JP5245216B2 - Hollow fiber membrane water treatment method and water treatment apparatus - Google Patents

Hollow fiber membrane water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP5245216B2
JP5245216B2 JP2006167095A JP2006167095A JP5245216B2 JP 5245216 B2 JP5245216 B2 JP 5245216B2 JP 2006167095 A JP2006167095 A JP 2006167095A JP 2006167095 A JP2006167095 A JP 2006167095A JP 5245216 B2 JP5245216 B2 JP 5245216B2
Authority
JP
Japan
Prior art keywords
hollow fiber
water
fiber membrane
membrane module
primary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006167095A
Other languages
Japanese (ja)
Other versions
JP2007330916A (en
Inventor
茂 丸山
正志 山崎
充弘 和田
和也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006167095A priority Critical patent/JP5245216B2/en
Publication of JP2007330916A publication Critical patent/JP2007330916A/en
Application granted granted Critical
Publication of JP5245216B2 publication Critical patent/JP5245216B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、中空糸膜モジュールを用いた水処理方法及び水処理装置に関する。   The present invention relates to a water treatment method and a water treatment apparatus using a hollow fiber membrane module.

膜を用いた水処理装置では、被処理水中の懸濁物質や有機物質等が、長時間の運転によって膜の表面に徐々に堆積していき、膜ファウリングが発生する。膜ファウリングが発生すると、膜圧力の上昇や、ろ過流束の低下等が引き起こり、浄水効率が落ち、水処理装置の全体的な運転効率が低下する。そのため水処理装置の運転サイクルでは、所定時間のろ過工程後に、膜を物理洗浄している。   In a water treatment apparatus using a membrane, suspended substances, organic substances, etc. in the water to be treated are gradually deposited on the surface of the membrane over a long period of operation, and membrane fouling occurs. When membrane fouling occurs, an increase in membrane pressure, a decrease in filtration flux, and the like are caused, water purification efficiency is lowered, and the overall operation efficiency of the water treatment device is lowered. Therefore, in the operation cycle of the water treatment apparatus, the membrane is physically washed after the filtration process for a predetermined time.

中空糸膜モジュールの物理洗浄方法としては、膜の二次側から一次側に膜ろ過水等を通す逆洗、膜の一次側に原水等を通水し洗浄するフラッシング、膜の一次側に原水と空気の混合水を通水し洗浄するエアーフラッシング、中空糸の一次側にエアーを注入して中空糸膜中の滞留水を洗浄する方法、逆洗時に中空糸膜の一次側にスポンジボール等を添加するスポンジボール法、膜の一次側の洗浄水に微細気泡を含有させるエアーバブリング法、圧力容器等に超音波振動子を取り付けその振動を利用して洗浄する超音波法等が知られている。   The physical cleaning method for the hollow fiber membrane module includes backwashing by passing membrane filtrate from the secondary side of the membrane to the primary side, flushing by passing raw water etc. to the primary side of the membrane and washing, and raw water on the primary side of the membrane Flushing with water and air mixed water to wash, a method of injecting air to the primary side of the hollow fiber to wash the water remaining in the hollow fiber membrane, a sponge ball on the primary side of the hollow fiber membrane during backwashing, etc. Sponge ball method to add, air bubbling method to contain fine bubbles in the cleaning water on the primary side of the membrane, ultrasonic method to attach ultrasonic vibrator to pressure vessel etc. and wash using the vibration etc. are known Yes.

また、下記特許文献1には、有孔中空管の少なくとも一方の開口端から0.3MPa以下の気体を注入する操作を行うことを特徴とした、膜モジュールの洗浄方法が開示されている。   Patent Document 1 below discloses a membrane module cleaning method characterized by performing an operation of injecting a gas of 0.3 MPa or less from at least one open end of a perforated hollow tube.

また、下記特許文献2には、内圧式中空糸モジュールの透過水出口側から逆洗水を加圧または無加圧で注入し、更に前記内圧式中空糸モジュールの一方の口から空気を吹き込んで、前記内壁より固形物を剥離させ、その剥離した固形物を他方の口から排出させることを特徴とした中空糸膜モジュールの洗浄方法が開示されている。
特開2002−79061号公報 特開平7−236818号公報
Further, in Patent Document 2 below, backwash water is injected with pressure or no pressure from the permeate outlet side of the internal pressure type hollow fiber module, and air is blown from one of the ports of the internal pressure type hollow fiber module. A method for cleaning a hollow fiber membrane module is disclosed in which solid matter is peeled off from the inner wall and the peeled solid matter is discharged from the other port.
JP 2002-79061 A Japanese Patent Laid-Open No. 7-236818

エアーを用いた膜の洗浄方法は比較的効果が高いものの、膜の損傷を引き起こすなどの課題を有していた。   Although the film cleaning method using air is relatively effective, it has problems such as causing damage to the film.

また、上記特許文献1、2に開示されている洗浄方法であっても、膜面の付着物を完全に除去することができず、長期的な膜差圧の上昇の防止は困難であった。   Further, even with the cleaning methods disclosed in Patent Documents 1 and 2 above, deposits on the film surface could not be completely removed, and it was difficult to prevent a long-term increase in the film differential pressure. .

したがって、本発明の目的は、長期的な膜差圧の上昇の防止でき、膜破断が発生しにくい中空糸膜の水処理方法及び水処理装置を提供することにある。   Accordingly, an object of the present invention is to provide a water treatment method and a water treatment apparatus for a hollow fiber membrane that can prevent a long-term increase in membrane differential pressure and hardly cause membrane breakage.

上記課題を解決するため、本発明の水処理方法は、被処理水を中空糸膜モジュールに通して該被処理水中の汚濁物質を除去する膜ろ過処理工程と、前記中空糸膜モジュールの洗浄処理工程とを繰り返して行う水処理方法において、前記洗浄処理工程として、前記中空糸膜モジュールのろ過水の流出側である二次側から被処理水の流入側である一次側に水を流す逆洗工程(A)と、前記逆洗工程(A)後に、前記中空糸膜モジュールの一次側及び二次側を所定の空気圧で加圧しつつ、前記中空糸膜モジュールの一次側及び二次側に滞留している滞留水を前記中空糸膜モジュールの一次側から排水する滞留水引き抜き工程(B)と、滞留水引き抜き工程(B)後に、前記中空糸膜モジュールの一次側に水を供給して前記中空糸膜モジュールに滞留する空気を除去するエアー抜き工程(C)とを含む物理洗浄を行った後、前記中空糸膜モジュールの二次側から一次側に薬品洗浄液を注入する薬品洗浄液注入工程(D)と、この薬品洗浄液を前記中空糸膜モジュールに滞留させる薬品洗浄液滞留工程(E)と、洗浄水を中空糸膜モジュールの二次側より供給した後、前記中空糸膜モジュールの二次側を0.01〜0.05MPaの空気圧で加圧してこの水を前記中空糸膜モジュールの一次側に排出させ、次いで、前記中空糸膜モジュールの一次側を0.01〜0.05MPaの空気圧で加圧して水を前記中空糸膜モジュールの一次側から引き抜いて中空糸膜モジュールを水洗いするリンス工程(F)とを含む薬品洗浄を行うことを特徴とする。 In order to solve the above-mentioned problems, the water treatment method of the present invention includes a membrane filtration treatment step for removing the contaminants in the treated water by passing the treated water through the hollow fiber membrane module, and a washing treatment of the hollow fiber membrane module. In the water treatment method that repeats the steps, as the washing treatment step, backwashing is performed by flowing water from the secondary side that is the outflow side of the filtrate of the hollow fiber membrane module to the primary side that is the inflow side of the water to be treated. After the step (A) and the backwashing step (A), the primary side and the secondary side of the hollow fiber membrane module are pressurized at a predetermined air pressure while staying on the primary side and the secondary side of the hollow fiber membrane module. The retained water extraction step (B) for draining the retained water from the primary side of the hollow fiber membrane module, and the retained water extraction step (B), after supplying water to the primary side of the hollow fiber membrane module , Stay in hollow fiber membrane module That after the physical cleaning including the air vent step (C) for removing air Tsu row, from the secondary side chemical cleaning liquid injection step of injecting chemicals washing liquid to the primary side (D) of the hollow fiber membrane module, this A chemical cleaning liquid retention step (E) for retaining a chemical cleaning liquid in the hollow fiber membrane module, and after supplying cleaning water from the secondary side of the hollow fiber membrane module, the secondary side of the hollow fiber membrane module is set to 0.01 to Pressurize with a pressure of 0.05 MPa to discharge the water to the primary side of the hollow fiber membrane module, then pressurize the primary side of the hollow fiber membrane module with a pressure of 0.01 to 0.05 MPa to supply water. It is characterized by performing chemical cleaning including a rinsing step (F) of drawing out from the primary side of the hollow fiber membrane module and washing the hollow fiber membrane module with water .

上記本発明の水処理方法によれば、中空糸膜モジュールの一次側及び二次側を所定の空気圧で加圧しつつ、中空糸膜モジュール中の滞留水を前記中空糸膜モジュールの一次側から排水する滞留水引き抜き工程を行うので、滞留水が高速で引き抜かれることとなり、その時の剪断力で膜表面あるいは内部に蓄積した汚染物質を効率よく剥離することができる。また、膜の一次側と二次側とを同時に加圧するので、膜にかかる負荷がそれぞれ相殺されて小さくなり、膜変形や膜破断が生じにくい。
また、逆洗工程(A)と、滞留水引き抜き工程(B)と、エアー抜き工程(C)とを含む物理洗浄を終えた後、中空糸膜モジュールの二次側から一次側に薬品洗浄液を注入する薬品洗浄液注入工程(D)と、この薬品洗浄液を中空糸膜モジュールに滞留させる薬品洗浄液滞留工程(E)と、中空糸膜モジュールの二次側から一次側に水を注入して中空糸膜モジュールを水洗いするリンス工程(F)とを含む薬品洗浄を行うので、物理的な逆洗作用のみでは剥離が困難な汚染物質についても剥離除去でき、膜の目詰まりを効果的に抑制できる。
そして、リンス工程(F)は、洗浄水を中空糸膜モジュールの二次側より供給した後、中空糸膜モジュールの二次側を0.01〜0.05MPaの空気圧で加圧してこの水を中空糸膜モジュールの一次側に排出させ、次いで、中空糸膜モジュールの一次側を0.01〜0.05MPaの空気圧で加圧して水を中空糸膜モジュールの一次側から引き抜いて行うので、膜を損傷することなく、中空糸膜モジュール中に滞留している薬品洗浄液を系外に排出することができる。
According to the water treatment method of the present invention described above, the retained water in the hollow fiber membrane module is drained from the primary side of the hollow fiber membrane module while pressurizing the primary side and secondary side of the hollow fiber membrane module with a predetermined air pressure. Since the stagnant water extraction step is performed, the stagnant water is withdrawn at a high speed, and contaminants accumulated on the film surface or inside can be efficiently peeled off by the shearing force at that time. Further, since the primary side and the secondary side of the film are pressurized simultaneously, the load applied to the film is offset and reduced, and film deformation and film breakage are unlikely to occur.
Moreover, after finishing the physical cleaning including the backwashing step (A), the stagnant water drawing step (B), and the air venting step (C), the chemical cleaning liquid is applied from the secondary side to the primary side of the hollow fiber membrane module. A chemical cleaning liquid injection step (D) for injecting, a chemical cleaning liquid retention step (E) for retaining the chemical cleaning liquid in the hollow fiber membrane module, and water injected from the secondary side to the primary side of the hollow fiber membrane module Since the chemical cleaning including the rinsing step (F) for washing the membrane module with water is performed, it is possible to remove and remove contaminants that are difficult to remove only by a physical backwashing action, and to effectively prevent clogging of the membrane.
In the rinsing step (F), after supplying cleaning water from the secondary side of the hollow fiber membrane module, the secondary side of the hollow fiber membrane module is pressurized with an air pressure of 0.01 to 0.05 MPa to supply this water. Since it is discharged to the primary side of the hollow fiber membrane module, and then the primary side of the hollow fiber membrane module is pressurized with an air pressure of 0.01 to 0.05 MPa to draw water from the primary side of the hollow fiber membrane module, the membrane The chemical cleaning liquid staying in the hollow fiber membrane module can be discharged out of the system without damaging.

また、本発明の水処理方法は、前記逆洗工程(A)を行った後、前記中空糸膜モジュールの一次側に、気泡を含有した水を供給した後、前記滞留水引き抜き工程(B)を行うことが好ましい。この態様によれば、滞留水引き抜き工程(B)の際、水と空気の接触する境界面が大きくなり、水と空気の表面張力の差による大きな剪断力が得られるので、膜の洗浄効果が向上する。   In the water treatment method of the present invention, after the backwashing step (A) is performed, water containing bubbles is supplied to the primary side of the hollow fiber membrane module, and then the retained water drawing step (B). It is preferable to carry out. According to this aspect, the boundary surface where water and air come into contact with each other during the step of withdrawing the accumulated water (B), and a large shearing force due to the difference in surface tension between water and air can be obtained. improves.

また、本発明の水処理方法は、前記エアー抜き工程(C)を行った後、前記滞留水引き抜き工程(B)と、前記エアー抜き工程(C)とを、交互に更に1回以上繰り返して行うことが好ましい。この態様によれば、前記滞留水引き抜き工程(B)と、前記エアー抜き工程(C)とを、交互に更に1回以上繰り返して行うことで、膜表面あるいは内部に蓄積した汚染物質を効果的に剥離除去できる。   In the water treatment method of the present invention, after the air venting step (C) is performed, the stay water draining step (B) and the air venting step (C) are alternately repeated one more times. Preferably it is done. According to this aspect, the accumulated water is effectively removed from the membrane surface or inside by repeating the stagnant water extraction step (B) and the air extraction step (C) alternately and more once more. Can be removed.

また、本発明の水処理方法は、前記薬品洗浄液注入工程(D)は、前記中空糸膜モジュールの一次側の薬品洗浄液の濃度が、供給した薬品洗浄液の濃度の80%以上に達するまで行うことが好ましい。   In the water treatment method of the present invention, the chemical cleaning liquid injection step (D) is performed until the concentration of the chemical cleaning liquid on the primary side of the hollow fiber membrane module reaches 80% or more of the concentration of the supplied chemical cleaning liquid. Is preferred.

また、本発明の水処理方法は、前記薬品洗浄液滞留工程(E)は、前記中空糸膜モジュールへの前記薬品洗浄液の注入を停止した後、前記中空糸膜モジュール中に前記薬品洗浄液を10〜120分間滞留させることが好ましい。   In the water treatment method of the present invention, in the chemical cleaning liquid retention step (E), after stopping the injection of the chemical cleaning liquid into the hollow fiber membrane module, the chemical cleaning liquid is added to the hollow fiber membrane module in 10 to 10 minutes. It is preferable to retain for 120 minutes.

上記各態様によれば、膜表面あるいは内部に蓄積した汚染物質を効果的に剥離除去でき、膜のろ過能力をほぼ初期状態まで回復することができる。   According to each aspect described above, contaminants accumulated on the surface or inside of the membrane can be effectively peeled and removed, and the filtration capability of the membrane can be restored to an almost initial state.

一方、本発明水処理装置は、被処理水中の汚濁物質を除去してろ過水を得るための中空糸膜モジュールと、前記中空糸膜モジュールへ供給するための被処理水を貯留する被処理水供給槽と、前記中空糸膜モジュールの被処理水の流入側である一次側の配管に設けられた、前記被処理水供給槽から前記中空糸膜モジュールへ被処理水を供給する被処理水供給ポンプと、前記中空糸膜モジュールのろ過水の流出側である二次側の配管に設けられた、該中空糸膜モジュールの二次側から一次側へ水を供給する逆洗水供給ポンプと、前記中空糸膜モジュールの一次側の配管及び二次側の配管に圧縮空気を供給するためのコンプレッサーと、それぞれの連結配管に設けられた弁体とを有し、前記被処理水供給ポンプと前記中空糸膜モジュールとを連結する配管が途中から分岐して、前記被処理水供給槽と弁体を介して連結していることを特徴とする。 On the other hand, the water treatment apparatus of the present invention comprises a hollow fiber membrane module for obtaining filtered water by removing pollutants in the treated water, and a treated water for storing the treated water to be supplied to the hollow fiber membrane module. Water to be treated for supplying the water to be treated from the water to be treated to be supplied to the hollow fiber membrane module, provided in a water supply tank and a pipe on the primary side which is the inflow side of the water to be treated of the hollow fiber membrane module. A backflushing water supply pump for supplying water from the secondary side of the hollow fiber membrane module to the primary side, provided on a secondary pipe that is the outflow side of the filtrate of the hollow fiber membrane module; a compressor for supplying compressed air to the piping of the primary piping and the secondary side of the hollow fiber membrane module, possess a valve body provided in each of the connection pipe, and the water to be treated supply pump Connected to the hollow fiber membrane module That the pipe is branched from the middle, and said linked via the treated water supply tank and the valve body.

上記本発明の水処理装置によれば、中空糸膜モジュールの一次側及び二次側を所定の空気圧で加圧しつつ、中空糸膜モジュール中の滞留水を前記中空糸膜モジュールの一次側から排水して滞留水を引き抜くことができるので、その際に生じる剪断力により、膜表面あるいは内部に蓄積した汚染物質を効率よく剥離することができる。また、中空糸膜モジュールの一次側及び二次側を同時に加圧していることから、膜面にかかる圧力をほぼ相殺でき、膜変形や膜破断が生じにくい。そして、被処理水供給ポンプと中空糸膜モジュールとを連結する配管が途中から分岐して、被処理水供給槽と弁体を介して連結しているので、原水の供給、停止を速やかに実施する共に、原水供給ポンプ運転立ち上げ時の圧力変動を防止することができる。 According to the water treatment device of the present invention, the primary side and the secondary side of the hollow fiber membrane module are pressurized with a predetermined air pressure, and the retained water in the hollow fiber membrane module is drained from the primary side of the hollow fiber membrane module. Since the accumulated water can be drawn out, the contaminants accumulated on the film surface or inside can be efficiently peeled off by the shearing force generated at that time. In addition, since the primary side and the secondary side of the hollow fiber membrane module are simultaneously pressurized, the pressure applied to the membrane surface can be almost offset, and membrane deformation and membrane breakage are unlikely to occur. And since the pipe connecting the treated water supply pump and the hollow fiber membrane module branches from the middle and is connected via the treated water supply tank and the valve body, the supply and stop of the raw water are promptly performed. At the same time, it is possible to prevent pressure fluctuations when starting up the raw water supply pump.

また、本発明の水処理装置は、前記中空糸膜モジュールの二次側の配管の一部が、前記逆洗水供給ポンプを介して、前記中空糸膜モジュールの二次側から得られるろ過水を貯留するろ過水貯留槽と連結し、ろ過水の一部を中空糸膜モジュールの二次側から一次側へ供給できるように構成されていることが好ましい。この態様によれば、専用の逆洗水供給系を備える必要がなく、装置を単純に構成できる。   Further, the water treatment apparatus of the present invention is a filtered water in which a part of the secondary pipe of the hollow fiber membrane module is obtained from the secondary side of the hollow fiber membrane module via the backwash water supply pump. It is preferable that it is connected with the filtrate storage tank which stores water, and it is comprised so that a part of filtrate can be supplied from the secondary side of a hollow fiber membrane module to a primary side. According to this aspect, it is not necessary to provide a dedicated backwash water supply system, and the apparatus can be simply configured.

また、本発明の水処理装置は、前記中空糸膜モジュールの二次側から薬品洗浄液を供給するための薬品洗浄液注入手段を有することが好ましい。この態様によれば、膜表面あるいは内部に蓄積した汚染物質を、薬品によって溶解・分解できるので、膜のろ過能力をほぼ初期状態まで回復することができる。   Moreover, it is preferable that the water treatment apparatus of this invention has a chemical cleaning liquid injection | pouring means for supplying a chemical cleaning liquid from the secondary side of the said hollow fiber membrane module. According to this aspect, the contaminant accumulated on the surface or inside of the membrane can be dissolved and decomposed by the chemical, so that the filtration ability of the membrane can be restored to almost the initial state.

本発明によれば、中空糸膜モジュールの一次側及び二次側を所定の空気圧で加圧しつつ、中空糸膜モジュール中の滞留水を前記中空糸膜モジュールの一次側から排水して滞留水を引き抜くので、滞留水が高速で引き抜かれることとなり、その際に生じる剪断力により、膜表面あるいは内部に蓄積した汚染物質を効率よく剥離することができる。また、中空糸膜モジュールの一次側及び二次側を同時に加圧していることから、膜面にかかる圧力をほぼ相殺でき、膜破断が生じにくい。   According to the present invention, while the primary side and the secondary side of the hollow fiber membrane module are pressurized with a predetermined air pressure, the retained water in the hollow fiber membrane module is drained from the primary side of the hollow fiber membrane module to Since the water is pulled out, the accumulated water is pulled out at a high speed, and the contaminants accumulated on the surface or inside of the membrane can be efficiently peeled off by the shearing force generated at that time. Further, since the primary side and the secondary side of the hollow fiber membrane module are simultaneously pressurized, the pressure applied to the membrane surface can be almost canceled out, and membrane breakage hardly occurs.

本発明での被処理水としては、不溶解性有機物を含む水であればどのような水でも使用でき、具体的には河川水、湖沼水、下水、工場廃水等が好ましい。   As the water to be treated in the present invention, any water containing insoluble organic substances can be used. Specifically, river water, lake water, sewage, factory waste water, and the like are preferable.

以下、本発明について図面を用いて更に詳細に説明する。図1には、本発明の水処理方法に用いる水処理装置の第1実施形態の概略構成図が示されている。   Hereinafter, the present invention will be described in more detail with reference to the drawings. The schematic block diagram of 1st Embodiment of the water treatment apparatus used for the water treatment method of this invention is shown by FIG.

まず、図1の水処理装置について説明すると、この水処理装置は、水処理の対象となる被処理水(以下、原水とする)を貯留する原水供給槽10と、原水中の汚濁物質を捕捉してろ過水を得る中空糸膜モジュール30と、ろ過水を貯留するろ過水貯留槽13とで主に構成されている。   First, the water treatment device of FIG. 1 will be described. This water treatment device captures raw water supply tank 10 for storing water to be treated (hereinafter referred to as raw water), and captures pollutants in the raw water. Thus, the hollow fiber membrane module 30 that obtains filtrate and the filtrate storage tank 13 that stores filtrate is mainly configured.

原水供給槽10は、原水供給ポンプ11と、第1の原水供給バルブV1とが配置された配管1を介して、中空糸膜モジュール30の原水の流入側である一次側30aに連結している。また、第1の原水供給バルブV1と中空糸膜モジュール30とを連結する配管1の途中が二手に分岐しており、一方は、第1の排出バルブV5aの配置された配管5aに接続しており、他方は、第1のコンプレッサー入口バルブV6と第1の逆止弁40とが配置された配管7aを介してコンプレッサー14に接続している。   The raw water supply tank 10 is connected to the primary side 30a which is the inflow side of the raw water of the hollow fiber membrane module 30 via the pipe 1 in which the raw water supply pump 11 and the first raw water supply valve V1 are arranged. . Moreover, the middle of the pipe 1 connecting the first raw water supply valve V1 and the hollow fiber membrane module 30 is bifurcated, and one of the pipes is connected to the pipe 5a where the first discharge valve V5a is arranged. The other is connected to the compressor 14 via a pipe 7a in which a first compressor inlet valve V6 and a first check valve 40 are arranged.

