JPH11179163A - Method for back washing of inner pressure type membrane module for removing pollutant by fluctuation of flow rate and pressure - Google Patents

Method for back washing of inner pressure type membrane module for removing pollutant by fluctuation of flow rate and pressure

Info

Publication number
JPH11179163A
JPH11179163A JP9357602A JP35760297A JPH11179163A JP H11179163 A JPH11179163 A JP H11179163A JP 9357602 A JP9357602 A JP 9357602A JP 35760297 A JP35760297 A JP 35760297A JP H11179163 A JPH11179163 A JP H11179163A
Authority
JP
Japan
Prior art keywords
circulation
water
membrane module
membrane
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9357602A
Other languages
Japanese (ja)
Other versions
JP3405911B2 (en
Inventor
Kanroku Naganami
勘六 長南
Hitoshi Miyaki
均 宮木
Yasunari Kojima
康成 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP35760297A priority Critical patent/JP3405911B2/en
Publication of JPH11179163A publication Critical patent/JPH11179163A/en
Application granted granted Critical
Publication of JP3405911B2 publication Critical patent/JP3405911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve back washing efficiency and lower the frequency of washing with a chemical agent by repeating operations of high speed circulation washing and circulation stop or operations of high speed circulation washing and low speed circulation washing in the membrane back washing process in membrane module filtration carried out by using an inner pressure type hollow fiber membranes. SOLUTION: In this method comprising a back washing process for back washing an inner pressure type hollow fiber membrane module 5 for removing pollutants with back washing water in the presence of a sterilizer after a filtration process for providing filtered water from raw water by the membrane module 5, during the operation for switching the filtration process to the back washing process, an acid and/or a sterilizer to be used as an oxidizing agent are injected to a raw water flowing-in pipeline system 10 or a raw water circulation pipeline system 12 from respective storage tanks 8, 9 in order to accelerate decomposition and separation of pollutants and organic matters adhering to the membrane. Then, operations of high speed circulation washing and circulation stop or operations of high speed circulation washing and low speed circulation washing are repeatedly carried out to efficiently discharge and remove pollutants and organic matter in the inside and the outside of the hollow fiber membranes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、河川水、工業用水
等を原水として、中空糸膜を用いてろ過を行う方法にお
いて、フラックス(ろ過水流量の単位例:m3 /m2
日)を大きく、かつ長期間、安定して得るための効率的
な逆洗方法を提供するものである。内圧型膜モジュール
を用いるクロスフロー方式、および全ろ過方式の運転方
法に適用できる。膜の形状、材質として、中空糸膜であ
ればUF膜(限外ろ過膜)、MF膜(精密ろ過膜)等の
いずれにかかわらず適用できる。本発明は原水として、
河川水、湖沼水、地下水、およびこれらを一次処理した
工業用水を用いる場合、更には濁質成分として、鉄、ア
ルミニウム等を含む原水を回収再利用する場合等に好適
に利用できる。
[0001] The present invention relates to a method for filtering using river water, industrial water, or the like as raw water using a hollow fiber membrane, comprising a flux (unit example of filtered water flow rate: m 3 / m 2 /
The present invention provides an efficient backwashing method for stably obtaining the day) for a long period of time. The present invention can be applied to a cross flow system using an internal pressure type membrane module and an operation method of a total filtration system. As the shape and material of the membrane, any hollow fiber membrane can be used regardless of UF membrane (ultrafiltration membrane), MF membrane (microfiltration membrane) or the like. The present invention, as raw water,
The present invention can be suitably used when river water, lake water, groundwater, and industrial water obtained by primary treatment of these are used, and when raw water containing iron, aluminum, or the like as a turbid component is recovered and reused.

【0002】[0002]

【従来の技術】従来の内圧型、クロスフロー方式の中空
糸膜モジュールろ過装置の運転を図2を例にして説明す
る。ろ過工程は次のごとく行われる。原水1を原水ポン
プP−1でくみ上げ、目開き80〜100メッシュの自
動フィルタ3、または同様な性能を有する高速ろ過機に
て大きい濁質を除去した後、膜モジュール5を介して原
水循環配管系統12(クロスフロー配管)の手動弁1
9、循環弁AV−1、およびろ過水流出配管系統13の
ろ過出口弁AV−2を開として、膜モジュール上部か
ら、又はろ過出口弁AV−2と逆洗水下部入口弁AV−
5、逆洗水上部入口弁AV−4をも開とし、膜モジュー
ル5の上下から、循環ポンプP−2を起動し原水を循環
しながら、ろ過水槽6にろ過水7を得る。原水循環流量
とろ過水流量の比は、95:50:5〜50と原水水質
によって変動が大きい。最近は各弁の開度を調整し、更
に循環ポンプP−2をインバータで制御して、60〜5
0:40〜50程度の比率とし、ろ過水の割合を大きく
し、動力費の低減を図ることが多い。
2. Description of the Related Art The operation of a conventional internal pressure type, cross flow type hollow fiber membrane module filtration apparatus will be described with reference to FIG. The filtration step is performed as follows. The raw water 1 is pumped up by a raw water pump P-1, and large turbidity is removed by an automatic filter 3 having an aperture of 80 to 100 mesh or a high-speed filter having a similar performance. Manual valve 1 of system 12 (cross flow piping)
9. Opening the circulation valve AV-1 and the filtration outlet valve AV-2 of the filtered water outflow piping system 13 from the top of the membrane module or from the filtration outlet valve AV-2 and the backwash water lower inlet valve AV-
5. The backwash water upper inlet valve AV-4 is also opened, and the circulating pump P-2 is activated from above and below the membrane module 5 to circulate the raw water to obtain the filtered water 7 in the filtered water tank 6. The ratio between the raw water circulation flow rate and the filtered water flow rate is 95: 50: 5 to 50, and varies greatly depending on the raw water quality. Recently, the degree of opening of each valve was adjusted, and the circulating pump P-2 was controlled by an inverter.
In many cases, the ratio is about 0:40 to 50, and the ratio of filtered water is increased to reduce the power cost.

【0003】そして、10〜45分間のろ過工程の終了
後に、通常、下記のごとく、40秒〜2分間程度の短時
間の逆洗工程を行なう。膜モジュール5上部(ろ過水出
口、循環水出口側)から、下部(原水入口、逆洗排水出
口側)へろ過時の膜モジュール5入口流量の1.4〜
2.5倍程度の高流速、かつ、ろ過時の膜モジュール5
入口圧力の1.1〜2.0倍程度の圧力で、逆洗水上部
入口弁AV−4、逆洗排水下部出口弁AV−6、逆洗水
元弁AV−3を開とし、逆洗水ポンプP−3を起動し2
0〜30秒間程度、中空糸膜の外側(ろ過水側)から内
側(原水側)に通水することによって、膜内面に付着し
ている、ろ過時に捕捉した濁質成分を系外に排出する下
向流逆洗を行う。
[0003] After the completion of the filtration step for 10 to 45 minutes, a backwashing step for a short time of about 40 seconds to 2 minutes is usually performed as described below. From the upper part (filtration water outlet, circulating water outlet side) of the membrane module 5 to the lower part (raw water inlet, backwashing drain outlet side), the flow rate of the membrane module 5 at the time of filtration is 1.4 to 1.4.
2.5 times higher flow rate and membrane module 5 at the time of filtration
The backwash water upper inlet valve AV-4, backwash drain lower outlet valve AV-6, and backwash water main valve AV-3 are opened at a pressure of about 1.1 to 2.0 times the inlet pressure, and the backwash water is backwashed. Start the water pump P-3 and start 2
By passing water from the outside (filtration water side) to the inside (raw water side) of the hollow fiber membrane for about 0 to 30 seconds, the turbid component that is attached to the inner surface of the membrane and trapped during filtration is discharged out of the system. Perform backflow backwash.

【0004】この時、殺菌剤兼酸化剤貯槽8から次亜塩
素酸ソーダ注入ポンプP−4によって、Cl2 として3
〜5mg/リットル程度を、逆洗水配管系統11の、例
えば*1のところに注入し、逆洗排水中の残留塩素が一
般に、0.2〜3.0mg/リットル程度となるように
する。また、同様にモジュール下部から上部へと上向流
逆洗を行う。原水循環配管系統12の手動弁19は薬品
洗浄時以外は開としておく。更に、その後フラッシング
工程と称して、原水と逆洗水をモジュール下部から上部
へと、原水ポンプP−1、逆洗ポンプP−3を起動し、
逆洗水元弁AV−3、逆洗水下部入口弁AV−5、逆洗
排水上部出口弁AV−7を開とし、原水と逆洗水を同時
に通水し、いっそう高流速として濁質成分を中空糸膜内
面から、系外に排出する工程を定期的に行うこともあ
る。
At this time, Cl 2 is converted from the disinfectant / oxidant storage tank 8 to Cl 2 by the sodium hypochlorite injection pump P-4.
About 5 mg / liter is injected into, for example, * 1 of the backwash water piping system 11 so that the residual chlorine in the backwash wastewater is generally about 0.2 to 3.0 mg / liter. Similarly, upward backwash is performed from the lower part of the module to the upper part. The manual valve 19 of the raw water circulation piping system 12 is kept open except during chemical cleaning. Further, thereafter, referred to as a flushing step, the raw water pump P-1 and the backwash pump P-3 are activated from the lower part of the module to the upper part of the raw water and the backwash water,
Open the backwash water main valve AV-3, backwash water lower inlet valve AV-5, and backwash drain upper outlet valve AV-7 to allow raw water and backwash water to flow at the same time. Is periodically discharged from the inner surface of the hollow fiber membrane to the outside of the system.

【0005】殺菌剤としての次亜塩素酸ソーダ、即ちC
2 を注入した逆洗水を用いて、逆洗を行うことは公知
であり、フラックスが安定する効果のあることがわかっ
ている。例えば、1989年のJOURNARL AW
WA NOVEMBER号に、UF膜の膜汚染を低減す
るため、逆洗水に次亜塩素酸ソーダを用い遊離塩素とし
て、3.5mg/リットル注入した方が効果的であるこ
との具体的記述が見られる。このような〔ろ過工程−逆
洗工程〕を繰返していくと、膜モジュールのフラックス
は徐々に低下していく。循環ポンプP−2のインバータ
制御および各弁の開度を調整し、膜入口圧力を徐々に上
げていって、目的のフラックスが得られるようにしてい
る。しかし、膜入口圧力が運転初期の2〜3倍に上昇し
てしまったら、例えば1週間から数ケ月後には薬品洗浄
を行ない、できるだけ初期のフラックスに回復させる。
河川水等を一次処理した工業用水の場合でも、膜モジュ
ールの構造、逆洗条件によって異なるが、フラックスは
徐々に低下してしまい、1ケ月から数ケ月毎に薬品洗浄
が必要になってしまう。
[0005] Sodium hypochlorite as a fungicide, ie C
It is known to carry out backwashing using backwash water into which l 2 has been injected, and it has been found that there is an effect of stabilizing the flux. For example, the 1989 JOURRNARL AW
In WA NOVEMBER, there is a specific description that it is more effective to inject 3.5 mg / liter as free chlorine using sodium hypochlorite in backwash water to reduce membrane contamination of UF membrane. Can be When such a [filtration step-backwash step] is repeated, the flux of the membrane module gradually decreases. The inverter control of the circulation pump P-2 and the opening degree of each valve are adjusted, and the membrane inlet pressure is gradually increased so that a desired flux can be obtained. However, if the membrane inlet pressure rises to two to three times the initial operation, chemical cleaning is performed, for example, after one week to several months to recover the initial flux as much as possible.
Even in the case of industrial water in which river water or the like has been subjected to primary treatment, the flux gradually decreases, depending on the structure of the membrane module and backwashing conditions, and chemical cleaning is required every one to several months.

【0006】薬品洗浄は、一般に手動で行われる事が多
く、下記の操作による。装置の運転停止後、原水循環配
管系統の手動弁19を閉、手動弁16、およびろ過水循
環系統14の手動弁17を開とし、原水の循環水*5、
ろ過水の循環水*4が薬品洗浄槽20に返送されるよう
にする。そして、循環ポンプP−2に連なる手動弁1
8、循環弁AV−1を開とし、薬品洗浄ポンプP−7ま
たは循環ポンプP−2を起動し薬品洗浄液用の循環配管
系をつくる。そして、薬品洗浄槽20に膜材質が耐えら
れるような適切な薬品を溶解し、投入していき、膜モジ
ュール5および各循環配管系統の保有水量を合わせた値
より30〜50%程度多めの薬品洗浄液量に対して適正
濃度になるようにし、循環洗浄を行なう。この時循環後
に浸漬処理を行う場合もある。一般に0.5〜2.5%
程度のクエン酸液を用いて薬品洗浄し、その後洗浄排液
の置換ブローのためCl2 を注入しない通常の逆洗を行
い、ついで50〜500mg/リットル程度の次亜塩素
酸ソーダ、あるいはその他の薬品を用いて、薬品洗浄を
行なうことが多い。その薬品洗浄条件は膜の耐薬品性、
原水性状に応じて生じた膜の汚染状況によって決定され
る。薬品としては、膜材質が耐えられるものであれば、
過酸化水素、オゾン、苛性ソーダ、塩酸、またクエン酸
以外にもキレート作用を有しているシュウ酸、その他の
有機酸、EDTA等も使用される。
In general, chemical cleaning is often performed manually, and is performed by the following operation. After the operation of the apparatus is stopped, the manual valve 19 of the raw water circulation piping system is closed, the manual valve 16 and the manual valve 17 of the filtered water circulation system 14 are opened, and the raw water circulating water * 5,
The circulating water * 4 of the filtered water is returned to the chemical cleaning tank 20. And the manual valve 1 connected to the circulation pump P-2
8. Open the circulation valve AV-1 and activate the chemical cleaning pump P-7 or the circulation pump P-2 to create a circulation piping system for the chemical cleaning liquid. Then, an appropriate chemical that can withstand the film material is dissolved and introduced into the chemical cleaning tank 20, and the chemical is increased by about 30 to 50% from the combined water amount of the membrane module 5 and each circulation piping system. The concentration is adjusted to an appropriate value for the amount of the washing liquid, and circulating washing is performed. At this time, an immersion treatment may be performed after the circulation. Generally 0.5-2.5%
Chemical cleaning using about a citric acid solution, followed by ordinary backwashing without injecting Cl 2 for replacement blow of the washing waste liquid, and then about 50 to 500 mg / L of sodium hypochlorite or other Chemical cleaning is often performed using chemicals. The chemical cleaning conditions are the chemical resistance of the membrane,
It is determined by the state of contamination of the membrane generated according to the raw water state. As a chemical, if the film material can withstand,
In addition to hydrogen peroxide, ozone, caustic soda, hydrochloric acid, citric acid, oxalic acid having a chelating action, other organic acids, EDTA and the like are also used.

【0007】一方、全ろ過方式においては、ろ過工程時
はクロスフロー配管を設ける必要がないため、循環弁A
V−1は無く、循環ポンプP−2も無い。その代わり、
薬品洗浄用貯槽20の薬品洗浄液*6を供給し、循環す
る薬品洗浄用循環ポンプP−7、及び循環に必要な配管
が別に設けられる。循環ポンプP−2が無く、ろ過時は
原水ポンプP−1の起動によって、ろ過水が得られるた
め、動力費は一般に低減される。
On the other hand, in the total filtration method, it is not necessary to provide a cross flow pipe during the filtration step.
There is no V-1 and there is no circulation pump P-2. Instead,
A chemical cleaning circulation pump P-7 that supplies and circulates the chemical cleaning liquid * 6 in the chemical cleaning storage tank 20 and a pipe required for circulation are separately provided. Since there is no circulation pump P-2 and filtered water is obtained by starting the raw water pump P-1 at the time of filtration, the power cost is generally reduced.

