JP2019147137A - Differential pressure reducing method of membrane module, water treatment method and water treatment device - Google Patents

Differential pressure reducing method of membrane module, water treatment method and water treatment device Download PDF

Info

Publication number
JP2019147137A
JP2019147137A JP2018034999A JP2018034999A JP2019147137A JP 2019147137 A JP2019147137 A JP 2019147137A JP 2018034999 A JP2018034999 A JP 2018034999A JP 2018034999 A JP2018034999 A JP 2018034999A JP 2019147137 A JP2019147137 A JP 2019147137A
Authority
JP
Japan
Prior art keywords
membrane module
water
membrane
differential pressure
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018034999A
Other languages
Japanese (ja)
Inventor
明恵 手嶋
Akie Tejima
明恵 手嶋
若狭 浩之
Hiroyuki Wakasa
浩之 若狭
山本 学
Manabu Yamamoto
学 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2018034999A priority Critical patent/JP2019147137A/en
Publication of JP2019147137A publication Critical patent/JP2019147137A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

To provide a differential pressure reducing method of a membrane module capable of performing forward washing of a filtration membrane by circulating chemicals and capable of recovering a differential pressure of the membrane module as compared to periodical backward washing and chemical washing upon a normal operation.SOLUTION: A differential pressure reducing method of a membrane module as the differential pressure reducing method of the membrane module provided with at least one side of a fine filtration membrane and an ultrafiltration membrane causes circulation water containing chemicals to pass through a circulation channel and the membrane module and performs forward washing of the membrane module while providing the circulation channel which connects at least one of channels of the downstream side of the membrane module. Further, water treatment method and a water treatment device are provided.SELECTED DRAWING: Figure 1

Description

本発明は膜モジュールの差圧低減方法、水処理方法および水処理装置に関する。   The present invention relates to a method for reducing a differential pressure of a membrane module, a water treatment method, and a water treatment apparatus.

一般に、上水処理システム、下水処理システム、工業用水処理システム、排水処理システム、海水淡水化システムなどの各種類の水処理システムにおいて被処理水中の汚濁物質を分離除去する方法として、膜モジュールによるろ過を用いた水処理方法が知られている。
膜ろ過を用いた水処理方法では、ろ過の継続に伴い、被処理水中の汚濁物質等がろ過膜に付着してろ過膜の目詰まり(ファウリング)が生じ、ろ過膜の差圧が上昇(ろ過性能が低下)する。そのため、定期的にろ過膜を逆洗浄(ろ過膜のろ過時の下流から上流に通水しながら洗浄すること)したり、薬剤洗浄したりして目詰まりを解消する必要がある。
膜モジュールの洗浄方法として、さまざまな逆洗浄、薬剤洗浄、順洗浄(ろ過膜のろ過時の上流から下流に通水しながら洗浄すること)の方法が知られている(特許文献1〜3参照)。
In general, as a method for separating and removing pollutants in treated water in various types of water treatment systems such as water treatment systems, sewage treatment systems, industrial water treatment systems, wastewater treatment systems, seawater desalination systems, filtration by membrane modules There is known a water treatment method using water.
In the water treatment method using membrane filtration, as filtration continues, contaminants in the water to be treated adhere to the filtration membrane, causing clogging (fouling) of the filtration membrane, and the differential pressure of the filtration membrane increases ( Filtration performance is reduced). Therefore, it is necessary to eliminate clogging by periodically back-washing the filtration membrane (washing while passing water from the downstream to the upstream during filtration of the filtration membrane) or washing with chemicals.
As a method for cleaning the membrane module, various back-washing, chemical cleaning, and forward cleaning (cleaning while passing water from upstream to downstream during filtration of the filtration membrane) are known (see Patent Documents 1 to 3). ).

特許文献1には、ろ過膜により一次側と二次側とに仕切られ、一次側に供給された被処理水をろ過膜でろ過してろ過水を二次側へ透過させる膜ろ過ユニットと、膜ろ過ユニットの一次側に逆洗水排出弁を介して接続された逆洗水排出ラインと、逆洗ポンプを介して膜ろ過ユニットの二次側および逆洗水槽を接続する逆洗水供給ラインと、を備える膜ろ過装置を逆洗する方法であって、逆洗水排出弁を閉じ、逆洗ポンプを作動させて、ろ過膜にかかる圧力を所定圧力に高める逆洗準備工程と、逆洗準備工程でろ過膜にかかる圧力が所定圧力となった後に、逆洗水排出弁を開いて、膜ろ過ユニットの二次側から一次側に逆洗水を流す逆洗工程と、を含む膜ろ過装置の逆洗方法が記載されている。   In Patent Literature 1, a membrane filtration unit that is divided into a primary side and a secondary side by a filtration membrane, filters the treated water supplied to the primary side through a filtration membrane, and permeates the filtrate water to the secondary side; A backwash water discharge line connected to the primary side of the membrane filtration unit via a backwash water discharge valve, and a backwash water supply line connecting the secondary side of the membrane filtration unit and the backwash water tank via a backwash pump A backwash preparation step of closing the backwash water discharge valve and operating the backwash pump to increase the pressure applied to the filtration membrane to a predetermined pressure, and backwashing After the pressure applied to the filtration membrane in the preparatory step reaches a predetermined pressure, the backwashing water discharge valve is opened, and the backwashing step of flowing backwash water from the secondary side to the primary side of the membrane filtration unit, An apparatus backwashing method is described.

特許文献2には、スケール成分を含有する原水を処理した槽外型膜モジュールを洗浄する方法において、逆洗を行うことなく洗浄薬液を膜の2次側の面に沿って流すことにより膜の2次側のみを洗浄する第1の洗浄工程と、該第1の洗浄工程後に膜を逆洗する第2の洗浄工程とを有する膜モジュールの洗浄方法が記載されている。   In Patent Document 2, in a method for cleaning an outside-type membrane module that has been treated with raw water containing scale components, a cleaning chemical solution is allowed to flow along the secondary side surface of the membrane without backwashing. A method for cleaning a membrane module is described which includes a first cleaning step for cleaning only the secondary side, and a second cleaning step for backwashing the membrane after the first cleaning step.

特許文献3には、運転によって汚染および劣化し、阻止性能が低下した分離膜を、酸またはアルカリまたは両方で洗浄後、ポリフェノールを含む有機物質を含む水を加圧通水し、分離膜の阻止性能を回復させる、分離膜の性能回復方法が記載されている。   Patent Document 3 discloses that a separation membrane that has been contaminated and deteriorated by operation and whose blocking performance is reduced is washed with an acid or alkali or both, and then water containing an organic substance containing polyphenol is passed through under pressure to block the separation membrane. A method for recovering the performance of a separation membrane that restores performance is described.

特開2011−183320号公報JP 2011-183320 A 特開2015−229146号公報JP2015-229146A 特開2006−224049号公報JP 2006-224049 A

特許文献1および2は、薬剤を添加した水を用いてろ過膜を逆洗浄する方法であった。
特許文献3は薬剤を循環させてろ過膜を順洗浄する方法であった。
Patent Documents 1 and 2 are methods for back-washing a filtration membrane using water to which a drug is added.
Patent Document 3 is a method of circulating the chemicals and sequentially washing the filtration membrane.

本発明が解決しようとする課題は、薬剤を循環させてろ過膜を順洗浄でき、かつ、通常運転時の定期的な逆洗浄および薬剤洗浄よりも膜モジュールの差圧を回復できる膜モジュールの差圧低減方法を提供することである。   The problem to be solved by the present invention is that the membrane can be sequentially washed by circulating the drug, and the difference in the membrane module that can recover the differential pressure of the membrane module more than regular backwashing and chemical washing during normal operation. It is to provide a pressure reduction method.

上記の課題を解決するために鋭意検討を行った結果、本発明者らは、膜モジュールの下流側の流路の少なくとも一つを膜モジュールの上流側に連結する循環流路を設けた状態で、薬剤を含む循環水を循環流路および膜モジュールに通過させて膜モジュールを洗浄することにより、薬剤を循環させてろ過膜を順洗浄でき、かつ、通常運転時の定期的な逆洗浄および薬剤洗浄よりも膜モジュールの差圧を回復できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have provided a circulation channel that connects at least one of the channels on the downstream side of the membrane module to the upstream side of the membrane module. By passing the circulating water containing the medicine through the circulation channel and the membrane module and washing the membrane module, the filtration membrane can be washed in order by circulating the medicine, and regular backwashing and medicine during normal operation It has been found that the differential pressure of the membrane module can be recovered rather than cleaning, and the present invention has been completed.

具体的には、本発明および本発明の好ましい態様の構成は以下のとおりである。
[1] 精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールの差圧低減方法であって、
膜モジュールの下流側の流路の少なくとも一つを膜モジュールの上流側に連結する循環流路を設けた状態で、
薬剤を含む循環水をろ過膜の上流側から下流側に向けてろ過膜および循環流路に通過させて膜モジュールを洗浄する、膜モジュールの差圧低減方法。
[2] 薬剤が酸およびアルカリのうち少なくとも一方である[1]に記載の膜モジュールの差圧低減方法。
[3] 膜モジュールの下流側の流路が分岐部を含み、
膜モジュールの下流側の流路を、循環流路以外の流路から循環流路に切り換える段階を有する[1]または[2]に記載の膜モジュールの差圧低減方法。
[4] 被処理水を精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールに通過させて処理水を得て、膜モジュールを定期的に逆洗浄および/または薬剤洗浄する通常運転と;
[1]〜[3]のいずれか一つに記載の膜モジュールの差圧低減方法を含む、水処理方法。
[5] 膜モジュールの下流側の流路が分岐部を含み、
通常運転では膜モジュールの下流側の流路が循環流路以外の流路であり、
通常運転の後から膜モジュールの差圧低減方法までに、膜モジュールの下流側の流路を、循環流路以外の流路から循環流路に切り換える段階を有する[4]に記載の水処理方法。
[6] 循環水を膜モジュールに通過させる際のフラックスを、被処理水を膜モジュールに通過させる際のフラックスの1.2倍から10.0倍にする[4]または[5]に記載の水処理方法。
[7] 循環水として通常運転で得られた処理水を用いる[4]〜[6]のいずれか一つに記載の水処理方法。
[8] 被処理水を通過させて処理水を得る精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールと、
被処理水を膜モジュールに送る被処理水用ポンプと、
膜モジュールの下流側の流路に位置する分岐部を含み、
分岐部の出口の少なくとも一つが処理水を排出でき、
分岐部の出口の少なくとも一つが膜モジュールの上流への循環流路に連結して循環水を循環でき、
循環水への薬剤添加手段を備える、水処理装置。
[9] 分岐部の上流に処理水を送水する処理水用ポンプを備える[8]に記載の水処理装置。
[10] 被処理水を貯留できる被処理水槽を備える[8]または[9]に記載の水処理装置。
[11] 処理水を貯留できる処理水槽を備える[8]〜[10]のいずれか一つに記載の水処理装置。
[12] 分岐部が三方弁である[8]〜[11]のいずれか一つに記載の水処理装置。
[13] 循環流路へ連結する側の分岐部の出口が循環水用ポンプを備える[8]〜[11]のいずれか一つに記載の水処理装置。
Specifically, the configurations of the present invention and preferred embodiments of the present invention are as follows.
[1] A method for reducing a differential pressure of a membrane module including at least one of a microfiltration membrane and an ultrafiltration membrane,
With a circulation channel connecting at least one of the channels on the downstream side of the membrane module to the upstream side of the membrane module,
A method for reducing a differential pressure of a membrane module, wherein circulating water containing a chemical is passed from the upstream side to the downstream side of the filtration membrane through the filtration membrane and the circulation channel to wash the membrane module.
[2] The method for reducing the differential pressure of the membrane module according to [1], wherein the drug is at least one of an acid and an alkali.
[3] The channel on the downstream side of the membrane module includes a branch portion,
The method for reducing the differential pressure of the membrane module according to [1] or [2], further comprising a step of switching a flow path on the downstream side of the membrane module from a flow path other than the circulation flow path to the circulation flow path.
[4] The treated water is passed through a membrane module including at least one of a microfiltration membrane and an ultrafiltration membrane to obtain treated water, and the membrane module is regularly backwashed and / or chemically washed. With normal operation;
A water treatment method including the method for reducing a differential pressure of a membrane module according to any one of [1] to [3].
[5] The channel on the downstream side of the membrane module includes a branch portion,
In normal operation, the channel on the downstream side of the membrane module is a channel other than the circulation channel,
[4] The water treatment method according to [4], including a step of switching a flow path on the downstream side of the membrane module from a flow path other than the circulation flow path to a circulation flow path after the normal operation until the method for reducing the pressure difference of the membrane module. .
[6] The flux when circulating water is passed through the membrane module is increased from 1.2 times to 10.0 times the flux when water to be treated is passed through the membrane module. [4] or [5] Water treatment method.
[7] The water treatment method according to any one of [4] to [6], wherein treated water obtained by normal operation is used as circulating water.
[8] A membrane module comprising at least one filtration membrane of a microfiltration membrane and an ultrafiltration membrane that obtains treated water by passing the treated water;
A pump for water to be treated which sends the water to be treated to the membrane module;
Including a branch located in the flow path downstream of the membrane module;
At least one of the branch outlets can discharge treated water,
At least one of the outlets of the branch part can be connected to a circulation channel upstream of the membrane module to circulate the circulating water,
A water treatment apparatus comprising means for adding chemicals to circulating water.
[9] The water treatment apparatus according to [8], further including a treated water pump that feeds treated water upstream of the branch portion.
[10] The water treatment apparatus according to [8] or [9], including a water tank to be treated that can store the water to be treated.
[11] The water treatment apparatus according to any one of [8] to [10], which includes a treated water tank capable of storing treated water.
[12] The water treatment apparatus according to any one of [8] to [11], wherein the branch portion is a three-way valve.
[13] The water treatment apparatus according to any one of [8] to [11], wherein the outlet of the branch portion connected to the circulation flow path includes a circulating water pump.

本発明によれば、薬剤を循環させてろ過膜を順洗浄でき、かつ、通常運転時の定期的な逆洗浄および薬剤洗浄よりも膜モジュールの差圧を回復できる膜モジュールの差圧低減方法を提供できる。   According to the present invention, there is provided a method for reducing a differential pressure of a membrane module that can circulate a drug in order to sequentially wash the filtration membrane, and can recover the differential pressure of the membrane module more than regular backwashing and chemical cleaning during normal operation. Can be provided.

図1は、本発明の水処理装置の一例を表す断面概略図である。FIG. 1 is a schematic cross-sectional view showing an example of the water treatment apparatus of the present invention. 図2は、本発明の水処理装置の他の一例を表す断面概略図である。FIG. 2 is a schematic cross-sectional view showing another example of the water treatment apparatus of the present invention.

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。   Hereinafter, the present invention will be described in detail. The description of the constituent elements described below may be made based on representative embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

[膜モジュールの差圧低減方法]
本発明の膜モジュールの差圧低減方法は、精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールの差圧低減方法であって、膜モジュールの下流側の流路の少なくとも一つを膜モジュールの上流側に連結する循環流路を設けた状態で、薬剤を含む循環水をろ過膜の上流側から下流側に向けてろ過膜および循環流路に通過させて膜モジュールを洗浄する。
この構成により、薬剤を循環させてろ過膜を順洗浄でき、かつ、通常運転時の定期的な逆洗浄および薬剤洗浄よりも膜モジュールの差圧を回復できる。特に、従来の通常運転時に行われていた薬剤を用いる物理洗浄では低減できなかった差圧を下げることができ、膜モジュール(ハウジング)内で効果的な物理洗浄ができる。いかなる理論に拘泥するものでもないが、細孔が連なったろ過膜の表面に付着した汚れは従来の通常運転時に行われていた薬剤を用いる物理洗浄で取り除くことができる。一方、ろ過膜の細孔の内部に詰まった汚れは、従来の通常運転時に行われていた薬剤を用いる物理洗浄で取り除くことができず、差圧が十分に低減できない。これに対し、本発明の膜モジュールの差圧低減方法によれば、ろ過膜の細孔の内部に詰まった汚れも取り除くことができ、差圧を十分に低減できる。
本発明の好ましい態様では、洗浄頻度を少なくでき、薬剤の使用量を抑制できる。
本発明では、逆洗浄をしてもしなくてもよいが、逆洗浄をしない場合は逆洗ポンプが不要となり、設備費用を抑制できる。
本発明の好ましい態様では、循環流路(循環洗浄ライン)を設けて循環水を膜モジュールの上流に返送することにより、ドレン排水量を抑制できる。
本発明の好ましい態様では、膜モジュールの差圧を低減できた結果、フラックスを効率よく回復できることが好ましい。
以下、本発明の好ましい態様を説明する。
[Differential pressure reduction method of membrane module]
The membrane module differential pressure reduction method of the present invention is a membrane module differential pressure reduction method comprising at least one filtration membrane of a microfiltration membrane and an ultrafiltration membrane, and includes at least a flow path downstream of the membrane module. With the circulation channel connecting one to the upstream side of the membrane module, the circulating water containing the drug is passed through the filtration membrane and the circulation channel from the upstream side to the downstream side of the filtration membrane to pass the membrane module. Wash.
With this configuration, the filtration membrane can be washed in order by circulating the drug, and the differential pressure of the membrane module can be recovered more than regular backwashing and drug washing during normal operation. In particular, the differential pressure that could not be reduced by physical cleaning using chemicals that was performed during conventional normal operation can be reduced, and effective physical cleaning can be performed in the membrane module (housing). Without being bound by any theory, the dirt adhering to the surface of the filtration membrane with continuous pores can be removed by physical cleaning using a chemical agent that has been performed in the conventional normal operation. On the other hand, the dirt clogged inside the pores of the filtration membrane cannot be removed by physical cleaning using a drug that has been performed in the conventional normal operation, and the differential pressure cannot be sufficiently reduced. On the other hand, according to the method for reducing the differential pressure of the membrane module of the present invention, dirt clogged inside the pores of the filtration membrane can be removed, and the differential pressure can be sufficiently reduced.
In a preferred embodiment of the present invention, the frequency of washing can be reduced and the amount of drug used can be suppressed.
In the present invention, backwashing may or may not be performed, but if backwashing is not performed, a backwash pump is not required, and equipment costs can be suppressed.
In a preferred embodiment of the present invention, the drainage amount can be suppressed by providing a circulation channel (circulation washing line) and returning the circulation water upstream of the membrane module.
In a preferred embodiment of the present invention, it is preferable that the flux can be efficiently recovered as a result of reducing the differential pressure of the membrane module.
Hereinafter, preferred embodiments of the present invention will be described.

<ろ過膜>
ろ過膜は、精密ろ過膜(MF膜)または限外ろ過膜(UF膜)である。
ろ過膜の形態は中空糸や平膜を挙げることができ、中空糸であることが好ましい。
中空糸としては外圧型(外側から内側に被処理水が入り、内側の処理水が末端から排出される方式;デッドエンド方式)や内圧型(クロスフロー方式)を挙げることができ、省エネの観点から外圧型であることが好ましい。
限外ろ過膜または精密ろ過膜を採用することで、後述する通常運転において大腸菌などの細菌類を被処理水から完全に除去し、無菌水である処理水を得ることが出来る。処理水はナノろ過膜(NF膜)もしくは逆浸透膜(RO膜)でそのまま処理することが可能であり、容易に脱塩水が得られる。
ろ過膜は、限外ろ過膜であることが好ましい。限外ろ過膜としては特に制限は無く、公知の限外ろ過膜などを用いることができる。限外ろ過膜としては市販のものを用いてもよい。例えば、王子エンジニアリング株式会社製、OJI−MEMBRANE(登録商標)などを好ましく用いることができる。
限外ろ過膜は、孔径の下限値が0.001μm以上であることが好ましく、0.05μm以上であることがより好ましく、0.01μm以上であることが特に好ましい。孔径の上限値が0.05μm以下であることが好ましく、0.04μm以下であることがより好ましく、0.03μm以下であることが特に好ましい。
ろ過膜の材質は、ポリフッ化ビニリデン(PVDF)や酢酸セルロース(CA)、ポリテトラフルオロエチレン(PTFE)、ポリアクリロニトリル(PAN)、ポリエチレン(PE)、ポリエーテルスルホン(PES)などの有機高分子系や、セラミックなどの無機系の素材を使用することが出来る。
<Filtration membrane>
The filtration membrane is a microfiltration membrane (MF membrane) or an ultrafiltration membrane (UF membrane).
Examples of the form of the filtration membrane include a hollow fiber and a flat membrane, and a hollow fiber is preferable.
Examples of hollow fibers include an external pressure type (method in which treated water enters from the outside to the inside and the inner treated water is discharged from the end; a dead end method) and an internal pressure type (cross flow method). The external pressure type is preferable.
By adopting an ultrafiltration membrane or a microfiltration membrane, bacteria such as Escherichia coli can be completely removed from the water to be treated in the normal operation described later, and treated water that is aseptic water can be obtained. The treated water can be treated as it is with a nanofiltration membrane (NF membrane) or a reverse osmosis membrane (RO membrane), and demineralized water can be easily obtained.
The filtration membrane is preferably an ultrafiltration membrane. There is no restriction | limiting in particular as an ultrafiltration membrane, A well-known ultrafiltration membrane etc. can be used. A commercially available ultrafiltration membrane may be used. For example, OJI-MEMBRANE (registered trademark) manufactured by Oji Engineering Co., Ltd. can be preferably used.
In the ultrafiltration membrane, the lower limit value of the pore diameter is preferably 0.001 μm or more, more preferably 0.05 μm or more, and particularly preferably 0.01 μm or more. The upper limit value of the pore diameter is preferably 0.05 μm or less, more preferably 0.04 μm or less, and particularly preferably 0.03 μm or less.
The material of the filtration membrane is an organic polymer such as polyvinylidene fluoride (PVDF), cellulose acetate (CA), polytetrafluoroethylene (PTFE), polyacrylonitrile (PAN), polyethylene (PE), polyethersulfone (PES), etc. Alternatively, inorganic materials such as ceramics can be used.

<循環水>
循環水は、薬剤を含む循環水である。
循環水は、ろ過膜を通過させる際に、通常運転時の被処理水(原水)よりも高いフラックスが得られる液体であることが好ましい。
本発明では、循環水として後述の通常運転で得られた処理水(膜ろ過水)を用いることが好ましい。循環流路に通常運転で得られた処理水を循環することによって、排水量を削減することができる。
<Circulating water>
Circulating water is circulating water containing chemicals.
The circulating water is preferably a liquid that provides a higher flux than the water to be treated (raw water) during normal operation when passing through the filtration membrane.
In this invention, it is preferable to use the treated water (membrane filtration water) obtained by the below-mentioned normal driving | operation as circulating water. The amount of waste water can be reduced by circulating the treated water obtained in the normal operation through the circulation channel.

(薬剤)
薬剤としては、特に制限はない。
本発明では、薬剤が酸、アルカリ、または洗浄剤であることが好ましい。
ろ過膜への汚れ(付着物)、すなわち被処理水が含む成分が鉱物である場合は酸であることが好ましい。酸としては、塩酸や硫酸、硝酸、クエン酸、シュウ酸、EDTAなどを挙げることができ、硫酸が好ましい。通常運転において前処理として被処理水に対して硫酸バンド(硫酸アルミニウム)などの無機凝集剤を用いて凝集フロックを形成させる場合は、酸を用いて鉱物成分(マイナス帯電の汚物の表面にプラス帯電して覆っている)の付着汚れを溶解することにより、有効に差圧を低減できる。
ろ過膜への汚れ(付着物)、すなわち被処理水が含む成分が有機物である場合はアルカリであることが好ましい。また、薬剤は、限外ろ過膜への耐性を有する洗浄剤であることが好ましい。アルカリや限外ろ過膜への耐性を有する洗浄剤としては、次亜塩素酸またはその塩、水酸化ナトリウム、過酸化水素水などを挙げることができ、次亜塩素酸ナトリウムであることが好ましい。次亜塩素酸またはその塩を用いることにより、通常運転時の被処理水では流量(流速)またはフラックス(流束)が上がらないぐらい差圧が高くなった場合であっても、循環水の表面張力を低下させてろ過膜の細孔に剪断力がかかり、有効に差圧を低減できる。
(Drug)
There are no particular restrictions on the drug.
In the present invention, the drug is preferably an acid, an alkali, or a cleaning agent.
When the filter membrane contains dirt (adhered matter), that is, the component contained in the water to be treated is a mineral, it is preferably an acid. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid, EDTA and the like, and sulfuric acid is preferable. When forming aggregated flocs using an inorganic flocculant such as sulfuric acid band (aluminum sulfate) as the pretreatment in normal operation, mineral components (positively charged on the surface of negatively charged filth) using acid are used. The differential pressure can be effectively reduced by dissolving the adhering dirt.
When the dirt (adhered matter) to the filtration membrane, that is, the component contained in the water to be treated is an organic substance, an alkali is preferable. Moreover, it is preferable that a chemical | medical agent is a cleaning agent which has the tolerance to an ultrafiltration membrane. Examples of the detergent having resistance to alkalis and ultrafiltration membranes include hypochlorous acid or a salt thereof, sodium hydroxide, hydrogen peroxide, and the like, and sodium hypochlorite is preferable. By using hypochlorous acid or its salt, the surface of the circulating water can be treated even when the differential pressure is high enough to prevent the flow rate (flow velocity) or flux (flux) from increasing in the treated water during normal operation. By reducing the tension, a shearing force is applied to the pores of the filtration membrane, and the differential pressure can be effectively reduced.

<循環流路>
循環流路は、膜モジュールの下流側の流路の少なくとも一つを膜モジュールの上流側に連結する。
循環流路の具体的な構造については、水処理装置の説明で後述する。
<Circulation channel>
The circulation channel connects at least one of the channels on the downstream side of the membrane module to the upstream side of the membrane module.
The specific structure of the circulation channel will be described later in the description of the water treatment apparatus.

(分岐部)
本発明では、膜モジュールの下流側の流路が分岐部を含むことが好ましい。
本発明では、膜モジュールの下流側の流路を、循環流路以外の流路から循環流路に切り換える段階を有することが好ましい。
分岐部の具体的な構造については、水処理装置の説明で後述する。
(Branch part)
In the present invention, it is preferable that the flow path on the downstream side of the membrane module includes a branch portion.
In this invention, it is preferable to have the step which switches the flow path downstream of a membrane module from flow paths other than a circulation flow path to a circulation flow path.
The specific structure of the branch portion will be described later in the description of the water treatment apparatus.

<洗浄>
本発明では、薬剤を含む循環水をろ過膜の上流側から下流側に向けてろ過膜および循環流路に通過させて膜モジュールを洗浄する。
洗浄時間としては特に制限はないが、1〜60分間であることが好ましく、3〜40分間であることがより好ましく、3〜30分間であることが特に好ましい。
<Washing>
In this invention, the circulating water containing a chemical | medical agent is passed through a filtration membrane and a circulation flow path toward the downstream from the upstream of a filtration membrane, and a membrane module is wash | cleaned.
Although there is no restriction | limiting in particular as washing | cleaning time, It is preferable that it is 1 to 60 minutes, It is more preferable that it is 3 to 40 minutes, It is especially preferable that it is 3 to 30 minutes.

[水処理方法]
本発明の水処理方法は、被処理水を精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールに通過させて処理水を得て、膜モジュールを定期的に逆洗浄および/または薬剤洗浄する通常運転と本発明の膜モジュールの差圧低減方法を含む。
[Water treatment method]
In the water treatment method of the present invention, treated water is passed through a membrane module including at least one of a microfiltration membrane and an ultrafiltration membrane to obtain treated water, and the membrane module is regularly backwashed and And / or a normal operation for cleaning the chemical and a method for reducing the differential pressure of the membrane module of the present invention.

<通常運転>
通常運転では、被処理水を精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールに通過させて処理水を得て、膜モジュールを定期的に逆洗浄および/または薬剤洗浄する。
<Normal operation>
In normal operation, the treated water is passed through a membrane module equipped with at least one of a microfiltration membrane and an ultrafiltration membrane to obtain treated water, and the membrane module is regularly backwashed and / or chemically washed. To do.

(ろ過)
通常運転では、被処理水を精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールに通過させて処理水を得る。この段階をろ過と言うことがある。
(Filtration)
In normal operation, the water to be treated is passed through a membrane module including at least one of a microfiltration membrane and an ultrafiltration membrane to obtain treated water. This stage is sometimes called filtration.

−被処理水−
被処理水としては特に制限は無く、河川水や井水、湖沼水、高濁度の水などを用いることができる。上水処理、下水処理、飲料水製造、工業用水製造、排水高次処理、排水回収処理、海水淡水化など幅広いシステムにおいて本発明を適用できる。
被処理水の有機物濃度は特に制限はない。
被処理水の化学的酸素要求量(Chemical Oxygen Demand;COD)は、過マンガン酸カリウムCOD測定法(CODMn)として、500mg/L以下であることが好ましく、100mg/L以下であることがより好ましく、20mg/L以下であることが特に好ましい。CODMnの下限値は特に制限はない。
-Treated water-
There is no restriction | limiting in particular as to-be-processed water, River water, well water, lake water, high turbidity water, etc. can be used. The present invention can be applied to a wide range of systems such as water treatment, sewage treatment, drinking water production, industrial water production, wastewater advanced treatment, wastewater recovery treatment, and seawater desalination.
There is no restriction | limiting in particular in the organic substance density | concentration of to-be-processed water.
The chemical oxygen demand (COD) of the water to be treated is preferably 500 mg / L or less, more preferably 100 mg / L or less as a potassium permanganate COD measurement method (CODMn). 20 mg / L or less is particularly preferable. The lower limit value of CODMn is not particularly limited.

−凝集剤−
被処理水には、凝集剤などを添加する前処理を行うことが好ましい。
凝集剤としては、無機凝集剤や有機凝集剤(例えば、高分子凝集剤)を挙げることができ、無機凝集剤が好ましい。
無機凝集剤としては、ポリ塩化アルミニウム(PAC)および硫酸アルミニウム(硫酸バンド)などのアルミ系凝集剤、あるいは、ポリ鉄、塩化第一鉄、塩化第二鉄およびポリシリカ鉄の鉄系凝集剤であることが好ましく、アルミ系凝集剤であることがより好ましく、硫酸バンドであることが特に好ましい。無機凝集剤の添加量は特に制限はなく、適宜調整することができる。
-Flocculant-
The water to be treated is preferably pretreated by adding a flocculant or the like.
Examples of the flocculant include inorganic flocculants and organic flocculants (for example, polymer flocculants), and inorganic flocculants are preferable.
Inorganic flocculants include aluminum flocculants such as polyaluminum chloride (PAC) and aluminum sulfate (sulfuric acid band), or iron flocculants of polyiron, ferrous chloride, ferric chloride and polysilica iron. The aluminum flocculant is more preferable, and the sulfuric acid band is particularly preferable. There is no restriction | limiting in particular in the addition amount of an inorganic flocculant, It can adjust suitably.

−被処理水のフラックス−
本発明の水処理方法の通常運転のろ過において、被処理水を膜モジュールに通過させるフラックスは特に制限は無く、下限値が0.5m/day以上であることが好ましく、1.0m/day以上であることがより好ましく、1.5m/day以上であることが特に好ましい。通常運転のろ過において、被処理水を膜モジュールに通過させるフラックスの上限値は、特に制限はなく、例えば8m/day以下とすることが好ましく、1.8m/day以下とすることがより好ましい。
-Flux of water to be treated-
In the normal operation filtration of the water treatment method of the present invention, the flux for allowing the water to be treated to pass through the membrane module is not particularly limited, and the lower limit is preferably 0.5 m / day or more, preferably 1.0 m / day or more. It is more preferable that it is 1.5 m / day or more. In normal operation filtration, the upper limit value of the flux that allows the water to be treated to pass through the membrane module is not particularly limited, and is preferably 8 m / day or less, and more preferably 1.8 m / day or less.

−被処理水の流量−
本発明の膜モジュールの差圧低減方法において、被処理水を膜モジュールに通過させる流量(流速)は特に制限は無く、下限値が0.5m/h以上であることが好ましく、1.5m/h以上であることがより好ましく、2.5m/h以上であることが特に好ましい。通常運転のろ過において、被処理水を膜モジュールに通過させる流量の上限値は、特に制限はなく、例えば13m/h以下とすることが好ましく、3m/h以下とすることがより好ましい。
-Flow rate of treated water-
In the method for reducing the differential pressure of the membrane module of the present invention, the flow rate (flow velocity) for passing the water to be treated through the membrane module is not particularly limited, and the lower limit is preferably 0.5 m 3 / h or more, and 1.5 m 3 / h or more is more preferable, and 2.5 m 3 / h or more is particularly preferable. In normal operation filtration, the upper limit value of the flow rate for allowing the water to be treated to pass through the membrane module is not particularly limited, and is preferably, for example, 13 m 3 / h or less, and more preferably 3 m 3 / h or less.

(逆洗浄、薬剤洗浄)
通常運転では、膜モジュールを定期的に逆洗浄および/または薬剤洗浄する。逆洗浄または薬剤洗浄の一方でもよいが、逆洗浄および薬剤洗浄の両方を行うことが好ましい。逆洗浄装置としては特に制限は無く、公知の逆洗浄装置を用いることができる。
ろ過膜による水処理では、ろ過膜表面に懸濁物質のフロックや微生物の繁殖などによるファウリングの問題を潜在的に有する。
通常運転は、ろ過膜の逆洗浄を差圧が3〜7kPa上昇する度に1回行うことが好ましく、差圧が4〜6kPa上昇する度に1回行うことがより好ましく、差圧が5kPa上昇する度に1回行うことが特に好ましい。
通常運転は、ろ過膜の薬剤洗浄を、例えば次亜塩素酸ナトリウムを用いて、1時間から48時間に1回実施することが望ましく、6時間から36時間に1回実施することがさらに望ましく、12時間から24時間に1回実施することが最も望ましい。
(Reverse cleaning, chemical cleaning)
In normal operation, the membrane module is periodically backwashed and / or drug washed. Although either reverse cleaning or chemical cleaning may be performed, it is preferable to perform both reverse cleaning and chemical cleaning. There is no restriction | limiting in particular as a backwashing apparatus, A well-known backwashing apparatus can be used.
Water treatment using a filtration membrane has a potential fouling problem due to suspended flocs and microbial growth on the membrane surface.
The normal operation is preferably performed once every time the differential pressure increases by 3 to 7 kPa, more preferably once every time the differential pressure increases by 4 to 6 kPa, and the differential pressure increases by 5 kPa. It is particularly preferred to carry out once each time.
In normal operation, it is desirable to perform chemical cleaning of the filter membrane once every 1 to 48 hours, for example using sodium hypochlorite, and more desirably once every 6 to 36 hours. Most preferably, it is performed once every 12 to 24 hours.

<循環流路に切り換える段階>
本発明では、膜モジュールの下流側の流路が分岐部を含み、
通常運転では膜モジュールの下流側の流路が循環流路以外の流路であり、
通常運転の後から膜モジュールの差圧低減方法までに、膜モジュールの下流側の流路を、循環流路以外の流路から循環流路に切り換える段階を有することが好ましい。
通常運転の後から膜モジュールの差圧低減方法までの時間は、短いほど好ましい。本発明の好ましい態様において、循環水として通常運転で得られた処理水を用いる場合、通常運転の後から膜モジュールの差圧低減方法までの時間を短くすることができる。
循環流路以外の流路から循環流路に切り換える方法としては特に制限はなく、分岐部の形状に応じて切り換えることができる。
分岐部が三方弁などの弁を含む場合は、弁を適宜開閉して、循環流路に切り換えることができる。
分岐部が循環水用ポンプを備える場合は、循環水用ポンプを適宜運転開始して、循環流路に切り換えることができる。
<Step to switch to circulation channel>
In the present invention, the flow path on the downstream side of the membrane module includes a branch portion,
In normal operation, the channel on the downstream side of the membrane module is a channel other than the circulation channel,
It is preferable to have a step of switching the flow path on the downstream side of the membrane module from the flow path other than the circulation flow path to the circulation flow path after the normal operation until the method for reducing the pressure difference of the membrane module.
The shorter the time from the normal operation to the method for reducing the differential pressure of the membrane module, the better. In a preferred embodiment of the present invention, when treated water obtained in a normal operation is used as the circulating water, the time from the normal operation to the method for reducing the differential pressure of the membrane module can be shortened.
A method for switching from a flow path other than the circulation flow path to the circulation flow path is not particularly limited, and can be switched according to the shape of the branch portion.
When the branch portion includes a valve such as a three-way valve, the valve can be appropriately opened and closed to switch to the circulation flow path.
When the branch portion includes a circulating water pump, the circulating water pump can be appropriately started to switch to the circulation flow path.

<循環水のフラックス>
本発明では、循環水を膜モジュールに通過させる際のフラックスを、被処理水を膜モジュールに通過させる際のフラックスの1.0倍以上にすることが好ましく、1.2倍から10.0倍にすることがより好ましく、1.5〜5倍にすることが特に好ましく、1.5〜3倍にすることがより特に好ましい。通常運転のろ過時よりも、膜モジュールの差圧低減方法において高いフラックスでろ過膜に通水することにより、ろ過膜の表面の付着物をより洗浄することができ、より差圧を低減できる。
本発明では、薬剤を含む循環水を循環させて順洗浄することにより、ろ過膜の細孔の内部に詰まった汚れを分解したり、剪断応力で閉塞物を除いたりすることができ、結果として通常運転時のフラックスよりも循環水を膜モジュールに通過させる際のフラックスを高められる。
また、膜モジュールの差圧低減方法において循環水の温度を一時的に高めて粘性を下げて、通常運転時のフラックスよりも循環水を膜モジュールに通過させる際のフラックスを高めてもよい。
その他、薬剤として界面活性剤を単独使用または他の薬剤と併用して、循環水の粘性を下げて、通常運転時のフラックスよりも循環水を膜モジュールに通過させる際のフラックスを高めてもよい。
膜モジュールの差圧低減方法において、循環水を膜モジュールに通過させるフラックスは特に制限は無く、下限値が1.8m/day以上であることが好ましく、2.5m/day以上であることがより好ましく、3.5m/day以上であることが特に好ましい。循環水を膜モジュールに通過させるフラックスの上限値は、特に制限はなく、例えば18m/day以下とすることができ、9m/day以下であることが好ましく、5.4m/day以下であることがより好ましい。
<Flux of circulating water>
In the present invention, the flux when circulating water passes through the membrane module is preferably 1.0 times or more than the flux when water to be treated passes through the membrane module, and is 1.2 to 10.0 times the flux. More preferably, it is 1.5 to 5 times, particularly preferably 1.5 to 3 times. By passing water through the filtration membrane with a higher flux in the differential pressure reduction method of the membrane module than during normal operation filtration, the deposits on the surface of the filtration membrane can be washed more, and the differential pressure can be further reduced.
In the present invention, circulating water containing the drug is circulated and washed in order to decompose dirt clogged inside the pores of the filtration membrane or to remove clogs due to shear stress. It is possible to increase the flux when circulating water passes through the membrane module than the flux during normal operation.
Further, in the method for reducing the differential pressure of the membrane module, the temperature of the circulating water may be temporarily increased to lower the viscosity, and the flux when circulating water passes through the membrane module may be higher than the flux during normal operation.
In addition, the surfactant may be used alone or in combination with other chemicals to lower the viscosity of the circulating water and increase the flux when passing the circulating water through the membrane module than the flux during normal operation. .
In the method for reducing the differential pressure of the membrane module, the flux for allowing the circulating water to pass through the membrane module is not particularly limited, and the lower limit value is preferably 1.8 m / day or more, more preferably 2.5 m / day or more. Preferably, it is 3.5 m / day or more. The upper limit of the flux for allowing the circulating water to pass through the membrane module is not particularly limited, and can be, for example, 18 m / day or less, preferably 9 m / day or less, and preferably 5.4 m / day or less. More preferred.

<循環水の流量>
循環水のフラックスを制御する代わりに、循環水の流量を制御してもよい。循環水を膜モジュールに通過させる際の流量を、被処理水を膜モジュールに通過させる際の流量の1.0倍以上にすることが好ましく、1.2倍から10.0倍にすることがより好ましく、1.5〜5倍にすることが特に好ましく、1.5〜3倍にすることがより特に好ましい。
膜モジュールの差圧低減方法において、循環水を膜モジュールに通過させる流量(流速)は特に制限は無く、下限値が3m/h以上であることが好ましく、3.6m/h以上であることがより好ましく、6m/h以上であることが特に好ましい。循環水を膜モジュールに通過させる流量の上限値は、特に制限はなく、例えば30m/h以下とすることができ、15m/h以下であることが好ましく、9m/h以下であることがより好ましい。
<Flow rate of circulating water>
Instead of controlling the circulating water flux, the circulating water flow rate may be controlled. The flow rate when circulating water passes through the membrane module is preferably 1.0 times or more than the flow rate when water to be treated is passed through the membrane module, and is preferably 1.2 times to 10.0 times. More preferably, it is particularly preferably 1.5 to 5 times, and more preferably 1.5 to 3 times.
In difference pressure reduction method of the membrane module, the flow rate passing the circulating water to the membrane module (flow rate) is not particularly limited, it is preferable that the lower limit is 3m 3 / h or more, is 3.6 m 3 / h or more More preferably, it is particularly preferably 6 m 3 / h or more. It circulating water upper limit of the flow rate passing through a membrane module is not particularly limited, for example, it is a 30 m 3 / h or less, preferably 15 m 3 / h or less, or less 9m 3 / h Is more preferable.

[水処理装置]
本発明の水処理装置は、被処理水を通過させて処理水を得る精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールと、
被処理水を膜モジュールに送る被処理水用ポンプと、
膜モジュールの下流側の流路に位置する分岐部を含み、
分岐部の出口の少なくとも一つが処理水を排出でき、
分岐部の出口の少なくとも一つが膜モジュールの上流への循環流路に連結して循環水を循環でき、
循環水への薬剤添加手段を備える。
[Water treatment equipment]
The water treatment device of the present invention is a membrane module comprising at least one filtration membrane among a microfiltration membrane and an ultrafiltration membrane that allows the treated water to pass through to obtain treated water;
A pump for water to be treated which sends the water to be treated to the membrane module;
Including a branch located in the flow path downstream of the membrane module;
At least one of the branch outlets can discharge treated water,
At least one of the outlets of the branch part can be connected to a circulation channel upstream of the membrane module to circulate the circulating water,
A means for adding chemicals to the circulating water is provided.

<水処理装置の構成>
まず、図面を用いて水処理装置の構成を説明する。
<Configuration of water treatment device>
First, the configuration of the water treatment apparatus will be described with reference to the drawings.

図1は、本発明の水処理装置の一例を表す断面概略図である。図1に示した水処理装置は、分岐部として設備を新設する場合の一例となる。
図1に示した水処理装置では、通常運転において、排出弁31および被処理水弁33を開とし、循環弁32を閉とし、被処理水1を被処理水槽11に導入する。被処理水1は、被処理水用ポンプ21によって膜モジュール12に送液され、膜ろ過されて処理水2として処理水槽13に送液される。処理水2は、処理水用ポンプ22によって排出弁31から排出水5として水処理装置の外部に排出される。
図1に示した水処理装置では、膜モジュールの差圧低減方法において、排出弁31および被処理水弁33を閉とし、循環弁32を開とし、処理水2を循環流路41から被処理水槽11に返送し、薬剤添加手段14によって返送された処理水2に薬剤4を添加して循環水3とする。循環水3は、被処理水用ポンプ21によって膜モジュール12に送液され、ろ過膜を順洗浄し、処理水槽13に送液され、再び循環流路41から被処理水槽11に返送されることを繰り返し、水処理装置内を循環する。
FIG. 1 is a schematic cross-sectional view showing an example of the water treatment apparatus of the present invention. The water treatment apparatus shown in FIG. 1 is an example in the case of newly installing equipment as a branch part.
In the water treatment apparatus shown in FIG. 1, in normal operation, the discharge valve 31 and the water valve 33 to be treated are opened, the circulation valve 32 is closed, and the water 1 to be treated is introduced into the water tank 11 to be treated. The treated water 1 is sent to the membrane module 12 by the treated water pump 21, filtered through the membrane, and sent to the treated water tank 13 as treated water 2. The treated water 2 is discharged out of the water treatment apparatus as discharged water 5 from the discharge valve 31 by the treated water pump 22.
In the water treatment apparatus shown in FIG. 1, in the method for reducing the pressure difference of the membrane module, the discharge valve 31 and the water valve 33 to be treated are closed, the circulation valve 32 is opened, and the treated water 2 is treated from the circulation channel 41. It returns to the water tank 11, and the chemical | medical agent 4 is added to the treated water 2 returned by the chemical | medical agent addition means 14, and it is set as the circulating water 3. FIG. The circulating water 3 is sent to the membrane module 12 by the pump 21 for treated water, the filtration membrane is washed in order, sent to the treated water tank 13, and returned to the treated water tank 11 from the circulation channel 41 again. Is repeated to circulate in the water treatment apparatus.

図2は、本発明の水処理装置の他の一例を表す断面概略図である。図2に示した水処理装置は、分岐部として既設の設備に循環水用ポンプを追加する場合の一例となる。
図2に示した水処理装置では、通常運転において、排出弁31および被処理水弁33を開とし、循環水用ポンプ23の運転を休止し、被処理水1を被処理水槽11に導入する。被処理水1は、被処理水用ポンプ21によって膜モジュール12に送液され、膜ろ過されて処理水2として処理水槽13に送液される。処理水2は、処理水用ポンプ22によって排出弁31から排出水5として水処理装置の外部に排出される。
図2に示した水処理装置では、膜モジュールの差圧低減方法において、排出弁31および被処理水弁33を閉とし、循環水用ポンプ23の運転を開始し、処理水2を循環流路41から被処理水槽11に返送する。被処理水槽11内において、薬剤添加手段14によって返送された処理水2に薬剤4を添加して循環水3とする。循環水3は、被処理水用ポンプ21によって膜モジュール12に送液され、ろ過膜を順洗浄し、処理水槽13に送液され、再び循環流路41から被処理水槽11に返送されることを繰り返し、水処理装置内を循環する。
以下、本発明の水処理装置を構成の詳細について、好ましい態様を説明する。
FIG. 2 is a schematic cross-sectional view showing another example of the water treatment apparatus of the present invention. The water treatment apparatus shown in FIG. 2 is an example when a circulating water pump is added to an existing facility as a branching portion.
In the water treatment apparatus shown in FIG. 2, in normal operation, the discharge valve 31 and the treated water valve 33 are opened, the operation of the circulating water pump 23 is stopped, and the treated water 1 is introduced into the treated water tank 11. . The treated water 1 is sent to the membrane module 12 by the treated water pump 21, filtered through the membrane, and sent to the treated water tank 13 as treated water 2. The treated water 2 is discharged out of the water treatment apparatus as discharged water 5 from the discharge valve 31 by the treated water pump 22.
In the water treatment apparatus shown in FIG. 2, in the method for reducing the differential pressure of the membrane module, the discharge valve 31 and the water valve 33 to be treated are closed, the operation of the circulating water pump 23 is started, and the treated water 2 is passed through the circulation flow path. 41 is returned to the water tank 11 to be treated. In the water tank 11 to be treated, the chemical 4 is added to the treated water 2 returned by the chemical addition means 14 to obtain the circulating water 3. The circulating water 3 is sent to the membrane module 12 by the pump 21 for treated water, the filtration membrane is washed in order, sent to the treated water tank 13, and returned to the treated water tank 11 from the circulation channel 41 again. Is repeated to circulate in the water treatment apparatus.
Hereinafter, a preferable aspect is demonstrated about the detail of a structure of the water treatment apparatus of this invention.

<被処理水槽>
本発明の水処理装置は、被処理水を貯留できる被処理水槽を備えることが好ましい。
水処理装置は、被処理水槽内または被処理水槽よりも上流に、凝集剤などを添加する手段を備えることが好ましい。
<Treatment tank>
The water treatment apparatus of the present invention preferably includes a water tank to be treated that can store the water to be treated.
It is preferable that the water treatment apparatus includes means for adding a flocculant or the like in the water tank to be treated or upstream of the water tank to be treated.

<被処理水用ポンプ>
本発明の水処理装置は、被処理水を膜モジュールに送る被処理水用ポンプを備える。
被処理水用ポンプとしては特に制限はなく、公知のポンプを使用することができる。被処理水用ポンプは、流速(流量)をインバータ等により調整できることが好ましい。
<Pump for treated water>
The water treatment device of the present invention includes a pump for water to be treated that feeds water to be treated to the membrane module.
There is no restriction | limiting in particular as a pump for to-be-processed water, A well-known pump can be used. The pump for water to be treated is preferably capable of adjusting the flow rate (flow rate) with an inverter or the like.

<膜モジュール>
膜モジュールは、被処理水を通過させて処理水を得る精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える。
膜モジュールの好ましい態様は、前述の膜モジュールの差圧低減方法に記載したとおりである。
<Membrane module>
The membrane module includes at least one filtration membrane of a microfiltration membrane and an ultrafiltration membrane that obtains treated water through the treated water.
A preferred embodiment of the membrane module is as described in the above-described method for reducing the differential pressure of the membrane module.

<処理水用ポンプ>
本発明の水処理装置は、分岐部の上流に処理水を送水する処理水用ポンプを備えることが好ましい。処理水用ポンプとしては特に制限はなく、公知のポンプを使用することができる。
<Pump for treated water>
The water treatment apparatus of the present invention preferably includes a treated water pump that feeds treated water upstream of the branch portion. There is no restriction | limiting in particular as a pump for treated water, A well-known pump can be used.

<処理水槽>
本発明の水処理装置は、処理水を貯留できる処理水槽を備えることが好ましい。
<Treatment water tank>
The water treatment apparatus of the present invention preferably includes a treated water tank that can store treated water.

<循環流路>
循環流路は、分岐部の出口の少なくとも一つが膜モジュールの上流への循環流路に連結する。特に、膜モジュールの下流側の流路の少なくとも一つが膜モジュールの上流側に連結することが好ましい。
循環流路の配管としては、循環水を送液できるものであれば、特に制限はない。
循環流路が連結する膜モジュールの上流側としては特に制限はないが、被処理水槽であることが好ましい。
<Circulation channel>
In the circulation channel, at least one of the outlets of the branch portions is connected to the circulation channel upstream of the membrane module. In particular, it is preferable that at least one of the channels on the downstream side of the membrane module is connected to the upstream side of the membrane module.
The piping of the circulation channel is not particularly limited as long as circulating water can be fed.
Although there is no restriction | limiting in particular as an upstream of the membrane module which a circulation channel connects, It is preferable that it is a to-be-processed water tank.

(分岐部)
本発明の水処理装置は、膜モジュールの下流側の流路に位置する分岐部を含む。
本発明の水処理装置は、分岐部の出口の少なくとも一つが処理水を排出でき、分岐部の出口の少なくとも一つが膜モジュールの上流への循環流路に連結して循環水を循環できる。
分岐部の出口の少なくとも一つが膜モジュールの上流への循環流路に連結して、処理水の少なくとも一部を循環水として返送できることが好ましい。
分岐部としては特に制限はなく、分岐させた配管、排出弁および循環弁の組合せや、排出弁および循環弁が一体化された三方弁であってもよく、循環水用ポンプであってもよい。
(Branch part)
The water treatment apparatus of the present invention includes a branch portion located in the flow path on the downstream side of the membrane module.
In the water treatment apparatus of the present invention, at least one of the outlets of the branch part can discharge the treated water, and at least one of the outlets of the branch part can be connected to a circulation channel upstream of the membrane module to circulate the circulating water.
It is preferable that at least one of the outlets of the branch portion is connected to a circulation flow path upstream of the membrane module so that at least a part of the treated water can be returned as circulating water.
The branching section is not particularly limited, and may be a branched pipe, a combination of a discharge valve and a circulation valve, a three-way valve in which the discharge valve and the circulation valve are integrated, or a circulating water pump. .

−三方弁−
本発明の水処理装置の第1の態様では、分岐部が三方弁であることが好ましい。三方弁としては特に制限はなく、公知の三方弁を使用することができる。三方弁は、排出弁および循環弁が一体化された弁であることが好ましい。排出弁および循環弁が一体化された三方弁は、排出弁および循環弁をそれぞれ独立に開閉できてもよく、連動して開閉できてもよい。
-Three-way valve-
In the first aspect of the water treatment apparatus of the present invention, the branching section is preferably a three-way valve. There is no restriction | limiting in particular as a three-way valve, A well-known three-way valve can be used. The three-way valve is preferably a valve in which a discharge valve and a circulation valve are integrated. In the three-way valve in which the discharge valve and the circulation valve are integrated, the discharge valve and the circulation valve may be opened and closed independently, or may be opened and closed in conjunction with each other.

−循環水用ポンプ−
本発明の水処理装置の第2の態様では、循環流路へ連結する側の分岐部の出口が循環水用ポンプを備えることが好ましい。
循環水用ポンプを設置する場所としては特に制限は無く、例えば膜モジュールと処理水槽の間の配管中に設置してもよく、処理水槽内に設置してもよく、処理水槽の下流の配管中に設置してもよい。循環水用ポンプを処理水槽内に設置することが、設置面積省略の観点から好ましい。
循環水用ポンプとしては特に制限はなく、公知のポンプを使用することができる。循環水用ポンプを処理水槽内に設置する場合、循環水用ポンプは水中ポンプであることが設置面積削減の観点から好ましい。
−Circulating water pump−
In the 2nd aspect of the water treatment apparatus of this invention, it is preferable that the exit of the branch part by the side connected to a circulation flow path is equipped with the pump for circulating water.
There are no particular restrictions on the location where the circulating water pump is installed. For example, the circulating water pump may be installed in the pipe between the membrane module and the treated water tank, in the treated water tank, or in the pipe downstream of the treated water tank. You may install in. It is preferable to install the circulating water pump in the treated water tank from the viewpoint of omitting the installation area.
There is no restriction | limiting in particular as a pump for circulating water, A well-known pump can be used. When the circulating water pump is installed in the treated water tank, the circulating water pump is preferably a submersible pump from the viewpoint of reducing the installation area.

<循環水への薬剤添加手段>
本発明の水処理装置は、循環水への薬剤添加手段を備える。
循環水への薬剤添加手段としては特に制限はなく、公知のものを用いることができる。
薬剤添加手段は、薬剤添加部の他に、撹拌部を有していてもよい。
循環水への薬剤添加手段の位置としては特に制限はなく、被処理水槽、処理水槽および循環流路ならびにそれらを連結する配管のいずれの位置でもよく、被処理水槽であることが好ましい。
<Mechanical addition to circulating water>
The water treatment apparatus of the present invention includes a chemical addition means for circulating water.
There is no restriction | limiting in particular as a chemical | medical agent addition means to circulating water, A well-known thing can be used.
The drug addition means may have a stirring part in addition to the drug addition part.
There is no restriction | limiting in particular as a position of the chemical | medical agent addition means to circulating water, Any position of a to-be-treated water tank, a treated water tank, a circulation flow path, and piping which connects them may be sufficient, and it is preferable that it is a to-be-treated water tank.

<その他の装置>
水処理装置は、公知のその他の装置を備えていてもよい。
例えば、任意の場所にpH調節装置を備えていてもよい。
例えば、任意の場所に温度調節装置を備えていてもよい。
<Other devices>
The water treatment device may include other known devices.
For example, a pH adjusting device may be provided at an arbitrary place.
For example, a temperature control device may be provided at an arbitrary place.

以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   The features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.

[比較例1]
図1に示す構成の水処理装置を作製した。水処理装置では、排出弁31および循環弁32が一体化された三方弁を用いた。
[Comparative Example 1]
A water treatment apparatus having the configuration shown in FIG. 1 was produced. In the water treatment apparatus, a three-way valve in which the discharge valve 31 and the circulation valve 32 are integrated is used.

被処理水として、有機物濃度はCODMnが20mg/Lの池水を用いた。
被処理水槽の中で、被処理水に対して、凝集剤として硫酸バンドおよび次亜塩素酸を所定の量ずつ添加して、凝集反応を行った。
As water to be treated, pond water having an organic substance concentration of 20 mg / L for CODMn was used.
In the water to be treated, a predetermined amount of sulfuric acid band and hypochlorous acid was added as a flocculant to the water to be treated to perform a coagulation reaction.

<通常運転>
凝集反応を行った後の被処理水を、孔径0.02μmの限外ろ過膜を備える膜モジュールに導入し、被処理水用ポンプを調節して3.0m/hの流量(流速)で連続的に膜処理した。膜処理後に得られた処理水を処理水槽に導入した。循環弁32を閉じて排出弁31を開いた状態として、処理水を処理水用ポンプで連続的に送液し、排出水として水処理装置の外部に排出した。差圧上昇幅が5kPaを超える段階ごとに逆洗浄を行った。さらに、1日あたり1回の次亜塩素酸ナトリウム溶液洗浄を行った。
通常運転において、連続的に限外ろ過膜の差圧を測定し、限外ろ過膜の差圧の最大値および差圧の最小値を測定した。得られた結果を下記表1に記載した。
比較例1の通常運転では、限外ろ過膜の差圧の最大値が41kPa程度に上昇した。
<Normal operation>
The treated water after the coagulation reaction is introduced into a membrane module equipped with an ultrafiltration membrane having a pore diameter of 0.02 μm, and the treated water pump is adjusted at a flow rate (flow rate) of 3.0 m 3 / h. The membrane was continuously processed. The treated water obtained after the membrane treatment was introduced into the treated water tank. With the circulation valve 32 closed and the discharge valve 31 opened, the treated water was continuously fed by the treated water pump and discharged to the outside of the water treatment apparatus as discharged water. Backwashing was performed at each stage where the differential pressure increase exceeded 5 kPa. Furthermore, the sodium hypochlorite solution washing | cleaning was performed once per day.
In normal operation, the differential pressure of the ultrafiltration membrane was continuously measured, and the maximum value of the differential pressure and the minimum value of the differential pressure were measured. The obtained results are shown in Table 1 below.
In the normal operation of Comparative Example 1, the maximum value of the differential pressure of the ultrafiltration membrane increased to about 41 kPa.

[実施例1]
<通常運転>
比較例1と同様にして、限外ろ過膜の差圧の最大値が41kPa程度になるまで、3.0m/hの流量(流速)で通常運転を行った。
[Example 1]
<Normal operation>
In the same manner as in Comparative Example 1, normal operation was performed at a flow rate (flow rate) of 3.0 m 3 / h until the maximum value of the differential pressure of the ultrafiltration membrane reached about 41 kPa.

<膜モジュールの差圧低減方法>
限外ろ過膜の差圧の最大値が41kPa程度に上昇したところで、被処理水弁33を閉じて被処理水の流入を止めて、排出弁31を閉じて循環弁32を開いた状態として処理水を循環水3として循環させ、薬剤添加手段14から薬剤4として次亜塩素酸ナトリウム溶液を所定の濃度となるように循環水3に添加し、被処理水用ポンプを調節して3.0m/hの流量(流速)で連続的に30分間ろ過および循環をさせて、順洗浄を行った。
なお、流量は、下流側に設置した電磁流量計によって測定した。
また、フラックスを一日当たりの流量を膜面積で除することで計算し、下記表1に記載した。
<Differential pressure reduction method for membrane module>
When the maximum value of the differential pressure of the ultrafiltration membrane rises to about 41 kPa, the treated water valve 33 is closed, the inflow of treated water is stopped, the discharge valve 31 is closed, and the circulation valve 32 is opened. Water is circulated as circulating water 3, and sodium hypochlorite solution is added as chemical 4 from chemical addition means 14 to circulating water 3 to a predetermined concentration, and the water to be treated is adjusted to 3.0 m. Forward washing was performed by continuously filtering and circulating at a flow rate (flow rate) of 3 / h for 30 minutes.
The flow rate was measured with an electromagnetic flow meter installed on the downstream side.
The flux was calculated by dividing the flow rate per day by the membrane area, and is shown in Table 1 below.

<膜モジュールの差圧低減方法後の通常運転>
その後、被処理水弁33を開いて被処理水の流入を再開し、循環弁32を閉じて排出弁31を開いた状態として3.0m/hの流量(流速)の通常運転に戻し、差圧上昇幅が5kPaを超える段階ごとに逆洗浄を行った。さらに、1日あたり1回の次亜塩素酸ナトリウム溶液洗浄を行った。
膜モジュールの差圧低減方法後の通常運転において、連続的に限外ろ過膜の差圧を測定し、限外ろ過膜の差圧の最大値および差圧の最小値を測定した。得られた結果を下記表1に記載した。
<Normal operation after differential pressure reduction method for membrane module>
Thereafter, the water to be treated 33 is opened to resume the inflow of water to be treated, the circulation valve 32 is closed and the discharge valve 31 is opened to return to the normal operation at a flow rate (flow velocity) of 3.0 m 3 / h. Backwashing was performed at each stage where the differential pressure increase exceeded 5 kPa. Furthermore, the sodium hypochlorite solution washing | cleaning was performed once per day.
In the normal operation after the method for reducing the differential pressure of the membrane module, the differential pressure of the ultrafiltration membrane was continuously measured, and the maximum value of the differential pressure and the minimum value of the differential pressure were measured. The obtained results are shown in Table 1 below.

[実施例2]
実施例1において、膜モジュールの差圧低減方法における循環水の流量(流速)を3.0m/hから6.0m/hへと2倍にした以外は実施例1と同様にして、膜モジュールの差圧低減方法を行った。
その後、実施例1と同様にして通常運転に戻し、膜モジュールの差圧低減方法後の通常運転において、連続的に限外ろ過膜の差圧を測定し、限外ろ過膜の差圧の最大値および差圧の最小値を測定した。得られた結果を下記表1に記載した。
[Example 2]
In Example 1, except that the flow rate (flow velocity) of the circulating water in the method for reducing the differential pressure of the membrane module was doubled from 3.0 m 3 / h to 6.0 m 3 / h, the same as in Example 1, A method for reducing the differential pressure of the membrane module was performed.
Then, it returns to normal operation similarly to Example 1, and in the normal operation after the method for reducing the differential pressure of the membrane module, the differential pressure of the ultrafiltration membrane is continuously measured, and the maximum differential pressure of the ultrafiltration membrane is measured. The minimum value and differential pressure were measured. The obtained results are shown in Table 1 below.

Figure 2019147137
Figure 2019147137

上記表1より、本発明の膜モジュールの差圧低減方法によれば、薬剤を循環させてろ過膜を順洗浄でき、かつ、通常運転時の定期的な逆洗浄および薬剤洗浄よりも膜モジュールの差圧を回復できることがわかった。
実施例1では通常運転に続く30分程度の膜モジュールの差圧低減方法によって、通常運転のみにおける差圧の最大値を41kPaから38kPaまで下げられ、差圧の最小値を37kPaから34kPaまで下げられることがわかった。
実施例2では通常運転に続く30分程度の膜モジュールの差圧低減方法によって、通常運転のみにおける差圧の最大値を41kPaから37kPaまで下げられ、差圧の最小値を37kPaから33kPaまで下げられることがわかった。
実施例1および2を比べると、膜モジュールの流量(流速)の変化に起因する差圧の回復量の変化はあまり大きくなかった。次亜塩素酸ナトリウムは有機物分解に寄与するが、実施例1および2で用いた被処理水の有機物濃度CODMnが20mg/Lと低めだったためである。
さらに、処理水に薬剤を添加して循環させることにより、通常運転から膜モジュールの差圧低減方法へ移行する時間が非常に短く、処理水を無駄にせず、排水量を抑制でき、薬剤を無駄にせず再利用して30分間もの薬剤による順洗浄ができることがわかった。
なお、比較例1、実施例1および2において、差圧の最大値が50kPaになるまで通常運転を行った後に、膜モジュールの差圧低減方法を始めた場合も、比較例1、実施例1および2の結果の傾向と変わらなかった。
また、比較例1、実施例1および2において、図1に記載の水処理装置の代わりに図2に記載の水処理装置を用いた場合も、比較例1、実施例1および2の結果の傾向と変わらなかった。
なお、比較例1において、薬剤添加手段から薬剤を循環水に添加しない以外は実施例1と同様にして膜モジュールの差圧低減方法を行う場合、差圧減少の効果がなく、ろ過膜の目詰まりが起こる問題が生じる。
From Table 1 above, according to the method for reducing the differential pressure of the membrane module of the present invention, the filtration membrane can be washed in order by circulating the drug, and the membrane module can be washed more than regular backwashing and chemical washing during normal operation. It was found that the differential pressure can be recovered.
In Example 1, the maximum value of the differential pressure in only normal operation can be lowered from 41 kPa to 38 kPa and the minimum value of the differential pressure can be lowered from 37 kPa to 34 kPa by the method for reducing the pressure difference of the membrane module for about 30 minutes following the normal operation. I understood it.
In Example 2, the maximum value of the differential pressure in only normal operation can be lowered from 41 kPa to 37 kPa and the minimum value of the differential pressure can be lowered from 37 kPa to 33 kPa by the method for reducing the pressure difference of the membrane module for about 30 minutes following the normal operation. I understood it.
When Examples 1 and 2 were compared, the change in the recovery amount of the differential pressure due to the change in the flow rate (flow velocity) of the membrane module was not so large. This is because sodium hypochlorite contributes to the decomposition of organic matter, but the organic matter concentration CODMn of the treated water used in Examples 1 and 2 was as low as 20 mg / L.
Furthermore, by adding the chemical to the treated water and circulating it, the time to shift from the normal operation to the method for reducing the pressure difference of the membrane module is very short, so that the treated water is not wasted, the amount of drainage can be suppressed, and the chemical is wasted. It was found that it can be reused for 30 minutes of chemical cleaning.
In Comparative Example 1 and Examples 1 and 2, when the normal operation was performed until the maximum value of the differential pressure reached 50 kPa, the method for reducing the differential pressure of the membrane module was also started. And the trend of the results of 2 was not different.
In Comparative Example 1 and Examples 1 and 2, when the water treatment apparatus shown in FIG. 2 was used instead of the water treatment apparatus shown in FIG. 1, the results of Comparative Example 1, Examples 1 and 2 were also obtained. It was the same as the trend.
In Comparative Example 1, when the method for reducing the differential pressure of the membrane module is performed in the same manner as in Example 1 except that the chemical is not added to the circulating water from the chemical addition means, there is no effect of reducing the differential pressure, and the filter membrane is not effective. The problem of clogging arises.

[比較例101]
比較例1において、差圧の最大値が52kPa程度となるまで通常運転(差圧上昇幅が5kPaを超える段階ごとの逆洗浄と、1日あたり1回の次亜塩素酸ナトリウム溶液洗浄を含む)を続けた以外は比較例1と同様にして、通常運転を行った。
通常運転において、連続的に限外ろ過膜の差圧を測定し、限外ろ過膜の差圧の最大値および差圧の最小値を測定した。得られた結果を下記表2に記載した。
[Comparative Example 101]
In Comparative Example 1, normal operation is performed until the maximum value of the differential pressure reaches about 52 kPa (including backwashing at each stage where the differential pressure increase exceeds 5 kPa and washing with sodium hypochlorite solution once a day) A normal operation was performed in the same manner as in Comparative Example 1 except that the above operation was continued.
In normal operation, the differential pressure of the ultrafiltration membrane was continuously measured, and the maximum value of the differential pressure and the minimum value of the differential pressure were measured. The obtained results are shown in Table 2 below.

[実施例101]
<通常運転>
比較例101と同様にして、限外ろ過膜の差圧の最大値が52kPa程度になるまで、3.0m/hの流量(流速)で通常運転を行った。
[Example 101]
<Normal operation>
In the same manner as in Comparative Example 101, normal operation was performed at a flow rate (flow rate) of 3.0 m 3 / h until the maximum value of the differential pressure of the ultrafiltration membrane reached about 52 kPa.

<膜モジュールの差圧低減方法>
限外ろ過膜の差圧の最大値が52kPa程度に上昇したところで、被処理水弁33を閉じて被処理水の流入を止めて、排出弁31を閉じて循環弁32を開いた状態として処理水を循環水3として循環させ、薬剤添加手段14から薬剤4として硫酸溶液を所定の濃度となるように循環水3に添加し、被処理水用ポンプを調節して3.0m/hの流量(流速)で連続的に30分間ろ過および循環をさせて、順洗浄を行った。
<Differential pressure reduction method for membrane module>
When the maximum value of the differential pressure of the ultrafiltration membrane rises to about 52 kPa, the treated water valve 33 is closed, the inflow of treated water is stopped, the discharge valve 31 is closed, and the circulation valve 32 is opened. Water is circulated as circulating water 3, and a sulfuric acid solution is added as drug 4 from the drug addition means 14 to the circulating water 3 to a predetermined concentration, and the water to be treated is adjusted to 3.0 m 3 / h. Normal washing was performed by continuously filtering and circulating at a flow rate (flow rate) for 30 minutes.

<膜モジュールの差圧低減方法後の通常運転>
その後、被処理水弁33を開いて被処理水の流入を再開し、循環弁32を閉じて排出弁31を開いた状態として3.0m/hの流量(流速)の通常運転に戻し、差圧上昇幅が5kPaを超える段階ごとに逆洗浄を行った。さらに、1日あたり1回の次亜塩素酸ナトリウム溶液洗浄を行った。
膜モジュールの差圧低減方法後の通常運転において、連続的に限外ろ過膜の差圧を測定し、限外ろ過膜の差圧の最大値および差圧の最小値を測定した。得られた結果を下記表2に記載した。
<Normal operation after differential pressure reduction method for membrane module>
Thereafter, the water to be treated 33 is opened to resume the inflow of water to be treated, the circulation valve 32 is closed and the discharge valve 31 is opened to return to the normal operation at a flow rate (flow velocity) of 3.0 m 3 / h. Backwashing was performed at each stage where the differential pressure increase exceeded 5 kPa. Furthermore, the sodium hypochlorite solution washing | cleaning was performed once per day.
In the normal operation after the method for reducing the differential pressure of the membrane module, the differential pressure of the ultrafiltration membrane was continuously measured, and the maximum value of the differential pressure and the minimum value of the differential pressure were measured. The obtained results are shown in Table 2 below.

[実施例102]
実施例101において、膜モジュールの差圧低減方法における循環水の流量(流速)を3.0m/hから6.0m/hへと2倍にした以外は実施例101と同様にして、膜モジュールの差圧低減方法を行った。
その後、実施例101と同様にして通常運転に戻し、膜モジュールの差圧低減方法後の通常運転において、連続的に限外ろ過膜の差圧を測定し、限外ろ過膜の差圧の最大値および差圧の最小値を測定した。得られた結果を下記表2に記載した。
[Example 102]
In Example 101, except that the flow rate (flow velocity) of circulating water in the method for reducing the differential pressure of the membrane module was doubled from 3.0 m 3 / h to 6.0 m 3 / h, the same as in Example 101, A method for reducing the differential pressure of the membrane module was performed.
Thereafter, the normal operation is restored in the same manner as in Example 101, and in the normal operation after the method for reducing the differential pressure of the membrane module, the differential pressure of the ultrafiltration membrane is continuously measured, and the maximum differential pressure of the ultrafiltration membrane is measured. The minimum value and differential pressure were measured. The obtained results are shown in Table 2 below.

Figure 2019147137
Figure 2019147137

上記表2より、本発明の膜モジュールの差圧低減方法によれば、薬剤を循環させてろ過膜を順洗浄でき、かつ、通常運転時の定期的な逆洗浄および薬剤洗浄よりも膜モジュールの差圧を回復できることがわかった。
実施例101では通常運転に続く30分程度の膜モジュールの差圧低減方法によって、通常運転のみにおける差圧の最大値を52kPaから38kPaまで下げられ、差圧の最小値を43kPaから34kPaまで下げられることがわかった。
実施例102では通常運転に続く30分程度の膜モジュールの差圧低減方法によって、通常運転のみにおける差圧の最大値を52kPaから33kPaまで下げられ、差圧の最小値を43kPaから31kPaまで下げられることがわかった。
実施例101および102を比べると、膜モジュールの流量(流速)を2倍に上げたことに起因して、限外ろ過膜の差圧をさらに5kPaほど下げられたことがわかった。通常運転では前処理として被処理水に対して硫酸バンド(硫酸アルミニウム)を用いて凝集フロックを形成させており、実施例101および102では膜モジュールの差圧低減方法で硫酸を用いてアルミニウム成分(マイナス帯電の汚物の表面にプラス帯電して覆っている)の付着汚れを溶解している。膜モジュールの差圧低減方法で硫酸を用いた実施例101および102を比較した場合の方が、汚物が膜モジュール表面から落ちやすいため、実施例1および2を比較した場合よりも膜モジュールの流量(流速)を2倍に上げた効果が顕著となる。
さらに、処理水に薬剤を添加して循環させることにより、通常運転から膜モジュールの差圧低減方法へ移行する時間が非常に短く、処理水を無駄にせず、排水量を抑制でき、薬剤を無駄にせず再利用して30分間もの薬剤による順洗浄ができることがわかった。
From Table 2 above, according to the method for reducing the differential pressure of the membrane module of the present invention, the filtration membrane can be washed in order by circulating the drug, and the membrane module can be washed more than the regular backwash and the drug wash during normal operation. It was found that the differential pressure can be recovered.
In Example 101, the maximum value of the differential pressure only in the normal operation can be lowered from 52 kPa to 38 kPa and the minimum value of the differential pressure can be lowered from 43 kPa to 34 kPa by the method for reducing the differential pressure of the membrane module for about 30 minutes following the normal operation. I understood it.
In Example 102, the maximum value of the differential pressure in normal operation alone can be reduced from 52 kPa to 33 kPa and the minimum value of the differential pressure can be decreased from 43 kPa to 31 kPa by the method for reducing the differential pressure of the membrane module for about 30 minutes following the normal operation. I understood it.
Comparing Examples 101 and 102, it was found that the differential pressure of the ultrafiltration membrane was further reduced by about 5 kPa due to the fact that the flow rate (flow rate) of the membrane module was doubled. In normal operation, aggregated flocs are formed by using a sulfuric acid band (aluminum sulfate) on the water to be treated as a pretreatment, and in Examples 101 and 102, aluminum components ( It adheres to the surface of the negatively charged filth and is covered with a positive charge. In the case of comparing the examples 101 and 102 using sulfuric acid in the method for reducing the differential pressure of the membrane module, dirt is more likely to fall from the surface of the membrane module. Therefore, the flow rate of the membrane module is higher than that in the case of comparing the examples 1 and 2. The effect of increasing the (flow velocity) by 2 times becomes remarkable.
Furthermore, by adding the chemical to the treated water and circulating it, the time to shift from the normal operation to the method for reducing the pressure difference of the membrane module is very short, so that the treated water is not wasted, the amount of drainage can be suppressed, and the chemical is wasted. It was found that it can be reused for 30 minutes of chemical cleaning.

1 被処理水
2 処理水
3 循環水
4 薬剤
5 排出水
11 被処理水槽
12 膜モジュール
13 処理水槽
14 薬剤添加手段
21 被処理水用ポンプ
22 処理水用ポンプ
23 循環水用ポンプ
31 排出弁
32 循環弁
33 被処理水弁
41 循環流路
42 分岐部
1 treated water 2 treated water 3 circulating water 4 chemical 5 discharged water 11 treated water tank 12 membrane module 13 treated water tank 14 chemical adding means 21 treated water pump 22 treated water pump 23 circulating water pump 31 discharge valve 32 circulating Valve 33 Water valve to be treated 41 Circulating flow path 42 Branching portion

Claims (13)

精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールの差圧低減方法であって、
前記膜モジュールの下流側の流路の少なくとも一つを前記膜モジュールの上流側に連結する循環流路を設けた状態で、
薬剤を含む循環水を前記ろ過膜の上流側から下流側に向けて前記ろ過膜および前記循環流路に通過させて前記膜モジュールを洗浄する、膜モジュールの差圧低減方法。
A method for reducing the differential pressure of a membrane module comprising at least one filtration membrane of a microfiltration membrane and an ultrafiltration membrane,
With a circulation channel connecting at least one of the channels on the downstream side of the membrane module to the upstream side of the membrane module,
A method for reducing the differential pressure of a membrane module, wherein circulating water containing a chemical is passed through the filtration membrane and the circulation channel from the upstream side to the downstream side of the filtration membrane to wash the membrane module.
前記薬剤が酸、アルカリまたは洗浄剤である、請求項1に記載の膜モジュールの差圧低減方法。   The method for reducing a differential pressure of a membrane module according to claim 1, wherein the chemical is an acid, an alkali, or a cleaning agent. 前記膜モジュールの下流側の流路が分岐部を含み、
前記膜モジュールの下流側の流路を、前記循環流路以外の流路から前記循環流路に切り換える段階を有する、請求項1または2に記載の膜モジュールの差圧低減方法。
The flow path on the downstream side of the membrane module includes a branch part,
The method for reducing a differential pressure of a membrane module according to claim 1 or 2, further comprising a step of switching a flow path downstream of the membrane module from a flow path other than the circulation flow path to the circulation flow path.
被処理水を精密ろ過膜および限外ろ過膜のうち少なくとも一方のろ過膜を備える膜モジュールに通過させて処理水を得て、前記膜モジュールを定期的に逆洗浄および/または薬剤洗浄する通常運転と;
請求項1〜3のいずれか一項に記載の膜モジュールの差圧低減方法を含む、水処理方法。
Normal operation in which treated water is passed through a membrane module having at least one of a microfiltration membrane and an ultrafiltration membrane to obtain treated water, and the membrane module is regularly backwashed and / or chemically washed. When;
The water treatment method including the differential pressure | voltage reduction method of the membrane module as described in any one of Claims 1-3.
前記膜モジュールの下流側の流路が分岐部を含み、
前記通常運転では前記膜モジュールの下流側の流路が前記循環流路以外の流路であり、
前記通常運転の後から前記膜モジュールの差圧低減方法までに、前記膜モジュールの下流側の流路を、前記循環流路以外の流路から前記循環流路に切り換える段階を有する、請求項4に記載の水処理方法。
The flow path on the downstream side of the membrane module includes a branch part,
In the normal operation, the channel on the downstream side of the membrane module is a channel other than the circulation channel,
5. A step of switching a flow path on the downstream side of the membrane module from a flow path other than the circulation flow path to the circulation flow path after the normal operation and before the method for reducing the differential pressure of the membrane module. The water treatment method as described in any one of.
前記循環水を前記膜モジュールに通過させる際のフラックスを、前記被処理水を前記膜モジュールに通過させる際のフラックスの1.2倍から10.0倍にする、請求項4または5に記載の水処理方法。   The flux when the circulating water is passed through the membrane module is 1.2 to 10.0 times the flux when the treated water is passed through the membrane module. Water treatment method. 前記循環水として前記通常運転で得られた前記処理水を用いる、請求項4〜6のいずれか一項に記載の水処理方法。   The water treatment method according to any one of claims 4 to 6, wherein the treated water obtained in the normal operation is used as the circulating water. 被処理水を通過させて処理水を得る精密ろ過膜および限外ろ過膜のうち少なくとも一方を備える膜モジュールと、
被処理水を前記膜モジュールに送る被処理水用ポンプと、
前記膜モジュールの下流側の流路に位置する分岐部を含み、
前記分岐部の出口の少なくとも一つが前記処理水を排出でき、
前記分岐部の出口の少なくとも一つが前記膜モジュールの上流への循環流路に連結して循環水を循環でき、
前記循環水への薬剤添加手段を備える、水処理装置。
A membrane module comprising at least one of a microfiltration membrane and an ultrafiltration membrane that obtains treated water by passing the treated water;
A pump for water to be treated which sends the water to be treated to the membrane module;
Including a branch portion located in a flow path on the downstream side of the membrane module,
At least one of the outlets of the branch part can discharge the treated water,
At least one of the outlets of the branching section can be connected to a circulation channel upstream of the membrane module to circulate circulating water,
A water treatment apparatus comprising means for adding a chemical to the circulating water.
前記分岐部の上流に前記処理水を送水する処理水用ポンプを備える、請求項8に記載の水処理装置。   The water treatment apparatus of Claim 8 provided with the pump for treated water which sends the said treated water upstream of the said branch part. 前記被処理水を貯留できる被処理水槽を備える、請求項8または9に記載の水処理装置。   The water treatment apparatus of Claim 8 or 9 provided with the to-be-treated water tank which can store the said to-be-treated water. 前記処理水を貯留できる処理水槽を備える、請求項8〜10のいずれか一項に記載の水処理装置。   The water treatment apparatus according to any one of claims 8 to 10, comprising a treated water tank capable of storing the treated water. 前記分岐部が三方弁である、請求項8〜11のいずれか一項に記載の水処理装置。   The water treatment apparatus according to any one of claims 8 to 11, wherein the branch portion is a three-way valve. 前記循環流路へ連結する側の前記分岐部の出口が循環水用ポンプを備える、請求項8〜11のいずれか一項に記載の水処理装置。   The water treatment apparatus according to any one of claims 8 to 11, wherein an outlet of the branch portion on a side connected to the circulation flow path includes a circulating water pump.
JP2018034999A 2018-02-28 2018-02-28 Differential pressure reducing method of membrane module, water treatment method and water treatment device Pending JP2019147137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018034999A JP2019147137A (en) 2018-02-28 2018-02-28 Differential pressure reducing method of membrane module, water treatment method and water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034999A JP2019147137A (en) 2018-02-28 2018-02-28 Differential pressure reducing method of membrane module, water treatment method and water treatment device

Publications (1)

Publication Number Publication Date
JP2019147137A true JP2019147137A (en) 2019-09-05

Family

ID=67849918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034999A Pending JP2019147137A (en) 2018-02-28 2018-02-28 Differential pressure reducing method of membrane module, water treatment method and water treatment device

Country Status (1)

Country Link
JP (1) JP2019147137A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249248A (en) * 1975-10-17 1977-04-20 Shinko Fuaudoraa Kk Reverse osmotic treatment of water-soluble electro-deposition coating
JPH0716439A (en) * 1993-06-30 1995-01-20 Kurita Water Ind Ltd Membrane washing device of membrane separator
JPH11179163A (en) * 1997-12-25 1999-07-06 Ebara Corp Method for back washing of inner pressure type membrane module for removing pollutant by fluctuation of flow rate and pressure
JP2009241058A (en) * 2008-03-14 2009-10-22 Toyo Eng Corp Method of treating waste water and waste water treatment apparatus
JP2013503744A (en) * 2009-09-03 2013-02-04 ゼネラル・エレクトリック・カンパニイ Water purification system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249248A (en) * 1975-10-17 1977-04-20 Shinko Fuaudoraa Kk Reverse osmotic treatment of water-soluble electro-deposition coating
JPH0716439A (en) * 1993-06-30 1995-01-20 Kurita Water Ind Ltd Membrane washing device of membrane separator
JPH11179163A (en) * 1997-12-25 1999-07-06 Ebara Corp Method for back washing of inner pressure type membrane module for removing pollutant by fluctuation of flow rate and pressure
JP2009241058A (en) * 2008-03-14 2009-10-22 Toyo Eng Corp Method of treating waste water and waste water treatment apparatus
JP2013503744A (en) * 2009-09-03 2013-02-04 ゼネラル・エレクトリック・カンパニイ Water purification system

Similar Documents

Publication Publication Date Title
US10583401B2 (en) Integrated ultrafiltration and reverse osmosis desalination systems
JPWO2011016410A1 (en) Water treatment apparatus and water treatment method
WO2016199725A1 (en) Fresh water production device and method for operating fresh water production device
JP2015077530A (en) Water production method and water production device
JP2012086149A (en) Membrane filtering method
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP5017922B2 (en) Water treatment method
JP6344114B2 (en) Water treatment apparatus and water treatment equipment cleaning method
JP2011104504A (en) Washing method of water treatment facility
JP2019147137A (en) Differential pressure reducing method of membrane module, water treatment method and water treatment device
JP6467911B2 (en) Water treatment system
JP5054289B2 (en) Operation method of membrane separator
JP6447098B2 (en) Recovery filtration unit and water treatment system with recovery filtration unit
KR20130123879A (en) High efficiency water treatment system using hollow fiber membrane and method of the same
JP2002346347A (en) Method and apparatus for filtration
JP2017176951A (en) Method for cleaning separation membrane module
JP6264095B2 (en) Membrane module cleaning method
JP5319583B2 (en) Membrane filtration device backwashing method
KR101912781B1 (en) High speed and high capacity filtering apparatus
JP2016043279A (en) Membrane separation device using internal pressure type hollow yarn membrane and operational method
JP2005046762A (en) Water treatment method and water treatment apparatus
JP5277519B2 (en) Water treatment method
JP2005046801A (en) Water treatment method and apparatus therefor
JPH0623240A (en) Operation method of hollow fiber membrane filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220308