中空糸膜モジュール30に用いる膜は、一般的なろ過膜であれば全て使用でき、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、ナノろ過膜(NF膜)等が挙げられる。また、中空糸膜モジュール30の形態としては、内圧式中空糸膜、外圧式中空糸膜、縦型中空糸膜モジュール、横型中空糸膜モジュールなどが挙げられ、特に限定されない。   Any membrane can be used for the hollow fiber membrane module 30 as long as it is a general filtration membrane, and examples include a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), and a nanofiltration membrane (NF membrane). . Examples of the form of the hollow fiber membrane module 30 include, but are not limited to, an internal pressure type hollow fiber membrane, an external pressure type hollow fiber membrane, a vertical hollow fiber membrane module, and a horizontal hollow fiber membrane module.

原水供給ポンプ11と第1の原水供給バルブV1とを連結する配管1の一部は分岐しており、第2の原水供給バルブV2が設けられた配管2を介して、中空糸膜モジュール30の一次側30aに連結している。また、第2の原水供給バルブV2と中空糸膜モジュール30とを連結する配管2の途中が二手に分岐しており、一方は、第2の排出バルブV5bが配置された配管5bに接続しており、他方は、第2の逆止弁41が配置された配管7bを介して配管7cに接続している。配管7cは、第2のコンプレッサー入口バルブV7を介して配管7aに接続している。   A part of the pipe 1 connecting the raw water supply pump 11 and the first raw water supply valve V1 is branched, and the hollow fiber membrane module 30 is connected via the pipe 2 provided with the second raw water supply valve V2. It is connected to the primary side 30a. Moreover, the middle of the pipe 2 connecting the second raw water supply valve V2 and the hollow fiber membrane module 30 is bifurcated, and one of the pipes is connected to the pipe 5b where the second discharge valve V5b is arranged. The other is connected to the pipe 7c through the pipe 7b in which the second check valve 41 is arranged. The pipe 7c is connected to the pipe 7a via the second compressor inlet valve V7.

中空糸膜モジュール30のろ過水の流出側である二次側30bには、膜出口バルブV3と、ろ過水貯留槽入口バルブV4とが配置された配管6を介して、ろ過水貯留槽13に連結している。また、中空糸膜モジュール30と膜出口バルブV3とを連結する配管3の途中が二手に分岐しており、一方は、エアー抜きバルブV8の配置された配管6に接続し、他方は、第3の逆止弁42が配置された配管7cを介して、第1のコンプレッサー入口バルブV6と第1の逆止弁40とを連結する配管7aに接続している。   The secondary side 30b which is the filtrate water outflow side of the hollow fiber membrane module 30 is connected to the filtrate storage tank 13 via a pipe 6 in which a membrane outlet valve V3 and a filtrate storage tank inlet valve V4 are arranged. It is connected. The middle of the pipe 3 connecting the hollow fiber membrane module 30 and the membrane outlet valve V3 is bifurcated. One is connected to the pipe 6 where the air vent valve V8 is arranged, and the other is the third. The first compressor inlet valve V6 and the first check valve 40 are connected to a pipe 7a through a pipe 7c on which the check valve 42 is disposed.

ろ過水貯留槽13の下部からは、逆洗水供給ポンプ12が設けられた配管4が延出しており、膜出口バルブV3と、ろ過水貯留槽入口バルブV4とを連結する配管6に接続している。   A pipe 4 provided with a backwash water supply pump 12 extends from the lower part of the filtrate storage tank 13, and is connected to a pipe 6 that connects the membrane outlet valve V3 and the filtrate storage tank inlet valve V4. ing.

次に、上記水処理装置を用いた本発明の水処理方法について、図2〜図7を用いて説明する。なお、図中において、開バルブ及び稼働中のポンプ、コンプレッサーは白抜きで示し、閉バルブ及び停止中のポンプ、コンプレッサーは黒塗りで示している。また、図中の破線部は、原水、ろ過水及び空気の流通を意味し、実線部は、原水、ろ過水及び空気の停止を意味する。   Next, the water treatment method of the present invention using the water treatment apparatus will be described with reference to FIGS. In the figure, the open valve and the operating pump and compressor are shown in white, and the closed valve and the stopped pump and compressor are shown in black. Moreover, the broken line part in a figure means distribution | circulation of raw | natural water, filtered water, and air, and a continuous line part means the stop of raw | natural water, filtered water, and air.

まず、原水供給槽10に流入した原水に、必要に応じて凝集剤及び/又はpH調整剤を攪拌投入して、原水中の固形分の凝集、pH調整等の処理を行う。その後、図2に示すように第1の原水供給バルブV1と、第2の原水供給バルブV2と、膜出口バルブV3と、ろ過水貯留槽入口バルブV4とを開とし、それ以外のバルブは閉として、原水供給ポンプ11を稼動して中空糸膜モジュール30の一次側30aへと通水してろ過を行い、ろ過水を得る、膜ろ過処理工程を行う。ろ過水は、膜出口バルブV3及びろ過水貯留槽入口バルブV4を通過して、ろ過水貯留槽13へと供せられる。中空糸膜モジュール30で膜ろ過処理されたろ過水は、ろ過水貯留槽13へと貯留された後、大部分は配管50から引き抜かれて次工程へと通水し、貯留されたろ過水の一部は、中空糸膜モジュール30の洗浄を行うための逆洗水として使用する。   First, a flocculant and / or a pH adjuster are stirred into the raw water that has flowed into the raw water supply tank 10 as necessary, and processing such as aggregation of solids in the raw water and pH adjustment are performed. Thereafter, as shown in FIG. 2, the first raw water supply valve V1, the second raw water supply valve V2, the membrane outlet valve V3, and the filtrate storage tank inlet valve V4 are opened, and the other valves are closed. Then, the raw water supply pump 11 is operated and water is passed through the primary side 30a of the hollow fiber membrane module 30 to perform filtration, and a membrane filtration treatment step is performed to obtain filtrate. The filtrate passes through the membrane outlet valve V3 and the filtrate storage tank inlet valve V4 and is supplied to the filtrate storage tank 13. After the filtrate filtered by the hollow fiber membrane module 30 is stored in the filtrate storage tank 13, most of the filtrate is extracted from the pipe 50 and passed to the next process, and the stored filtrate is stored. A part is used as backwash water for cleaning the hollow fiber membrane module 30.

上記膜ろ過処理工程を所定時間行った後、図3に示すように原水供給ポンプ11の稼動を停止し、膜出口バルブV3及び第1の排出バルブV5aを開とし、それ以外のバルブは閉とし、逆洗水供給ポンプ12を稼動して、ろ過水貯留槽13に貯留されたろ過水を中空糸膜モジュール30の二次側30bから一次側30aへ通水し、一次側30aへと通水された逆洗排水を、配管5aから系外に排水する逆洗工程(A‐1)を行う。   After performing the membrane filtration process for a predetermined time, the operation of the raw water supply pump 11 is stopped, the membrane outlet valve V3 and the first discharge valve V5a are opened, and the other valves are closed as shown in FIG. Then, the backwash water supply pump 12 is operated to pass the filtrate stored in the filtrate storage tank 13 from the secondary side 30b of the hollow fiber membrane module 30 to the primary side 30a, and to the primary side 30a. The backwashing process (A-1) which drains the backwashed wastewater drained out of the system from the pipe 5a is performed.

上記逆洗工程(A‐1)を所定時間行った後、図4に示すように、第2の排出バルブV5bを開とし、第1の排水バルブV5aを閉とし、膜出口バルブV3を開として、逆洗水供給ポンプ12により、ろ過水貯留槽13に貯留されたろ過水を中空糸膜モジュール30の二次側30bから一次側30aへと通水し、一次側30aへと通水された逆洗排水を、配管5bから系外に排水する逆洗工程(A‐2)を行う。   After performing the backwashing step (A-1) for a predetermined time, as shown in FIG. 4, the second discharge valve V5b is opened, the first drain valve V5a is closed, and the membrane outlet valve V3 is opened. The filtered water stored in the filtrate storage tank 13 was passed from the secondary side 30b of the hollow fiber membrane module 30 to the primary side 30a by the backwash water supply pump 12, and then passed to the primary side 30a. A backwash process (A-2) for draining the backwash drainage from the pipe 5b to the outside of the system is performed.

上記逆洗工程(A)に要する時間は、原水濁度等の原水の水質によって適宜設定でき、製造したろ過水の節約の観点から、低流束、(低圧力)で短時間が良い。逆洗流束は2〜8m/d、合計して10〜60秒が好ましい。上記逆洗工程(A−1)及び逆洗工程(A−2)は、どちらか一方のみの実施であってもよいが、逆洗工程(A−1)と逆洗工程(A−2)とを併用することで、中空糸膜モジュール30の一次側30aに堆積する大きな固形物を除去できるので、後述する滞留水引き抜き工程(B)にて、中空糸膜の損傷を防止できる(以下、逆洗工程(A−1)と逆洗工程(A−2)とを併せて逆洗工程(A)とする)。   The time required for the backwashing step (A) can be appropriately set depending on the quality of the raw water such as raw water turbidity, and from the viewpoint of saving the produced filtrate, a short time with a low flux (low pressure) is good. The backwash flux is preferably 2 to 8 m / d, and 10 to 60 seconds in total. Only one of the backwashing step (A-1) and backwashing step (A-2) may be performed, but the backwashing step (A-1) and the backwashing step (A-2) Can be used to remove large solid matter deposited on the primary side 30a of the hollow fiber membrane module 30, so that damage to the hollow fiber membrane can be prevented in the retained water extraction step (B) described below (hereinafter, The backwashing step (A-1) and the backwashing step (A-2) are collectively referred to as the backwashing step (A)).

そして、本発明においては、上記逆洗工程(A)を行った後、中空糸膜モジュール30の一次側30a及び二次側30bを所定の空気圧で加圧しつつ、中空糸膜モジュール30中の滞留水を中空糸膜モジュール30の一次側30aから排水する滞留水引き抜き工程(B)を行う。   And in this invention, after performing the said backwashing process (A), it retains in the hollow fiber membrane module 30, pressurizing the primary side 30a and the secondary side 30b of the hollow fiber membrane module 30 with predetermined air pressure. A stagnant water extraction step (B) for draining water from the primary side 30 a of the hollow fiber membrane module 30 is performed.

すなわち、図5に示すように第1の排出バルブV5a及び第2のコンプレッサー入口バルブV7を開とし、その他のバルブを閉とし、コンプレッサー14を稼動させ、上記逆洗工程(A)によって中空糸膜モジュール30中の滞留水、すなわち逆洗水及び/又は逆洗排水を系外へ排水する滞留水引き抜き工程(B)を行う。   That is, as shown in FIG. 5, the first discharge valve V5a and the second compressor inlet valve V7 are opened, the other valves are closed, the compressor 14 is operated, and the hollow fiber membrane is obtained by the backwashing step (A). A stagnant water extraction step (B) for draining the stagnant water in the module 30, that is, backwash water and / or backwash wastewater, is performed.

コンプレッサー14の稼動によって、圧縮された空気が配管7bから中空糸膜モジュール30の一次側30aへと流入するので、中空糸膜モジュール30中の滞留水が、配管5aから系外へと排水される。また、この時、一次側30aに圧縮空気が流入すると同時に、二次側30bへも配管7cから圧縮空気が流入するので、中空糸膜モジュール30の一次側30a及び二次側30bが同時に加圧され、一次側30aから二次側30bへの洗浄水の流出、および中空糸膜への高圧負荷を防止しつつ、中空糸膜モジュール30中の滞留水を引き抜くことができる。   Since the compressed air flows from the pipe 7b to the primary side 30a of the hollow fiber membrane module 30 by the operation of the compressor 14, the accumulated water in the hollow fiber membrane module 30 is drained out of the system from the pipe 5a. . At this time, since compressed air flows into the primary side 30a and at the same time compressed air also flows into the secondary side 30b from the pipe 7c, the primary side 30a and the secondary side 30b of the hollow fiber membrane module 30 are pressurized simultaneously. Thus, it is possible to draw out the accumulated water in the hollow fiber membrane module 30 while preventing the washing water from flowing from the primary side 30a to the secondary side 30b and the high-pressure load on the hollow fiber membrane.

中空糸膜モジュール30の一次側30a及び二次側30bを加圧する空気圧は、膜への負荷抑制の観点から、ほぼ同じ圧力となるようにすることが好ましい。また、空気圧は、0.05〜3MPaが好ましく、0.1〜1MPaがより好ましい。0.05MPa未満であると十分な洗浄効果が得られず、3MPaを超えると、膜破断が生じるおそれがある。   The air pressure for pressurizing the primary side 30a and the secondary side 30b of the hollow fiber membrane module 30 is preferably set to be almost the same pressure from the viewpoint of suppressing the load on the membrane. The air pressure is preferably 0.05 to 3 MPa, and more preferably 0.1 to 1 MPa. If the pressure is less than 0.05 MPa, a sufficient cleaning effect cannot be obtained, and if it exceeds 3 MPa, film breakage may occur.

例えば、中空糸膜モジュール30の一次側30a及び二次側30bをそれぞれ0.2MPaで加圧することで、中空糸膜モジュール30の一次側30aから滞留水を、線速度2〜3m/secで引き抜くことができる。   For example, the primary side 30a and the secondary side 30b of the hollow fiber membrane module 30 are each pressurized at 0.2 MPa, whereby the accumulated water is drawn out from the primary side 30a of the hollow fiber membrane module 30 at a linear velocity of 2 to 3 m / sec. be able to.

滞留水引き抜き工程(B)に要する時間、すなわち、第2のコンプレッサー入口バルブV7の開放時間は、中空糸膜の長さによって適宜調整すればよく、特に限定されない。例えば、中空糸膜の長さが約1mの場合、0.5〜3秒が好ましい。0.5秒未満であると滞留水が完全に排出されないことがあり、3秒を超えても洗浄効果が上がらず、エアー消費量のみが多くなる。   The time required for the retained water extraction step (B), that is, the opening time of the second compressor inlet valve V7 may be appropriately adjusted according to the length of the hollow fiber membrane, and is not particularly limited. For example, when the length of the hollow fiber membrane is about 1 m, 0.5 to 3 seconds is preferable. If it is less than 0.5 seconds, the staying water may not be completely discharged, and if it exceeds 3 seconds, the cleaning effect is not improved, and only the air consumption increases.

なお、本発明においては、上記滞留水引き抜き工程(B)を行う前、すなわち、逆洗工程(A)の終了直後、図6に示すように第1の原水供給バルブV1と、第2の排出バルブV5bと、第1のコンプレッサー入口バルブV6とを開とし、原水供給ポンプ11とコンプレッサー14とを稼動させて、空気を含有した水を中空糸膜モジュール30の一次側30aに供給して、一次側30aの膜面を空気含有水で洗浄するエアーフラッシング工程を行ってもよい。   In the present invention, the first raw water supply valve V1 and the second discharge as shown in FIG. 6 are performed before performing the above-described staying water extraction step (B), that is, immediately after the backwashing step (A). The valve V5b and the first compressor inlet valve V6 are opened, and the raw water supply pump 11 and the compressor 14 are operated to supply water containing air to the primary side 30a of the hollow fiber membrane module 30. An air flushing step of washing the membrane surface of the side 30a with air-containing water may be performed.

この時、中空糸膜モジュール30の一次側30aに供給する水としては、ろ過水又は原水などが挙げられる。また、原水を用いる場合は、原水供給槽10に100メッシュ前後のフィルタを設置し、大きな固形分を除去することが好ましい。また、コンプレッサー14からのエアーの供給量は、水の供給量の1.2倍〜2倍とすることが好ましい。また、水の供給速度は、0.3〜1.0m/secが好ましい。   At this time, the water supplied to the primary side 30a of the hollow fiber membrane module 30 includes filtered water or raw water. Moreover, when using raw | natural water, it is preferable to install the filter of about 100 mesh in the raw | natural water supply tank 10, and to remove big solid content. Further, the supply amount of air from the compressor 14 is preferably 1.2 to 2 times the supply amount of water. The water supply rate is preferably 0.3 to 1.0 m / sec.

このように、滞留水引き抜き工程(B)を行う前に、上記エアーフラッシング工程を行うことで、中空糸膜モジュール30内の滞留水中に空気を残留させることができる。このため、滞留水引き抜き工程(B)の際、水と空気の接触する境界面が大きくなり、水と空気の表面張力の差による大きな剪断力が得られるので、膜の洗浄効果が向上する。   Thus, air can be made to remain in the staying water in the hollow fiber membrane module 30 by performing the air flushing step before the staying water extraction step (B). For this reason, in the staying water extraction step (B), the boundary surface where water and air come into contact increases, and a large shearing force due to the difference in surface tension between water and air is obtained, so that the membrane cleaning effect is improved.

なお、上記エアーフラッシング工程は、滞留水引き抜き工程(B)を終えた後、すなわちエアー抜き工程(C)の直前に行ってもよい。   In addition, you may perform the said air flushing process, after finishing a stagnant water extraction process (B), ie, just before an air extraction process (C).

そして、上記滞留水引き抜き工程(B)を終えた後、図7に示すように第1の原水供給バルブV1及び第2の排出バルブV5bを開とし、その他の自動バルブを閉とし、原水供給ポンプ11を稼動させて、中空糸膜モジュール30の一次側30aに水を通水し、配管5bより排水するいわゆるエアー抜き工程(C)を行う。   Then, after the above-mentioned retained water extraction step (B) is completed, as shown in FIG. 7, the first raw water supply valve V1 and the second discharge valve V5b are opened, the other automatic valves are closed, and the raw water supply pump 11 is operated, water is passed through the primary side 30a of the hollow fiber membrane module 30, and a so-called air venting process (C) is performed for draining from the pipe 5b.

エアー抜き工程(C)を実施する時間は、10秒〜60秒が好ましく、10〜30秒がより好ましい。また、エアー抜き工程(C)において、中空糸膜モジュール30に供給する水としては、ろ過水又は原水などが挙げられる。また、原水を用いる場合は、原水供給槽10に100メッシュ前後のフィルタを設置し、大きな固形分を除去することが好ましい。なお、膜の汚染状態が激しく、洗浄が不十分である場合においては、上記エアー抜き工程(C)を終えた後、再度上記洗浄サイクルを繰り返し行うことが好ましい。この時、逆洗工程(A)は繰り返して行ったとしてもさほど著しい洗浄効果が得られない場合があるので、逆洗工程(A)を行わず、滞留水引き抜き工程(B)と、エアー抜き工程(C)とを、交互に1回以上繰り返して行うことが好ましい。   The time for performing the air venting step (C) is preferably 10 seconds to 60 seconds, and more preferably 10 to 30 seconds. In the air venting step (C), examples of water supplied to the hollow fiber membrane module 30 include filtered water and raw water. Moreover, when using raw | natural water, it is preferable to install the filter of about 100 mesh in the raw | natural water supply tank 10, and to remove big solid content. In the case where the state of contamination of the film is severe and the cleaning is insufficient, it is preferable to repeat the cleaning cycle again after finishing the air venting step (C). At this time, even if the backwashing step (A) is repeated, there may be a case where a remarkable cleaning effect may not be obtained. Therefore, the backwashing step (A) is not carried out, the stagnant water drawing step (B), and the air removal. It is preferable to repeat the step (C) alternately one or more times.

また、滞留水引き抜き工程(B)を終えた後、すなわちエアー抜き工程(C)の直前に上記エアーフラッシング工程を更に行ってもよい。エアーフラッシング工程を更に行うことで、膜に付着した汚染物をより効果的に除去できる。   Further, the air flushing step may be further performed after the staying water extraction step (B), that is, immediately before the air extraction step (C). By further performing the air flushing step, contaminants attached to the film can be more effectively removed.

本発明の水処理方法によれば、逆洗工程(A)を終えた後、中空糸膜モジュール30内の滞留水を、一次側30aと二次側30bに同時に加圧しながら引き抜くので、滞留水が高速で引き抜かれることとなり、その時の剪断力で膜表面あるいは内部に蓄積した汚染物質を効率よく剥離することができる。また、一次側30aと二次側30bとを同時に加圧するので、一次側30aから二次側30bへの洗浄水の流出を防止すると共に、膜にかかる負荷がそれぞれ相殺されて小さくなり、膜変形や膜破断が生じにくい。   According to the water treatment method of the present invention, after the backwashing step (A) is finished, the retained water in the hollow fiber membrane module 30 is drawn out while simultaneously pressurizing the primary side 30a and the secondary side 30b. Is pulled out at a high speed, and contaminants accumulated on the surface or inside of the film can be efficiently peeled off by the shearing force at that time. Further, since the primary side 30a and the secondary side 30b are pressurized simultaneously, the washing water is prevented from flowing out from the primary side 30a to the secondary side 30b, and the load applied to the membrane is offset and reduced. And film breakage hardly occurs.

図8には、本発明の水処理方法に用いることができる水処理装置の第2の実施形態が示されている。なお、前記実施形態と実質的に同一部分には、同符号を付してその説明を省略することとする。   FIG. 8 shows a second embodiment of a water treatment apparatus that can be used in the water treatment method of the present invention. Note that parts that are substantially the same as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

前記図1に示した第1の実施形態との主な変更点は、<1>原水供給ポンプ11と第1の原水供給バルブV1とを連結する配管1の途中が二手に分岐し、原水入口バルブV9を配置した配管9を介して原水供給槽10に接続している点である。   The main change from the first embodiment shown in FIG. 1 is that <1> the middle of the pipe 1 connecting the raw water supply pump 11 and the first raw water supply valve V1 is bifurcated into the raw water inlet. It is the point connected to the raw | natural water supply tank 10 through the piping 9 which has arrange | positioned valve | bulb V9.

次に、この水処理装置を用いた水処理方法について説明する。なお、基本的な工程は前記実施形態と同様であり、異なる点について詳述する。   Next, a water treatment method using this water treatment apparatus will be described. The basic steps are the same as in the above embodiment, and different points will be described in detail.

なお、この実施形態において、逆洗工程(A)、滞留水引き抜き工程(B)エアー抜き工程(C)は上記第1の実施形態と同じであることから、詳細な説明は省略する。   In this embodiment, the backwashing step (A), the stagnant water extraction step (B), and the air extraction step (C) are the same as those in the first embodiment, and thus detailed description thereof is omitted.

上記逆洗工程(A)を終えた後、原水入口バルブV9を開とし、原水供給ポンプ11を稼動させて、滞留水引き抜き工程(B)の実施中、原水は配管9を介して循環させる。   After the backwashing step (A) is finished, the raw water inlet valve V9 is opened, the raw water supply pump 11 is operated, and the raw water is circulated through the pipe 9 during the staying water extraction step (B).

滞留水引き抜き工程(B)を終えた後、第1の原水供給バルブV1及び第2の排出バルブV5bを開とし、その他の自動バルブを閉として、中空糸膜モジュール30の一次側30aに水を通水し、配管5bより排水するいわゆるエアー抜き工程(C)を行う。   After the retained water extraction step (B) is finished, the first raw water supply valve V1 and the second discharge valve V5b are opened, the other automatic valves are closed, and water is supplied to the primary side 30a of the hollow fiber membrane module 30. A so-called air venting step (C) is performed in which water is passed and drained from the pipe 5b.

このように、この実施形態によれば、逆洗工程(A)と滞留水引き抜き工程(B)との切り替えの際に、原水供給ポンプ11の運転を停止する必要がないので、原水供給ポンプ11の運転立ち上げ時の作業、初期起動力を軽減することができる。そして、第1の原水供給バルブV1及び第2の原水供給バルブV2の開閉によって、原水の供給・停止を速やかに行うことが可能となり、膜の洗浄工程に要する時間を短くすることができ、水処理を効率よく実施できる。   Thus, according to this embodiment, it is not necessary to stop the operation of the raw water supply pump 11 when switching between the backwashing step (A) and the retained water extraction step (B). It is possible to reduce the work at the start of operation and the initial starting force. The opening and closing of the first raw water supply valve V1 and the second raw water supply valve V2 makes it possible to quickly supply and stop the raw water, shorten the time required for the membrane cleaning process, Processing can be carried out efficiently.

図9には、本発明の水処理方法に用いることができる水処理装置の第3の実施形態が示されている。なお、前記実施形態と実質的に同一部分には、同符号を付してその説明を省略することとする。   FIG. 9 shows a third embodiment of a water treatment apparatus that can be used in the water treatment method of the present invention. Note that parts that are substantially the same as those of the above-described embodiment are denoted by the same reference numerals, and description thereof is omitted.

前記一実施形態による処理装置との変更点は、
<1>中空糸膜モジュール30の二次側30bと膜出口バルブV3とを連結する配管3の途中が二手に分岐し、薬品槽入口バルブV10及び薬液注入ポンプ15を配置した配管51を介して薬液槽16に接続している点、
<2>中空糸膜モジュール30の一次側30aと第1の原水供給バルブV1とを連結する配管1の途中が二手に分岐し、還元中和槽入口バルブV11を配置された配管52が還元中和槽17に接続している点、
<3>第2の逆止弁41と配管7cとを連結する配管7bの途中に薬液排水バルブV12を配置している点である。
Changes from the processing apparatus according to the embodiment are as follows.
<1> The pipe 3 that connects the secondary side 30b of the hollow fiber membrane module 30 and the membrane outlet valve V3 is bifurcated, and the pipe 51 is provided with the chemical tank inlet valve V10 and the chemical solution injection pump 15. The point connected to the chemical tank 16
<2> The pipe 52 connecting the primary side 30a of the hollow fiber membrane module 30 and the first raw water supply valve V1 is bifurcated, and the pipe 52 provided with the reduction neutralization tank inlet valve V11 is being reduced. The point connected to the Japanese tank 17
<3> The chemical solution drain valve V12 is arranged in the middle of the pipe 7b connecting the second check valve 41 and the pipe 7c.

次に、この水処理装置を用いた水処理方法について説明する。なお、基本的な工程は前記実施形態と同様であり、異なる点について詳述する。   Next, a water treatment method using this water treatment apparatus will be described. The basic steps are the same as in the above embodiment, and different points will be described in detail.

なお、この実施形態において、逆洗工程(A)、滞留水引き抜き工程(B)エアー抜き工程(C)は上記第1の実施形態と同じであることから、説明は省略する。ただし、上記各工程において、薬液排水バルブV12は常に開とし、薬品槽入口バルブV10及び還元中和槽入口バルブV11は常に閉とする。   In this embodiment, the backwashing step (A), the stagnant water extraction step (B), and the air extraction step (C) are the same as those in the first embodiment, and the description thereof is omitted. However, in each of the above steps, the chemical solution drain valve V12 is always open, and the chemical tank inlet valve V10 and the reduction neutralization tank inlet valve V11 are always closed.

エアー抜き工程(C)を終えた後、薬品槽入口バルブV10及び還元中和槽入口バルブV11を開とし、他のバルブを閉とし、薬液注入ポンプ15を稼動させて、中空糸膜モジュール30の二次側30bに薬品を供給する薬品洗浄液注入工程(D)を行う。   After completing the air venting step (C), the chemical tank inlet valve V10 and the reduction neutralization tank inlet valve V11 are opened, the other valves are closed, the chemical solution injection pump 15 is operated, and the hollow fiber membrane module 30 A chemical cleaning liquid injection step (D) for supplying chemical to the secondary side 30b is performed.

中空糸膜モジュール30に注入する薬品としては、次亜塩素酸、硝酸、塩酸、硫酸等の無機酸、クエン酸、シュウ酸等の有機酸、次亜塩素酸ナトリウム等の酸化剤、過酸化水素のような還元剤、水酸化ナトリウムのようなアルカリ剤を単独または併用して用いることができる。なかでも、浄水場において一般的に使用されているという理由から硫酸および次亜塩素酸ナトリウムが好ましい。また、2種以上の薬品を併用する場合においては、例えば、1日に1回の頻度で次亜塩素酸ナトリウムを用い、7日に1回の頻度で硫酸を用いる組み合わせなどが挙げられる。   Examples of chemicals to be injected into the hollow fiber membrane module 30 include inorganic acids such as hypochlorous acid, nitric acid, hydrochloric acid and sulfuric acid, organic acids such as citric acid and oxalic acid, oxidizing agents such as sodium hypochlorite, hydrogen peroxide And a reducing agent such as sodium hydroxide and an alkali agent such as sodium hydroxide can be used alone or in combination. Of these, sulfuric acid and sodium hypochlorite are preferred because they are generally used in water purification plants. When two or more kinds of chemicals are used in combination, for example, a combination of using sodium hypochlorite once a day and using sulfuric acid once every seven days may be mentioned.

また、注入する薬品濃度は、次亜塩素酸ナトリウムでは1〜500mg/lが好ましく、10〜100mg/lがより好ましい。1mg/l未満であると洗浄効果が悪くなり、500mg/lを超えると膜の劣化が起こる。   The concentration of the chemical to be injected is preferably 1 to 500 mg / l, more preferably 10 to 100 mg / l for sodium hypochlorite. When it is less than 1 mg / l, the cleaning effect is deteriorated, and when it exceeds 500 mg / l, the film is deteriorated.

薬品洗浄液注入工程(D)は、一次側30aに流入した薬品洗浄液の濃度が、設定した薬品洗浄液の濃度の80%以上に達するまで、行うことが好ましい。   The chemical cleaning liquid injection step (D) is preferably performed until the concentration of the chemical cleaning liquid flowing into the primary side 30a reaches 80% or more of the concentration of the set chemical cleaning liquid.

一次側30aに流入する薬品濃度が所定の濃度を越えた後、薬液注入ポンプ15を停止し、全てのバルブを閉として、薬品による膜目詰まり物質や閉塞固形分を溶解、または分解を促進させる薬品洗浄液滞留工程(E)を行う。   After the concentration of the chemical flowing into the primary side 30a exceeds a predetermined concentration, the chemical injection pump 15 is stopped and all the valves are closed, so that the film clogging substance and the blocked solid content due to the chemical are dissolved or decomposed. A chemical cleaning liquid retention step (E) is performed.

薬品洗浄液滞留工程(E)における薬品洗浄液の滞留時間は、10〜120分が好ましく10〜20分がより好ましい。薬品洗浄液の滞留時間が10分未満であると、膜目詰まり物質や閉塞固形分などを除去しきれない場合がある。また、120分以上であっても、さほど効果が向上しないため、水処理効率が低下する傾向にある。   The retention time of the chemical cleaning liquid in the chemical cleaning liquid retention step (E) is preferably 10 to 120 minutes, and more preferably 10 to 20 minutes. If the residence time of the chemical cleaning liquid is less than 10 minutes, there may be a case where the film clogging substance or the clogging solid content cannot be completely removed. Moreover, even if it is 120 minutes or more, since an effect does not improve so much, it exists in the tendency for water treatment efficiency to fall.

上記薬品洗浄液滞留工程(E)の終了後、リンス工程(F)を行う。このリンス工程(F)は、中空糸膜モジュール30内に滞留する薬品濃度を低減する薬品洗浄液希釈工程(F−1)と、薬品洗浄液排出工程(F−2)とからなることが好ましい。これによれば、リンス工程(F)で要する水の使用量が削減でき、従来と比較して約1/2〜1/3に低減できる。   After the chemical cleaning liquid retention step (E) is completed, a rinsing step (F) is performed. The rinsing step (F) preferably includes a chemical cleaning solution dilution step (F-1) for reducing the concentration of the chemical staying in the hollow fiber membrane module 30 and a chemical cleaning solution discharge step (F-2). According to this, the usage-amount of the water which a rinse process (F) requires can be reduced, and it can reduce to about 1 / 2-1 / 3 compared with the past.

まず、膜出口バルブV3と、還元中和槽入口バルブV11を開とし、他のバルブを閉とし、逆洗水供給ポンプ12を稼動して、中空糸膜モジュール30内に滞留している薬品洗浄液を希釈する薬品洗浄液希釈工程(F−1)を行う。一次側30aから排出された薬品洗浄液は、還元中和槽17に送られて、ここで中和処理される。   First, the membrane outlet valve V3 and the reduction neutralization tank inlet valve V11 are opened, the other valves are closed, the backwash water supply pump 12 is operated, and the chemical washing liquid staying in the hollow fiber membrane module 30 is retained. A chemical cleaning liquid dilution step (F-1) is performed to dilute the liquid. The chemical cleaning liquid discharged from the primary side 30a is sent to the reduction neutralization tank 17, where it is neutralized.

そして、上記薬品洗浄液希釈工程(F−1)を終えた後、第2のコンプレッサー入口バルブV7及び還元中和槽入口バルブV11を開とし、他のバルブを閉とし、コンプレッサー14を稼動させて、0.01〜0.05MPaの圧縮空気圧を膜の二次側30bに供給して、二次側30bに滞留する薬品洗浄液を一次側30aに排水する。その後、第2のコンプレッサー入口バルブV7と、還元中和槽入口バルブV11と、薬液排水バルブV12とを開とし、他のバルブを閉とし、コンプレッサー14を稼動させて、0.01〜0.05MPaの圧縮空気圧を一次側30aに供給して、一次側30aに滞留する薬品洗浄液を還元中和槽17へと移送する。   And after finishing the said chemical cleaning liquid dilution process (F-1), the 2nd compressor inlet valve V7 and the reduction | restoration neutralization tank inlet valve V11 are opened, another valve is closed, the compressor 14 is operated, A compressed air pressure of 0.01 to 0.05 MPa is supplied to the secondary side 30b of the membrane, and the chemical cleaning liquid staying on the secondary side 30b is drained to the primary side 30a. Thereafter, the second compressor inlet valve V7, the reduction neutralization tank inlet valve V11, and the chemical solution drain valve V12 are opened, the other valves are closed, the compressor 14 is operated, and 0.01 to 0.05 MPa. The compressed air pressure is supplied to the primary side 30 a and the chemical cleaning liquid staying on the primary side 30 a is transferred to the reduction neutralization tank 17.

一次側30aと二次側30bに別々に圧縮空気を供給する理由は、低圧の空気は、中空糸膜をほとんど通過しないため、二次側30bのみの圧縮空気の加圧では一次側の中空糸膜中の希釈された薬品洗浄液はほとんど排出されないためである。なお、一次側30a及び二次側30bに供給する圧縮空気の空気圧が0.05MPaを超えると、膜破断が生じるおそれがある。   The reason why the compressed air is separately supplied to the primary side 30a and the secondary side 30b is that the low-pressure air hardly passes through the hollow fiber membrane. Therefore, when the compressed air is pressurized only on the secondary side 30b, the hollow fiber on the primary side This is because the diluted chemical cleaning liquid in the film is hardly discharged. In addition, when the air pressure of the compressed air supplied to the primary side 30a and the secondary side 30b exceeds 0.05 MPa, there is a possibility that the film breaks.

このように、この実施形態によれば、薬品洗浄工程を行うことで、逆洗工程(A)だけでは剥離できなかった固形分も剥離除去するので、膜のろ過能力をほぼ初期状態まで回復することができる。   Thus, according to this embodiment, by performing the chemical cleaning step, the solid content that could not be peeled only by the back washing step (A) is peeled and removed, so that the filtration ability of the membrane is restored to almost the initial state. be able to.

以下、本発明を実施例によって更に詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples. In addition, this invention is not limited to a following example.

[試験例1]
参考例1)
図1に示す水処理装置を用いて水処理を行った。中空糸膜モジュール30は、中空糸孔径0.03μm、中空糸径0.8mm、長さ約1.4m、中空糸本数10000本、中空糸膜面積35mを用いた。原水は、人口原水(TOC0.6mg/L、濁度1度レベル、溶解鉄0.05mg/L)を用いた。
[Test Example 1]
( Reference Example 1)
Water treatment was performed using the water treatment apparatus shown in FIG. The hollow fiber membrane module 30 used a hollow fiber hole diameter of 0.03 μm, a hollow fiber diameter of 0.8 mm, a length of about 1.4 m, the number of hollow fibers of 10,000, and a hollow fiber membrane area of 35 m 2 . As raw water, artificial raw water (TOC 0.6 mg / L, turbidity level 1 degree, dissolved iron 0.05 mg / L) was used.

運転条件は、ろ過流束4m/dでろ過工程時間を30分間行った。ろ過工程終了後、まず、線速度で約0.48m/sec(流束6m/d)で逆洗工程(A−1)を7秒、逆洗工程(A−2)を13秒間実施した。次いで、中空糸膜モジュール30の一次側30a及び二次側30bを0.2Mpaで1.5秒間加圧して、滞留水を引き抜き工程(B)を実施した。次いで、流束6m/dの速度で20秒間、中空糸膜モジュール30へ原水を供給し、エアー抜き工程(C)行った後、上記条件で滞留水引き抜き工程(B)とエアー抜き工程(C)とを再度行った後、ろ過工程を再開し、水処理を行った。   The operating conditions were a filtration flux of 4 m / d and a filtration process time of 30 minutes. After the filtration step, first, the backwashing step (A-1) was carried out at a linear velocity of about 0.48 m / sec (flux 6 m / d) for 7 seconds, and the backwashing step (A-2) was carried out for 13 seconds. Subsequently, the primary side 30a and the secondary side 30b of the hollow fiber membrane module 30 were pressurized at 0.2 Mpa for 1.5 seconds, and the retained water was drawn out (B). Next, raw water is supplied to the hollow fiber membrane module 30 at a speed of 6 m / d for 20 seconds, and after performing the air venting step (C), the stagnant water drawing step (B) and the air venting step (C ) And again, the filtration process was restarted and water treatment was performed.

参考例2)
参考例1において、エアー抜き工程(C)の直前に、原水の供給速度を線速度で約0.4m/sec(流束として5m/d)とし、空気の流量を原水の流量の1.5倍として、エアーフラッシング工程を15秒間行った以外は実施例1と同様にして水処理を行った。
( Reference Example 2)
In Reference Example 1, immediately before the air venting step (C), the feed rate of the raw water is set to about 0.4 m / sec in linear velocity (5 m / d as the flux), and the flow rate of air is set to 1.5% of the flow rate of the raw water. The water treatment was performed in the same manner as in Example 1 except that the air flushing process was performed for 15 seconds.

参考例3)
図1に示す水処理装置を用いて水処理を行った。中空糸膜モジュール30は、精密ろ過膜(MF膜)を用いて、中空糸孔径0.02μm、MF膜中空糸径0.8mm、長さ約1.4m、中空糸本数10000本、中空糸膜面積35mを用いた。原水は、実施例1と同様のものを用いた。
( Reference Example 3)
Water treatment was performed using the water treatment apparatus shown in FIG. The hollow fiber membrane module 30 uses a microfiltration membrane (MF membrane) and has a hollow fiber hole diameter of 0.02 μm, an MF membrane hollow fiber diameter of 0.8 mm, a length of about 1.4 m, a number of hollow fibers of 10,000, and a hollow fiber membrane. An area of 35 m 2 was used. The same raw water as in Example 1 was used.

運転条件は、ろ過流束4m/dでろ過工程時間を30分間行った。ろ過工程終了後、まず、線速度で約0.48m/sec(流束6m/d)で逆洗工程(A−1)を7秒、逆洗工程(A−2)を13秒間実施した。次いで、流束5m/dで原水を、流束7.5m/dで空気を7秒間供給し、滞留水を引き抜き工程(B)を実施した。次いで、流束5m/dでエアーフラッシング工程を7秒間行った。次いで、中空糸の滞留水中に空気層を含ませ、膜の一次側及び二次側に0.2Mpaの圧縮空気を1.5秒間供給し、2回目の滞留水の引き抜き工程(B)を実施した。次に、流束5m/dで原水を供給し、エアー抜き工程(C)を実施した。その後、3回目の滞留水引き抜き工程(B)、2回目のエアー抜き工程(C)、原水の配管途中の空気除去を行い、ろ過工程を再開し、水処理を行った。   The operating conditions were a filtration flux of 4 m / d and a filtration process time of 30 minutes. After the filtration step, first, the backwashing step (A-1) was carried out at a linear velocity of about 0.48 m / sec (flux 6 m / d) for 7 seconds, and the backwashing step (A-2) was carried out for 13 seconds. Next, raw water was supplied at a flux of 5 m / d, and air was supplied at a flux of 7.5 m / d for 7 seconds, and the retained water was drawn out (B). Next, an air flushing process was performed for 7 seconds at a flux of 5 m / d. Next, an air layer is included in the retained water of the hollow fiber, 0.2 Mpa of compressed air is supplied to the primary side and the secondary side of the membrane for 1.5 seconds, and the second stagnant water extraction step (B) is performed. did. Next, raw water was supplied at a flux of 5 m / d, and the air venting step (C) was performed. Thereafter, the third stagnant water drawing step (B), the second air venting step (C), air removal in the middle of the raw water piping was performed, the filtration step was restarted, and water treatment was performed.

参考例4)
図8に示す水処理装置を用いて水処理を行った。中空糸膜モジュール30及び原水としては、参考例1と同様のものを用いた。
( Reference Example 4)
Water treatment was performed using the water treatment apparatus shown in FIG. As the hollow fiber membrane module 30 and raw water, the same ones as in Reference Example 1 were used.

運転条件は、ろ過流束6m/dでろ過工程時間を20分間行った。ろ過工程終了後、まず、線速度で約0.4m/sec(流束5m/d)で逆洗工程(A−1)を7秒、逆洗工程(A−2)を13秒間実施した。   The operating conditions were a filtration flux of 6 m / d and a filtration time of 20 minutes. After the filtration step, first, the backwashing step (A-1) was carried out at a linear velocity of about 0.4 m / sec (flux 5 m / d) for 7 seconds, and the backwashing step (A-2) was carried out for 13 seconds.

次に、0.2Mpaの圧縮空気を中空糸膜の一次側と二次側に1.5秒間供給し、上記滞留水引き抜き工程(B)を実施した。次いで、上記エアー抜き工程(C)を10秒間実施した。   Next, 0.2 Mpa of compressed air was supplied to the primary side and the secondary side of the hollow fiber membrane for 1.5 seconds, and the retained water extraction step (B) was performed. Subsequently, the said air bleeding process (C) was implemented for 10 seconds.

エアー抜き工程(C)を終了後、滞留水引き抜き工程(B)とエアー抜き工程(C)を交互に繰り返し、滞留水引き抜き工程(B)とエアー抜き工程(C)を合計3回実施した。   After the air venting step (C) was completed, the staying water drawing step (B) and the air venting step (C) were alternately repeated, and the staying water drawing step (B) and the air venting step (C) were performed three times in total.

そして最後に配管内の途中の空気除去を行ったのち、ろ過工程を再開した。   Finally, after removing the air in the pipe, the filtration process was resumed.

(比較例1)
図1に示す水処理装置を用いて水処理を行った。中空糸膜モジュール30及び原水は、実施例1と同様のものを用いた。
(Comparative Example 1)
Water treatment was performed using the water treatment apparatus shown in FIG. The same thing as Example 1 was used for the hollow fiber membrane module 30 and raw | natural water.

運転条件はろ過流束4m/dでろ過工程を30分間行った後、逆洗流束6m/dで逆洗工程(A−1)を20秒間行った。   The operating conditions were that the filtration step was performed for 30 minutes at a filtration flux of 4 m / d, and then the backwashing step (A-1) was performed for 20 seconds at a backwashing flux of 6 m / d.

(比較例2)
比較例1において、逆洗工程(A−1)を20秒間行った後、原水流量5m/d及び空気流量7m/dの条件でエアーフラッシング工程を10秒間行った以外は、比較例1と同様にして水処理を行った。
(Comparative Example 2)
In Comparative Example 1, the backwashing process (A-1) was performed for 20 seconds, and then the air flushing process was performed for 10 seconds under the conditions of the raw water flow rate of 5 m / d and the air flow rate of 7 m / d. The water treatment was carried out.

(比較例3)
比較例1において、逆洗工程(A−1)を20秒間行った後、原水流量4m/d及び空気流量6m/dの条件でエアーフラッシング工程を10秒間行った以外は、比較例1と同様にして水処理を行った。
(Comparative Example 3)
In Comparative Example 1, the backwashing step (A-1) was performed for 20 seconds, and then the air flushing step was performed for 10 seconds under the conditions of the raw water flow rate of 4 m / d and the air flow rate of 6 m / d. The water treatment was performed.

(比較例4)
ろ過流束4m/dでろ過工程を30分間行った後、逆洗流束6m/dで逆洗工程(A−1)を20秒間行った。そして、1日1回の割合で、0.3Mpaの空気圧で中空糸膜モジュールの一次側に加圧した。
(Comparative Example 4)
After performing the filtration step for 30 minutes with a filtration flux of 4 m / d, the backwashing step (A-1) was performed for 20 seconds with a backwashing flux of 6 m / d. And it pressurized to the primary side of the hollow fiber membrane module with the air pressure of 0.3 Mpa once a day.

前記各参考例1〜4及び比較例1〜4の運転条件で水処理を7日間連続して行い、逆洗水使用量、エアー使用量、洗浄用原水使用量、膜差圧上昇速度、稼働率を求めた。なお、稼働率は稼働時間全体に対する、ろ過工程時間の割合を意味する。 Water treatment is carried out continuously for 7 days under the operating conditions of each of the above Reference Examples 1 to 4 and Comparative Examples 1 to 4, and the amount of backwash water used, the amount of air used, the amount of raw water used for washing, the rate of increase in membrane differential pressure, the operation The rate was determined. In addition, an operation rate means the ratio of the filtration process time with respect to the whole operation time.

上記結果より、参考例1〜4は、比較例1〜4に比べ1日あたりの膜差圧上昇が少なく、かつ逆洗水使用量の使用量が少なくろ過水の回収率が高いことがわかる。 From the above results, it can be seen that Reference Examples 1 to 4 have a small increase in membrane differential pressure per day compared to Comparative Examples 1 to 4, and the amount of backwash water used is small and the filtrate recovery rate is high. .

これは、中空糸膜の一次側に付着した固形分が逆洗により一部が剥れると同時に、残った固形分も付着力が低下したことが考えられる。もう一つの理由として、同一圧縮空気供給源で圧縮空気を送り、中空糸膜の一次側と二次側を同時に加圧し、高速で中空糸膜中の滞留水を引き抜くことにより、その剪断力により中空糸膜の一次側の固形分が完全に剥がれたと考えられる。なお、比較例3のように、十分な剪断力を加えた場合であっても、膜の一次側と二次側に大きな膜差圧が生じる場合には、一部の固形分が膜への再付着しやすいので、固形分の除去効果は高いが、膜差圧の上昇防止効果は小さかった。   This is probably because part of the solid content adhering to the primary side of the hollow fiber membrane was peeled off by backwashing, and at the same time, the remaining solid content was also reduced in adhesion. Another reason is that the compressed air is sent from the same compressed air supply source, the primary side and the secondary side of the hollow fiber membrane are pressurized at the same time, and the retained water in the hollow fiber membrane is pulled out at a high speed. It is considered that the solid content on the primary side of the hollow fiber membrane was completely removed. In addition, even when a sufficient shear force is applied as in Comparative Example 3, if a large film differential pressure is generated on the primary side and the secondary side of the film, a part of the solid content is applied to the film. Since it is easy to re-adhere, the effect of removing solids is high, but the effect of preventing the increase in membrane differential pressure was small.

また、参考例2が参考例1に比べ膜差圧上昇効果が高い理由は、エアーフラッシング工程の効果であると推定される。また、参考例1及び2に比べ、参考例3、4が膜差圧上昇が小さい理由としては、滞留水中に空気が混入しているため、水と空気の接触する境界面が大きくなり、剪断力が向上したためであると推定される。 Further, it is estimated that the reason why the reference example 2 has a higher effect of increasing the film differential pressure than the reference example 1 is the effect of the air flushing process. In addition, compared with Reference Examples 1 and 2, Reference Examples 3 and 4 have a small increase in membrane differential pressure because air is mixed in the accumulated water, and the boundary surface between the water and the air is increased, resulting in shearing. It is estimated that this is because the power has improved.

[試験例2]
(実施例
図1に示す水処理装置を用いて水処理を行った。中空糸膜モジュール30は、中空糸孔径0.03μm、中空糸径0.8mm、長さ約1.4m、中空糸本数10000本、中空糸膜面積35m、縦型の中空糸膜モジュールで容積約44Lを用いた。原水は、人口原水(TOC0.6mg/L、濁度1度レベル、溶解鉄0.05mg/L)を用いた。
[Test Example 2]
(Example 1 )
Water treatment was performed using the water treatment apparatus shown in FIG. The hollow fiber membrane module 30 has a hollow fiber hole diameter of 0.03 μm, a hollow fiber diameter of 0.8 mm, a length of about 1.4 m, a number of hollow fibers of 10,000, a hollow fiber membrane area of 35 m 2 , and a volume of a vertical hollow fiber membrane module. About 44 L was used. As the raw water, artificial raw water (TOC 0.6 mg / L, turbidity 1 degree level, dissolved iron 0.05 mg / L) was used.

運転条件は、ろ過流束3m/dでろ過工程時間を30分間行った。ろ過工程終了後、まず、線速度で約0.5m/sec(流束6m/d)で逆洗工程(A−1)を7秒、逆洗工程(A−2)を13秒間実施した。次いで、水流束6m/d、空気流束9m/d、時間15秒間でエアーフラシング工程を実施した。次いで、中空糸膜モジュール30の一次側30a及び二次側30bを0.2Mpaで1.5秒間加圧して、滞留水を引き抜き工程(B)実施し、流束6m/dの速度で15秒間のエアー抜き工程(C)を実施した。エアー抜き工程(C)を終了後、滞留水引き抜き工程(B)とエアー抜き工程(C)を交互に繰り返し、滞留水引き抜き工程(B)とエアー抜き工程(C)を合計2回実施した。   The operating conditions were a filtration flux of 3 m / d and a filtration process time of 30 minutes. After the filtration step, first, the backwashing step (A-1) was carried out at a linear velocity of about 0.5 m / sec (flux 6 m / d) for 7 seconds, and the backwashing step (A-2) was carried out for 13 seconds. Next, an air flushing process was performed at a water flux of 6 m / d, an air flux of 9 m / d, and a time of 15 seconds. Subsequently, the primary side 30a and the secondary side 30b of the hollow fiber membrane module 30 are pressurized at 0.2 Mpa for 1.5 seconds, and the retained water is drawn out (B), and the flow rate is 6 m / d for 15 seconds. The air venting step (C) was carried out. After the air venting step (C) was completed, the staying water pulling step (B) and the air venting step (C) were alternately repeated, and the staying water pulling step (B) and the air venting step (C) were performed twice in total.

次に、中空糸膜モジュール内の次亜塩素酸ナトリウムの次亜塩素酸濃度が50mg/Lになるように、膜ろ過水の配管途中に12%濃度の次亜塩素酸ナトリウム注入する薬品洗浄液注入工程(D)を実施した。次に薬品洗浄液を前記中空糸膜モジュールに20〜30分間滞留させる薬品洗浄液滞留工程(E)を実施した。次に、前記薬品洗浄液滞留工程(E)を実施した後、リンス工程(F)として、前記薬品濃度の低減のための薬品洗浄液希釈工程(F−1)を流束6m/dで20秒間実施し、48Lのろ過水を注入した。次にリンス工程(F)として、0.05MPaの圧縮空気圧を10秒間供給し、膜の二次側の希釈薬品洗浄液を膜の一次側より排水する薬品洗浄液排出工程(F−2)を実施した。前記薬品洗浄液排出工程(F−2)後、膜の一次側に0.05MPaの圧縮空気を3秒間供給し、膜の一次側の希釈薬品洗浄液を排水し、排水を還元中和槽に移送した。   Next, chemical cleaning liquid injection for injecting 12% sodium hypochlorite into the membrane filtration water pipe so that the hypochlorous acid concentration of sodium hypochlorite in the hollow fiber membrane module is 50 mg / L Step (D) was performed. Next, a chemical cleaning liquid retention step (E) for retaining the chemical cleaning liquid in the hollow fiber membrane module for 20 to 30 minutes was performed. Next, after carrying out the chemical cleaning liquid retention step (E), as a rinsing step (F), the chemical cleaning liquid dilution step (F-1) for reducing the chemical concentration is performed at a flow rate of 6 m / d for 20 seconds. 48 L of filtered water was injected. Next, as a rinsing step (F), a chemical cleaning solution discharging step (F-2) was performed in which a compressed air pressure of 0.05 MPa was supplied for 10 seconds and the diluted chemical cleaning solution on the secondary side of the membrane was drained from the primary side of the membrane. . After the chemical cleaning solution discharging step (F-2), 0.05 MPa compressed air was supplied to the primary side of the membrane for 3 seconds, the diluted chemical cleaning solution on the primary side of the membrane was drained, and the drainage was transferred to a reduction neutralization tank. .

前記薬品洗浄液排出工程(F−2)が終了後、薬品洗浄液希釈工程(F−1)と薬品洗浄液排出工程(F−2)を交互に繰り返し、薬品洗浄液希釈工程(F−1)と薬品洗浄液排出工程(F−2)を合計2回実施した。   After the chemical cleaning solution discharge step (F-2) is completed, the chemical cleaning solution dilution step (F-1) and the chemical cleaning solution discharge step (F-2) are alternately repeated, and the chemical cleaning solution dilution step (F-1) and the chemical cleaning solution are repeated. The discharging step (F-2) was performed twice in total.

これら上記滞留水引き抜き工程(B)及びエアー抜き工程(C)、薬品洗浄液注入工程(D)、薬品洗浄液滞留工程(E)、リンス工程(F)を約23時間毎に行った。   These retained water extraction step (B), air removal step (C), chemical cleaning solution injection step (D), chemical cleaning solution retention step (E), and rinsing step (F) were performed about every 23 hours.

(比較例5)
実施例において、中空糸膜の一次側の滞留水引き抜き工程(B)を省略したこと以外は、実施条件及び工程は、実施例と同様に実施した。
(Comparative Example 5)
In Example 1 , the implementation conditions and steps were the same as in Example 1 except that the primary water staying water drawing step (B) on the primary side of the hollow fiber membrane was omitted.

(比較例6)
比較例5において、薬品洗浄液注入工程(D)時に、中空糸膜モジュール内の次亜塩素酸ナトリウムの濃度が150mg/Lになるように、12%濃度の次亜塩素酸ナトリウム注入した以外は、比較例5と同様にして水処理を行った。
(Comparative Example 6)
In Comparative Example 5, at the time of chemical cleaning liquid injection step (D), except that 12% sodium hypochlorite was injected so that the concentration of sodium hypochlorite in the hollow fiber membrane module was 150 mg / L, Water treatment was performed in the same manner as in Comparative Example 5.

実施例、比較例5、6の水処理を15日間行い、膜差圧上昇速度、すすぎ水使用量、最終すすぎ水中の次亜塩素濃度を求めた。なお、中空糸膜モジュールのすすぎ排水出口における最終すすぎ水中の次亜塩素濃度は、比色法により測定した。 The water treatment of Example 1 and Comparative Examples 5 and 6 was performed for 15 days, and the rate of increase in membrane pressure difference, the amount of rinse water used, and the concentration of hypochlorite in the final rinse water were determined. The hypochlorite concentration in the final rinse water at the rinse drain outlet of the hollow fiber membrane module was measured by a colorimetric method.

上記の結果より、滞留水引き抜き工程(B)を行った実施例の水処理方法は、滞留水引き抜き工程(B)を行なわなかった比較例5に比べ1日あたりの膜差圧上昇が顕著に少なくなった。 From the above results, the water treatment method of Example 1 in which the stagnant water extraction step (B) was performed has a remarkable increase in membrane differential pressure per day as compared with Comparative Example 5 in which the stagnant water extraction step (B) was not performed. It became less.

また、実施例は、比較例6に較べ、すすぎ水の使用量も1/2と少なく、薬品の使用量及びすすぎに要する時間、すすぎ水水量を低減できる。 Moreover, compared with the comparative example 6, Example 1 has the usage-amount of rinse water as small as 1/2, and can reduce the usage-amount of chemical | drug | medicine, the time required for a rinse, and the amount of rinse water.

本発明の水処理方法に用いる水処理装置の第1実施形態の概略構成図である。It is a schematic block diagram of 1st Embodiment of the water treatment apparatus used for the water treatment method of this invention. 本発明のろ過工程を説明するための概略構成図である。It is a schematic block diagram for demonstrating the filtration process of this invention. 本発明の逆洗工程(A-1)を説明するための概略構成図である。It is a schematic block diagram for demonstrating the backwashing process (A-1) of this invention. 本発明の逆洗工程(A-2)を説明するための概略構成図である。It is a schematic block diagram for demonstrating the backwashing process (A-2) of this invention. 本発明の滞留水引き抜き工程(B)を説明するための概略構成図である。It is a schematic block diagram for demonstrating the stay water extraction process (B) of this invention. エアーフラッシング工程を説明するための概略構成図である。It is a schematic block diagram for demonstrating an air flushing process. 本発明のエアー抜き工程(C)を説明するための概略構成図である。It is a schematic block diagram for demonstrating the air bleeding process (C) of this invention. 本発明の水処理方法に用いることができる水処理装置の他の実施形態の概略構成図である。It is a schematic block diagram of other embodiment of the water treatment apparatus which can be used for the water treatment method of this invention. 本発明の水処理方法に用いることができる水処理装置の他の実施形態の概略構成図である。It is a schematic block diagram of other embodiment of the water treatment apparatus which can be used for the water treatment method of this invention.

符号の説明Explanation of symbols

1〜9、50〜52:配管
10 原水供給槽
11 原水供給ポンプ
12 逆洗水供給ポンプ
13 ろ過水貯留槽
14 コンプレッサー
15 薬液注入ポンプ
16 薬液槽
17 還元中和槽
30 中空糸膜モジュール
V1 第1の原水供給バルブ
V2 第2の原水供給バルブ
V3 膜出口バルブ
V4 ろ過水貯留槽入口バルブ
V5a 第1の排出バルブ
V5b 第2の排出バルブ
V6 第1のコンプレッサー入口バルブ
V7 第2のコンプレッサー入口バルブ
V8 エアー抜きバルブ
V9 原水入口バルブ
V10 薬品槽入口バルブ
V11 還元中和槽入口バルブ
V12 薬液排水バルブ
1-9, 50-52: Pipe 10 Raw water supply tank 11 Raw water supply pump 12 Backwash water supply pump 13 Filtrated water storage tank 14 Compressor 15 Chemical liquid injection pump 16 Chemical liquid tank 17 Reduction neutralization tank 30 Hollow fiber membrane module V1 1st Raw water supply valve V2 second raw water supply valve V3 membrane outlet valve V4 filtered water storage tank inlet valve V5a first discharge valve V5b second discharge valve V6 first compressor inlet valve V7 second compressor inlet valve V8 air Drain valve V9 Raw water inlet valve V10 Chemical tank inlet valve V11 Reduction neutralization tank inlet valve V12 Chemical liquid drain valve

Claims (8)

被処理水を中空糸膜モジュールに通して該被処理水中の汚濁物質を除去する膜ろ過処理工程と、前記中空糸膜モジュールの洗浄処理工程とを繰り返して行う水処理方法において、
前記洗浄処理工程として、前記中空糸膜モジュールのろ過水の流出側である二次側から被処理水の流入側である一次側に水を流す逆洗工程(A)と、前記逆洗工程(A)後に、前記中空糸膜モジュールの一次側及び二次側を所定の空気圧で加圧しつつ、前記中空糸膜モジュールの一次側及び二次側に滞留している滞留水を前記中空糸膜モジュールの一次側から排水する滞留水引き抜き工程(B)と、滞留水引き抜き工程(B)後に、前記中空糸膜モジュールの一次側に水を供給して前記中空糸膜モジュールに滞留する空気を除去するエアー抜き工程(C)とを含む物理洗浄を行った後、
前記中空糸膜モジュールの二次側から一次側に薬品洗浄液を注入する薬品洗浄液注入工程(D)と、この薬品洗浄液を前記中空糸膜モジュールに滞留させる薬品洗浄液滞留工程(E)と、洗浄水を中空糸膜モジュールの二次側より供給した後、前記中空糸膜モジュールの二次側を0.01〜0.05MPaの空気圧で加圧してこの水を前記中空糸膜モジュールの一次側に排出させ、次いで、前記中空糸膜モジュールの一次側を0.01〜0.05MPaの空気圧で加圧して水を前記中空糸膜モジュールの一次側から引き抜いて中空糸膜モジュールを水洗いするリンス工程(F)とを含む薬品洗浄を行うことを特徴とする水処理方法。
In a water treatment method in which water to be treated is passed through a hollow fiber membrane module to remove contaminants in the water to be treated, and a water treatment method in which a washing treatment step for the hollow fiber membrane module is repeated.
As the washing treatment step, a backwashing step (A) for flowing water from the secondary side which is the outflow side of the filtrate of the hollow fiber membrane module to the primary side which is the inflow side of the water to be treated, and the backwashing step ( A) After that, while the primary side and the secondary side of the hollow fiber membrane module are pressurized with a predetermined air pressure, the retained water staying on the primary side and the secondary side of the hollow fiber membrane module is removed from the hollow fiber membrane module. After the stagnant water extraction step (B) for draining from the primary side of the water and the stagnant water extraction step (B) , water is supplied to the primary side of the hollow fiber membrane module to remove the air remaining in the hollow fiber membrane module after Tsu line physical cleaning including the air vent step (C),
A chemical cleaning solution injection step (D) for injecting a chemical cleaning solution from the secondary side to the primary side of the hollow fiber membrane module; a chemical cleaning solution retention step (E) for retaining the chemical cleaning solution in the hollow fiber membrane module; Is supplied from the secondary side of the hollow fiber membrane module, the secondary side of the hollow fiber membrane module is pressurized with an air pressure of 0.01 to 0.05 MPa, and the water is discharged to the primary side of the hollow fiber membrane module. Next, a rinsing step (F) in which the primary side of the hollow fiber membrane module is pressurized with an air pressure of 0.01 to 0.05 MPa to draw water from the primary side of the hollow fiber membrane module and wash the hollow fiber membrane module with water (F A water treatment method characterized by performing chemical cleaning .
前記逆洗工程(A)を行った後、前記中空糸膜モジュールの一次側に、気泡を含有した水を供給した後、前記滞留水引き抜き工程(B)を行う、請求項1に記載の水処理方法。   The water according to claim 1, wherein after the backwashing step (A) is performed, water containing bubbles is supplied to a primary side of the hollow fiber membrane module, and then the retained water drawing step (B) is performed. Processing method. 前記エアー抜き工程(C)を行った後、前記滞留水引き抜き工程(B)と、前記エアー抜き工程(C)とを、交互に更に1回以上繰り返して行う、請求項1又は2に記載の水処理方法。   3. The method according to claim 1, wherein after the air venting step (C) is performed, the stagnant water extraction step (B) and the air venting step (C) are alternately and repeatedly performed one or more times. Water treatment method. 前記薬品洗浄液注入工程(D)は、前記中空糸膜モジュールの一次側の薬品洗浄液の濃度が、供給した薬品洗浄液の濃度の80%以上に達するまで行う、請求項1〜3のいずれか一つに記載の水処理方法。 The chemical cleaning solution injection step (D) is performed until the concentration of the chemicals the cleaning liquid of the primary side of the hollow fiber membrane module has reached more than 80% of the concentration of the supplied chemicals wash any one of claims 1 to 3 The water treatment method as described in any one of. 前記薬品洗浄液滞留工程(E)は、前記中空糸膜モジュールへの前記薬品洗浄液の注入を停止した後、前記中空糸膜モジュール中に前記薬品洗浄液を10〜120分間滞留させる、請求項1〜4のいずれか一つに記載の水処理方法。 The chemical cleaning solution retaining step (E), after stopping the injection of the chemicals cleaning fluid into the hollow fiber membrane module, the cause chemical washes retained 10-120 minutes in the hollow fiber membrane module, according to claim 1 to 4 The water treatment method as described in any one of these . 被処理水中の汚濁物質を除去してろ過水を得るための中空糸膜モジュールと、
前記中空糸膜モジュールへ供給するための被処理水を貯留する被処理水供給槽と、
前記中空糸膜モジュールの被処理水の流入側である一次側の配管に設けられた、前記被処理水供給槽から前記中空糸膜モジュールへ被処理水を供給する被処理水供給ポンプと、
前記中空糸膜モジュールのろ過水の流出側である二次側の配管に設けられた、該中空糸膜モジュールの二次側から一次側へ水を供給する逆洗水供給ポンプと、
前記中空糸膜モジュールの一次側の配管及び二次側の配管に圧縮空気を供給するためのコンプレッサーと、
それぞれの連結配管に設けられた弁体とを有し、
前記被処理水供給ポンプと前記中空糸膜モジュールとを連結する配管が途中から分岐して、前記被処理水供給槽と弁体を介して連結していることを特徴とする水処理装置。
A hollow fiber membrane module for obtaining filtered water by removing pollutants in the water to be treated;
A treated water supply tank for storing treated water to be supplied to the hollow fiber membrane module;
A treated water supply pump for supplying treated water from the treated water supply tank to the hollow fiber membrane module provided in a primary side pipe that is an inflow side of treated water of the hollow fiber membrane module;
A backwash water supply pump for supplying water from the secondary side of the hollow fiber membrane module to the primary side, provided on the secondary side piping that is the outflow side of the filtrate of the hollow fiber membrane module;
A compressor for supplying compressed air to a primary side pipe and a secondary side pipe of the hollow fiber membrane module;
Possess a valve body provided in each of the connection pipe,
A water treatment apparatus , wherein a pipe connecting the treated water supply pump and the hollow fiber membrane module branches from the middle and is connected to the treated water supply tank via a valve body .
前記中空糸膜モジュールの二次側の配管の一部が、前記逆洗水供給ポンプを介して、前記中空糸膜モジュールの二次側から得られるろ過水を貯留するろ過水貯留槽と連結し、ろ過水の一部を中空糸膜モジュールの二次側から一次側へ供給できるように構成されている、請求項に記載の水処理装置。 A part of the secondary pipe of the hollow fiber membrane module is connected to a filtrate storage tank for storing filtrate obtained from the secondary side of the hollow fiber membrane module via the backwash water supply pump. The water treatment device according to claim 6 , wherein a part of the filtered water can be supplied from the secondary side to the primary side of the hollow fiber membrane module. 前記中空糸膜モジュールの二次側から薬品洗浄液を供給するための薬品洗浄液注入手段を有する、請求項6又は7に記載の水処理装置。 The water treatment apparatus according to claim 6 or 7 , further comprising a chemical cleaning liquid injection means for supplying a chemical cleaning liquid from a secondary side of the hollow fiber membrane module.
JP2006167095A 2006-06-16 2006-06-16 Hollow fiber membrane water treatment method and water treatment apparatus Expired - Fee Related JP5245216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167095A JP5245216B2 (en) 2006-06-16 2006-06-16 Hollow fiber membrane water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167095A JP5245216B2 (en) 2006-06-16 2006-06-16 Hollow fiber membrane water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2007330916A JP2007330916A (en) 2007-12-27
JP5245216B2 true JP5245216B2 (en) 2013-07-24

Family

ID=38930896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167095A Expired - Fee Related JP5245216B2 (en) 2006-06-16 2006-06-16 Hollow fiber membrane water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5245216B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692689B1 (en) * 2010-09-30 2017-01-04 코오롱인더스트리 주식회사 System and Method for Filtering Using Positive Pressure Type Module
CA2815972A1 (en) * 2010-10-27 2012-05-03 Toray Industries, Inc. Hollow fiber membrane filtration device and method for washing hollow fiber membrane module
WO2012167829A1 (en) * 2011-06-09 2012-12-13 Kärcher Futuretech GmbH Mobile water treatment plant and method for producing potable water in a disaster area
JP2015077530A (en) * 2012-01-24 2015-04-23 東レ株式会社 Water production method and water production device
JP6202239B2 (en) * 2012-05-25 2017-09-27 三菱ケミカル株式会社 Waste water treatment apparatus and waste water treatment method
KR101352497B1 (en) 2012-08-21 2014-01-24 금호산업주식회사 Method for physical cleaning of membrane filtration system
CN106103349A (en) * 2013-12-02 2016-11-09 东丽株式会社 Method for treating water
JPWO2017115455A1 (en) * 2015-12-28 2018-10-18 王子ホールディングス株式会社 Water treatment system, water treatment method and water production method
JP2019166449A (en) * 2018-03-22 2019-10-03 積水化学工業株式会社 Washing method of membrane module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05329336A (en) * 1992-05-28 1993-12-14 Fuji Photo Film Co Ltd Filtering method
JPH07275671A (en) * 1994-04-12 1995-10-24 Asahi Chem Ind Co Ltd Operation of external pressure type hollow yarn ultrafiltration membrane module
JPH09138298A (en) * 1995-11-16 1997-05-27 Hitachi Ltd Filter using hollow-fiber membrane and method for backwashing it
JP2000237548A (en) * 1999-02-17 2000-09-05 Tokyo Denki Komusho Co Ltd Hollow fiber membrane type heat storage tank water purifying device
JP3881941B2 (en) * 2002-08-21 2007-02-14 三菱重工業株式会社 Hollow fiber membrane backwash method and hollow fiber membrane water treatment apparatus
JP2005087887A (en) * 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Membrane washing method

Also Published As

Publication number Publication date
JP2007330916A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP5245216B2 (en) Hollow fiber membrane water treatment method and water treatment apparatus
US7276171B2 (en) Method for cleaning separation membrane
JP2008246302A (en) Operation method of membrane filtration apparatus
JP5147267B2 (en) Cleaning method for membrane filtration system
JP5181987B2 (en) Cleaning method for submerged membrane module
JPH09122460A (en) Cleaning method for membrane module
JP2018167162A (en) Cleaning method of hollow fiber membrane module
JP2007130587A (en) Membrane filtration apparatus and method for washing membrane
JP5017922B2 (en) Water treatment method
JP3702419B2 (en) Membrane filtration module cleaning method and membrane filtration apparatus
JPH11179163A (en) Method for back washing of inner pressure type membrane module for removing pollutant by fluctuation of flow rate and pressure
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP6436483B2 (en) Dyeing wastewater treatment method
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JP3488535B2 (en) Chemical solution cleaning method for membrane in immersion type membrane filtration device and chemical solution cleaning device
JP5249104B2 (en) Membrane filtration system and cleaning method thereof
JP2009160512A (en) Wastewater treatment method of membrane filtration apparatus
JP2013034938A (en) Method for washing membrane module
JP2009039677A (en) Cleaning method of immersion type membrane module and immersion type membrane filtering apparatus
KR20140071653A (en) A gravity ballasting system and a method of back-flushing a filter using the same
JP2017176951A (en) Method for cleaning separation membrane module
JP2005046762A (en) Water treatment method and water treatment apparatus
JP2005046801A (en) Water treatment method and apparatus therefor
JP2006198531A (en) Operating method of hollow fiber membrane module
JP6700858B2 (en) Water treatment device provided with hollow fiber membrane module and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5245216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees