for cleaning the separation membrane of the membrane separation means. In addition, since the turbidity of raw water (introduced from a natural water system), which is an index of the fouling substance of the membrane separation means, is used as a control factor for the chemical solution injection, the separation depending on the turbidity of the raw water Membrane fouling is suppressed. In particular, according to the invention of claim 2 and claim 6, in the injection process of the chemical solution, the turbidity of the raw water is used as a control factor for feedforward control of the injection rate of the chemical solution, and the washing drainage Residual chlorine concentration is used as a control factor for feedback control of the injection rate of the chemical solution, so that the residual salt concentration in the cleaning wastewater can be limited and the fouling substance removal state can be controlled when discharging the cleaning wastewater into the natural water system. It becomes possible to grasp.

また、請求項3,4,7及び8記載の発明によれば、膜分離手段の分離膜の洗浄に供する洗浄水を得るために前記膜分離手段のろ過処理水に塩素系の薬液が注入される際に、前記薬液注入の制御因子に前記膜分離手段のファウリング物質の指標である原水(自然水系から導入されたもの)の導電率が利用されるので、前記原水の導電率に依存する前記分離膜のファウリングが抑制される。特に、請求項4及び請求項8記載の発明によれば、前記薬液の注入過程で、前記原水の導電率が前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度が前記薬液の注入率をフィードバック制御する制御因子として利用されるので、洗浄排水を自然水系に放流する際に洗浄排水中の残塩濃度を制限できると共にファウリング物質の除去状態を把握できるようになる。   According to the third, fourth, seventh, and eighth aspects of the invention, a chlorine-based chemical solution is injected into the filtered water of the membrane separation means in order to obtain washing water used for cleaning the separation membrane of the membrane separation means. In this case, the conductivity of the raw water (introduced from the natural water system), which is an index of the fouling substance of the membrane separation means, is used as a control factor for the chemical injection, and therefore depends on the conductivity of the raw water. Fouling of the separation membrane is suppressed. In particular, according to the invention of claim 4 and claim 8, in the process of injecting the chemical solution, the conductivity of the raw water is used as a control factor for feedforward control of the injection rate of the chemical solution, and the washing drainage Residual chlorine concentration is used as a control factor for feedback control of the injection rate of the chemical solution, so that the residual salt concentration in the cleaning wastewater can be limited and the fouling substance removal state can be controlled when discharging the cleaning wastewater into the natural water system. It becomes possible to grasp.

以上の発明によれば膜分離手段の分離膜のファウリングを抑制できる。これにより前記膜分離手段は自然水系から原水を直接導入できるようになる。   According to the above invention, fouling of the separation membrane of the membrane separation means can be suppressed. Thereby, the membrane separation means can directly introduce raw water from a natural water system.

(実施形態1)
水処理技術に適用されている膜分離処理装置の分離膜の多くはMF(精密ろ過)膜である。この分離膜は公証孔径が0.1μm以上の粒子を除去することが可能である。河川等の原水は季節変化、水量等によって濁質や色度の濃度も変化するため、ファウリングの抑制方法が必要である。そこで、本実施形態の水処理装置は、膜分離処理方式の処理装置であって、原水の濁度に基づいて膜洗浄工程に供する膜洗浄液の注入率を制御している。
(Embodiment 1)
Many of the separation membranes of the membrane separation treatment apparatus applied to the water treatment technology are MF (microfiltration) membranes. This separation membrane can remove particles having a notary pore diameter of 0.1 μm or more. Since raw water such as rivers changes in turbidity and chromaticity due to seasonal changes and the amount of water, a method for suppressing fouling is necessary. Therefore, the water treatment apparatus of the present embodiment is a membrane separation treatment type treatment apparatus, and controls the injection rate of the membrane cleaning liquid to be used in the membrane cleaning step based on the turbidity of raw water.

図1は膜分離処理方式の水処理装置の一例を示した概略図である。水処理装置1は原水タンク11と膜処理ユニット12と処理水タンク13と洗浄薬液タンク14を備えている。   FIG. 1 is a schematic view showing an example of a water treatment apparatus of a membrane separation treatment type. The water treatment apparatus 1 includes a raw water tank 11, a membrane treatment unit 12, a treated water tank 13, and a cleaning chemical tank 14.

原水タンク11は、原水を貯留するための手段であって、原水として系外の自然水系例えば河川から導入した河川水を貯留する。原水タンク11には、原水の水質を測定するための手段として、濁度計24と水位計LIC2とが具備されている。濁度計24と水位計LIC2としては水処理技術に適用される既知の測定手段が採用される。原水タンク11内に貯留された原水はポンプP2によって膜処理ユニット12に供給される。ポンプP2は、インバータ機能を備えており、図示省略された制御手段によって原水を任意の流量で膜処理ユニット12に供給できるようになっている。ポンプP2は配管15に設置されている。配管15は一端が原水タンク11の底部に接続される一方で他端は膜処理ユニット12の下部に接続された配管16に接続されている。配管15にはポンプP2の他に少なくとも流量計FI2、バルブAV−1及び圧力計PI1が設置されている。また、配管15には原水タンク11内の原水を系外に排出するための配管22が接続されている。配管16は膜処理ユニット12内の液相を系外に排出するための配管である。配管15,16はドレイン用の配管23に接続されている。配管16には手動のバルブが設置されている。また、配管16にはコンプレッサCP1で発生させたエアを膜処理ユニット12の洗浄工程に供するための配管17が接続されている。配管17には少なくともバルブAV−6と流量計FI5が設置されている。バルブAV−1,AV−6は前記制御手段によって開閉動作する。   The raw water tank 11 is a means for storing raw water and stores river water introduced from an outside natural water system such as a river as raw water. The raw water tank 11 is provided with a turbidimeter 24 and a water level meter LIC2 as means for measuring the quality of the raw water. As the turbidimeter 24 and the water level meter LIC2, known measuring means applied to the water treatment technology is adopted. The raw water stored in the raw water tank 11 is supplied to the membrane processing unit 12 by the pump P2. The pump P2 has an inverter function, and can supply raw water to the membrane treatment unit 12 at an arbitrary flow rate by a control means (not shown). The pump P2 is installed in the pipe 15. One end of the pipe 15 is connected to the bottom of the raw water tank 11, while the other end is connected to a pipe 16 connected to the lower part of the membrane treatment unit 12. In addition to the pump P2, the pipe 15 is provided with at least a flow meter FI2, a valve AV-1, and a pressure gauge PI1. Further, a pipe 22 for discharging the raw water in the raw water tank 11 to the outside of the system is connected to the pipe 15. The pipe 16 is a pipe for discharging the liquid phase in the membrane processing unit 12 out of the system. The pipes 15 and 16 are connected to a drain pipe 23. A manual valve is installed in the pipe 16. Further, a pipe 17 for supplying air generated by the compressor CP <b> 1 to the cleaning process of the film processing unit 12 is connected to the pipe 16. The pipe 17 is provided with at least a valve AV-6 and a flow meter FI5. The valves AV-1 and AV-6 are opened and closed by the control means.

膜処理ユニット12は、膜分離手段であって、原水を分離膜によってろ過処理する膜モジュールを備える。前記膜モジュールとしては膜分離技術に適用されている例えば0.1μmの細孔を有する内圧中空糸型、外圧中空糸型等の膜モジュールが挙げられる。膜処理ユニット12の上部には処理水を処理水タンク13に移送するための配管18が接続されている。配管18には少なくとも圧力計PI2、バルブAV−4及び流量計FIC3が設置されている。また、膜処理ユニット12の上部には配管19が接続されている。配管19は膜処理ユニット12の膜モジュールの洗浄排水を原水タンク11に移送するための配管である。配管19には少なくもバルブAV−2が設置されている。配管19にはさらに配管20が接続されている。配管20は膜処理ユニット12の膜モジュールの洗浄排水を系外に移送するための配管である。配管20には少なくもバルブAV−3が設置されている。尚、バルブAV−2,AV−3,AV−4は前記制御手段によって開閉動作する。   The membrane treatment unit 12 is a membrane separation means and includes a membrane module that filters raw water through a separation membrane. Examples of the membrane module include membrane modules such as an internal pressure hollow fiber type and an external pressure hollow fiber type having 0.1 μm pores, which are applied to membrane separation technology. A pipe 18 for transferring treated water to the treated water tank 13 is connected to the upper part of the membrane treatment unit 12. The pipe 18 is provided with at least a pressure gauge PI2, a valve AV-4, and a flow meter FIC3. A pipe 19 is connected to the upper part of the membrane processing unit 12. The pipe 19 is a pipe for transferring the cleaning waste water of the membrane module of the membrane processing unit 12 to the raw water tank 11. The pipe 19 is provided with at least a valve AV-2. A pipe 20 is further connected to the pipe 19. The pipe 20 is a pipe for transferring the cleaning waste water of the membrane module of the membrane processing unit 12 to the outside of the system. The pipe 20 is provided with at least a valve AV-3. The valves AV-2, AV-3, and AV-4 are opened and closed by the control means.

処理水タンク13は膜処理ユニット12から排出されたろ過処理水を貯留する。処理水タンク13には水位計LIA3が具備されている。処理水タンク13の下部にはろ過処理水を系外に排出するための配管21が接続されている。配管21にはろ過処理水の一部を逆洗水として膜処理ユニット12の洗浄工程に供するための配管22が接続されている。配管22の一端は配管18に接続されている。配管22には少なくともポンプP3と流量計FI4とバルブAV−5とが設置されている。配管21はドレイン用の配管23に接続されている。ポンプP3及びバルブAV−5は前記逆洗工程時に前記制御手段によって動作する。   The treated water tank 13 stores the filtered treated water discharged from the membrane treatment unit 12. The treated water tank 13 is provided with a water level gauge LIA3. A pipe 21 for discharging the filtered treated water out of the system is connected to the lower part of the treated water tank 13. The piping 21 is connected to a piping 22 for supplying a part of the filtered water as backwash water to the cleaning process of the membrane processing unit 12. One end of the pipe 22 is connected to the pipe 18. The pipe 22 is provided with at least a pump P3, a flow meter FI4, and a valve AV-5. The pipe 21 is connected to a drain pipe 23. The pump P3 and the valve AV-5 are operated by the control means during the backwash process.

洗浄薬液タンク14は膜処理ユニット12の膜モジュールに供される洗浄水を作成するための薬液を貯留する。前記薬液としては例えば塩素系の薬液、具体的には次亜塩素酸水が例示される。洗浄薬液タンク14は少なくともポンプP1と液面計LIA4とを具備する。ポンプP1は前記洗浄水を得るために膜処理ユニット12から排出されたろ過処理水に塩素系の薬液を注入するための薬液注入手段である。ポンプP1は配管22内を流通する逆洗水に注入する。ポンプP1は前記制御手段によって動作する。また、ポンプP1はストローク数や回転数等は可変であり定量的に薬液を供給できるようになっている。   The cleaning chemical solution tank 14 stores a chemical solution for creating cleaning water supplied to the membrane module of the membrane processing unit 12. Examples of the chemical solution include a chlorine-based chemical solution, specifically, hypochlorous acid water. The cleaning chemical tank 14 includes at least a pump P1 and a liquid level gauge LIA4. The pump P1 is a chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane processing unit 12 in order to obtain the washing water. The pump P1 is injected into the backwash water flowing through the pipe 22. The pump P1 is operated by the control means. Further, the pump P1 has variable stroke numbers, rotation speeds, and the like, and can supply the chemical solution quantitatively.

原水タンク11の底部から引き抜かれた原水は膜処理ユニット12の底部から導入されて前記膜モジュールの膜と接触するクロスフロー方式で処理される。ろ過処理水はバルブAV−4が開に設定されている配管18を介して処理水タンク13に移送される。このとき、原水中の濁質、色度及び有機成分は前記膜モジュールの膜面に堆積していく。   The raw water drawn from the bottom of the raw water tank 11 is introduced from the bottom of the membrane processing unit 12 and processed by the cross flow method in contact with the membrane of the membrane module. The filtered treated water is transferred to the treated water tank 13 through the pipe 18 in which the valve AV-4 is set to be open. At this time, turbidity, chromaticity and organic components in the raw water are deposited on the membrane surface of the membrane module.

原水の濁度が上昇した場合、前記膜面に堆積するファウリング物質量も増加してしまうため、一定な洗浄工程では対応できない。そこで、水処理装置1では原水濁度上昇時に逆洗周期や逆洗に供する洗浄薬液(次亜塩素酸水)の注入率を変化させた試験を行った。   When the turbidity of the raw water increases, the amount of fouling substances deposited on the film surface also increases, so that it cannot be handled by a constant cleaning process. Therefore, the water treatment apparatus 1 was subjected to a test in which the backwash cycle and the injection rate of the cleaning chemical (hypochlorous acid water) used for backwashing were changed when the raw water turbidity increased.

図2は膜処理ユニット12の逆洗工程での次亜塩素注入率と原水濁度、膜供給圧力の関係を示した特性図である。膜処理ユニット12(旭化成ケミカルズ製の膜モジュールを備えたもの,膜モジュール1本当たりの有効膜面積50m2,フラックス2.0m3/m2・日の時に処理能力100m3/日)の逆洗浄工程は約20〜30分毎に実行された(流量1.7m3/時)。このとき、ポンプP1の次亜塩素注入率は3mg/Lに設定したが、原水(1.7m3/時)の2〜3回程度の濁度上昇により膜処理ユニット12の原水供給側の圧力(圧力計PI1の計測値)がリミット設置値(220kPa)まで達し、水処理装置1が停止した。そこで、膜処理ユニット12の膜モジュールを再生した後にポンプP1の次亜塩素注入率を6mg/Lに設定して連続運転を行い、原水(1.7m3/時)の濁度上昇に対する前記供給側圧力の変化を観察した。これによると原水の濁度上昇が2〜3日程度続くと、前記供給側圧力の上昇が確認された。さらに、ポンプP1の次亜塩素注入率を10mg/Lまでに設定すると、1〜2日経過後、前記供給側の圧力の低下が確認された。これらのことから原水濁度の変化に対応させて次亜塩素注入率を変化させれば、ファウリングの抑制が可能となることがわかった。 FIG. 2 is a characteristic diagram showing the relationship between the hypochlorite injection rate, the raw water turbidity, and the membrane supply pressure in the back washing process of the membrane treatment unit 12. Back-cleaning of membrane treatment unit 12 (equipped with membrane module manufactured by Asahi Kasei Chemicals, effective membrane area 50m 2 per membrane module, flux capacity 100m 3 / day when flux 2.0m 3 / m 2 · day) The process was carried out approximately every 20-30 minutes (flow rate 1.7 m 3 / hour). At this time, the hypochlorite injection rate of the pump P1 was set to 3 mg / L, but the pressure on the raw water supply side of the membrane treatment unit 12 due to the turbidity increase of about 2 to 3 times of the raw water (1.7 m 3 / hour). (Measurement value of the pressure gauge PI1) reached the limit installation value (220 kPa), and the water treatment apparatus 1 was stopped. Therefore, after the membrane module of the membrane treatment unit 12 is regenerated, the hypochlorite injection rate of the pump P1 is set to 6 mg / L and the continuous operation is performed, and the supply for the increase in turbidity of the raw water (1.7 m 3 / hour) is performed. The change in side pressure was observed. According to this, when the turbidity increase of the raw water continued for about 2 to 3 days, the increase of the supply side pressure was confirmed. Furthermore, when the hypochlorous injection rate of the pump P1 was set to 10 mg / L, a decrease in the pressure on the supply side was confirmed after 1-2 days. From these facts, it was found that fouling can be suppressed by changing the hypochlorite injection rate in response to changes in raw water turbidity.

以上の試験結果に基づき、水処理装置1のポンプP1は原水タンク11に貯留された原水の濁度に基づく次亜塩素注入率で前記薬液を前記ろ過処理水に注入する。   Based on the above test results, the pump P1 of the water treatment device 1 injects the chemical solution into the filtered water at a hypochlorous acid injection rate based on the turbidity of the raw water stored in the raw water tank 11.

図1を参照しながら水処理装置1の動作例について説明する。   An operation example of the water treatment apparatus 1 will be described with reference to FIG.

原水の水処理工程では、原水タンク11内の原水の水位がポンプP2の起動水位以上であると水位計LIC2が検知している場合、バルブAV−2,AV−3,AV−5,AV−6が閉に設定される一方でバルブAV−1,AV−4が開に設定された状態で、前記原水はポンプP2によって膜処理ユニット12に供給される。前記原水の供給量は流量計FI2や圧力計PI1,PI2によって流量や圧力が監視されながらポンプP1のインバータ機能によって適宜に制御される。膜処理ユニット12から排出された処理水は処理水タンク13に供給される。   In the raw water treatment process, when the water level gauge LIC2 detects that the raw water level in the raw water tank 11 is equal to or higher than the starting water level of the pump P2, the valves AV-2, AV-3, AV-5, AV- The raw water is supplied to the membrane treatment unit 12 by the pump P2 with the valves AV-1 and AV-4 set to open while 6 is set to closed. The supply amount of the raw water is appropriately controlled by the inverter function of the pump P1 while the flow rate and pressure are monitored by the flow meter FI2 and pressure gauges PI1 and PI2. The treated water discharged from the membrane treatment unit 12 is supplied to the treated water tank 13.

膜処理ユニット12の洗浄(逆洗)工程(例えば20〜30分/回)ではポンプP2は停止し同時にバルブAV−1,AV−2及びAV−4が閉に設定される一方でバルブAV−3が開に設定される。次いで、中空膜表面の比較的除去されやすい汚濁物質を除去するために、バルブAV−6が開に設定されると共にコンプレッサCP1が起動する。コンプレッサCP1によって生じた気泡は膜処理ユニット12の分離膜(中空糸膜)の外周面側に供される。コンプレッサCP1からの空気量は流量計FI5によって監視されながらバルブAV−6によって適宜制御される。一方、前記分離膜の内周面側には洗浄水がバルブAV−5を介して供給される。洗浄水は膜処理ユニット12のろ過処理水に塩素系の薬液が注入されて得られる。すなわち、AV−5が開に設定された状態でポンプP3が起動し、ろ過処理水が配管18,22に供される。このとき配管22内を流入するろ過処理水には洗浄薬液タンク14内の薬液がポンプP1によって注入される。前記ろ過処理水に対する薬液の注入率は濁度計24によって測定された原水タンク11内の原水の濁度に基づき設定されている。このようにして得られた洗浄水は前記水処理工程の原水の流通方向と逆方向に前記分離膜の内週面側を流通する。前記洗浄水の流量は流量計FI4や圧力計PI2,PI3によって監視されながら適宜制御される。そして、前記洗浄水が前記分離膜の外周面側に移行する過程で前記ファウリング物質は前記分離膜の外周面側に溶出する。前記ファウリング物質は前記外周面側で流通する前記気泡のせん断力によって剥離される。前記ファウリング物質を含んだ洗浄水は洗浄排水として配管20を介して前記気泡と共に系外に排出される。膜処理ユニット12の洗浄工程(例えば30分/回)の命令が解除されると、前記水処理工程が開始する。   In the washing (back washing) step (for example, 20 to 30 minutes / time) of the membrane processing unit 12, the pump P2 is stopped and at the same time the valves AV-1, AV-2 and AV-4 are set to be closed while the valve AV- 3 is set to open. Next, the valve AV-6 is set to open and the compressor CP1 is activated in order to remove the pollutants that are relatively easily removed from the surface of the hollow membrane. Bubbles generated by the compressor CP1 are provided on the outer peripheral surface side of the separation membrane (hollow fiber membrane) of the membrane processing unit 12. The amount of air from the compressor CP1 is appropriately controlled by the valve AV-6 while being monitored by the flow meter FI5. On the other hand, cleaning water is supplied to the inner peripheral surface side of the separation membrane via a valve AV-5. The washing water is obtained by injecting a chlorine-based chemical into the filtered water of the membrane treatment unit 12. That is, the pump P3 is activated with AV-5 set to open, and filtered water is supplied to the pipes 18 and 22. At this time, the chemical solution in the cleaning chemical solution tank 14 is injected into the filtered water flowing in the pipe 22 by the pump P1. The injection rate of the chemical solution with respect to the filtered water is set based on the turbidity of the raw water in the raw water tank 11 measured by the turbidimeter 24. The washing water thus obtained flows on the inner week surface side of the separation membrane in the direction opposite to the flow direction of the raw water in the water treatment step. The flow rate of the washing water is appropriately controlled while being monitored by the flow meter FI4 and pressure gauges PI2 and PI3. Then, the fouling substance elutes to the outer peripheral surface side of the separation membrane in the process in which the washing water moves to the outer peripheral surface side of the separation membrane. The fouling material is peeled off by the shearing force of the bubbles flowing on the outer peripheral surface side. The washing water containing the fouling substance is discharged out of the system together with the bubbles through the pipe 20 as washing waste water. When the instruction of the cleaning process (for example, 30 minutes / time) of the membrane processing unit 12 is canceled, the water treatment process starts.

以上のように水処理装置1によれば膜処理ユニット12に具備された膜モジュールの洗浄に供する洗浄水を得るために、膜処理ユニット12のろ過処理水に塩素系の薬液が注入される際に、前記薬液注入の制御因子に膜処理ユニット12のファウリング物質の指標である原水の濁度が利用される。これにより、前記原水の濁度に依存する前記分離膜のファウリングが抑制される。   As described above, according to the water treatment apparatus 1, when a chlorine-based chemical solution is injected into the filtered water of the membrane treatment unit 12 in order to obtain washing water used for washing the membrane module provided in the membrane treatment unit 12. In addition, the turbidity of raw water, which is an index of the fouling substance of the membrane processing unit 12, is used as a control factor for the chemical solution injection. Thereby, fouling of the separation membrane depending on the turbidity of the raw water is suppressed.

したがって、河川水、湖沼水等の水源を直接膜分離処理することができ、凝集剤等を簡略化できる。また、原水濁度上昇に伴う膜面のファウリングが抑制されるので、酸、アルカリによる膜再生処理時間を長く確保できるようになる。   Therefore, water sources such as river water and lake water can be directly subjected to membrane separation treatment, and the flocculant and the like can be simplified. Further, since fouling of the membrane surface accompanying the increase in raw water turbidity is suppressed, it is possible to ensure a long membrane regeneration treatment time with acid and alkali.

(実施形態2)
図3は本実施形態に係る水処理装置の処理工程を示した概略図である。水処理装置2はファウリング抑制のために原水の濁度を制御因子として利用して逆洗浄工程時の次亜塩素注入率をFF制御(フィードフォワード制御)する。
(Embodiment 2)
FIG. 3 is a schematic view showing the treatment process of the water treatment apparatus according to this embodiment. The water treatment apparatus 2 performs FF control (feed forward control) on the hypochlorous acid injection rate in the backwashing process using the turbidity of the raw water as a control factor in order to suppress fouling.

図3を参照しながら水処理装置2の動作例について説明する。膜処理ユニット12の洗浄(逆洗)工程(例えば20〜30分/回)では、ポンプP2は停止し同時にバルブAV−1,AV−2及びAV−4が閉に設定される一方でバルブAV−3が開に設定される。次いで、中空膜表面の比較的除去されやすい汚濁物質を除去するために、バルブAV−6が開に設定されると共にコンプレッサCP1が起動する。コンプレッサCP1によって生じた気泡は膜処理ユニット12の分離膜(中空糸膜)の外周面側に供される。コンプレッサCP1からの空気量は流量計FI5によって監視されながらバルブAV−6によって適宜制御される。一方、前記分離膜の内周面側には洗浄水がバルブAV−5を介して供給される。洗浄水は膜処理ユニット12のろ過処理水に塩素系の薬液が注入されて得られる。すなわち、AV−5が開に設定された状態でポンプP3が起動し、ろ過処理水が配管18,22に供される。このとき配管22内を流入するろ過処理水には洗浄薬液タンク14内の薬液がポンプP1によって注入される。   An operation example of the water treatment device 2 will be described with reference to FIG. In the cleaning (back washing) process (for example, 20 to 30 minutes / times) of the membrane processing unit 12, the pump P2 is stopped and the valves AV-1, AV-2, and AV-4 are set to be closed at the same time, while the valve AV is set. -3 is set to open. Next, the valve AV-6 is set to open and the compressor CP1 is activated in order to remove the pollutants that are relatively easily removed from the surface of the hollow membrane. Bubbles generated by the compressor CP1 are provided on the outer peripheral surface side of the separation membrane (hollow fiber membrane) of the membrane processing unit 12. The amount of air from the compressor CP1 is appropriately controlled by the valve AV-6 while being monitored by the flow meter FI5. On the other hand, cleaning water is supplied to the inner peripheral surface side of the separation membrane via a valve AV-5. The washing water is obtained by injecting a chlorine-based chemical into the filtered water of the membrane treatment unit 12. That is, the pump P3 is activated with AV-5 set to open, and filtered water is supplied to the pipes 18 and 22. At this time, the chemical solution in the cleaning chemical solution tank 14 is injected into the filtered water flowing in the pipe 22 by the pump P1.

ポンプP1は原水タンク11内の濁度計24によって測定された原水の濁度Xに基づきFF制御された薬液の注入率YFF(YFF=a・X+b,YFF:薬液の注入率(mg/L),a:傾き(−),b:最低注入率(mg/L),X:原水濁度(度))で薬液を前記ろ過処理水に注入する。これによって得られた洗浄水は前記水処理工程の原水の流通方向と逆方向に前記分離膜の内週面側を流通する。前記洗浄水の流量は流量計FI4によって監視されながら適宜制御される。そして、前記洗浄水が前記分離膜の外周面側に移行する過程で前記ファウリング物質は前記分離膜の外周面側に溶出する。前記ファウリング物質は前記外周面側で流通する前記気泡のせん断力によって剥離される。前記ファウリング物質を含んだ洗浄水は洗浄排水として配管20を介して前記気泡と共に系外に排出される。膜処理ユニット12の洗浄工程(例えば30分/回)の命令が解除されると、水処理工程が開始する。この水処理工程では水処理装置1と同じようにポンプ及びバルブ類が動作する。 The pump P1 is FF controlled based on the turbidity X of the raw water measured by the turbidimeter 24 in the raw water tank 11 FF (Y FF = a · X + b, Y FF : Chemical solution injection rate (mg / L), a: slope (−), b: minimum injection rate (mg / L), X: raw water turbidity (degree)), and the chemical solution is injected into the filtered water. The wash water thus obtained flows on the inner week surface side of the separation membrane in the direction opposite to the flow direction of the raw water in the water treatment step. The flow rate of the washing water is appropriately controlled while being monitored by the flow meter FI4. Then, the fouling substance elutes to the outer peripheral surface side of the separation membrane in the process in which the washing water moves to the outer peripheral surface side of the separation membrane. The fouling material is peeled off by the shearing force of the bubbles flowing on the outer peripheral surface side. The washing water containing the fouling substance is discharged out of the system together with the bubbles through the pipe 20 as washing waste water. When the instruction of the cleaning process (for example, 30 minutes / times) of the membrane processing unit 12 is canceled, the water treatment process starts. In this water treatment process, pumps and valves operate in the same manner as the water treatment apparatus 1.

以上のように水処理装置2によれば河川水、湖沼水等の水源を直接膜分離処理することができるので、凝集剤等を簡略化できる。また、原水濁度上昇に伴う膜面のファウリングが抑制されるので、酸、アルカリによる膜再生処理時間を長く確保できるようになる。さらに、原水の水質の指標である原水濁度を制御因子として用いて、逆洗工程時の次亜塩素注入率の自動制御が可能となる。   As described above, according to the water treatment apparatus 2, water sources such as river water and lake water can be directly subjected to membrane separation treatment, so that the flocculant and the like can be simplified. Further, since fouling of the membrane surface accompanying the increase in raw water turbidity is suppressed, it is possible to ensure a long membrane regeneration treatment time with acid and alkali. Furthermore, using the raw water turbidity, which is an index of raw water quality, as a control factor, it is possible to automatically control the hypochlorite injection rate during the backwashing process.

特に、水処理装置2では、前記薬液の注入過程で、前記原水の濁度は前記薬液の注入率をフィードフォワード制御する制御因子として利用されることで、原水の濁度に応じた薬液の注入制御を行える。   In particular, in the water treatment device 2, the turbidity of the raw water is used as a control factor for feedforward control of the injection rate of the chemical liquid in the process of injecting the chemical liquid, thereby injecting the chemical liquid according to the turbidity of the raw water. You can control.

(実施形態3)
図4(a)は分離膜によって原水がろ過処理される過程を説明した概略説明図である。図4(b)は逆洗洗浄工程でファウリング物質が除去される過程を説明した概略説明図である。また、図5は本実施形態に係る水処理装置の処理工程を示した概略図である。
(Embodiment 3)
FIG. 4A is a schematic explanatory diagram illustrating a process in which raw water is filtered by a separation membrane. FIG. 4B is a schematic explanatory diagram illustrating a process in which a fouling substance is removed in the backwashing cleaning process. Moreover, FIG. 5 is the schematic which showed the process of the water treatment apparatus which concerns on this embodiment.

水処理装置3は逆洗排水を河川に放流する場合、残留塩素濃度を制限するために洗浄排水の残留塩素濃度を制限するために洗浄排水の残留塩素濃度を残留塩素計31によって測定し、残留塩素を排出しないように制御している。残留塩素計31は配管20に設置される。残留塩素計31としては水処理技術に適用される既知の測定手段が採用される。   When the water treatment device 3 discharges the backwash wastewater to the river, the residual chlorine concentration of the wash wastewater is measured by the residual chlorine meter 31 to limit the residual chlorine concentration of the wash wastewater in order to restrict the residual chlorine concentration. It is controlled not to discharge chlorine. The residual chlorine meter 31 is installed in the pipe 20. As the residual chlorine meter 31, a known measuring means applied to water treatment technology is adopted.

実施形態1の水処理装置1の連続運転結果によりファウリング物質と残留塩素の関係も明らかとなった。すなわち、図4(a)に示されたろ過工程では分離膜に付着するファウリング物質は有機物系物質と無機系物質とからなることが確認された。特に、無機系物質は粘土質、鉄、マンガンであるであることが確認された。図4(b)に示された逆洗工程では分離膜の内面から次亜塩素酸水を含んだ洗浄水が通水される。これにより前記ファイリング物質が分離膜の外面へ排出される。分離膜の外面に堆積したファウリング物質は気泡洗浄との効果によって剥離される。このときの洗浄排水の残留塩素濃度はほとんど検出されないことが確認された。そして、この逆洗工程を繰り返すとファウリング物質も除去されて洗浄排水中の残留塩素濃度が上昇することが確認された。   The relationship between the fouling substance and residual chlorine was also clarified from the result of continuous operation of the water treatment apparatus 1 of the first embodiment. That is, in the filtration process shown in FIG. 4A, it was confirmed that the fouling substance adhering to the separation membrane is composed of an organic substance and an inorganic substance. In particular, it was confirmed that the inorganic substances were clayey, iron and manganese. In the backwashing step shown in FIG. 4B, wash water containing hypochlorous acid water is passed from the inner surface of the separation membrane. As a result, the filing substance is discharged to the outer surface of the separation membrane. The fouling material deposited on the outer surface of the separation membrane is peeled off by the effect of bubble cleaning. It was confirmed that the residual chlorine concentration of the washing waste water at this time was hardly detected. And it was confirmed that when this back washing process is repeated, the fouling substances are also removed, and the residual chlorine concentration in the washing waste water is increased.

この結果に基づき水処理装置3では図5に示すように洗浄排水系統に残留塩素計を備えて洗浄排水の残留塩素(ReClI)を測定している。そして、この測定値と残留塩素設定値(ReClset)の差から設定値よりも測定値が大きい場合にFF制御側の薬液の注入率を下げるように制御する。これにより洗浄排水を河川等の自然水系に戻す場合に管理された水質条件で排出できる。 Based on this result, the water treatment device 3 is equipped with a residual chlorine meter in the cleaning drainage system as shown in FIG. 5 to measure residual chlorine (ReClI) in the cleaning drainage. Then, when the measured value is larger than the set value from the difference between the measured value and the residual chlorine set value (ReCl set ), the chemical solution injection rate on the FF control side is controlled to be lowered. As a result, the waste water can be discharged under controlled water quality conditions when returning to the natural water system such as a river.

水処理装置3の制御式を以下に示した。   The control formula of the water treatment device 3 is shown below.

ReCl=YFF−βYFB
FF=a・X+b
FB=kBMCl・(ReClset−ReClI)
ReCl:FF制御とFB制御とによる次亜塩素注入率(mg/L)
FF:FF制御による次亜塩素注入率(mg/L)
FB:FB制御による次亜塩素注入率(mg/L)
a:傾き(−)
b:最低注入率(mg/L)
X:原水濁度(度)
ReClset:残留塩素設定値(mg/L)
BMCl:FB制御ゲイン(−)
β:重み係数(−)
図5を参照しながら水処理装置2の動作例について説明する。膜処理ユニット12の洗浄(逆洗)工程(例えば20〜30分/回)では、ポンプP2は停止し同時にバルブAV−1,AV−2及びAV−4が閉に設定される一方でバルブAV−3が開に設定される。次いで、中空膜表面の比較的除去されやすい汚濁物質を除去するために、バルブAV−6が開に設定されると共にコンプレッサCP1が起動する。コンプレッサCP1によって生じた気泡は膜処理ユニット12の分離膜(中空糸膜)の外周面側に供される。コンプレッサCP1からの空気量は流量計FI5によって監視されながらバルブAV−6によって適宜制御される。一方、前記分離膜の内周面側には洗浄水がバルブAV−5を介して供給される。洗浄水は膜処理ユニット12のろ過処理水に塩素系の薬液が注入されて得られる。すなわち、AV−5が開に設定された状態でポンプP3が起動し、ろ過処理水が配管18,22に供される。このとき配管22内を流入するろ過処理水には洗浄薬液タンク14内の薬液がポンプP1によって注入される。
Y ReCl = Y FF -βY FB
Y FF = a · X + b
Y FB = k BMCl (ReCl set -ReClI)
Y ReCl : Hypochlorite injection rate (mg / L) by FF control and FB control
Y FF : Hypochlorite injection rate by FF control (mg / L)
Y FB : Hypochlorine injection rate by FB control (mg / L)
a: Inclination (-)
b: Minimum injection rate (mg / L)
X: Raw water turbidity (degree)
ReCl set : Residual chlorine set value (mg / L)
k BMCl : FB control gain (-)
β: Weight coefficient (-)
An example of the operation of the water treatment device 2 will be described with reference to FIG. In the cleaning (back washing) process (for example, 20 to 30 minutes / times) of the membrane processing unit 12, the pump P2 is stopped and the valves AV-1, AV-2, and AV-4 are set to be closed at the same time, while the valve AV is set. -3 is set to open. Next, the valve AV-6 is set to open and the compressor CP1 is started in order to remove the pollutants that are relatively easily removed from the surface of the hollow membrane. Bubbles generated by the compressor CP1 are provided on the outer peripheral surface side of the separation membrane (hollow fiber membrane) of the membrane processing unit 12. The amount of air from the compressor CP1 is appropriately controlled by the valve AV-6 while being monitored by the flow meter FI5. On the other hand, cleaning water is supplied to the inner peripheral surface side of the separation membrane via a valve AV-5. The washing water is obtained by injecting a chlorine-based chemical into the filtered water of the membrane treatment unit 12. That is, the pump P3 is activated with AV-5 set to open, and filtered water is supplied to the pipes 18 and 22. At this time, the chemical solution in the cleaning chemical solution tank 14 is injected into the filtered treated water flowing into the pipe 22 by the pump P1.

ポンプP1は、原水タンク11内の濁度計24によって測定された原水の濁度Xに基づくFF制御(YFF=a・X+b)と、残留塩素計31によって測定された配管20内を流通する洗浄排水の残留塩素濃度ReClIに基づくFB制御(YFB=kBMCl・(ReClset−ReClI))とによる薬液の注入率YReCl(=YFF−βYFB)で薬液を前記ろ過処理水に注入する。これによって得られた洗浄水は前記水処理工程の原水の流通方向と逆方向に前記分離膜の内週面側を流通する。前記洗浄水の流量は流量計FI4や圧力計PI2,PI3によって監視されながら適宜制御される。そして、前記洗浄水が前記分離膜の外周面側に移行する過程で前記ファウリング物質は前記分離膜の外周面側に溶出する。前記ファウリング物質は前記外周面側で流通する前記気泡のせん断力によって剥離される。前記ファウリング物質を含んだ洗浄水は洗浄排水として配管20を介して前記気泡と共に系外に排出される。膜処理ユニット12の洗浄工程(例えば30分/回)の命令が解除されると、水処理工程が開始する。この水処理工程では水処理装置1と同じようにポンプ及びバルブ類が動作する。 The pump P1 circulates through the FF control (Y FF = a · X + b) based on the turbidity X of the raw water measured by the turbidimeter 24 in the raw water tank 11 and the pipe 20 measured by the residual chlorine meter 31. The chemical solution is injected into the filtered water at the injection rate Y ReCl (= Y FF -βY FB ) by the FB control (Y FB = k BMCl · (ReCl set -ReCl I)) based on the residual chlorine concentration ReCl I of the washing waste water. To do. The wash water thus obtained flows on the inner week surface side of the separation membrane in the direction opposite to the flow direction of the raw water in the water treatment step. The flow rate of the washing water is appropriately controlled while being monitored by the flow meter FI4 and pressure gauges PI2 and PI3. Then, the fouling substance elutes to the outer peripheral surface side of the separation membrane in the process in which the washing water moves to the outer peripheral surface side of the separation membrane. The fouling material is peeled off by the shearing force of the bubbles flowing on the outer peripheral surface side. The washing water containing the fouling substance is discharged out of the system together with the bubbles through the pipe 20 as washing waste water. When the instruction of the cleaning process (for example, 30 minutes / times) of the membrane processing unit 12 is canceled, the water treatment process starts. In this water treatment process, pumps and valves operate in the same manner as the water treatment apparatus 1.

以上の水処理装置3のように、河川水、湖沼水等の水源を直接膜分離処理することができるので、凝集剤等を簡略化できる。また、原水濁度上昇に伴う膜面のファウリングが抑制されるので、酸、アルカリによる膜再生処理時間を長く確保できるようになる。さらに、原水の水質の指標である原水濁度を制御因子として用いて、逆洗工程時の次亜塩素注入率の自動制御が可能となる。   Since the water source such as river water and lake water can be directly subjected to membrane separation treatment as in the water treatment apparatus 3 described above, the flocculant and the like can be simplified. Further, since fouling of the membrane surface accompanying the increase in raw water turbidity is suppressed, it is possible to ensure a long membrane regeneration treatment time with acid and alkali. Furthermore, using the raw water turbidity, which is an index of raw water quality, as a control factor, it is possible to automatically control the hypochlorite injection rate during the backwashing process.

特に、水処理装置3では、原水の濁度を利用した逆洗浄工程時の次亜塩素注入率制御(FF制御)と洗浄排水の残留塩素濃度制御(FB制御)との組み合わせにより、洗浄排水を河川水、湖沼水等に戻す場合に排水中の残塩濃度を制限でき、水質監視も自動化できると共に、次亜塩素水を逆洗に用いるとファウリング物質の除去状態を残塩測定で把握できる。   In particular, in the water treatment device 3, the wastewater discharged from the wastewater is combined with the hypochlorite injection rate control (FF control) during the reverse cleaning process using the turbidity of the raw water and the residual chlorine concentration control (FB control) of the washing wastewater. When returning to river water, lake water, etc., residual salt concentration in the drainage can be limited, water quality monitoring can be automated, and hypochlorite water can be used for backwashing to determine the removal status of fouling substances. .

(実施形態4)
図6は本実施形態に係る水処理装置の処理工程を示した概略図である。
(Embodiment 4)
FIG. 6 is a schematic view showing the treatment process of the water treatment apparatus according to this embodiment.

水処理装置4は、原水中の濁度と導電率の間に比例関係がある場合、濁度計24よりもメンテナンス性に優れた導電率計32によって測定し、この測定値を制御因子として膜処理ユニット12の洗浄水を得るための薬液の最適注入率を算出し、ポンプP1をFF制御する。導電率計33としては水処理技術に適用される既知の測定手段が採用される。   When there is a proportional relationship between the turbidity in the raw water and the conductivity, the water treatment device 4 measures with the conductivity meter 32 having better maintainability than the turbidimeter 24, and the measured value is used as a control factor for the membrane. The optimal injection rate of the chemical solution for obtaining the cleaning water of the processing unit 12 is calculated, and the pump P1 is FF controlled. As the conductivity meter 33, a known measuring means applied to water treatment technology is adopted.

図6を参照しながら水処理装置4の動作例について説明する。膜処理ユニット12の洗浄(逆洗)工程(例えば20〜30分/回)ではポンプP2は停止し同時にバルブAV−1,AV−2及びAV−4が閉に設定される一方でバルブAV−3が開に設定される。次いで、中空膜表面の比較的除去されやすい汚濁物質を除去するために、バルブAV−6が開に設定されると共にコンプレッサCP1が起動する。コンプレッサCP1によって生じた気泡は膜処理ユニット12の分離膜(中空糸膜)の外周面側に供される。コンプレッサCP1からの空気量は流量計FI5によって監視されながらバルブAV−6によって適宜制御される。一方、前記分離膜の内周面側には洗浄水がバルブAV−5を介して供給される。洗浄水は膜処理ユニット12のろ過処理水に塩素系の薬液が注入されて得られる。すなわち、AV−5が開に設定された状態でポンプP3が起動し、ろ過処理水が配管18,22に供される。このとき配管22内を流入するろ過処理水には洗浄薬液タンク14内の薬液がポンプP1によって注入される。   An example of the operation of the water treatment device 4 will be described with reference to FIG. In the washing (back washing) step (for example, 20 to 30 minutes / time) of the membrane processing unit 12, the pump P2 is stopped and at the same time the valves AV-1, AV-2 and AV-4 are set to be closed while the valve AV- 3 is set to open. Next, the valve AV-6 is set to open and the compressor CP1 is activated in order to remove the pollutants that are relatively easily removed from the surface of the hollow membrane. Bubbles generated by the compressor CP1 are provided on the outer peripheral surface side of the separation membrane (hollow fiber membrane) of the membrane processing unit 12. The amount of air from the compressor CP1 is appropriately controlled by the valve AV-6 while being monitored by the flow meter FI5. On the other hand, cleaning water is supplied to the inner peripheral surface side of the separation membrane via a valve AV-5. The washing water is obtained by injecting a chlorine-based chemical into the filtered water of the membrane treatment unit 12. That is, the pump P3 is activated with AV-5 set to open, and filtered water is supplied to the pipes 18 and 22. At this time, the chemical solution in the cleaning chemical solution tank 14 is injected into the filtered water flowing in the pipe 22 by the pump P1.

ポンプP1は原水タンク11の導電率計32によって測定された原水の導電率に基づきFF制御された薬液の注入率YFF(YFF=a・X+b,YFF:薬液の注入率(mg/L),a:傾き(−),b:最低注入率(mg/L),X:原水導電率(μS/cm))で薬液を前記ろ過処理水に注入する。これによって得られた洗浄水は前記水処理工程の原水の流通方向と逆方向に前記分離膜の内週面側を流通する。前記洗浄水の流量は流量計FI4や圧力計PI2,PI3によって監視されながら適宜制御される。そして、前記洗浄水が前記分離膜の外周面側に移行する過程で前記ファウリング物質は前記分離膜の外周面側に溶出する。前記ファウリング物質は前記外周面側で流通する前記気泡のせん断力によって剥離される。前記ファウリング物質を含んだ洗浄水は洗浄排水として配管20を介して前記気泡と共に系外に排出される。膜処理ユニット12の洗浄工程(例えば30分/回)の命令が解除されると、水処理工程が開始する。この水処理工程では水処理装置1と同じようにポンプ及びバルブ類が動作する。 The pump P1 is FF controlled based on the conductivity of the raw water measured by the conductivity meter 32 of the raw water tank 11 FF (Y FF = a · X + b, Y FF : Chemical solution injection rate (mg / L ), A: slope (−), b: minimum injection rate (mg / L), X: raw water conductivity (μS / cm))). The wash water thus obtained flows on the inner week surface side of the separation membrane in the direction opposite to the flow direction of the raw water in the water treatment step. The flow rate of the washing water is appropriately controlled while being monitored by the flow meter FI4 and pressure gauges PI2 and PI3. Then, the fouling substance elutes to the outer peripheral surface side of the separation membrane in the process in which the washing water moves to the outer peripheral surface side of the separation membrane. The fouling material is peeled off by the shearing force of the bubbles flowing on the outer peripheral surface side. The washing water containing the fouling substance is discharged out of the system together with the bubbles through the pipe 20 as washing waste water. When the instruction of the cleaning process (for example, 30 minutes / times) of the membrane processing unit 12 is canceled, the water treatment process starts. In this water treatment process, pumps and valves operate in the same manner as the water treatment apparatus 1.

以上の水処理装置4によれば、原水の導電率の上昇に伴う膜面のファウリングが抑制されるので、酸、アルカリによる膜再生処理時間を長く確保できるようになる。また、原水の水質の指標として原水導電率を用いているので、逆洗工程時の次亜塩素注入率の自動制御が可能となる。特に、原水中に溶解性の鉄、マンガンが多く含まれている場合、ファウリングを引き起こしやすいので、導電率の測定は有効な手段である。   According to the water treatment apparatus 4 described above, fouling of the membrane surface accompanying an increase in the conductivity of the raw water is suppressed, so that a long membrane regeneration treatment time with acid and alkali can be secured. In addition, since the raw water conductivity is used as an index of the quality of the raw water, it is possible to automatically control the hypochlorite injection rate during the backwash process. In particular, when the raw water contains a large amount of soluble iron and manganese, fouling is likely to occur, and thus measuring conductivity is an effective means.

また、水処理装置4では、前記薬液の注入過程で、原水の導電率が前記薬液の注入率をフィードフォワード制御する制御因子として利用されることで、原水の導電率に応じた薬液の注入制御を行える。   Further, in the water treatment device 4, in the process of injecting the chemical solution, the conductivity of the raw water is used as a control factor for feedforward control of the injection rate of the chemical solution, thereby controlling the injection of the chemical solution according to the conductivity of the raw water. Can be done.

(実施形態5)
図7は本実施形態に係る水処理装置の処理工程を示した概略図である。
(Embodiment 5)
FIG. 7 is a schematic view showing the treatment process of the water treatment apparatus according to this embodiment.

水処理装置5は洗浄排水を河川に流す場合に残留塩素濃度を制限するために残留塩素計34が洗浄排水の残留塩素濃度を監視して系外への残留塩素の排出を防止する。実施形態1の水処理装置1の連続運転結果によりファウリング物質と残留塩素の関係も明らかとなった。すなわち、実施形態3で述べたように、膜処理ユニット12の洗浄工程では分離膜の内面から次亜塩素酸水を含んだ洗浄水が通水されることによりファイリング物質が分離膜の外面へ排出される。分離膜の外面に堆積したファウリング物質は気泡洗浄との効果によって剥離される。このときの洗浄排水の残留塩素濃度はほとんど検出されないことが確認された。そして、この逆洗工程を繰り返すとファウリング物質も除去されて洗浄排水中の残留塩素濃度が上昇することが確認された。   In the water treatment device 5, in order to limit the residual chlorine concentration when flowing the cleaning wastewater into the river, the residual chlorine meter 34 monitors the residual chlorine concentration in the cleaning wastewater and prevents the discharge of residual chlorine outside the system. The relationship between the fouling substance and residual chlorine was also clarified from the result of continuous operation of the water treatment apparatus 1 of the first embodiment. That is, as described in the third embodiment, in the cleaning process of the membrane treatment unit 12, filing substances are discharged to the outer surface of the separation membrane by passing cleaning water containing hypochlorous acid water from the inner surface of the separation membrane. Is done. The fouling material deposited on the outer surface of the separation membrane is peeled off by the effect of bubble cleaning. It was confirmed that the residual chlorine concentration of the washing waste water at this time was hardly detected. And it was confirmed that when this back washing process is repeated, the fouling substances are also removed, and the residual chlorine concentration in the washing waste water is increased.

この結果に基づき水処理装置5では図7に示すように洗浄排水系統に残留塩素計を備えて洗浄排水の残留塩素(ReClI)を測定している。その測定値と残留塩素設定値(ReClset)の差から設定値よりも測定値が大きい場合にFF制御側の注入率を下げるように制御する。これにより洗浄排水を河川等の水源に戻す場合に管理された水質条件で排出できる。 Based on this result, the water treatment apparatus 5 is equipped with a residual chlorine meter in the cleaning drainage system as shown in FIG. 7 and measures residual chlorine (ReClI) in the cleaning drainage. When the measured value is larger than the set value from the difference between the measured value and the residual chlorine set value (ReCl set ), control is performed to lower the injection rate on the FF control side. As a result, the waste water can be discharged under controlled water quality conditions when the washing waste water is returned to a water source such as a river.

水処理装置3の制御式を以下に示した。   The control formula of the water treatment device 3 is shown below.

ReCl=YFF−βYFB
FF=a・X+b
FB=kBMCl・(ReClset−ReClI)
ReCl:FF制御とFB制御とによる次亜塩素注入率(mg/L)
FF:FF制御による次亜塩素注入率(mg/L)
FB:FB制御による次亜塩素注入率(mg/L)
a:傾き(−)
b:最低注入率(mg/L)
X:原水導電率(μS/cm)
ReClset:残留塩素設定値(mg/L)
BMCl:FB制御ゲイン(−)
β:重み係数(−)
図7を参照しながら水処理装置5の動作例について説明する。膜処理ユニット12の洗浄(逆洗)工程(例えば20〜30分/回)ではポンプP2は停止し同時にバルブAV−1,AV−2及びAV−4が閉に設定される一方でバルブAV−3が開に設定される。次いで、中空膜表面の比較的除去されやすい汚濁物質を除去するために、バルブAV−6が開に設定されると共にコンプレッサCP1が起動する。コンプレッサCP1によって生じた気泡は膜処理ユニット12の分離膜(中空糸膜)の外周面側に供される。コンプレッサCP1からの空気量は流量計FI5によって監視されながらバルブAV−6によって適宜制御される。一方、前記分離膜の内周面側には洗浄水がバルブAV−5を介して供給される。洗浄水は膜処理ユニット12のろ過処理水に塩素系の薬液が注入されて得られる。すなわち、AV−5が開に設定された状態でポンプP3が起動し、ろ過処理水が配管18,22に供される。このとき配管22内を流入するろ過処理水には洗浄薬液タンク14内の薬液がポンプP1によって注入される。
Y ReCl = Y FF -βY FB
Y FF = a · X + b
Y FB = k BMCl (ReCl set -ReClI)
Y ReCl : Hypochlorite injection rate (mg / L) by FF control and FB control
Y FF : Hypochlorite injection rate by FF control (mg / L)
Y FB : Hypochlorine injection rate by FB control (mg / L)
a: Inclination (-)
b: Minimum injection rate (mg / L)
X: Raw water conductivity (μS / cm)
ReCl set : Residual chlorine set value (mg / L)
k BMCl : FB control gain (-)
β: Weight coefficient (-)
An example of the operation of the water treatment device 5 will be described with reference to FIG. In the washing (back washing) step (for example, 20 to 30 minutes / time) of the membrane processing unit 12, the pump P2 is stopped and at the same time the valves AV-1, AV-2 and AV-4 are set to be closed while the valve AV- 3 is set to open. Next, the valve AV-6 is set to open and the compressor CP1 is activated in order to remove the pollutants that are relatively easily removed from the surface of the hollow membrane. Bubbles generated by the compressor CP1 are provided on the outer peripheral surface side of the separation membrane (hollow fiber membrane) of the membrane processing unit 12. The amount of air from the compressor CP1 is appropriately controlled by the valve AV-6 while being monitored by the flow meter FI5. On the other hand, cleaning water is supplied to the inner peripheral surface side of the separation membrane via a valve AV-5. The washing water is obtained by injecting a chlorine-based chemical into the filtered water of the membrane treatment unit 12. That is, the pump P3 is activated with AV-5 set to open, and filtered water is supplied to the pipes 18 and 22. At this time, the chemical solution in the cleaning chemical solution tank 14 is injected into the filtered water flowing in the pipe 22 by the pump P1.

ポンプP1は、原水タンク11内の導電率計32によって測定された原水の導電率Xに基づくFF制御(YFF=a・X+b)と、残留塩素計31によって測定された配管20内を流通する洗浄排水の残留塩素濃度ReClIに基づくFB制御(YFB=kBMCl・(ReClset−ReClI))とによる薬液の注入率YReCl(=YFF−βYFB)で薬液を前記ろ過処理水に注入する。これによって得られた洗浄水は前記水処理工程の原水の流通方向と逆方向に前記分離膜の内週面側を流通する。前記洗浄水の流量は流量計FI4や圧力計PI2,PI3によって監視されながら適宜制御される。そして、前記洗浄水が前記分離膜の外周面側に移行する過程で前記ファウリング物質は前記分離膜の外周面側に溶出する。前記ファウリング物質は前記外周面側で流通する前記気泡のせん断力によって剥離される。前記ファウリング物質を含んだ洗浄水は洗浄排水として配管20を介して前記気泡と共に系外に排出される。膜処理ユニット12の洗浄工程(例えば30分/回)の命令が解除されると、水処理工程が開始する。この水処理工程では水処理装置1と同じようにポンプ及びバルブ類が動作する。 The pump P 1 circulates in the FF control (Y FF = a · X + b) based on the conductivity X of the raw water measured by the conductivity meter 32 in the raw water tank 11 and the pipe 20 measured by the residual chlorine meter 31. The chemical solution is injected into the filtered water at the injection rate Y ReCl (= Y FF -βY FB ) by the FB control (Y FB = k BMCl · (ReCl set -ReCl I)) based on the residual chlorine concentration ReCl I of the washing waste water. To do. The wash water thus obtained flows on the inner week surface side of the separation membrane in the direction opposite to the flow direction of the raw water in the water treatment step. The flow rate of the washing water is appropriately controlled while being monitored by the flow meter FI4 and pressure gauges PI2 and PI3. Then, the fouling substance elutes to the outer peripheral surface side of the separation membrane in the process in which the washing water moves to the outer peripheral surface side of the separation membrane. The fouling material is peeled off by the shearing force of the bubbles flowing on the outer peripheral surface side. The washing water containing the fouling substance is discharged out of the system together with the bubbles through the pipe 20 as washing waste water. When the instruction of the cleaning process (for example, 30 minutes / times) of the membrane processing unit 12 is canceled, the water treatment process starts. In this water treatment process, pumps and valves operate in the same manner as the water treatment apparatus 1.

以上の水処理装置5のように、ファウリング抑制のための原水の導電率を利用した逆洗浄工程時の次亜塩素注入率制御(FF制御)と洗浄排水の残留塩素濃度制御(FB制御)とを組み合わせた制御により、洗浄排水を河川水、湖沼水等に戻す場合に排水中の残塩濃度を制限でき、水質監視も自動化できる。また、次亜塩素水を逆洗に用いるとファウリング物質の除去状態を残塩測定で把握できる。   Like the water treatment device 5 described above, hypochlorous acid injection rate control (FF control) and residual chlorine concentration control (FB control) of cleaning wastewater during the reverse cleaning process using the conductivity of raw water for fouling suppression With the combination control, the residual salt concentration in the drainage can be limited and the water quality monitoring can be automated when returning the washing drainage to river water, lake water, etc. Moreover, when hypochlorous water is used for backwashing, the removal state of a fouling substance can be grasped by residual salt measurement.

実施形態1に係る水処理装置の処理工程を示した概略図。Schematic which showed the process of the water treatment apparatus which concerns on Embodiment 1. FIG. 前記水処理装置の逆洗工程での次亜塩素注入率と原水濁度及び膜供給圧力との関係を示した特性図。The characteristic view which showed the relationship between the hypochlorous acid injection rate in the backwashing process of the said water treatment apparatus, raw | natural water turbidity, and a membrane supply pressure. 実施形態2に係る水処理装置の処理工程を示した概略図。Schematic which showed the process of the water treatment apparatus which concerns on Embodiment 2. FIG. (a)分離膜によって原水がろ過処理される過程を説明した概略説明図、(b)逆洗洗浄工程でファウリング物質が除去される過程を説明した概略説明図。(A) The schematic explanatory drawing explaining the process in which raw | natural water is filtered by a separation membrane, (b) The schematic explanatory drawing explaining the process by which a fouling substance is removed by a backwashing washing process. 実施形態3に係る水処理装置の処理工程を示した概略図。Schematic which showed the process of the water treatment apparatus which concerns on Embodiment 3. FIG. 実施形態4に係る水処理装置の処理工程を示した概略図。Schematic which showed the process of the water treatment apparatus which concerns on Embodiment 4. FIG. 実施形態5に係る水処理装置の処理工程を示した概略図。Schematic which showed the process of the water treatment apparatus which concerns on Embodiment 5. FIG.

符号の説明Explanation of symbols

1,2,3,4,5…水処理装置
11…原水タンク
12…膜処理ユニット
13…処理水タンク
14…洗浄薬液タンク
P1,P2,P3…ポンプ
CP1…エアコンプレッサ
AV−1,AV−2,AV−3,AV−4,AV−5…バルブ
24…濁度計
31…残留塩素計
32…導電率計
1, 2, 3, 4, 5 ... water treatment device 11 ... raw water tank 12 ... membrane treatment unit 13 ... treatment water tank 14 ... cleaning chemical tanks P1, P2, P3 ... pump CP1 ... air compressors AV-1, AV-2 , AV-3, AV-4, AV-5 ... valve 24 ... turbidity meter 31 ... residual chlorine meter 32 ... conductivity meter

Claims (8)

自然水系から導入した原水を分離膜によってろ過処理する膜分離手段の膜洗浄方法であって、
前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段を有し、
前記膜分離手段の膜洗浄工程で前記薬液注入手段は前記原水の濁度に基づく薬液注入率で前記薬液を前記ろ過処理水に注入すること
を特徴とする膜分離手段の膜洗浄方法。
A membrane cleaning method for membrane separation means for filtering raw water introduced from a natural water system through a separation membrane,
A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain wash water for use in cleaning the separation membrane;
The membrane cleaning method for membrane separation means, wherein the chemical solution injection means injects the chemical solution into the filtered water at a chemical injection rate based on the turbidity of the raw water in the membrane cleaning step of the membrane separation means.
自然水系から導入した原水を分離膜によってろ過処理する膜分離手段の膜洗浄方法であって、
前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段を有し、
前記膜分離手段の膜洗浄工程で、前記薬液注入手段は、前記原水の濁度と前記膜分離手段から排出された前記分離膜の洗浄排水の残留塩素濃度とに基づく薬液注入率で前記薬液を前記ろ過処理水に注入し、
前記薬液の注入過程で、前記原水の濁度は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度は前記薬液の注入率をフィードバック制御する制御因子として利用されること
を特徴とする膜分離装置の膜洗浄方法。
A membrane cleaning method for membrane separation means for filtering raw water introduced from a natural water system through a separation membrane,
A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain wash water for use in cleaning the separation membrane;
In the membrane cleaning step of the membrane separation means, the chemical solution injection means supplies the chemical solution at a chemical injection rate based on the turbidity of the raw water and the residual chlorine concentration in the separation wastewater discharged from the membrane separation means. Pour into the filtered water,
In the process of injecting the chemical solution, the turbidity of the raw water is used as a control factor for feedforward control of the injection rate of the chemical solution, and the residual chlorine concentration in the washing wastewater is a control factor for feedback control of the injection rate of the chemical solution A membrane cleaning method for a membrane separator characterized by being used as:
自然水系から導入した原水を分離膜によってろ過処理する膜分離手段の膜洗浄方法であって、
前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段を有し、
前記膜分離手段の膜洗浄工程で前記薬液注入手段は前記原水の導電率に基づく薬液注入率で前記薬液を前記ろ過処理水に注入すること
を特徴とする膜分離手段の膜洗浄方法。
A membrane cleaning method for membrane separation means for filtering raw water introduced from a natural water system through a separation membrane,
A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain wash water for use in cleaning the separation membrane;
The membrane cleaning method for membrane separation means, wherein the chemical solution injection means injects the chemical solution into the filtered water at a chemical injection rate based on the conductivity of the raw water in the membrane cleaning step of the membrane separation means.
自然水系から導入した原水を分離膜によってろ過処理する膜分離手段の膜洗浄方法であって、
前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段を有し、
前記膜分離手段の膜洗浄工程で、前記薬液注入手段は、前記原水の導電率と前記膜分離手段から排出された前記分離膜の洗浄排水の残留塩素濃度とに基づく薬液注入率で前記薬液を前記ろ過処理水に注入し、
前記薬液の注入過程で、前記原水の導電率は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度は前記薬液の注入率をフィードバック制御する制御因子として利用されること
を特徴とする膜分離装置の膜洗浄方法。
A membrane cleaning method for membrane separation means for filtering raw water introduced from a natural water system through a separation membrane,
A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain wash water for use in cleaning the separation membrane;
In the membrane cleaning step of the membrane separation unit, the chemical solution injection unit supplies the chemical solution at a chemical solution injection rate based on the conductivity of the raw water and the residual chlorine concentration of the separation membrane cleaning wastewater discharged from the membrane separation unit. Pour into the filtered water,
In the process of injecting the chemical solution, the conductivity of the raw water is used as a control factor for feedforward control of the injection rate of the chemical solution, and the residual chlorine concentration in the washing wastewater is a control factor for feedback control of the injection rate of the chemical solution. A membrane cleaning method for a membrane separator characterized by being used as:
自然水系から導入した原水を貯留する原水貯留手段と、
この原水貯留手段から供給された原水を分離膜によってろ過処理する膜分離手段と、
前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段と
を備え、
前記薬液注入手段は前記原水貯留手段に貯留された原水の濁度に基づく薬液注入率で前記薬液を前記ろ過処理水に注入すること
を特徴とする水処理装置。
Raw water storage means for storing raw water introduced from natural water systems;
Membrane separation means for filtering the raw water supplied from the raw water storage means with a separation membrane;
A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain wash water for use in cleaning the separation membrane,
The said chemical | medical solution injection | pouring means inject | pours the said chemical | medical solution into the said filtered water at the chemical | medical solution injection | pouring rate based on the turbidity of the raw | natural water stored by the said raw | natural water storage means.
自然水系から導入した原水を貯留する原水貯留手段と、
この原水貯留手段から供給された原水を分離膜によってろ過処理する膜分離手段と、
前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段と
を備え、
前記薬液注入手段は、前記原水貯留手段に貯留された原水の濁度と前記膜分離手段から排出された前記分離膜の洗浄排水の残留塩素濃度とに基づく薬液注入率で記薬液を前記ろ過処理水に注入し、
前記原水の濁度は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度は前記薬液の注入率をフィードバック制御する制御因子として利用されること
を特徴とする水処理装置。
Raw water storage means for storing raw water introduced from natural water systems;
Membrane separation means for filtering the raw water supplied from the raw water storage means with a separation membrane;
A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain wash water for use in cleaning the separation membrane,
The chemical solution injection means performs the filtration treatment of the chemical solution at a chemical injection rate based on the turbidity of the raw water stored in the raw water storage means and the residual chlorine concentration in the washing waste water of the separation membrane discharged from the membrane separation means. Poured into water,
The turbidity of the raw water is used as a control factor for feedforward control of the injection rate of the chemical solution, and the residual chlorine concentration of the washing wastewater is used as a control factor for feedback control of the injection rate of the chemical solution. Water treatment equipment.
自然水系から導入した原水を貯留する原水貯留手段と、
この原水貯留手段から供給された原水を分離膜によってろ過処理する膜分離手段と、
前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段と
を備え、
前記薬液注入手段は前記原水貯留手段に貯留された原水の導電率に基づく薬液注入率で前記薬液を前記ろ過処理水に注入すること
を特徴とする水処理装置。
Raw water storage means for storing raw water introduced from natural water systems;
Membrane separation means for filtering the raw water supplied from the raw water storage means with a separation membrane;
A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain wash water for use in cleaning the separation membrane,
The said chemical | medical solution injection | pouring means inject | pours the said chemical | medical solution into the said filtered water with the chemical | medical solution injection | pouring rate based on the electrical conductivity of the raw | natural water stored by the said raw | natural water storage means.
自然水系から導入した原水を貯留する原水貯留手段と、
この原水貯留手段から供給された原水を分離膜によってろ過処理する膜分離手段と、
前記分離膜の洗浄に供する洗浄水を得るために前記膜分離手段から排出されたろ過処理水に塩素系の薬液を注入する薬液注入手段と
を備え、
前記薬液注入手段は、前記原水貯留手段に貯留された原水の導電率と前記膜分離手段から排出された前記分離膜の洗浄排水の残留塩素濃度とに基づく薬液注入率で記薬液を前記ろ過処理水に注入し、
前記原水の導電率は前記薬液の注入率をフィードフォワード制御する制御因子として利用されると共に、前記洗浄排水の残留塩素濃度は前記薬液の注入率をフィードバック制御する制御因子として利用されること
を特徴とする水処理装置。
Raw water storage means for storing raw water introduced from natural water systems;
Membrane separation means for filtering the raw water supplied from the raw water storage means with a separation membrane;
A chemical solution injection means for injecting a chlorine-based chemical solution into the filtered water discharged from the membrane separation means in order to obtain wash water for use in cleaning the separation membrane,
The chemical injection unit is configured to filter the chemical solution at a chemical injection rate based on the conductivity of the raw water stored in the raw water storage unit and the residual chlorine concentration of the cleaning membrane drainage discharged from the membrane separation unit. Poured into water,
The conductivity of the raw water is used as a control factor for feedforward control of the injection rate of the chemical solution, and the residual chlorine concentration of the cleaning wastewater is used as a control factor for feedback control of the injection rate of the chemical solution. Water treatment equipment.
JP2006122992A 2006-04-27 2006-04-27 Membrane washing method for membrane separation means, and water treatment apparatus Pending JP2007289899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006122992A JP2007289899A (en) 2006-04-27 2006-04-27 Membrane washing method for membrane separation means, and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006122992A JP2007289899A (en) 2006-04-27 2006-04-27 Membrane washing method for membrane separation means, and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2007289899A true JP2007289899A (en) 2007-11-08
JP2007289899A5 JP2007289899A5 (en) 2009-04-09

Family

ID=38761035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006122992A Pending JP2007289899A (en) 2006-04-27 2006-04-27 Membrane washing method for membrane separation means, and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP2007289899A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111826A1 (en) * 2012-01-24 2013-08-01 東レ株式会社 Desalination method and desalination device
KR101299165B1 (en) * 2013-01-24 2013-08-22 주식회사 태영건설 Pressured membrane filtration apparatus and method with chemical feed automatic control
KR101354403B1 (en) * 2009-06-26 2014-01-22 아사히 가세이 케미칼즈 가부시키가이샤 Filtering method, and membrane-filtering apparatus
JP2014171926A (en) * 2013-03-06 2014-09-22 Swing Corp Desalination method and desalination apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230599A (en) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd Pretreatment in pure water making apparatus
JPH08257377A (en) * 1995-03-23 1996-10-08 Tohoku Electric Power Co Inc Membrane separator and control of addition amount of oxidizing agent
JPH11267471A (en) * 1998-03-20 1999-10-05 Toray Ind Inc Membrane filter device and operation method
JP2001232160A (en) * 2000-02-21 2001-08-28 Hitachi Plant Eng & Constr Co Ltd Membrane filter
JP2003164870A (en) * 2001-11-29 2003-06-10 Hitachi Plant Eng & Constr Co Ltd Operation method of membrane separation apparatus
JP2005279496A (en) * 2004-03-30 2005-10-13 Toray Ind Inc Washing method of membrane separation apparatus, membrane separation method, and membrane separation apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230599A (en) * 1985-07-31 1987-02-09 Mitsubishi Heavy Ind Ltd Pretreatment in pure water making apparatus
JPH08257377A (en) * 1995-03-23 1996-10-08 Tohoku Electric Power Co Inc Membrane separator and control of addition amount of oxidizing agent
JPH11267471A (en) * 1998-03-20 1999-10-05 Toray Ind Inc Membrane filter device and operation method
JP2001232160A (en) * 2000-02-21 2001-08-28 Hitachi Plant Eng & Constr Co Ltd Membrane filter
JP2003164870A (en) * 2001-11-29 2003-06-10 Hitachi Plant Eng & Constr Co Ltd Operation method of membrane separation apparatus
JP2005279496A (en) * 2004-03-30 2005-10-13 Toray Ind Inc Washing method of membrane separation apparatus, membrane separation method, and membrane separation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354403B1 (en) * 2009-06-26 2014-01-22 아사히 가세이 케미칼즈 가부시키가이샤 Filtering method, and membrane-filtering apparatus
WO2013111826A1 (en) * 2012-01-24 2013-08-01 東レ株式会社 Desalination method and desalination device
KR101299165B1 (en) * 2013-01-24 2013-08-22 주식회사 태영건설 Pressured membrane filtration apparatus and method with chemical feed automatic control
JP2014171926A (en) * 2013-03-06 2014-09-22 Swing Corp Desalination method and desalination apparatus

Similar Documents

Publication Publication Date Title
JP5453711B2 (en) Cleaning method for external pressure hollow fiber membrane module
CN103619451B (en) The cleaning method of separating film module
US20120125846A1 (en) Filtering method, and membrane-filtering apparatus
US20070138092A1 (en) Method and system for controlling duration of a backwash cycle of a filtration system
WO2015083717A1 (en) Water treatment method
AU2011233096A1 (en) Method for cleaning separation membrane module, and method for fresh water generation
JP6441808B2 (en) Desalination apparatus and desalination method
JP5343655B2 (en) Operation method of membrane module
WO2013111826A1 (en) Desalination method and desalination device
WO2016199725A1 (en) Fresh water production device and method for operating fresh water production device
WO2012098969A1 (en) Method for cleaning membrane module, method of fresh water generation, and fresh water generator
JP5962513B2 (en) Fresh water production apparatus and fresh water production method
US20180104652A1 (en) Reverse osmosis membrane cleaning method and reverse osmosis membrane cleaning apparatus
JP5866808B2 (en) Water treatment system and cleaning control method for water treatment system
JP6087667B2 (en) Desalination method and desalination apparatus
JP2013202481A (en) Cleaning method of separation membrane module
JP2007289899A (en) Membrane washing method for membrane separation means, and water treatment apparatus
WO2017159303A1 (en) Method for treating waste water having high hardness
JP2008246424A (en) Cleaning method of hollow fiber membrane module and hollow fiber membrane filtering apparatus
JP2009262021A (en) Membrane filtration method and membrane filtration apparatus
KR20130080588A (en) Water treatment system of silicon wastewater and method of the same
JP6036808B2 (en) Fresh water generation method
JP2007289899A5 (en)
JP2017113735A (en) Operation method of separate membrane filtration device and water purification device
JP2007301469A (en) Water treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004