【0008】しかし、ろ過時にクロスフローの流れが中
空糸膜内面にないため、濁質の膜内面への付着する割
合、および膜厚内への侵入度合いが一般に大きくなる。
逆洗工程は前述のクロスフロー方式のように、下向流逆
洗、上向流逆洗等を行うが濁質の膜内面への付着する割
合等が一般に大きくなるため、薬品洗浄の頻度が多くな
る。原水性状、膜モジュールの構造、逆洗方法等によっ
て異なるが薬品洗浄は一般に数日〜一ケ月に一回程度の
頻度となる。また、一般に使用する洗浄薬品と膜との接
触時間を長くし、フラックスの回復を図っていることが
多い。全ろ過方式は薬品洗浄頻度が多くなること、ま
た、フラックスの低下が大きい時、その回復に時間がか
かり、回復が不充分になることもある。維持管理も含め
るとトータルの平均ランニングコストはクロスフロー方
式に比較して、一概に安くなるとは言えない。それゆ
え、その適用に当たっては慎重を要する。
However, since the cross-flow does not flow on the inner surface of the hollow fiber membrane at the time of filtration, the ratio of turbid matter adhering to the inner surface of the membrane and the degree of penetration into the film thickness generally increase.
In the backwashing step, as in the above-mentioned cross-flow method, downflow backwashing, upflow backwashing, etc. are performed. More. Chemical cleaning is generally performed once every several days to once a month, although it depends on the raw water quality, the structure of the membrane module, the backwashing method, and the like. In addition, the contact time between the generally used cleaning chemicals and the membrane is lengthened to recover the flux in many cases. In the case of the total filtration method, the frequency of chemical cleaning increases, and when the decrease in flux is large, it takes time to recover the flux, and the recovery may be insufficient. Including maintenance, the total average running cost cannot be said to be significantly lower than the cross-flow method. Therefore, its application requires caution.

【0009】以上に述べた従来の技術の問題点をまとめ
ると次の如くである。 1)薬品洗浄の頻度が高く、又、薬品洗浄操作に要する
時間は数時間から二日間程度の長時間に亘ることが多
く、その間、装置が停止し、ろ過水が得られなくなる。 2)薬品洗浄の頻度が高いことから、薬品溶解等の手動
操作が多く、維持管理に手間がかかる。さらに薬品洗浄
に用いた高濃度廃液の処理装置も考慮しておく必要があ
る。
[0009] The problems of the conventional technology described above are summarized as follows. 1) The frequency of chemical cleaning is high, and the time required for the chemical cleaning operation is often as long as several hours to about two days, during which time the apparatus stops and filtered water cannot be obtained. 2) Since the frequency of chemical cleaning is high, there are many manual operations such as chemical dissolution, and maintenance is troublesome. In addition, it is necessary to consider a treatment device for high-concentration waste liquid used for chemical cleaning.

【0010】3)原水の濁質成分が膜内外に付着しやす
い性状である場合、更には原水の水温が10℃以下のよ
うな低水温になる程、通常時のフラックスの1/2〜1
/4の低フラックスとなってしまう。フラックスを低下
させずに、膜の入口圧力を徐々に高くしていくことによ
って、目的のフラックスを得ることは限界がある。ポン
プ動力費、洗浄薬品費等のランニングコストの上昇、ま
たこのような条件下ではフラックスの低下が加速され易
く、連続運転時間が徐々に短くなる傾向が見られる。 4)そのため安定して、設計流量を維持するため、装置
にかなりの余裕を持たせる必要が生じ、設計時に装置容
量を大きくしたり、あるいは系列数を多くしなければな
らなくなるデメリットが生じる。それゆえ従来の一般的
な処理方法と比較して膜適用のメリットが小さくなる問
題が生じてしまっている。本来、膜の有している高いフ
ラックスを安定して、長時間連続して得られ、かつ維持
管理の容易なろ過、逆洗方法が求められている。
3) When the turbid components of the raw water tend to adhere to the inside and outside of the membrane, and as the water temperature of the raw water becomes lower, such as 10 ° C. or lower, 1/2 to 1% of the normal flux
/ 4 low flux. There is a limit to obtaining the desired flux by gradually increasing the inlet pressure of the membrane without lowering the flux. Under such conditions, running costs such as pump power costs and cleaning chemicals costs are increased, and under such conditions, the flux is easily accelerated, and the continuous operation time tends to gradually decrease. 4) Therefore, in order to maintain the design flow rate stably, it is necessary to give a considerable margin to the device, and there is a disadvantage that the device capacity must be increased or the number of series must be increased at the time of design. Therefore, there is a problem that the merit of applying the film is reduced as compared with the conventional general processing method. Originally, there is a demand for a filtration and backwashing method that can stably obtain a high flux of a membrane for a long time and that is easy to maintain.

【0011】[0011]

【発明が解決しようとする課題】本発明は、内圧型中空
糸膜を用い、運転方法としてのクロスフロー方式、全ろ
過方式のいずれのろ過方式の種類によらず、また膜材質
のUF膜、MF膜いずれの膜モジュールろ過装置にも適
用でき、そして設計のフラックスが安定して得られ、か
つシンプルな逆洗方法を提供し、そして適正な(ろ過工
程−逆洗工程)の運転方法を提供することを課題とす
る。
SUMMARY OF THE INVENTION The present invention uses an internal pressure type hollow fiber membrane, does not depend on the type of filtration system, such as a cross flow system or a total filtration system, as an operation method, and uses a UF membrane of a membrane material. It can be applied to any type of MF membrane filtration device, provides a stable design flux, provides a simple backwashing method, and provides an appropriate (filtration-backwashing) operation method. The task is to

【0012】[0012]

【課題を解決するための手段】本発明者等は、前記の課
題を解決すべく原水性状、ろ過、逆洗方式、フラックス
の状況の検討を行った。その結果、解決すべき問題点
は、膜汚染の進行防止、原水水温低下時の対策、の
二点に集約されることがわかった。この中、は、主に
原水性状と逆洗方法に係わる基本的問題であり、モジュ
ール構造、膜材質、ろ過時間(ろ過工程一回当たりの濁
質捕捉量)等の影響はかなり大きい。は現実的に大き
い問題となっている。水温15℃以下、特に冬期の10
℃以下では水の粘性率の増大によってフラックスを15
〜25℃の場合の1/2〜1/4に低下させざるをえな
いのが現状である。とは密接に関係しているもので
あり、この二つを同時に解決するため、鋭意、研究の結
果、上記の問題を生じさせる具体的な原因を見い出すと
ともに、これらの原因を解決できる手段を見い出した。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors examined the conditions of raw water, filtration, backwashing, and flux. As a result, it was found that the problems to be solved can be summarized into two points: prevention of the progress of membrane contamination, and countermeasures when the raw water temperature drops. Among them, is a basic problem mainly related to the raw water state and the backwashing method, and the influence of the module structure, the membrane material, the filtration time (the amount of turbid matter trapped per filtration step) and the like is considerably large. Is a real problem. Water temperature below 15 ℃, especially in winter
Below ℃, the flux increases by 15 due to an increase in the viscosity of water.
At present, the temperature has to be reduced to 1/2 to 1/4 of the temperature at 25C. Are closely related to each other, and in order to solve the two at the same time, as a result of earnest research, we have found concrete causes that cause the above problems, and we have found means to solve these causes. Was.

【0013】(1)フラックスの低下、膜モジュール入
口圧力の上昇を生じさせている原因は、調査の結果、下
記の3点があると思われた。 1)通常の逆洗によって排出できなかった濁質、有機物
等が中空糸膜内面で(ろ過工程−逆洗工程)の運転毎に
成長し、膜内面を徐々に閉塞させていく現象が生ずる。
そして、しだいに有効中空糸膜本数、即ち有効膜面積を
低下させる。膜内面を閉塞させている濁質、有機物、あ
るいはこれらの混合物である閉塞物質は、通常の逆洗で
は排出できない。この現象が上記の原因に最も大きい影
響を与えていると思われた。
(1) As a result of the investigation, the following three points were considered to be the causes of the decrease in the flux and the increase in the pressure at the inlet of the membrane module. 1) The turbidity, organic matter, etc., which could not be discharged by the normal backwashing, grow on the inner surface of the hollow fiber membrane at every operation of (filtration step-backwashing step), and a phenomenon occurs that the inner surface of the membrane is gradually closed.
And the number of effective hollow fiber membranes, that is, the effective membrane area is gradually reduced. A turbid substance, an organic substance, or a mixture thereof, which blocks the inner surface of the membrane, cannot be discharged by ordinary backwashing. This phenomenon seemed to have the greatest influence on the above-mentioned causes.

【0014】2)膜厚内に入り込む濁質等の割合は、ス
キン層を有するUF膜(ポアーサイズ:0.01μm程
度以下)の場合にはMF膜(ポアーサイズ:0.05〜
0.5μm程度)と比較して、かなり少ないと思われ
た。これは水中の主に濁質の大きさが0.01μmより
大きいものが大部分であり、膜のポアーを閉塞しにくい
からである。これに反してMF膜のポアーサイズは大き
いため、水中の濁質のサイズ分布上、MF膜のポアー内
(膜厚内)に丁度よく、入り込み、閉塞する濁質の割合
が高いためと思われる。有機物は、UF膜においても、
そのポアーサイズ(分画分子量)にもよるが、かなり入
り込み、かつろ過水の方にリークしていくことが多い。
これはろ過水の水質の問題となり、これらリーク有機物
による色度、TOC等の除去のため、別途に、例えば原
水にPAC等の凝集剤注入等を考慮する必要がある。し
かし膜厚内に高分子の有機物が入り込み、残留している
ことは充分考えられる。 3)通常の逆洗時、Cl2 を注入しているため、原水に
イオン状のマンガンが存在すると膜を通過し、塩素酸化
を受け、膜の外面(ろ過水側)に徐々に付着し、フラッ
クスの低下、膜入口圧力の上昇をもたらす。
2) In the case of a UF film having a skin layer (pore size: about 0.01 μm or less), the ratio of turbidity or the like entering the film thickness is MF film (pore size: 0.05 to
(About 0.5 μm). This is because most of the turbidity in the water is mainly larger than 0.01 μm, and it is difficult to close the pores of the membrane. On the other hand, it is considered that the pore size of the MF membrane is large, and the proportion of the suspended matter that gets into and closes the pores (within the film thickness) of the MF membrane is high due to the size distribution of the suspended matter in water. Organic matter is also present in UF membranes.
Although it depends on the pore size (fraction molecular weight), it often penetrates and leaks toward the filtered water in many cases.
This causes a problem in the quality of the filtered water, and it is necessary to separately consider, for example, injecting a flocculant such as PAC into raw water to remove chromaticity, TOC, and the like due to the leaked organic matter. However, it is sufficiently conceivable that a high molecular organic substance enters and remains in the film thickness. 3) Since Cl 2 is injected during normal backwashing, if ionic manganese is present in the raw water, it passes through the membrane, undergoes chlorine oxidation, and gradually adheres to the outer surface (filtration water side) of the membrane. This results in lower flux and higher membrane inlet pressure.

【0015】(2)膜材質として親水性の大きい膜を用
いる。親水性が大きければ大きい程、前述のとの問
題は解決し易くなる。例えば、親水性の大きいセルロー
ス系の膜と化学修飾しても親水性の充分でないポリエス
テル系の膜を比較すれば、明らかにセルロース系膜の方
がとの問題は小さい。どのような膜材質でもより親
水性の大きい方が適している。
(2) A film having high hydrophilicity is used as a film material. The greater the hydrophilicity, the easier it is to solve the above problem. For example, when comparing a cellulose-based membrane having high hydrophilicity with a polyester-based membrane which is not sufficiently hydrophilic even after being chemically modified, the problem with the cellulose-based membrane is clearly smaller. Regardless of the film material, a material having higher hydrophilicity is suitable.

【0016】(3)逆洗水に次亜塩素酸ソーダのような
殺菌剤を注入する通常の運転方法である〔ろ過工程−逆
洗工程〕の一定頻度毎に、即ち膜の汚染がかなり進行し
てしまう前に、あるいは必要に応じて、逆洗工程時、通
常の次亜塩素酸ソーダの注入をしない代わりに、従来の
高濃度の薬品洗浄の概念とは異なる低濃度の酸としてク
エン酸単独、またはクエン酸と塩酸の混合酸を用い、循
環洗浄を行なう。循環弁AV−1を開とし、原水流入配
管系統10、膜モジュール5、原水循環配管系統12、
ろ過水循環出口弁AV−8、AV−9も開とし、ろ過水
循環系統14を介して、循環ポンプP−2を起動し、高
流速にできる循環系を形成する。そして循環ポンプP−
2の前後から膜モジュール5入口までの間の原水流入配
管系統10、又は膜モジュール上部から循環ポンプP−
2までの原水循環配管系統12にクエン酸の濃度とし
て、15℃〜35℃に加温した50〜1500mg/リ
ットル、好ましくはランニングコストを考慮し、18℃
〜25℃に加温した200から600mg/リットルを
注入する。
(3) At regular intervals in the usual operation method of injecting a bactericide such as sodium hypochlorite into the backwashing water [filtration step-backwashing step], that is, membrane contamination considerably proceeds. Before or if necessary, during the backwashing process, instead of the usual injection of sodium hypochlorite, citric acid is used as a low-concentration acid that is different from the conventional concept of high-concentration chemical cleaning. Circulation washing is performed using a single acid or a mixed acid of citric acid and hydrochloric acid. The circulation valve AV-1 is opened, and the raw water inflow piping system 10, the membrane module 5, the raw water circulation piping system 12,
The filtered water circulation outlet valves AV-8 and AV-9 are also opened, and the circulation pump P-2 is started via the filtered water circulation system 14 to form a circulation system capable of high flow velocity. And the circulation pump P-
Raw water inflow piping system 10 between before and after 2 and the inlet of the membrane module 5 or the circulation pump P-
As the concentration of citric acid in the raw water circulation piping system 12 up to 2, 50 to 1500 mg / liter heated to 15 ° C. to 35 ° C., preferably 18 ° C. in consideration of running cost
Inject 200-600 mg / liter warmed to 2525 ° C.

【0017】この時のろ過水循環系統14の流量は全流
量の2〜20%程度であればよい。中空糸膜外面に付着
しやすい。塩素酸化されて生ずるマンガン等の汚染物質
を溶解除去出来るようにすればよいのである。このよう
な操作を行なうことにより膜内外面、膜厚内に付着して
いる、あるいは膜内面に付着し、閉塞させている濁質の
分解、有機物の分解、あるいは剥離を促進できる。クエ
ン酸の場合はその液温が特に重要であり、15℃以下で
はキレート作用の効果は小さくなり洗浄は効果的でなく
なる。それゆえ前記のような液温とする。時間に余裕が
あれば浸漬処理をあわせて数時間程度行なうのも効果的
である。
At this time, the flow rate of the filtered water circulation system 14 may be about 2 to 20% of the total flow rate. It easily adheres to the outer surface of the hollow fiber membrane. It suffices if contaminants such as manganese generated by chlorine oxidation can be dissolved and removed. By performing such an operation, it is possible to promote the decomposition of turbid matter, the decomposition of organic matter, or the separation of the suspended matter adhered to the inner and outer surfaces of the film, within the film thickness, or adhered to the inner surface of the film and closed. In the case of citric acid, the temperature of the solution is particularly important. If the temperature is 15 ° C. or lower, the effect of the chelating action is reduced and the washing is not effective. Therefore, the liquid temperature is set as described above. If there is enough time, it is effective to perform the immersion treatment for several hours in total.

【0018】そして、この高流速循環洗浄時に〔高流速
循環洗浄−循環停止〕、あるいは〔高流速循環洗浄−低
流速循環洗浄〕の操作を繰返し、中空糸膜の内外面に流
量と圧力変動を与える操作を数回繰返すと、更にその効
果は大きくなることがわかった。最後に原水及び/又は
ろ過水を用いて高流速にて、又は置換ブローに適切な流
量で膜モジュール内および配管を含めた装置全系統の保
有する洗浄排水の置換ブロー工程を行なう。この置換ブ
ロー工程を前記循環洗浄時の〔高流速循環洗浄−循環停
止〕、あるいは〔高流速循環洗浄−低流速循環洗浄〕の
操作の途中でも1〜2回程行い、膜モジュール内の濁
質、有機物を含む排水を、置換ブローすると更に効果的
となる。
At the time of this high-flow circulation cleaning, the operation of [high-flow circulation cleaning-recirculation stop] or [high-flow circulation cleaning-low-flow circulation cleaning] is repeated to change the flow rate and pressure fluctuation on the inner and outer surfaces of the hollow fiber membrane. It was found that the effect was further enhanced by repeating the given operation several times. Finally, the replacement blow process of the washing wastewater held by the entire system including the inside of the membrane module and the piping is performed at a high flow rate using raw water and / or filtered water or at a flow rate appropriate for the replacement blow. This replacement blow step is performed once or twice even during the operation of [high-flow circulation cleaning-stop circulation] or [high-flow circulation cleaning-low-flow circulation cleaning] at the time of the circulation cleaning, and the suspended matter in the membrane module is removed. It is more effective if the wastewater containing organic matter is blown by displacement.

【0019】洗浄排水を置換ブローするため、原水を用
いて前記の薬品を注入しないで、循環弁AV−1を閉と
し循環を停止し、循環弁AV−1のすぐ上に設けた逆洗
排水上部出口弁AV−7を開とし、ろ過水循環出口弁A
V−8、AV−9も開とし原水ポンプP−1と循環ポン
プP−2を起動し、高流速にて、または置換ブローに適
切な流量で膜モジュールを含む装置全配管系統の保有す
る洗浄排水を排水する。ある程度、置換ブロー工程が進
んだら、一度、循環弁AV−1を開とし、循環弁AV−
1と循環ポンプP−2までの間に残留している配管中の
洗浄排水も排水する。更に必要に応じて、逆洗ポンプP
−3を用いて、Cl2 注入をしないろ過水を用いた上向
流逆洗によって、前記と同様に各弁類を開閉し、装置全
配管系統の置換ブローを行ない酸が残留しないようにす
る。
In order to replace and blow the washing wastewater, the above-mentioned chemical is not injected using the raw water, the circulation valve AV-1 is closed to stop the circulation, and the backwash wastewater provided immediately above the circulation valve AV-1. Open the upper outlet valve AV-7 and set the filtered water circulation outlet valve A
V-8 and AV-9 are also opened to activate the raw water pump P-1 and the circulation pump P-2, and to wash the entire piping system including the membrane module at a high flow rate or at a flow rate appropriate for displacement blow. Drain the wastewater. Once the replacement blow process has progressed to some extent, the circulation valve AV-1 is once opened and the circulation valve AV-
The washing drainage in the piping remaining between the pump 1 and the circulation pump P-2 is also drained. If necessary, backwash pump P
Using -3, each valve is opened and closed in the same manner as above by upflow backwash using filtered water without injection of Cl 2 , and replacement piping of the entire piping system of the apparatus is performed so that no acid remains. .

【0020】(4)膜が有機物の汚染(微生物汚染も含
む)を受けた時は、次亜塩素酸ソーダ等をCl2 として
膜材質によって異なるが20〜300mg/リットル、
好ましくは20〜60mg/リットル程度、循環洗浄時
は常に膜モジュール内に存在するようにして、前述のク
エン酸の場合と同じように中空糸膜に流量、圧力の変動
を酸と同様に数回与えつつ循環洗浄する。次亜塩素酸ソ
ーダの場合は有機物の汚染を一層少なくするため、必要
に応じて浸漬処理をあわせて数時間程度行なうことも効
果的である。モジュール内および配管等の装置全系統の
保有する洗浄排水を置換ブローする方法も前記の酸の場
合と同様に行なえばよい。置換ブロー後は前記の酸と同
様にCl2 が残留しないようにする。循環洗浄時の酸化
剤としての次亜塩素酸ソーダの液温は酸の場合と同様
に、15〜35℃とする。高い方がより効果的である
が、ランニングコストを考慮し18〜25℃程度でも充
分である。
(4) When the film is contaminated with organic matter (including microbial contamination), sodium hypochlorite or the like is used as Cl 2 , depending on the film material, but 20 to 300 mg / l.
It is preferably about 20 to 60 mg / liter, and it is always present in the membrane module during circulating washing, and the flow rate and the pressure are changed several times in the same manner as in the case of the citric acid. Circulation washing while giving. In the case of sodium hypochlorite, in order to further reduce the contamination of organic substances, it is effective to perform immersion treatment for several hours as needed. The method of replacing and blowing the cleaning wastewater held in the module and in the entire system such as piping, etc. may be performed in the same manner as in the case of the above-mentioned acid. After the displacement blow, Cl 2 is prevented from remaining like the acid described above. The liquid temperature of sodium hypochlorite as an oxidizing agent at the time of circulation cleaning is set to 15 to 35 ° C. as in the case of acid. Higher is more effective, but about 18 to 25 ° C. is sufficient in consideration of running costs.

【0021】(5)原水水温が低い場合には、ろ過時及
び通常の逆洗時は加温しないが、前記のような酸、酸化
剤を用い循環洗浄する逆洗時には膜モジュールを中心と
する装置全循環配管系統中の酸、または酸化剤を含む保
有水を加温するのが好適である。加温装置15は、例え
ば、原水循環配管系統に電気ヒーター、あるいは蒸気を
用いた熱交換器等を設け、加温すればよい。加温に時間
がかかり過ぎる場合は、装置全循環配管系統の保有水量
以上を貯留した加温用貯槽(図示せず)を別途に設け、
加温装置にてあらかじめ加温水を作っておくのも一案で
ある。
(5) When the raw water temperature is low, heating is not performed during filtration and during normal backwashing, but the membrane module is mainly used during backwashing in which the above-mentioned acid and oxidizing agents are used for circulating washing. It is preferable to heat the retained water containing the acid or the oxidizing agent in the entire system circulation piping system. The heating device 15 may be provided with, for example, an electric heater or a heat exchanger using steam in a raw water circulation piping system, and may be heated. If the heating takes too long, a heating storage tank (not shown) that stores more than the amount of water held in the entire circulation piping system of the device is provided separately.
It is one idea to make the heating water in advance with a heating device.

【0022】(6)循環洗浄時、膜モジュールに与える
流量、圧力の変動の程度は、中空糸膜が破断(バース
ト:裂ける、切れる等の意味)、座屈(へこむ等の形状
変化の意味)が生じないように行なう。下記例の膜の強
度の指標となるバースト圧、座屈圧は膜の劣化とともに
低下していくので、流量、圧力変動の与える程度は新品
時の座屈圧値の半分以下に設定するように注意を要す
る。 例)セルロース系の膜 バースト圧(新品時):15kgf/cm2 程度 座屈圧(新品時):6kgf/cm2 程度 本発明で用いる高流速とは、ろ過時の循環系の膜モジュ
ールにおける入口流速に対して1.0〜2.0倍程度で
あり、中空糸膜の強度が充分耐えられる圧力損失の流速
であれば大きい程よい。しかし、循環ポンプ、逆洗ポン
プの動力費を考慮し、できるだけ小さく1.0〜1.5
倍程度でもよい。高流速にする方法として、循環弁AV
−1等の開度調整、あるいは循環ポンプP−2、逆洗ポ
ンプP−3をインバータ制御する等の手段がある。又、
循環弁AV−1を二つに分けて、通常のろ過時用、循環
洗浄時の高流速用とする手段もある。循環停止は循環ポ
ンプを停止する簡単な操作でできる。低流速とはろ過時
のろ過水流出配管系統13の流速程度でよい。
(6) The degree of fluctuation of the flow rate and pressure applied to the membrane module during circulating washing is determined by the fact that the hollow fiber membrane breaks (burst: meaning tearing, breaking, etc.) and buckling (meaning shape change such as dent). Is performed so that no Since the burst pressure and buckling pressure, which are indicators of the strength of the membrane in the following examples, decrease with deterioration of the membrane, the flow rate and the degree of pressure fluctuation should be set to less than half of the buckling pressure value when new. Be careful. Example) cellulosic membrane burst pressure (when new): 15 kgf / cm 2 degree seat屈圧(when new): the high flow rate used in the 6 kgf / cm 2 about the present invention, the inlet in the circulatory system membrane module during filtration The flow rate is about 1.0 to 2.0 times the flow rate, and the flow rate of the pressure loss that can sufficiently withstand the strength of the hollow fiber membrane is better. However, considering the power cost of the circulation pump and backwash pump,
It may be about twice. As a method of increasing the flow rate, a circulation valve AV
There is a means of adjusting the opening degree such as -1 or controlling the circulation pump P-2 and the backwash pump P-3 with an inverter. or,
There is also a means in which the circulation valve AV-1 is divided into two parts to be used for normal filtration and for high flow rate during circulation washing. Circulation can be stopped by a simple operation to stop the circulation pump. The low flow rate may be about the flow rate of the filtered water outflow piping system 13 during filtration.

【0023】圧力の設定値は急な変動を与えることか
ら、中空糸膜が破損(破断、座屈)しないように膜材
質、中空糸膜の一本の強度(外径、膜厚等)、膜モジュ
ール全体の強度(主にその構造)を充分に配慮し、設定
することが重要である。膜材質によって異なるが、流
量、圧力変動を与える直前のろ過時の膜モジュール入口
の圧力の1.5〜4.0倍程度とする。例えばセルロー
ス系の外径1000〜1500μmの中空糸膜であれば
最大2.5kgf/cm2 程度以下にして行なえば安全であ
る。流量、圧力の具体的な変動の与えかたの操作手順は
〔高流速循環洗浄−循環停止〕を例にすると次の如くで
ある。
Since the set value of the pressure gives a sudden change, the material of the membrane, the strength of one hollow fiber membrane (outer diameter, film thickness, etc.), so that the hollow fiber membrane does not break (break, buckle), It is important that the strength (mainly the structure) of the entire membrane module be sufficiently considered and set. Although it varies depending on the membrane material, the pressure is set to about 1.5 to 4.0 times the pressure at the membrane module inlet at the time of filtration immediately before the flow rate and pressure fluctuation are applied. For example, in the case of a cellulose-based hollow fiber membrane having an outer diameter of 1000 to 1500 μm, it is safe to perform the process at a maximum of about 2.5 kgf / cm 2 or less. The operation procedure for giving specific fluctuations in the flow rate and pressure is as follows, taking [high-speed circulation cleaning-circulation stop] as an example.

【0024】1)高流速循環洗浄:中空糸膜内面に対し
て20〜200cm/sec(前記の膜モジュール入口のろ過
時の流速に対して1.0〜2.0倍程度に相当)にて数
分間行なう。 2)1)の操作の最後に循環ポンプP−2は起動した状
態で、逆洗弁AV−1等を閉とし膜モジュールの原水循
環配管系統12の下部圧力(上部圧力でもよい)を例え
ば2.0kgf/cm2 程度になったら循環ポンプP−2を停
止する。そして10数秒間から数10秒間保持する。こ
の時圧力スイッチ等にて圧力が高くならないように監
視、制御する。 3)そして循環ポンプP−2を起動するとともに、2)
で閉とした逆洗弁AV−1等を急開し、流量、圧力の変
動を与える。 4)1)〜3)を数回繰り返す。
1) High flow circulation washing: 20 to 200 cm / sec with respect to the inner surface of the hollow fiber membrane (corresponding to about 1.0 to 2.0 times the flow rate at the time of filtration at the inlet of the above-mentioned membrane module). Perform for a few minutes. 2) At the end of the operation of 1), with the circulation pump P-2 activated, the backwash valve AV-1 and the like are closed and the lower pressure (or upper pressure) of the raw water circulation piping system 12 of the membrane module is set to, for example, 2 When the pressure reaches about 0.0 kgf / cm 2 , the circulation pump P-2 is stopped. Then, it is held for 10 seconds to several 10 seconds. At this time, the pressure is monitored and controlled by a pressure switch or the like so as not to increase. 3) Then, start the circulation pump P-2 and 2)
The backwash valve AV-1 and the like, which were closed by, are suddenly opened, and the flow rate and the pressure are varied. 4) Repeat steps 1) to 3) several times.

【0025】しかし、循環弁AV−1等の急閉、急開作
動が圧力検知上、また膜モジュールの破損の危険性、装
置の安定運転上等に問題である時は急閉、急開作動の時
間を長くし、ゆるやかな流量、圧力の変動となるように
調整する。循環ポンプP−2の起動時は変動が一時的に
過大となることがあるので、ポンプの性能をよく把握し
て、選定することが重要である。又、循環ポンプP−2
の選定には別の視点からも注意を要する。即ち循環ポン
プP−2の締め切り圧力が高すぎると前記の2.0kgf/
cm2 程度の圧力設定において、圧力スイッチ等が正常に
作動しない場合に、この目的とする圧力が循環ポンプP
−2の高い締め切り圧になってしまい、膜モジュールの
破損が生ずる危険が大となる。締め切り圧が本発明の目
的とする設定値にできるだけ近いものを選定することも
重要である。このことは原水ポンプP−1、逆洗ポンプ
P−3にも言えることでありその選定には充分に注意を
要する。
However, when the sudden closing and sudden opening operations of the circulation valve AV-1 etc. are problems in pressure detection, the risk of breakage of the membrane module, the stable operation of the apparatus, etc., the sudden closing and sudden opening operations are performed. And adjust so that the flow rate and pressure fluctuate slowly. When the circulation pump P-2 is started, the fluctuation may temporarily become excessive. Therefore, it is important that the performance of the pump is well understood and selected. Also, circulation pump P-2
Care must be taken from a different point of view when choosing the right choice. That is, if the closing pressure of the circulation pump P-2 is too high, the above-mentioned 2.0 kgf /
When a pressure switch or the like does not operate normally at a pressure setting of about cm 2 , the target pressure is set to the circulation pump P.
There is a high risk of causing a breakage of the membrane module due to a high cutoff pressure of -2. It is also important to select a cut-off pressure that is as close as possible to the set value aimed at by the present invention. This can be said for the raw water pump P-1 and the backwash pump P-3, and the selection thereof requires sufficient care.

【0026】循環ポンプP−2停止から高流速循環洗浄
に入ると、前記の例えば圧力設定値2.0kgf/cm2 程度
の値は急速に下がり、設定した高流速条件、膜モジュー
ルの濁質、有機物等の除去された程度によって、その圧
力低下程度はきまってくる。それゆえ例えば〔高流速循
環洗浄−循環停止〕操作を何回繰り返すかは一回毎の膜
モジュール入口圧力、又は出口圧力の回復状況から判断
して決めることになる。〔高流速循環洗浄−低流速循環
洗浄〕による場合は、低流速循環洗浄時に前記例のよう
に2.0kgf/cm2 程度になるように膜モジュールからの
各出口弁を急閉し、循環弁AV−A1の開度および循環
P−2の回転数をインバータ制御し、低流速にしつつ調
整する。そして、〔高流速循環洗浄−循環停止〕の場合
と同様に繰り返す。この方法は前記の循環ポンプP−2
の停止から起動に移る時、主に圧力が一時的に過大とな
ることがかなり避けられる方法である。どちらの方法に
するかは、その効果、運転のし易さ、膜モジュールの耐
久性等から判断する。
When the high-speed circulation cleaning is started after the circulation pump P-2 is stopped, the above-mentioned pressure, for example, about 2.0 kgf / cm 2 rapidly drops, and the set high-flow conditions, the turbidity of the membrane module, The degree of the pressure drop depends on the degree of removal of the organic matter and the like. Therefore, for example, how many times the [high-speed circulation cleaning-circulation stop] operation is repeated is determined by judging the recovery status of the membrane module inlet pressure or outlet pressure for each time. In the case of [high-flow circulation cleaning-low-flow circulation cleaning], at the time of low-flow circulation cleaning, each outlet valve from the membrane module is rapidly closed so that the pressure becomes about 2.0 kgf / cm 2 as in the above example, and the circulation valve is closed. The opening degree of the AV-A1 and the number of revolutions of the circulation P-2 are controlled by an inverter to adjust the flow rate at a low flow rate. Then, the process is repeated in the same manner as in the case of [high-speed circulation cleaning-circulation stop]. This method is based on the circulation pump P-2 described above.
This is a method that can substantially avoid temporary excessive pressure, mainly when moving from stop to start. Which method is to be used is determined based on its effect, ease of operation, durability of the membrane module, and the like.

【0027】(7)このような配慮をし、本発明を行な
えば、中空糸膜内面、膜厚内の濁質、有機物、あるいは
膜外面に塩素酸化によって付着した、特にマンガンの除
去、排出が出来るのである。循環時間、あるいは浸漬処
理時間は長いほど、また加温温度が高いほど効果的であ
るが、本発明では流量および圧力の変動の程度及び回数
の方がその効果を決めている。循環時間は3〜10分間
程度で充分である。高流速循環洗浄から目的とする圧力
への設定時間、循環ポンプP−2を停止後の設定圧力の
保持時間、そして再び循環ポンプP−2を起動すること
によって、流量および圧力の変動を与える一回あたりの
時間は0.5〜3分間程度と短かくてよい。またその変
動ショックの回数は2〜5回程度で充分である。洗浄排
水の置換ブロー工程に要する時間を加えても、本発明の
実施に要する時間は5分から最大20分程度である。ま
た本発明の実施頻度は原水性状、運転条件によって異な
るが、1日あたり1〜2回、あるいは1週間から1ケ月
あたり1〜2回程度であり、全体の運転時間に占める割
合は極く小さい。
(7) If the present invention is carried out in consideration of such considerations, removal and discharge of manganese, particularly manganese, adhering to the inner surface of the hollow fiber membrane, turbidity and organic substances in the film thickness, or the outer surface of the membrane by chlorine oxidation can be prevented. You can. The longer the circulation time or the immersion treatment time and the higher the heating temperature, the more effective. However, in the present invention, the effect is determined by the degree and number of fluctuations of the flow rate and the pressure. A circulation time of about 3 to 10 minutes is sufficient. The set time from the high-speed circulation cleaning to the target pressure, the holding time of the set pressure after stopping the circulation pump P-2, and the activation of the circulation pump P-2 again give a variation in flow rate and pressure. The time per cycle may be as short as about 0.5 to 3 minutes. It is sufficient that the number of times of the fluctuation shock is about 2 to 5 times. Even if the time required for the replacement blow step of the washing wastewater is added, the time required for implementing the present invention is about 5 minutes to a maximum of about 20 minutes. Although the frequency of implementation of the present invention varies depending on the raw water condition and the operating conditions, it is about once or twice per day, or about once or twice per week to one month, and the proportion of the total operating time is extremely small. .

【0028】(8)本発明は、また通常の(ろ過工程→
逆洗工程)の一定頻度毎、および必要に応じて、次亜塩
素酸ソーダを数ppm/リットル注入して行なう逆洗工
程時に前述の如く、〔高流速循環洗浄−循環停止〕、あ
るいは〔高流速循環洗浄−低流速循環洗浄〕の操作、及
び/又は、置換ブロー操作を前記の流量、圧力条件に
て、1〜3回程度、短時間にて実施するのも効果的であ
る。この時、次亜塩素酸ソーダが存在していなくても、
その効果はほとんど変わらない。従来のフラッシング洗
浄に、流量、圧力の変動を加えた操作であり、中空糸膜
内面に蓄積したコロイド状のFe,Al等の濁質が上向
流の高流速にて循環洗浄、置換ブロー操作によって、逆
洗排液として、物理的にかなり系外に排出できる。
(8) The present invention also relates to a conventional method (filtration step →
At a certain frequency of the backwashing step) and, if necessary, at the time of the backwashing step in which sodium hypochlorite is injected at a few ppm / liter, as described above, [high-speed circulation washing-circulation stop] or [high It is also effective to carry out the operation of [flow rate circulation cleaning-low flow rate circulation cleaning] and / or the replacement blow operation in the above-mentioned flow rate and pressure conditions in about 1 to 3 times in a short time. At this time, even if sodium hypochlorite does not exist,
The effect is almost unchanged. This is an operation in which the flow rate and pressure are changed in addition to the conventional flushing cleaning, in which turbid substances such as colloidal Fe and Al accumulated on the inner surface of the hollow fiber membrane are circulated at a high upward flow velocity, and the replacement blow operation is performed. As a result, the liquid can be physically discharged considerably out of the system as backwash wastewater.

【0029】(9)しかし、本発明においては、これら
の操作条件をすべて行なう必要は無く、原水の性状等に
よって運転工程、条件を適宜、組み合わせて、逆洗時間
の短縮、逆洗排水の低減等を図るのがよい。本発明は、
前述の如く、主に流量と圧力の変動を与える操作をクエ
ン酸単独、クエン酸と塩酸の混合酸単独の存在下、また
膜材質によって異なるが、20〜300mg/リットル
の次亜塩素酸ソーダの高濃度、通常の数ppm/リット
ルの存在下にて行なう。そして、各操作を適宜、組合せ
て、ろ過時のフラックス低下が進行してしまう前に行な
うことによって、長期の連続運転が可能となる。又、本
発明は薬品の存在しない条件下にて行なってもよく、流
量と圧力の変動ショックを与えるという物理的洗浄のた
め、酸や次亜塩素酸ソーダ等の洗浄剤が存在しなくて
も、その効果は劣るがある程度の効果が得られるのであ
る。
(9) However, in the present invention, it is not necessary to perform all of these operation conditions, and the operation steps and conditions are appropriately combined depending on the properties of the raw water to shorten the backwashing time and reduce the backwashing drainage. And so on. The present invention
As described above, the operation of mainly giving fluctuations in flow rate and pressure is performed in the presence of citric acid alone, a mixed acid of citric acid and hydrochloric acid alone, and depending on the material of the membrane, 20 to 300 mg / liter of sodium hypochlorite. It is performed in the presence of a high concentration, usually several ppm / liter. Then, by appropriately combining the respective operations and performing the operations before the flux reduction at the time of filtration progresses, a long-term continuous operation can be performed. Further, the present invention may be carried out under the absence of chemicals, and may be carried out in the absence of a cleaning agent such as acid or sodium hypochlorite for physical cleaning in which a fluctuation in flow rate and pressure is applied. Although the effect is inferior, a certain effect can be obtained.

【0030】(10)クエン酸以外の有機酸も使用でき
るが、取扱い上の安全性、万一ろ過水に漏洩した時の安
全性、使用濃度とその効果(ランニングコスト)を考慮
すると、前記の酸が適している。クエン酸は劇物、毒物
でもなく、食品添加物としても許可されている。また塩
酸はろ過水に若干、漏洩したとしてもろ過水中の重炭酸
塩と反応して、CO2 を生ずるだけで、ろ過水のpHの
問題は生じない。クエン酸液単独では、大気中からカ
ビ、酵母等の糸状菌類が混入し増殖することがある。こ
れを防止する目的のため、塩酸をクエン酸液と混合して
おく。その量は少なく、クエン酸液貯槽に0.2〜2.
0%程度になるように注入、混合しておけばよい。
(10) Organic acids other than citric acid can be used, but considering the safety in handling, the safety in the event of leakage into filtered water, the concentration used and its effect (running cost), Acids are suitable. Citric acid is not a deleterious or poisonous substance and is also approved as a food additive. Further, even if the hydrochloric acid slightly leaks into the filtered water, it reacts with the bicarbonate in the filtered water to generate only CO 2, and does not cause a problem of the pH of the filtered water. With the citric acid solution alone, filamentous fungi such as mold and yeast may be mixed from the atmosphere and proliferate. To prevent this, hydrochloric acid is mixed with the citric acid solution. The amount is small, and 0.2-2.
What is necessary is just to inject | pour and mix so that it may become about 0%.

【0031】(11)殺菌剤と酸化剤を兼用している次
亜塩素酸ソーダと酸が混在すると、中空糸膜の強度を劣
化させることがあるので、もし酸を適用した後に酸化剤
を用いる時は、酸を装置全循環配管系統から充分に置換
してから実施する。また、その逆の場合も同じである。
酸として本発明ではクエン酸を主として用いるが、クエ
ン酸は逆洗排水として排出されると、クエン酸濃度の約
35〜40%がCOD値として排出される。本発明にお
いては低濃度クエン酸を使用しているが、例えば、20
00m3 /日のろ過装置で、一回当たり約6m3 の排水
量となり、そのCODは25〜50mg/リットル程度
である。このようなクエン酸排液は、別途に収集し、生
物処理を行なえば容易に処理される。既設の生物処理装
置があれば新しい生物処理装置の必要としないことが多
い。
(11) If sodium hypochlorite and acid, which are used both as a bactericide and an oxidant, are mixed together, the strength of the hollow fiber membrane may be deteriorated. In some cases, it is carried out after the acid has been sufficiently replaced from the entire system piping system. The same is true for the opposite case.
In the present invention, citric acid is mainly used as an acid. When citric acid is discharged as backwash wastewater, about 35 to 40% of the citric acid concentration is discharged as a COD value. In the present invention, low concentration citric acid is used.
With a filtration device of 00 m 3 / day, the drainage amount is about 6 m 3 per time, and the COD is about 25 to 50 mg / l. Such citric acid effluent can be easily treated by separately collecting and performing biological treatment. Existing biological treatment equipment often does not require a new biological treatment equipment.

【0032】以上述べたように、本発明がその課題を解
決することができる手段をまとめると次のとおりであ
る。 (1)中空糸膜からなる内圧型の除濁用膜モジュールを
用いて、原水からろ過水を得るろ過処理の運転時に、ろ
過工程の後、殺菌剤の存在下に逆洗水で逆洗する逆洗工
程を行い、再びろ過工程に入る運転方法において、ろ過
工程から逆洗工程へ切り換える運転の間に、膜に付着し
ている濁質の分解、有機物の分解、あるいはそれらの剥
離を促進するために、循環ポンプからモジュール入口ま
での原水流入配管系統、又は膜モジュール上部から循環
ポンプまでの原水循環配管系統に、低濃度の酸及び/又
は前記殺菌剤を酸化剤として利用するよう注入しなが
ら、高流速にて循環ポンプ、原水流入配管系統、膜モジ
ュール、原水循環配管系統、ろ過水循環配管系統を介し
て膜モジュールを循環洗浄する工程、この工程を行って
いる時に〔高流速循環洗浄→循環停止〕、あるいは〔高
流速循環洗浄→低流速循環洗浄〕の操作を繰返す工程、
原水及び/又はろ過水を用いてモジュール内の水を置換
ブローする工程を組合せることにより、膜モジュールの
中空糸膜に流量及び圧力の変動の繰返しを与えて、中空
糸膜内外の濁質、有機物を排出、除去することを特徴と
する内圧型除濁用膜モジュールの逆洗方法。
As described above, the means by which the present invention can solve the problems are summarized as follows. (1) During the operation of the filtration treatment for obtaining filtered water from raw water using an internal pressure type degaussing membrane module composed of a hollow fiber membrane, after the filtration step, backwash with backwash water in the presence of a bactericide. In the operation method in which the backwashing step is performed and the filtration step is started again, during the operation of switching from the filtration step to the backwashing step, decomposition of turbidity adhering to the membrane, decomposition of organic substances, or exfoliation thereof are promoted. For this purpose, a low-concentration acid and / or the disinfectant is injected into the raw water inflow piping system from the circulation pump to the module inlet or the raw water circulation piping system from the upper part of the membrane module to the circulation pump so as to be used as an oxidizing agent. Circulating and washing the membrane module at high flow rate through the circulation pump, raw water inflow piping system, membrane module, raw water circulation piping system, and filtered water circulation piping system. Step repeated operation of the washing → circulatory arrest], or [high flow rate recirculation washing → low flow rate recirculation washing],
By combining the step of replacing and blowing water in the module with raw water and / or filtered water, the hollow fiber membrane of the membrane module is given a repetition of fluctuations in flow rate and pressure, and turbidity inside and outside the hollow fiber membrane is reduced. A method for backwashing an internal pressure type turbidity membrane module, comprising discharging and removing organic matter.

【0033】(2)置換ブロー工程時にも〔高流速循環
洗浄→循環停止〕、あるいは〔高流速循環洗浄→低流速
循環洗浄〕の操作を繰返すことを特徴とする前記(1)
記載の内圧型除濁用膜モジュールの逆洗方法。 (3)酸としてクエン酸単独、又はクエン酸と塩酸の混
合酸を、殺菌剤兼酸化剤として次亜鉛素酸ソーダを用
い、膜モジュールを含む装置全循環配管系統内の保有液
の温度を18℃〜35℃に加温することを特徴とする前
記(1)又は(2)記載の内圧型除濁用膜モジュールの
逆洗方法。 (4)通常の(ろ過工程→逆洗工程)運転の一定頻度毎
に、逆洗工程時に〔高流速循環洗浄→循環停止〕、ある
いは〔高流速循環洗浄→低流速循環洗浄〕の操作を繰返
すことを特徴とする前記(1)〜(3)のいずれか1項
記載の方法。
(2) The above-mentioned (1), wherein the operation of [high-speed circulation washing → stop circulation] or [high-speed circulation washing → low-speed circulation washing] is repeated also in the displacement blowing step.
A method for backwashing the internal pressure type opacity membrane module according to the above. (3) Using citric acid alone or a mixed acid of citric acid and hydrochloric acid as an acid, sodium hypochlorite as a disinfectant and oxidizing agent, and adjusting the temperature of the liquid retained in the entire circulation piping system of the apparatus including the membrane module to 18 The method for backwashing an internal pressure type opaque membrane module according to the above (1) or (2), wherein the membrane module is heated to a temperature of from 35 ° C to 35 ° C. (4) At regular intervals of normal (filtration process → backwash process) operation, during the backwash process, repeat the operation of [high flow circulation wash → circulation stop] or [high flow circulation wash → low flow circulation wash]. The method according to any one of (1) to (3), wherein:

【0034】[0034]

【発明の実施の態様】以下、本発明について本発明の一
例である図1のクロスフロー方式にもとづいて詳細に説
明する。以下の具体的数字はすべて膜面積50m2 の膜
モジュール一本の場合について示す。 (1)ろ過工程例 原水1を原水ポンプP−1でくみ上げ、目開き80〜1
00メッシュ程度の自動フィルタ3で大きい濁質を除去
した後、膜モジュール5を介して、原水循環配管系統
(クロスフロー配管)12の循環弁AV−1およびろ過
水流出配管系統13のろ過水出口弁のAV−2を開と
し、循環ポンプP−2を起動し原水を循環しながら、ろ
過水槽6にろ過水7を得る。この時逆洗水下部入口弁A
V−5、逆洗水上部入口弁AV−4も開として、膜モジ
ュール5の上下からろ過水を得てもよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on a cross flow system shown in FIG. 1 which is an example of the present invention. The following specific figures all show the case of one membrane module having a membrane area of 50 m 2 . (1) Filtration process example Raw water 1 is pumped up with a raw water pump P-1, and openings 80-1
After removing large turbidity with the automatic filter 3 of about 00 mesh, the circulation valve AV-1 of the raw water circulation piping system (cross flow piping) 12 and the filtered water outlet of the filtered water outflow piping system 13 via the membrane module 5. The valve AV-2 is opened, and the circulating pump P-2 is started to circulate the raw water to obtain the filtered water 7 in the filtered water tank 6. At this time, backwash water lower inlet valve A
V-5, the backwash water upper inlet valve AV-4 may also be opened to obtain filtered water from above and below the membrane module 5.

【0035】原水の循環水量とろ過水量の比は、例えば
河川水等を一次処理した工業用水では60〜55:40
〜45程度は可能である。しかし、原水の有機物量、濁
質の量が増すほど、また付着しやすい性状の濁質程、ろ
過水の割合を小さくし、膜内面における流速を大きく
し、付着しにくくする必要がある。ろ過時は循環ポンプ
P−2をインバータで制御するとともに、循環弁AV−
1の開度を調整し、またろ過水流出配管系統13のろ過
水出口弁AV−2を開とし、各系統の流量、膜モジュー
ル5の入口圧力、原水循環配管系統12の圧力、ろ過水
流出配管系統13の圧力を適正に調節して運転する。ろ
過水出口弁AV−2の開度は背圧をできるだけ、持たせ
ないように全開としておくのが好ましい。
The ratio between the circulating water amount of the raw water and the filtered water amount is, for example, 60 to 55:40 in the case of industrial water obtained by primary treatment of river water or the like.
About 45 is possible. However, as the amount of organic matter and turbidity in raw water increases, and the turbidity tends to adhere, it is necessary to reduce the ratio of filtered water, increase the flow velocity on the inner surface of the membrane, and make it difficult to adhere. At the time of filtration, the circulation pump P-2 is controlled by an inverter, and the circulation valve AV-
1, the filtered water outlet valve AV-2 of the filtered water outflow piping system 13 is opened, the flow rate of each system, the inlet pressure of the membrane module 5, the pressure of the raw water circulation piping system 12, the filtered water outflow. The operation is performed by appropriately adjusting the pressure of the piping system 13. It is preferable that the filtered water outlet valve AV-2 is fully opened so as not to have a back pressure as much as possible.

【0036】具体的なろ過工程の設定例を下記に示す。 例)ろ過工程設定例 原水 工業用水 水温:4〜15℃ 膜モジュール 50m2 膜面積一本、材質:CA膜、UF膜 ろ過時間 30〜40分 :設定値、30分 フラックス 1.5〜2.5m3/m2.日:設定値、100m3/日(2.0 m3/m2.日) 膜モジュール入口流量 :9.6m3/日 原水循環流量 :5.3m3/日 ろ過水流量 :4.3m3/日 圧力 膜モジュール入口圧力 :0.60〜0.85kgf/cm2 原水循環圧力 :0.34〜0.41kgf/cm2 ろ過水圧力 :0.14kgf/cm2 A specific example of the setting of the filtration step is shown below. Example) filtration step setting example raw industrial water temperature: 4 to 15 ° C. membrane module 50 m 2 membrane area one, Material: CA membrane, UF membrane filtration time 30-40 minutes: set value, 30 minutes flux 1.5-2. 5 m 3 / m 2 . Day: Set value, 100 m 3 / day (2.0 m 3 / m 2 .day) Membrane module inlet flow rate: 9.6 m 3 / day Raw water circulation flow rate: 5.3 m 3 / day Filtration water flow rate: 4.3 m 3 / Day pressure Membrane module inlet pressure: 0.60 to 0.85 kgf / cm 2 Raw water circulation pressure: 0.34 to 0.41 kgf / cm 2 Filtration water pressure: 0.14 kgf / cm 2

【0037】全ろ過方式の場合は循環ポンプP−2は必
要無くなり、ろ過時の動力費は原水ポンプP−1が主に
なる。しかし濁質の膜内面への付着の強度を小さくする
ため、ろ過時間を短く、フラックスを小さく設定するこ
とが多い。具体的なろ過工程の設定例を下記に示す。 例)ろ過工程例 原水 工業用水 水温:4〜15℃ 膜モジュール 50m2 膜面積一本、材質:CA膜、UF膜 ろ過時間 20〜30分 :設定値、20分 フラックス 1.0〜1.5m3/m2.日:設定値、75m3/日(1.5m3 /m2.日) 膜入圧 0.6〜0.9kgf/cm2 (膜出口のろ過水圧:0.1〜0. 14kgf/cm2
In the case of the total filtration system, the circulation pump P-2 is not required, and the power cost during filtration is mainly the raw water pump P-1. However, in order to reduce the strength of adhesion of the suspended matter to the inner surface of the membrane, the filtration time is often set short and the flux is set small. A specific setting example of the filtration step is shown below. Example) Filtration process example Raw water Industrial water Water temperature: 4 to 15 ° C Membrane module 50m 2 One membrane area, material: CA membrane, UF membrane Filtration time 20 to 30 minutes: Set value, 20 minutes Flux 1.0 to 1.5m 3 / m 2 . Day: set value, 75 m 3 / day (1.5 m 3 / m 2 .day) Membrane input pressure 0.6 to 0.9 kgf / cm 2 (filtration water pressure at the membrane outlet: 0.1 to 0.14 kgf / cm 2 )

【0038】クロスフロー方式、全ろ過方式とも逆洗方
法は基本的に同じである。しかし、全ろ過方式において
は、逆洗頻度が一般的にクロスフロー方式より多くな
る。逆洗工程時の逆洗水として通常、どちらの方式もろ
過水7を用いる。異なるのは薬品洗浄液の循環をクロス
フロー方式では循環ポンプP−2で、全ろ過方式では図
2に示す薬品洗浄槽20に接続する薬品洗浄ポンプP−
7で行なう点である。以下、クロスフロー方式を例にし
て説明する。以下に記す具体的数字はすべて膜面積50
2 の膜モジュール一本の場合について示す。
The backwashing method is basically the same for both the cross-flow method and the total filtration method. However, in the total filtration system, the frequency of backwashing is generally higher than that in the cross flow system. Usually, filtered water 7 is used in both systems as backwashing water in the backwashing step. The difference is that the circulation of the chemical cleaning liquid is performed by the circulation pump P-2 in the cross flow system, and the chemical cleaning pump P- connected to the chemical cleaning tank 20 shown in FIG.
7. Hereinafter, the cross flow method will be described as an example. The specific figures given below are all membrane areas of 50
It is shown for the case of the membrane module one m 2.

【0039】(1)通常時の殺菌剤注入逆洗工程例 通常の一般的な逆洗工程である。膜モジュール5の上部
(ろ過水出口、循環水出口側)から下部(原水入口、逆
洗排水出口側)へろ過時の膜モジュール5入口流量の
1.0〜2.0倍程度の高流速で、かつ、ろ過時の膜モ
ジュール5入口圧力の1.2〜2.5倍程度の条件で、
逆洗水元弁AV−3、逆洗水上部入口弁AV−4、逆洗
排水下部出口弁AV−6を開とし、逆洗水ポンプP−3
を起動し、20〜30秒間程度、中空糸膜の外側(ろ過
水側)から内側(原水側)に通水することによって、膜
内面に付着している、ろ過時に捕捉した濁質成分を系外
に排出する下向流逆洗を行なう。この時、殺菌剤兼酸化
剤貯槽8から次亜塩素酸ソーダ注入ポンプP−4によっ
て、Cl2 として3〜5mg/リットル程度を逆洗水配
管系統11、例えば*1のところに注入し、逆洗排水中
のCl2 が一般に0.2〜3.0mg/リットル程度、
残留するようにし、膜モジュール内の微生物を殺菌す
る。なお、前記の逆洗水がすでに殺菌剤を含有している
ものであるときには、前記貯槽8から次亜塩素酸ソーダ
を供給する必要がなく、また含有していても不足してい
る場合には不足分を補う量を供給すればよい。
(1) Example of Backwashing Step of Injecting Disinfectant at Normal Time This is a usual general backwashing step. From the upper part (filtration water outlet, circulating water outlet side) of the membrane module 5 to the lower part (raw water inlet, backwash drainage outlet side) at a high flow rate of about 1.0 to 2.0 times the flow rate of the membrane module 5 inlet at the time of filtration. , And about 1.2 to 2.5 times the inlet pressure of the membrane module 5 at the time of filtration,
The backwash water main valve AV-3, the backwash water upper inlet valve AV-4, and the backwash drain lower outlet valve AV-6 are opened, and the backwash water pump P-3 is opened.
Is started, and water is passed from the outside (filtration water side) to the inside (raw water side) of the hollow fiber membrane for about 20 to 30 seconds, so that the turbid components adhering to the inside of the membrane and trapped during filtration are collected. Downflow backwashing to discharge outside is performed. At this time, about 3 to 5 mg / liter of Cl 2 is injected from the disinfectant / oxidizing agent storage tank 8 into the backwash water piping system 11, for example, * 1, by the sodium hypochlorite injection pump P-4. Cl 2 in the washing wastewater is generally about 0.2 to 3.0 mg / liter,
So that the microorganisms in the membrane module are killed. When the backwash water already contains a bactericide, it is not necessary to supply sodium hypochlorite from the storage tank 8, and if it is insufficient even if it is contained. What is necessary is just to supply the quantity which compensates for a shortage.

【0040】また、同様に膜モジュール5下部から上部
へと逆洗排水上部出口弁AV−7を開とし、上向流逆洗
を行なう。逆洗工程例を下記に示す。 下向流逆洗 20秒 Cl2 3mg/リットル 逆洗水流量:10m3 /hr、圧力:1.15kgf/cm2 上向流逆洗 20秒 Cl2 3mg/リットル 逆洗水流量:10m3 /hr、圧力:1.15kgf/cm2 それゆえ、逆洗時間は40〜60秒間である。原水によ
ってはまたはのどちらか一方のみを行っても良い。
ろ過水に遊離塩素が残っては困る場合、の後、の工
程では遊離塩素を注入しないで行なっても良い。また
、の後に遊離塩素を含まない逆洗水、あるいは原水
を用いて、膜モジュール5、各配管内の保有水を置換ブ
ローする工程を設けても良い。
Similarly, the backwash drain upper outlet valve AV-7 is opened from the lower part to the upper part of the membrane module 5, and the upward backflow is performed. An example of the backwashing step is shown below. Downflow backwash 20 seconds Cl 2 3 mg / l backwash water flow rate: 10m 3 / hr, a pressure: 1.15kgf / cm 2 upflow backwash 20 seconds Cl 2 3 mg / l backwash water flow rate: 10 m 3 / hr, pressure: 1.15 kgf / cm 2 Therefore, the backwash time is 40-60 seconds. Depending on the raw water or only one of them may be performed.
If free chlorine does not remain in the filtered water, the subsequent step may be performed without injecting free chlorine. Further, a step of replacing and blowing blown water in the membrane module 5 and each pipe using backwash water or raw water containing no free chlorine may be provided.

【0041】(2)本発明による通常時の殺菌剤注入逆
洗工程例 本発明を前記クロスフロー方式のろ過工程の設定例に適
用する場合の各工程組合せ例を以下に示す。 1)前記の(1)項のの上向流逆洗:流量、12m3
/hr、20秒間、Cl 2 3〜5mg/リットル 2)〔高流速循環洗浄→循環停止〕操作による逆洗 高流速循環洗浄:ろ過終了後、循環ポンプP−2を起
動、循環弁AV−1、ろ過水循環弁AV−8,AV−9
を開とした。 流量:12m3 /hr、圧力:1.25kgf/cm2 (水温:
17℃) 時間:2分間 ろ過水循環配管系統の流量:1.2m3 /hr
(2) Normal reverse injection of fungicide according to the present invention
Washing process example The present invention is suitable for the setting example of the cross-flow filtration process.
An example of each process combination in the case of using is shown below. 1) Upflow backwash of the above item (1): flow rate, 12 mThree
/ Hr, 20 seconds, Cl Two3 to 5 mg / liter 2) Backwashing by [high-flow circulation washing → circulation stop] operation High-flow circulation washing: After the end of filtration, start circulation pump P-2.
Dynamic, circulation valve AV-1, filtered water circulation valve AV-8, AV-9
Was opened. Flow rate: 12mThree/ Hr, pressure: 1.25kgf / cmTwo(water temperature:
17 ° C) Time: 2 minutes Flow rate of filtered water circulation piping system: 1.2mThree/ Hr

【0042】流量、圧力変動の条件:高流速循環洗浄の
40秒後に、ろ過水循環弁AV−8、AV−9は閉と
し、更に循環弁AV−1を徐々に閉とし、1分後に膜モ
ジュール入口圧を2.0kgf/cm2 に設定した。そして循
環ポンプP−2を20秒間停止し、そのまま圧力を保持
した後、再起動し、1分間高流速循環洗浄を行なった。
(高流速循環洗浄→圧力上昇→圧力開放、高流速循環洗
浄)操作を一回行なった。 置換ブローの条件:原水ポンプP−1、循環ポンプP−
2を起動し、上部逆洗排水出口弁AV−7、ろ過水循環
弁AV−8、AV−9を開、循環弁AV−1を閉とし
て、流量:12m3 /hrで2分間、膜モジュール及び
配管の水置換ブローを行なった。 ろ過水循環配管系統の流量:1.2m3 /hr
Conditions of flow rate and pressure fluctuation: 40 seconds after high-speed circulation cleaning, the filtered water circulation valves AV-8 and AV-9 are closed, and the circulation valve AV-1 is gradually closed. The inlet pressure was set at 2.0 kgf / cm 2 . Then, the circulation pump P-2 was stopped for 20 seconds, and after maintaining the pressure as it was, the system was restarted and high-speed circulation cleaning was performed for 1 minute.
(High-speed circulation cleaning → pressure increase → pressure release, high-speed circulation cleaning) operation was performed once. Substitution blow conditions: raw water pump P-1, circulating pump P-
2, the upper backwash drainage outlet valve AV-7, the filtered water circulation valves AV-8 and AV-9 are opened, the circulation valve AV-1 is closed, and the membrane module and the flow rate are 12 m 3 / hr for 2 minutes. A water displacement blow of the piping was performed. Flow rate of filtered water circulation piping system: 1.2 m 3 / hr

【0043】(3)本発明による酸注入加温逆洗工程例 次のような工程組み合わせ例とした。原水は工業用水で
水温は7〜10℃であった。 1)クエン酸10%と0.3%塩酸混合液の注入と高流
速循環加温洗浄工程ろ過終了後、循環弁AV−1、ろ過
水循環弁AV−8,AV−9、更に逆洗水上部入口弁A
V−4、逆洗水下部入口弁AV−5も開とし循環ポンプ
P−2を起動し、膜モジュール5上下からろ過水が出る
ようにし、14m3 /hrの循環系を形成した。更に蒸気
による加温装置15により循環系の保有水約80リット
ルを22℃まで10分間加温した。その間、前記の混合
液をクエン酸液貯槽9から酸注入ポンプP−6で原水流
入配管系統10の*3のところに3分間で注入し、全装
置(膜モジュール、配管等)の保有水量、約80リット
ルに対してクエン酸濃度が400mg/リットル程度に
なるようにした。ろ過水循環配管系統14の流量は全流
量の10%である1.4m3 /hr程度とした。
(3) Example of Acid Injection Heating Backwashing Step According to the Present Invention The following step combination example was adopted. Raw water was industrial water and the water temperature was 7 to 10 ° C. 1) Injection of a mixture of 10% citric acid and 0.3% hydrochloric acid and high-speed circulating heating / washing step After the filtration, the circulation valve AV-1, the filtered water circulation valves AV-8 and AV-9, and the upper part of the backwash water Inlet valve A
V-4, the backwash water lower inlet valve AV-5 was also opened, the circulation pump P-2 was started, and filtered water was discharged from above and below the membrane module 5 to form a circulation system of 14 m 3 / hr. Further, about 80 liters of water retained in the circulation system was heated to 22 ° C. for 10 minutes by the heating device 15 using steam. In the meantime, the above-mentioned mixed solution is injected from the citric acid solution storage tank 9 into the raw water inflow piping system 10 at * 3 for 3 minutes by the acid injection pump P-6, and the water volume of all the devices (membrane module, piping, etc.) The citric acid concentration was adjusted to about 400 mg / liter for about 80 liters. The flow rate of the filtered water circulation piping system 14 was about 1.4 m 3 / hr, which is 10% of the total flow rate.

【0044】2)流量、圧力変動を与える工程 加温の終了した10分後から、ろ過水循環弁AV−8,
AV−9、逆洗水上部入口弁AV−4、逆洗水下部入口
弁AV−5も開とした後、循環ポンプP−2を起動した
状態で循環弁AV−1をゆっくり閉として、膜モジュー
ル5の上下の圧力計が自動にて、圧力を検知しながら
2.0kgf/cm2 程度に上げる操作を行なった。そして循
環ポンプP−2を停止した。20秒間保持した後、循環
ポンプP−2を起動するとともに、循環弁AV−1を急
開し、14m3 /hrで再び高流速洗浄を2分間行なっ
た。この時ろ過水循環弁AV−8,AV−9、逆洗水上
部入口弁AV−4、逆洗水下部入口弁AV−5は開とし
た。この時のろ過水循環配管系統14の流量は全流量の
10%である1.4m3 /hr程度とした。そして、高流
速循環後、前述の如く2.0kgf/cm2 程度に圧力を上げ
る操作と循環弁AV−1を急開し、14m3 /hrで再び
高流速洗浄を2分間行なう操作を更に2回繰返し、合わ
せて3回の流量、圧力変動を与える工程を行なった。こ
の間、循環系の装置保有水の温度は20〜22℃程度を
維持するように温度コントロールを温度スイッチTSに
て行い、加温装置15を運転した。
2) Step of giving flow rate and pressure fluctuations After 10 minutes from the end of heating, filtered water circulation valve AV-8,
After opening the AV-9, the backwash water upper inlet valve AV-4 and the backwash water lower inlet valve AV-5, the circulating valve AV-1 is slowly closed with the circulating pump P-2 started, and the membrane is opened. The pressure gauges above and below the module 5 automatically increased the pressure to about 2.0 kgf / cm 2 while detecting the pressure. Then, the circulation pump P-2 was stopped. After holding for 20 seconds, the circulating pump P-2 was started, the circulating valve AV-1 was rapidly opened, and high-speed washing was performed again at 14 m 3 / hr for 2 minutes. At this time, the filtered water circulation valves AV-8 and AV-9, the backwash water upper inlet valve AV-4, and the backwash water lower inlet valve AV-5 were opened. At this time, the flow rate of the filtered water circulation piping system 14 was set at about 1.4 m 3 / hr, which is 10% of the total flow rate. After the high flow rate circulation, as described above, the operation of increasing the pressure to about 2.0 kgf / cm 2 , the rapid opening of the circulation valve AV-1, and the high flow rate washing at 14 m 3 / hr again for 2 minutes are further performed. Steps of giving a flow rate and a pressure change three times in total were performed. During this time, the temperature control was performed with the temperature switch TS so that the temperature of the water held in the circulation system by the apparatus was maintained at about 20 to 22 ° C., and the heating device 15 was operated.

【0045】3)置換ブロー工程 2)の3回目の循環洗浄後、循環ポンプP−2を起動し
た状態で、ろ過水循環弁AV−8,AV−9、更に逆洗
水上部入口弁AV−4、逆洗水下部入口弁AV−5も開
とし、原水ポンプP−1も起動し、14m3 /hrで、逆
洗排水上部出口弁AV−7を開とし、置換ブロー操作を
3分間行なった。循環弁AV−1は置換ブロー操作を2
分後から開とした。 4)通常の逆洗工程 前記の(2)項、1)上向流逆洗をCl2 を注入しない
で30秒間行ない、装置全系統に酸が残留しないように
した。
3) Substitution blow step After the third circulation washing in 2), with the circulation pump P-2 activated, the filtered water circulation valves AV-8 and AV-9, and further the backwash water upper inlet valve AV-4. The backwash water lower inlet valve AV-5 was also opened, the raw water pump P-1 was also started, the backwash drain upper outlet valve AV-7 was opened at 14 m 3 / hr, and the displacement blow operation was performed for 3 minutes. . The circulation valve AV-1 performs the displacement blow operation for two times.
It was opened after a minute. 4) Ordinary backwashing step Item (2), 1) Upflow backwashing was performed for 30 seconds without injecting Cl 2 to prevent acid from remaining in the entire system of the apparatus.

【0046】(4)本発明による酸化剤注入加温逆洗工
程 膜モジュールが有機物等に汚染を受けていると予想され
る時に行なう。その操作は酸注入逆洗工程とほとんど同
様に行ってよい。酸の代わりに殺菌剤として使用してい
た、例えば次亜塩素酸ソーダを酸化剤として利用し、次
亜塩素酸ソーダ注入ポンプP−5を起動し、原水流入配
管系統10の、例えば*2のところに循環水の遊離塩素
濃度が40〜60mg/リットル程度になるように注入
した。しかし、酸化剤は膜を汚染している有機物等と反
応して、濃度が低下する場合が多い。その効果が低下し
ないように、循環洗浄中に補給し、その効果が低下しな
いように、循環洗浄中に酸化剤としての次亜塩素酸ソー
ダを前記の濃度に維持するように補給する必要がある。
酸化剤の注入と高流速循環洗浄工程、装置の保有水の加
温方法、流量と圧力変動を与える工程、置換ブロー工
程、通常の逆洗工程も前記の(3)項の酸注入加温逆洗
工程と同様に行なった。
(4) Oxidant Injection Heating Backwashing Step According to the Present Invention This step is performed when it is expected that the membrane module is contaminated with organic substances or the like. The operation may be performed almost in the same manner as the acid injection backwashing step. For example, sodium hypochlorite, which had been used as a disinfectant instead of acid, was used as an oxidizing agent, and the sodium hypochlorite injection pump P-5 was started, and the raw water inflow piping system 10, such as * 2 The circulating water was injected such that the free chlorine concentration was about 40 to 60 mg / liter. However, the oxidizing agent often reacts with an organic substance contaminating the film to lower the concentration. It is necessary to replenish the sodium chlorite as an oxidizing agent during circulation cleaning so as to maintain the above concentration during circulation cleaning so that the effect is not reduced. .
The oxidizing agent injection and high-speed circulation cleaning step, the method of heating the water retained in the apparatus, the step of giving a flow rate and pressure fluctuation, the displacement blowing step, and the ordinary backwashing step also include the acid injection heating reverse of the above item (3). This was performed in the same manner as the washing step.

【0047】[0047]

【実施例】以下実施例により本発明を具体的に説明す
る。ただし本発明はこれらの実施例に限定されるもので
はない。 実施例1 図1に示す処理フロートによるクロスフロー方式の処理
を行った。表−1に原水とろ過水の水質を示す。 (1)原水:工業用水(河川水を硫酸バンドにて一次処
理している)
The present invention will be described in detail with reference to the following examples. However, the present invention is not limited to these examples. Example 1 Processing of a cross-flow method using the processing float shown in FIG. 1 was performed. Table 1 shows the quality of raw water and filtered water. (1) Raw water: Industrial water (river water is primarily treated with a sulfuric acid band)

【0048】[0048]

【表1】 [Table 1]

【0049】 (2)ろ過工程 1)膜モジュール 膜面積 50m2 、モジュール 1本 膜素材 CA膜(UF膜) 2)運転方法 ろ過水の回収率:45%(原水循環水量の45%を回収している) ろ過時間 :30分間 フラックス :2.0m3 /m2 ・日に設定した。 ろ過水量 :100m3 /日(2) Filtration step 1) Membrane module 50m 2 membrane area, 1 module Membrane material CA membrane (UF membrane) 2) Operating method Filtration water recovery rate: 45% (45% of raw water circulating water amount is recovered Filtration time: 30 minutes Flux: 2.0 m 3 / m 2 · day Filtration water volume: 100m 3 / day

【0050】(3)逆洗工程 各逆洗工程を次のように組み合わせた。 I:通常時の次亜塩素酸ソーダ注入逆洗工程 次の各工程からなる。 1)上向流逆洗 20秒 Cl2 3mg/リットル 逆洗水流量:10m3 /hr、圧力:1.15kgf /cm2 下向流逆洗 20秒 Cl2 3mg/リットル 逆洗水流量:10m3 /hr、圧力:1.15kgf /cm2 (3) Backwashing step Each backwashing step was combined as follows. I: Sodium hypochlorite injection backwashing step at normal time It consists of the following steps. 1) upflow backwash 20 seconds Cl 2 3 mg / l backwash water flow rate: 10m 3 / hr, a pressure: 1.15kgf / cm 2 downflow backwash 20 seconds Cl 2 3 mg / l backwash water flow rate: 10 m 3 / hr, pressure: 1.15 kgf / cm 2

【0051】II 酸注入加温逆洗工程 1)クエン酸10%と0.3%塩酸混合液の注入と高流
速循環洗浄工程 ろ過終了後、循環弁AV−1、ろ過水循環弁AV−8,
AV−9、更に逆洗水上部入口弁AV−4、逆洗水下部
入口弁AV−5も開とし循環ポンプP−2を起動し、膜
モジュール5上下からろ過水が出るようにし、14m3
/hrの循環系を形成した。更に蒸気による加温装置15
により循環系の保有水約60リットルを22℃まで8〜
12分間で循環加温した。その間、前記の混合液をクエ
ン酸液貯槽9から酸注入ポンプP−6で原水流入配管系
統10の*3のところに3分間で注入し、循環系の保有
水量、約60リットルに対してクエン酸濃度が300m
g/リットル程度になるようにした。ろ過水循環配管系
統14の流量は1.4m3/hr程度とした。
II Acid Injection Heated Backwashing Step 1) Injection of a mixture of 10% citric acid and 0.3% hydrochloric acid and high-speed circulation washing step After the filtration is completed, circulation valve AV-1, filtered water circulation valve AV-8,
AV-9, the backwash water upper inlet valve AV-4, and the backwash water lower inlet valve AV-5 are also opened to start the circulating pump P-2 so that filtered water flows out from above and below the membrane module 5, and 14 m 3.
/ Hr circulation system was formed. Further, a heating device 15 using steam
About 60 liters of water in the circulatory system up to 22 ° C
Circulation was warmed for 12 minutes. In the meantime, the above-mentioned mixed solution was injected from the citric acid solution storage tank 9 into the raw water inflow piping system 10 at * 3 for 3 minutes by the acid injection pump P-6 for 3 minutes with respect to the amount of water retained in the circulation system, about 60 liters. Acid concentration 300m
g / liter. The flow rate of the filtered water circulation piping system 14 was about 1.4 m 3 / hr.

【0052】2)流量、圧力変動を与える工程 加温の終了から、ろ過水循環弁AV−8,AV−9、逆
洗水上部入口弁AV−4、逆洗水下部入口弁AV−5を
閉とした後、循環ポンプP−2を起動した状態で循環弁
AV−1をゆっくり閉として、膜モジュール5の上下の
圧力が2.0kgf /cm2 程度になるように、圧力を検知
しながら自動にて行なった。そして循環ポンプP−2を
停止した。20秒間そのまま保持した後、循環ポンプP
−2を再起動するとともに、循環弁AV−1を急開し、
14m3 /hrで再び高流速循環洗浄を2分間行なった。
この時の開となる弁類、流量は同じとした。そして、前
述の如く2.0kgf /cm2 程度に圧力を上げる操作と循
環弁AV−1を急開し、14m3 /hrで再び高流速循環
洗浄を2分間行なう操作を更に2回繰返し、合わせて3
回の流量、圧力変動を与える工程を行なった。この間、
循環系の装置保有水の温度は20〜22℃程度を維持す
るように温度コントロールを温度スイッチTSにて行
い、加温装置15を運転した。
2) Step of giving flow rate and pressure fluctuations After the heating is completed, the filtered water circulation valves AV-8 and AV-9, the backwash water upper inlet valve AV-4, and the backwash water lower inlet valve AV-5 are closed. After that, the circulation valve AV-1 is slowly closed with the circulation pump P-2 activated, and the pressure is automatically detected while detecting the pressure so that the pressure above and below the membrane module 5 becomes about 2.0 kgf / cm 2. Performed at Then, the circulation pump P-2 was stopped. After holding for 20 seconds, the circulation pump P
-2 is restarted and the circulation valve AV-1 is rapidly opened,
High-speed circulation washing was performed again at 14 m 3 / hr for 2 minutes.
The valves to be opened at this time and the flow rate were the same. As described above, the operation of increasing the pressure to about 2.0 kgf / cm 2 , rapidly opening the circulation valve AV-1, and performing the high-speed circulation washing again at 14 m 3 / hr for 2 minutes are further repeated twice. 3
The process of giving the flow rate and the pressure fluctuation each time was performed. During this time,
The temperature was controlled by the temperature switch TS so that the temperature of the water held in the circulating system by the device was maintained at about 20 to 22 ° C., and the heating device 15 was operated.

【0053】3)置換ブロー工程 2)の3回目の循環洗浄後、循環ポンプP−2を起動し
た状態で、ろ過水循環弁AV−8,AV−9、更に逆洗
水上部入口弁AV−4、逆洗水下部入口弁AV−5も開
とし、原水ポンプP−1も起動し、14m3 /hrで、逆
洗水上部出口弁AV−7を開とし、置換ブロー操作を3
分間行なった。循環弁AV−1は置換ブロー操作2分後
から開とした。 4)通常の逆洗工程 前記の1項、1)のの上向流逆洗をCl2 を注入しな
いで30秒間行ない、装置全系統に酸が残留しないこと
をpH測定により確認した。
3) Substitution blow step After the third circulation washing in 2), with the circulation pump P-2 activated, the filtered water circulation valves AV-8 and AV-9, and further the backwash water upper inlet valve AV-4. Also, the backwash water lower inlet valve AV-5 is opened, the raw water pump P-1 is also started, and at 14 m 3 / hr, the backwash water upper outlet valve AV-7 is opened, and the displacement blow operation is performed three times.
Minutes. The circulation valve AV-1 was opened two minutes after the replacement blow operation. 4) Ordinary backwashing step The upward backwash of the above item 1) was performed for 30 seconds without injecting Cl 2, and it was confirmed by pH measurement that no acid remained in the entire system of the apparatus.

【0054】III 酸化剤注入加温逆洗工程 酸の代わりに殺菌剤として使用していた、次亜塩素酸ソ
ーダを酸化剤として、利用し、次亜塩素酸ソーダ注入ポ
ンプP−5を起動し、原水流入配管系統10の、*2の
ところに循環水の遊離塩素濃度が循環洗浄時、40〜6
0mg/リットル程度になるように、有機物等と反応し
て、Cl2 の濃度が低下した時は再注入した。酸化剤と
しての次亜塩素酸ソーダの注入と高流速循環洗浄工程、
装置の保有水の加温方法、流量と圧力変動を与える工
程、置換ブロー工程、通常の逆洗工程は、前記のII項の
酸注入加温逆洗工程と同様に行なった。そして、最終的
に装置の全循環系統に残留塩素が無い事を確認した。
III Oxidizing Agent Injection Heating Backwashing Step Sodium hypochlorite, which had been used as a disinfectant instead of acid, was used as the oxidizing agent, and the sodium hypochlorite injection pump P-5 was started. , The concentration of free chlorine in the circulating water at * 2 in the raw water inflow piping system 10 is 40 to 6
When the concentration of Cl 2 was lowered by reacting with an organic substance or the like so that the concentration became about 0 mg / liter, re-injection was performed. Injection of sodium hypochlorite as oxidizing agent and high-speed circulation cleaning process,
The method of heating the water held in the apparatus, the step of giving the flow rate and the pressure fluctuation, the displacement blow step, and the ordinary backwashing step were performed in the same manner as the above-mentioned acid injection heating backwashing step of section II. Finally, it was confirmed that there was no residual chlorine in the entire circulation system of the apparatus.

【0055】各逆洗工程の実施頻度 表−1の原水、および前記の運転条件において、下記の
如くとした。 I.通常時の次亜塩素酸ソーダ注入逆洗工程と:毎
サイクル実施した。 II.酸注入加温逆洗工程:1)、2)、3)、4)の工
程を1週間に一回行った。 III.酸化剤注入加温逆洗工程:IIの工程後直ちに、1週
間に一回行った。 <結果>6ケ月間の連続運転を行ったが、フラックスは
初期の2.0m3 /m2.日(Q:100m3 /日)を維
持した。又、膜モジュールの入口圧力の上昇も初期値、
水温15℃で0.65/cm2 、6ケ月後の値は水温が5
℃と低下しているにもかかわらず、0.95kgf /cm2
(水温5℃)と良好であった。薬品洗浄の必要性はなか
った。まだまだ連続運転を行なうことが可能であった。
Implementation frequency of each backwashing step The raw water shown in Table 1 and the above operating conditions were used as follows. I. Normal sodium chlorite injection backwash step: Every cycle was performed. II. Acid injection heating backwashing steps: Steps 1), 2), 3) and 4) were performed once a week. III. Oxidant Injection Heated Backwashing Step: Immediately after the step II, the step was performed once a week. <Results> Although the continuous operation was performed for 6 months, the flux maintained the initial 2.0 m 3 / m 2 .day (Q: 100 m 3 / day). In addition, the rise in the inlet pressure of the membrane module is also the initial value,
0.65 / cm 2 at a water temperature of 15 ° C.
℃ 0.95kgf / cm 2
(Water temperature 5 ° C.). There was no need for chemical cleaning. Continuous operation was still possible.

【0056】実施例2 表−1に示す原水を対象に、図1の処理フローによる全
ろ過方式の処理を行った。循環弁AV−1、循環ポンプ
P−2はなく、図2に示す薬品洗浄ポンプP−7を代わ
りに用いた。 (2)逆洗工程 実施例1に示した方法と同じであ
る。基本的洗浄方法は〔高流速循環洗浄→循環停止〕に
よる流量と圧力によって、膜に変動を与え、濁音、有機
物等を排出する方法である。循環弁AV−1、循環ポン
プP−2がなく図2に示す薬品洗浄槽20、薬品洗浄ポ
ンプP−7を代わりに用いるので、それ用の配管、手動
弁を図2の如く設けた。
Example 2 The raw water shown in Table 1 was subjected to the all-filtration processing according to the processing flow of FIG. There was no circulation valve AV-1 and no circulation pump P-2, and a chemical cleaning pump P-7 shown in FIG. 2 was used instead. (2) Backwashing step This is the same as the method shown in Example 1. The basic cleaning method is a method in which a film is fluctuated by a flow rate and a pressure by [high-speed circulation cleaning → circulation stop] to discharge turbidity, organic matter, and the like. Since the chemical cleaning tank 20 and the chemical cleaning pump P-7 shown in FIG. 2 are used instead of the circulation valve AV-1 and the circulation pump P-2, piping and a manual valve for them are provided as shown in FIG.

【0057】 1)薬品注入量:クエン酸 350mg/リットル 次亜塩素酸ソーダ注入量 40〜60mg/リットル 2)実施頻度:1週間に1回 3)実施の順番 I.通常時の次亜塩素酸ソーダ注入逆洗工程と:毎サイクル II. 酸注入加温逆洗工程:1)、2)、3)、4)の工程 <結果>約5ケ月間の連続運転が出来た。5ケ月後の膜
モジュール入口圧力は1.15kgf /cm2 に上昇し、薬
品洗浄が必要になった。薬品洗浄は通常行われている2
%のクエン酸の洗浄後、Cl2 として50〜100mg
/リットルの次亜塩素酸ソーダの洗浄を行なった。フラ
ックスは設定値の1.0m3 /m2.日に、また膜モジュ
ール入口圧力も運転初期値に近い0.7kgf /cm2 に回
復した。
1) Injection amount of chemical: 350 mg / liter of citric acid Sodium hypochlorite injection amount: 40-60 mg / l 2) Frequency of execution: once a week 3) Order of execution I. Sodium hypochlorite injection backwashing process in normal time: every cycle II. Acid injection heating backwashing process: 1), 2), 3), 4) <Results> Continuous operation for about 5 months done. Five months later, the pressure at the inlet of the membrane module increased to 1.15 kgf / cm 2 , necessitating chemical cleaning. Chemical cleaning is usually performed 2
After% of the cleaning of citric acid, 50 to 100 mg as Cl 2
/ Liter of sodium hypochlorite was washed. The flux recovered to the set value of 1.0 m 3 / m 2 .day, and the membrane module inlet pressure recovered to 0.7 kgf / cm 2 which was close to the initial operation value.

【0058】実施例3 図1に示す処理フローにより、表−2に示す河川水を用
い、クロスフロー方式の処理を行なった。原水条件およ
び下記に示す条件以外は、実施例1と同じである。 (1)原水
Example 3 According to the processing flow shown in FIG. 1, the cross-flow processing was performed using the river water shown in Table 2. Except for the raw water conditions and the conditions shown below, the conditions are the same as in Example 1. (1) Raw water

【0059】[0059]

【表2】 [Table 2]

【0060】(2)流量と圧力変動の与える方法 実施例1とほとんど同じ条件で運転を行った。しかし前
述のIIとIII における流量と圧力変動の与える方法は下
記のごとくとした。基本的に〔高流速循環洗浄→低流速
循環洗浄〕の方法とした。 高流速循環洗浄:14m3 /hr、ろ過水循環配管系統:
1.4m3 /hrとした。加温の終了から、ろ過水循環弁
AV−8,AV−9、逆洗水上部入口弁AV−4、逆洗
水下部入口弁AV−5を閉とした後、循環ポンプP−2
を起動した状態で、循環弁AV−1の開度をゆっくり小
さくしていくとともに、循環ポンプP−2の回転数をイ
ンバータで制御し、膜モジュール5の上下の圧力が2.
0kgf /cm2 程度、流量が3〜5m3 /hrになるよう
に、圧力、流量を検知しながら自動にて行なった。そし
て循環ポンプP−2はそのまま運転状態を維持させた。
そして、20秒間そのまま保持した後、循環ポンプP−
2のインバータおよび循環弁AV−1の開度を調整し、
急速に14m3 /hrで再び高流速循環洗浄を2分間行な
った。この時の開となる弁類は同じとした。
(2) Method for giving flow rate and pressure fluctuation The operation was performed under almost the same conditions as in Example 1. However, the method of giving the flow rate and pressure fluctuation in the above-mentioned II and III was as follows. Basically, a method of [high-flow circulation cleaning → low-flow circulation cleaning] was used. High flow circulation washing: 14m 3 / hr, filtered water circulation piping system:
It was set to 1.4 m 3 / hr. After the heating, the filtered water circulation valves AV-8 and AV-9, the backwash water upper inlet valve AV-4, and the backwash water lower inlet valve AV-5 are closed, and then the circulation pump P-2.
Is started, the opening of the circulation valve AV-1 is gradually reduced, and the rotation speed of the circulation pump P-2 is controlled by an inverter.
The measurement was performed automatically while detecting the pressure and the flow rate so that the flow rate was about 0 kgf / cm 2 and the flow rate was 3 to 5 m 3 / hr. Then, the operation state of the circulation pump P-2 was maintained as it was.
Then, after holding for 20 seconds, the circulation pump P-
2, the opening degree of the inverter and the circulation valve AV-1 is adjusted,
The high-speed circulating washing was rapidly performed again at 14 m 3 / hr for 2 minutes. The valves to be opened at this time were the same.

【0061】そして、前述の如く2.0kgf /cm2 程度
に圧力を上げる操作と流量を3〜5m3 /hrから14m
3 /hrに変動させる操作を3回繰返し、再び高流速循環
洗浄を2分間行なった。合わせて3回の流量、圧力変動
を与える工程を行なった。この間、循環系の装置保有水
の温度は20〜22℃程度を維持するように温度コント
ロールを温度スイッチTSにて行い、加温装置15を運
転した。 〈結果〉原水が河川水のため、濁度の変動がかなりあ
る。しかし、濁質の性状は実施例1の工業用水の鉄やア
ルミニウム等の微細なフロック状の軟らかいものと違
い、比較的硬い膜内面に付着しにくい鉱物性のものであ
った。また総鉄、総マンガンの濃度に比べて色度が高
く、フミン質等の有機物が存在していた。それゆえ、処
理は凝集剤のPAC等を用い、凝集処理していないた
め、ろ過水の色度は若干、高い値を示している。しかし
その他の水質項目は表2に示すごとく、良好であった。
Then, as described above, the operation of increasing the pressure to about 2.0 kgf / cm 2 and the flow rate from 3 to 5 m 3 / hr to 14 m
The operation of changing the flow rate to 3 / hr was repeated three times, and high-speed circulation washing was performed again for 2 minutes. A total of three steps of applying a flow rate and pressure fluctuation were performed. During this time, the temperature control was performed with the temperature switch TS so that the temperature of the water held in the circulation system by the apparatus was maintained at about 20 to 22 ° C., and the heating device 15 was operated. <Results> Since the raw water is river water, there is considerable fluctuation in turbidity. However, the nature of the turbid material was different from the fine, floc-like soft material such as iron or aluminum of the industrial water of Example 1 which was a mineral material that hardly adhered to the inner surface of a relatively hard film. The chromaticity was higher than the concentration of total iron and total manganese, and organic substances such as humic substances were present. Therefore, the treatment uses PAC as an aggregating agent and is not subjected to the aggregating treatment, so that the chromaticity of the filtered water shows a slightly high value. However, other water quality items were good as shown in Table 2.

【0062】比較例 図1の処理フローにおいて、実施例1の表−1の原水を
用い、従来の方法に従って、次のように運転した。 (1)ろ過工程 :記号→で示す。 1)ろ過時間 :30分間 2)フラックス:1.5m3 /m2.日に設定した。 3)従来の逆洗工程:Aの記号で示す。 前述した下向流逆洗 Cl2 注入量 5mg/リット
ル 前述した上向流逆洗 Cl2 注入量 5mg/リット
ル フラッシング工程を記号Fで示す。この工程は図2にお
いて、原水ポンプP−1、逆洗ポンプP−3を起動し、
その流量を通常の1.5〜2.5倍とし上向流逆洗を行
って濁質等を逆洗を行って濁質等を逆洗排水上部出口弁
AV−7から排出する工程である。
Comparative Example In the processing flow of FIG. 1, the raw water shown in Table 1 of Example 1 was used and operated as follows according to a conventional method. (1) Filtration step: Shown by symbol →. 1) Filtration time: 30 minutes 2) Flux: 1.5 m 3 / m 2 . 3) Conventional backwashing step: indicated by symbol A. The above-mentioned downward flow backwash Cl 2 injection amount 5 mg / liter The above-mentioned upward flow backwash Cl 2 injection amount 5 mg / liter The flushing step is indicated by symbol F. This step starts the raw water pump P-1 and the backwash pump P-3 in FIG.
In this step, the flow rate is set to 1.5 to 2.5 times the normal value, backflow is performed in an upward flow, turbidity and the like are backwashed, and turbidity and the like are discharged from the backwash drain upper outlet valve AV-7. .

【0063】4) 運転の組合せ例 〔A→A→A→F→A→A→A→F→〕の繰返しとし
た。 <結果>1ケ月〜2ケ月間しか、連続運転できなかっ
た。設定フラックスの1.5m3/m2.日を得るため
に、膜モジュール5の入口圧力を徐々に上げていく必要
があった。初期の0.6kgf /cm2 から1.4kgf /cm
2 程度にまで上昇してしまう。 注)この時のろ過水出口側の圧力は開放条件の値、0.
10kgf /cm2 であった。
4) Example of Operation Combination [A → A → A → F → A → A → A → F →] was repeated. <Results> Continuous operation was possible only for one to two months. In order to obtain the set flux of 1.5 m 3 / m 2 .day, it was necessary to gradually increase the inlet pressure of the membrane module 5. From the initial of 0.6kgf / cm 2 1.4kgf / cm
It rises to about 2 . Note) At this time, the pressure on the filtered water outlet side is the value of the open condition.
It was 10 kgf / cm 2 .

【0064】[0064]

【発明の効果】本発明によれば、工業用水、河川水、湖
沼水、回収水中の濁質除去に効果的である。従来の方法
では薬品洗浄の頻度が高く、連続運転時間が短い。そし
て、薬品洗浄の間、装置は数時間から2,3日間も停止
し、その間、ろ過水は得られない。本発明によれば、こ
のような事は無くなり、長期間の連続運転が安定して行
なえる。また処理対象水が低水温でも高フラックスの連
続運転が長期間に亘って可能となった。
According to the present invention, it is effective to remove turbidity in industrial water, river water, lake water, and recovered water. In the conventional method, the frequency of chemical cleaning is high and the continuous operation time is short. And during the chemical cleaning, the device is shut down for several hours to a few days, during which time no filtered water is obtained. According to the present invention, such a situation is eliminated, and a long-term continuous operation can be stably performed. Further, even if the water to be treated is at a low water temperature, continuous operation at a high flux has become possible over a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる内圧型膜モジュールの運転方法
の実施例を説明するための処理系統図である。
FIG. 1 is a processing system diagram for explaining an embodiment of a method of operating an internal pressure type membrane module according to the present invention.

【図2】従来の内圧型膜モジュールの運転方法の実施例
を説明するための処理系統図である。
FIG. 2 is a processing system diagram for explaining an embodiment of a conventional operation method of an internal pressure type membrane module.

【符号の説明】[Explanation of symbols]

1 原水 2 原水槽 3 自動フィルタ 4 自動フィルタのドレン配管 5 膜モジュール 6 ろ過水槽 7 ろ過水 8 殺菌剤兼酸化剤貯槽 9 クエン酸薬品貯槽 10 原水流入配管系統 11 逆洗水配管系統 12 原水循環配管系統(クロスフロー配管) 13 ろ過水流出配管系統 14 ろ過水循環配管系統 15 加温装置 16,17,18,19 手動弁 20 薬品洗浄槽 *1 逆洗水配管への殺菌剤注入点 *2 原水流入配管への殺菌剤注入点 *3 原水流入配管への酸注入点 *4 ろ過水の循環水 *5 原水の循環水 *6 薬品洗浄液 AV−1 循環弁 AV−2 ろ過水出口弁 AV−3 逆洗水元弁 AV−4 逆洗水上部入口弁 AV−5 逆洗水下部入口弁 AV−6 逆洗排水下部出口弁 AV−7 逆洗排水上部出口弁 AV−8 ろ過水循環弁(1) AV−9 ろ過水循環弁(2) P−1 原水ポンプ P−2 循環ポンプ P−3 逆洗水ポンプ P−4 殺菌剤(次亜塩素酸ソーダ)注入ポンプ P−5 酸化剤(次亜塩素酸ソーダ)注入ポンプ P−6 酸注入ポンプ(原水流入配管系統) P−7 薬品洗浄用循環ポンプ DESCRIPTION OF SYMBOLS 1 Raw water 2 Raw water tank 3 Automatic filter 4 Drain piping of an automatic filter 5 Membrane module 6 Filtration water tank 7 Filtration water 8 Disinfectant and oxidizing agent storage tank 9 Citric acid chemical storage tank 10 Raw water inflow piping system 11 Backwash water piping system 12 Raw water circulation piping System (cross flow piping) 13 Filtration water outflow piping system 14 Filtration water circulation piping system 15 Heating device 16, 17, 18, 19 Manual valve 20 Chemical washing tank * 1 Disinfectant injection point into backwash water piping * 2 Raw water inflow Disinfectant injection point into pipe * 3 Acid injection point into raw water inflow pipe * 4 Circulating water of filtered water * 5 Circulating water of raw water * 6 Chemical cleaning solution AV-1 Circulating valve AV-2 Filtrated water outlet valve AV-3 Reverse Backwashing valve AV-4 Backwashing water upper inlet valve AV-5 Backwashing water lower inlet valve AV-6 Backwashing drainage lower outlet valve AV-7 Backwashing drainage upper outlet valve AV-8 Filtration water circulation valve (1) AV -9 Water circulation valve (2) P-1 Raw water pump P-2 Circulation pump P-3 Backwash water pump P-4 Disinfectant (sodium hypochlorite) injection pump P-5 Oxidizing agent (Sodium hypochlorite) injection Pump P-6 Acid injection pump (raw water inflow piping system) P-7 Circulation pump for chemical cleaning

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 中空糸膜からなる内圧型の除濁用膜モジ
ュールを用いて、原水からろ過水を得るろ過処理の運転
時に、ろ過工程の後、殺菌剤の存在下に逆洗水で逆洗す
る逆洗工程を行い、再びろ過工程に入る運転方法におい
て、ろ過工程から逆洗工程へ切り換える運転の間に、膜
に付着している濁質の分解、有機物の分解、あるいはそ
れらの剥離を促進するために、循環ポンプからモジュー
ル入口までの原水流入配管系統、又は膜モジュール上部
から循環ポンプまでの原水循環配管系統に、低濃度の酸
及び/又は前記殺菌剤を酸化剤として利用するよう注入
しながら、高流速にて循環ポンプ、原水流入配管系統、
膜モジュール、原水循環配管系統、ろ過水循環配管系統
を介して膜モジュールを循環洗浄する工程、この工程を
行っている時に〔高流速循環洗浄→循環停止〕、あるい
は〔高流速循環洗浄→低流速循環洗浄〕の操作を繰返す
工程、原水及び/又はろ過水を用いてモジュール内の水
を置換ブローする工程を組合せることにより、膜モジュ
ールの中空糸膜に流量及び圧力の変動の繰返しを与え
て、中空糸膜内外の濁質、有機物を排出、除去すること
を特徴とする内圧型除濁用膜モジュールの逆洗方法。
1. During the operation of a filtration process for obtaining filtered water from raw water using an internal pressure type turbidity membrane module comprising a hollow fiber membrane, after a filtration step, reverse filtration is carried out with backwash water in the presence of a disinfectant. In the operation method in which the backwashing step of washing is performed and the filtration step is started again, during the operation of switching from the filtration step to the backwashing step, the decomposition of turbidity adhering to the membrane, the decomposition of organic substances, or the separation thereof are performed. In order to promote the raw water inflow piping system from the circulation pump to the module inlet or the raw water circulation piping system from the top of the membrane module to the circulation pump, the low concentration acid and / or the sterilizing agent is used as an oxidizing agent. Meanwhile, at high flow rate, circulation pump, raw water inflow piping system,
A step of circulating and cleaning the membrane module through the membrane module, the raw water circulation piping system, and the filtered water circulation piping system. During this step, [high-speed circulation cleaning → circulation stop] or [high-speed circulation cleaning → low-flow circulation By repeating the step of (washing), the step of replacing and blowing water in the module using raw water and / or filtered water, the hollow fiber membrane of the membrane module is given a repetition of flow rate and pressure fluctuations, A method for backwashing an internal pressure type turbidity removing membrane module, comprising discharging and removing turbidity and organic matter inside and outside the hollow fiber membrane.
【請求項2】 置換ブロー工程時にも〔高流速循環洗浄
→循環停止〕、あるいは〔高流速循環洗浄→低流速循環
洗浄〕の操作を繰返すことを特徴とする請求項1記載の
内圧型除濁用膜モジュールの逆洗方法。
2. The internal pressure type opacity according to claim 1, wherein the operation of [high-speed circulation cleaning → circulation stop] or [high-speed circulation cleaning → low-flow circulation cleaning] is repeated during the displacement blowing step. Backwashing method for membrane module
【請求項3】 酸としてクエン酸単独、又はクエン酸と
塩酸の混合酸を、殺菌剤兼酸化剤として次亜鉛素酸ソー
ダを用い、膜モジュールを含む装置全循環配管系統内の
保有液の温度を18℃〜35℃に加温することを特徴と
する請求項1又は請求項2記載の内圧型除濁用膜モジュ
ールの逆洗方法。
3. Using citric acid alone or a mixed acid of citric acid and hydrochloric acid as an acid, sodium hypochlorite as a disinfectant and oxidizing agent, and the temperature of the liquid retained in the entire circulation piping system of the apparatus including the membrane module. 3. The method for backwashing a membrane module for internal pressure type turbidity according to claim 1 or 2, wherein the temperature is raised to 18 ° C to 35 ° C.
【請求項4】 通常の(ろ過工程→逆洗工程)運転の一
定頻度毎に、逆洗工程時に〔高流速循環洗浄→循環停
止〕、あるいは〔高流速循環洗浄→低流速循環洗浄〕の
操作を繰返すことを特徴とする請求項1〜3のいずれか
1項記載の方法。
4. At regular intervals of normal (filtration step → backwash step) operation, during the backwash step, perform [high flow rate circulation wash → circulation stop] or [high flow rate circulation wash → low flow rate circulation wash]. The method according to any one of claims 1 to 3, wherein is repeated.
JP35760297A 1997-12-25 1997-12-25 Backwashing method of internal pressure type turbidity membrane module by flow rate and pressure fluctuation Expired - Fee Related JP3405911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35760297A JP3405911B2 (en) 1997-12-25 1997-12-25 Backwashing method of internal pressure type turbidity membrane module by flow rate and pressure fluctuation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35760297A JP3405911B2 (en) 1997-12-25 1997-12-25 Backwashing method of internal pressure type turbidity membrane module by flow rate and pressure fluctuation

Publications (2)

Publication Number Publication Date
JPH11179163A true JPH11179163A (en) 1999-07-06
JP3405911B2 JP3405911B2 (en) 2003-05-12

Family

ID=18454969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35760297A Expired - Fee Related JP3405911B2 (en) 1997-12-25 1997-12-25 Backwashing method of internal pressure type turbidity membrane module by flow rate and pressure fluctuation

Country Status (1)

Country Link
JP (1) JP3405911B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011333A (en) * 2000-06-29 2002-01-15 Kuraray Co Ltd Method and apparatus for washing hollow fiber membrane module
JP2010227869A (en) * 2009-03-27 2010-10-14 Metawater Co Ltd Method for washing filter membrane
JP2012000554A (en) * 2010-06-15 2012-01-05 Central Filter Mfg Co Ld Solid recovery method
WO2014109075A1 (en) * 2013-01-10 2014-07-17 株式会社 東芝 Seawater desalination apparatus and seawater desalination apparatus washing method
JP2015020081A (en) * 2013-07-16 2015-02-02 オルガノ株式会社 Membrane module cleaning method and membrane module cleaning apparatus
CN105621654A (en) * 2016-03-04 2016-06-01 湖州蓝洋环保设备有限公司 Circulating filtration system of aluminum profile hole sealing bath solutions
CN108579442A (en) * 2018-05-22 2018-09-28 王金龙 It is a kind of to strengthen reverse osmosis offline cleaning test method
JP2019147137A (en) * 2018-02-28 2019-09-05 王子ホールディングス株式会社 Differential pressure reducing method of membrane module, water treatment method and water treatment device
CN112516803A (en) * 2019-09-18 2021-03-19 东莞新科技术研究开发有限公司 Online cleaning method for water supply pipeline filtering membrane
CN113720055A (en) * 2021-09-26 2021-11-30 珠海格力电器股份有限公司 Refrigerating system, cooling water filtering method thereof and refrigerating equipment
CN116710193A (en) * 2021-01-22 2023-09-05 三菱电机株式会社 Filter membrane cleaning device, water treatment device, and filter membrane cleaning method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156393A (en) * 1982-03-12 1983-09-17 Mitsui Toatsu Chem Inc Method of refining saline water
JPS6022905A (en) * 1983-07-15 1985-02-05 Nippon Riken Kk Washing method of semipermeable membrane module
JPS6111108A (en) * 1984-06-28 1986-01-18 Nitto Electric Ind Co Ltd Process for washing membrane module
JPH01307407A (en) * 1988-06-02 1989-12-12 Nitto Denko Corp Method for sterilizing and cleaning membrane module
JPH05103958A (en) * 1991-10-21 1993-04-27 Ataka Kogyo Kk Cleaning method of membrane module
JPH0716439A (en) * 1993-06-30 1995-01-20 Kurita Water Ind Ltd Membrane washing device of membrane separator
JPH08197053A (en) * 1995-01-27 1996-08-06 Daicel Chem Ind Ltd Method for purifying natural water with membrane
JPH08266875A (en) * 1995-03-31 1996-10-15 Kubota Corp Method for washing inside of immersion type membrane cartridge in vessel
JPH09122460A (en) * 1995-10-30 1997-05-13 Japan Organo Co Ltd Cleaning method for membrane module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156393A (en) * 1982-03-12 1983-09-17 Mitsui Toatsu Chem Inc Method of refining saline water
JPS6022905A (en) * 1983-07-15 1985-02-05 Nippon Riken Kk Washing method of semipermeable membrane module
JPS6111108A (en) * 1984-06-28 1986-01-18 Nitto Electric Ind Co Ltd Process for washing membrane module
JPH01307407A (en) * 1988-06-02 1989-12-12 Nitto Denko Corp Method for sterilizing and cleaning membrane module
JPH05103958A (en) * 1991-10-21 1993-04-27 Ataka Kogyo Kk Cleaning method of membrane module
JPH0716439A (en) * 1993-06-30 1995-01-20 Kurita Water Ind Ltd Membrane washing device of membrane separator
JPH08197053A (en) * 1995-01-27 1996-08-06 Daicel Chem Ind Ltd Method for purifying natural water with membrane
JPH08266875A (en) * 1995-03-31 1996-10-15 Kubota Corp Method for washing inside of immersion type membrane cartridge in vessel
JPH09122460A (en) * 1995-10-30 1997-05-13 Japan Organo Co Ltd Cleaning method for membrane module

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002011333A (en) * 2000-06-29 2002-01-15 Kuraray Co Ltd Method and apparatus for washing hollow fiber membrane module
JP2010227869A (en) * 2009-03-27 2010-10-14 Metawater Co Ltd Method for washing filter membrane
JP2012000554A (en) * 2010-06-15 2012-01-05 Central Filter Mfg Co Ld Solid recovery method
WO2014109075A1 (en) * 2013-01-10 2014-07-17 株式会社 東芝 Seawater desalination apparatus and seawater desalination apparatus washing method
JP2014133214A (en) * 2013-01-10 2014-07-24 Toshiba Corp Seawater desalination apparatus and method for washing seawater desalination apparatus
JP2015020081A (en) * 2013-07-16 2015-02-02 オルガノ株式会社 Membrane module cleaning method and membrane module cleaning apparatus
CN105621654A (en) * 2016-03-04 2016-06-01 湖州蓝洋环保设备有限公司 Circulating filtration system of aluminum profile hole sealing bath solutions
JP2019147137A (en) * 2018-02-28 2019-09-05 王子ホールディングス株式会社 Differential pressure reducing method of membrane module, water treatment method and water treatment device
CN108579442A (en) * 2018-05-22 2018-09-28 王金龙 It is a kind of to strengthen reverse osmosis offline cleaning test method
CN112516803A (en) * 2019-09-18 2021-03-19 东莞新科技术研究开发有限公司 Online cleaning method for water supply pipeline filtering membrane
CN116710193A (en) * 2021-01-22 2023-09-05 三菱电机株式会社 Filter membrane cleaning device, water treatment device, and filter membrane cleaning method
CN113720055A (en) * 2021-09-26 2021-11-30 珠海格力电器股份有限公司 Refrigerating system, cooling water filtering method thereof and refrigerating equipment

Also Published As

Publication number Publication date
JP3405911B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
JP6832710B2 (en) System for treating water
US7276171B2 (en) Method for cleaning separation membrane
JP4192205B2 (en) Membrane cleaning method and membrane cleaning apparatus
CN115121124A (en) Method and apparatus for cleaning filtration membrane, and water treatment system
JP3405911B2 (en) Backwashing method of internal pressure type turbidity membrane module by flow rate and pressure fluctuation
JP2007330916A (en) Water treatment method of hollow fiber membrane and water treatment apparatus
JP5181987B2 (en) Cleaning method for submerged membrane module
JP3462975B2 (en) Method for backwashing filtration of membrane module for turbidity
JP4018990B2 (en) Method for cleaning separation membrane of waste water treatment equipment
JP2007130587A (en) Membrane filtration apparatus and method for washing membrane
JP2002361054A (en) Method for washing membrane filtration apparatus
KR100954571B1 (en) Method for prevention composition of MnO2 in water treatment using membrane filtration
JP2004209478A (en) Method and apparatus for backwashing membrane module for removing turbidness
JPH119973A (en) Method for filtration back-washing of membrane module for turbidity removal
KR20030042133A (en) Method and system for cleaning membrane submersed in reactor
JP4576760B2 (en) Circulating cooling water treatment method
JP5423184B2 (en) Filtration membrane module cleaning method and cleaning apparatus
JP2015020081A (en) Membrane module cleaning method and membrane module cleaning apparatus
JPH10296060A (en) Prevention method for contamination of separation membrane
JP3371767B2 (en) Operating method of membrane deaerator and membrane deaerator
JP2002370089A (en) Washing wastewater cleaning system
JP4087318B2 (en) Operation method of water purification system
JP3609470B2 (en) Water purification method and purification device
JP4653476B2 (en) Filter medium washing method and filtration system
JP2005046801A (en) Water treatment method and apparatus therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees