JPH0623240A - Operation method of hollow fiber membrane filter - Google Patents

Operation method of hollow fiber membrane filter

Info

Publication number
JPH0623240A
JPH0623240A JP18384192A JP18384192A JPH0623240A JP H0623240 A JPH0623240 A JP H0623240A JP 18384192 A JP18384192 A JP 18384192A JP 18384192 A JP18384192 A JP 18384192A JP H0623240 A JPH0623240 A JP H0623240A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
water
membrane filter
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18384192A
Other languages
Japanese (ja)
Other versions
JP2922059B2 (en
Inventor
Katsumi Okugawa
克巳 奥川
Hiroyuki Koide
博幸 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16142779&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0623240(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP18384192A priority Critical patent/JP2922059B2/en
Publication of JPH0623240A publication Critical patent/JPH0623240A/en
Application granted granted Critical
Publication of JP2922059B2 publication Critical patent/JP2922059B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To restrain rise of differential pressure across the membrane when a filter device by which water incorporating suspended matters is filtered by using a hollow fiber membrane, is used for a long time and also to reduce a load of the equipment necessary for the operation and to curtail the operation cost. CONSTITUTION:In the filter device in which liquid to be treated incorporating the suspended matters is passed in a cross flow into a tube of the hollow fiber membrane of an internal pressure type hollow fiber membrane filter using the hollow fiber membrane with 0.3-6mm inside diameter and >=50cm length, a flow rate of water not to be transmitted is set so as to be <=400, preferably <=250, in Reynolds number in the hollow fiber tube.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体産業用水処理、
発電所用水処理、上水の前処理、廃水処理など懸濁物を
含んだ液を濾過して、除濁により清水を得るための中空
糸膜濾過器の運転方法に関し、詳しくは、内圧式の中空
糸膜濾過器にクロスフロー流で被処理液(通常「水」を
対象とする)を流して処理水を得る場合に、濾材寿命の
延長、所要動力の低減に有効な運転方法を提供するもの
である。
BACKGROUND OF THE INVENTION The present invention relates to water treatment for the semiconductor industry,
Regarding the operation method of the hollow fiber membrane filter to obtain clear water by filtering the liquid containing suspension such as power plant water treatment, tap water pretreatment, wastewater treatment, etc. Provide a method of operation that is effective in extending the filter medium life and reducing the required power when treating liquid (usually "water" is the target) is passed through a hollow fiber membrane filter in a cross-flow manner to obtain treated water. It is a thing.

【0002】[0002]

【従来技術】懸濁物を含む液から濁質を除去して清澄な
液を得る除濁装置は、多くの産業分野で利用されてお
り、その構成も極めて多種に渡っている。
2. Description of the Related Art A turbidity eliminator for removing turbidity from a liquid containing a suspension to obtain a clear liquid is used in many industrial fields, and its constitution is extremely diverse.

【0003】例えば原子力発電所の復水処理では、プリ
コート型濾過器、中空糸膜濾過器等、半導体工場の超純
水の前処理等純水装置の除濁処理では、凝集沈澱濾過装
置等が用いられている。本発明において対象とする中空
糸膜濾過器もその除濁装置の一つとして用いられてお
り、一般的には、膜濾過器の管内に懸濁物を含む被処理
水を流通させて、その圧力により水だけを膜の管外側に
透過させ、懸濁物を膜で阻止する除濁処理装置として使
用されている。
For example, in the condensate treatment of a nuclear power plant, a pre-coat type filter, a hollow fiber membrane filter, etc. It is used. The hollow fiber membrane filter targeted in the present invention is also used as one of the turbidity removing devices, and generally, the water to be treated containing the suspension is circulated in the tube of the membrane filter, It is used as a turbidity treatment device in which only water permeates to the outside of the tube by pressure and the suspension is blocked by the membrane.

【0004】ところで、この内圧式の膜濾過器では、濾
過に際して阻止された懸濁物が濾材表面(中空糸膜の内
側面)に堆積し、この堆積物の量が増加すれば、堆積層
を通過する水の抵抗が増し、濾過差圧が上昇するので、
濾過差圧が一定程度まで上昇した時点で逆洗等の洗浄に
より堆積物を除去し、差圧の回復を行なうのが通常であ
る。また、堆積物の質,量によっては、通常の逆洗等で
はこの堆積物が容易に除去されないので、薬品による溶
解もしくは膜の交換が必要になる。
By the way, in this internal pressure type membrane filter, the suspended matter, which is blocked during the filtration, is deposited on the surface of the filter medium (inner side surface of the hollow fiber membrane), and if the amount of this deposit is increased, the deposited layer is formed. Since the resistance of water passing through increases and the filtration pressure difference increases,
When the filtration pressure difference rises to a certain level, it is usual to remove deposits by washing such as backwashing and recover the pressure difference. In addition, depending on the quality and quantity of the deposit, the deposit cannot be easily removed by ordinary backwashing or the like, so it is necessary to dissolve it with a chemical or replace the film.

【0005】しかし工業的には、濾材の寿命延長や逆洗
廃液量の低減が望まれることから、できるだけ濾材表面
に懸濁物を堆積させない目的で工夫された運転法が従来
から行なわれている。具体的には、内圧式の膜濾過器に
おいては、膜の管内に流入させた被処理水の全量を膜の
管外側に透過させる(これを一般に全量濾過方式とい
う)のではなく、流入させた被処理水の一部を管外側に
透過させ、残部を膜を透過させることなく非透過水とし
て取り出す、いわゆるクロスフロー濾過方式を利用する
と共に、前記非透過水を膜の入口側に循環するように
し、この循環水の流量を可能な限り大きくして管内の水
の流速を高くすることにより、管内面の掃流力を利用し
て上記の堆積量を低減する方法が採用されている。
However, industrially, it is desired to extend the service life of the filter medium and reduce the amount of backwash waste liquid, and therefore, an operation method devised for the purpose of preventing the accumulation of suspended matter on the surface of the filter medium as much as possible has been conventionally practiced. . Specifically, in the internal pressure type membrane filter, the whole amount of the water to be treated, which has flowed into the membrane tube, is not permeated to the outside of the membrane tube (this is generally referred to as a total volume filtration method), but is allowed to flow. A so-called cross-flow filtration method is used in which a part of the water to be treated is permeated to the outside of the pipe and the rest is taken out as non-permeated water without permeating the membrane, and the non-permeated water is circulated to the inlet side of the membrane. In addition, a method is adopted in which the flow rate of the circulating water is increased as much as possible to increase the flow velocity of the water in the pipe, thereby utilizing the scavenging force of the inner surface of the pipe to reduce the amount of accumulation.

【0006】図4は原子力発電所における懸濁物として
酸化鉄を含む機器ドレン廃液を、内圧式の超濾過器で非
透過水を循環しながら膜濾過処理した時の結果を示した
ものであり、内径10〜25mmφのチューブ型濾過膜
では、循環水量1〜5m3 /hr、循環水の管内流速2
〜4m/secで運転すると、図から分かるように循環
水量が少ないほど、すなわち管内流速が遅いほど透過液
流量の時間当たりの低下は大きくなっており、上記の管
内流速を高くする運転方法の効果が確認される。
FIG. 4 shows the results of a membrane draining process of an equipment drain waste liquid containing iron oxide as a suspension in a nuclear power plant while circulating non-permeate water with an internal pressure type ultrafilter. In the case of a tube type filtration membrane having an inner diameter of 10 to 25 mmφ, the circulating water amount is 1 to 5 m 3 / hr and the circulating water flow velocity is 2
When operated at ˜4 m / sec, as can be seen from the figure, the smaller the amount of circulating water, that is, the slower the flow velocity in the pipe, the greater the decrease in permeate flow rate per hour, and the effect of the operating method for increasing the flow velocity in the pipe described above. Is confirmed.

【0007】[0007]

【発明が解決しようとする課題】ところが、本発明者等
の研究によると、内圧式の膜濾過器における管内の流速
を高くする方法は、必ずしも全ての膜濾過器において有
効な運転方法でなく、例えば内径が小さく管内流動抵抗
が大きな中空糸膜濾過器では、その効果のないことが分
かった。
However, according to the study of the present inventors, the method of increasing the flow velocity in the pipe of the internal pressure type membrane filter is not necessarily an effective operation method in all the membrane filters. For example, it was found that a hollow fiber membrane filter having a small inner diameter and a large flow resistance in a pipe had no effect.

【0008】その理由を以下に説明する。管内流動抵抗
が大きな中空糸膜濾過器、例えば内径0.3〜2mmφ
程度の中空糸膜濾過器を内圧式で運転する場合、この濾
過器では中空糸膜の内径が小さいため単位長さ辺りの管
内流動抵抗が大きくなる。このため、例えば10mmφ
以上の大きな内径をもつ膜濾過器では可能な3m/se
c以上の乱流域での運転ができず、管内流動抵抗が大き
な中空糸膜濾過器では一般に被処理水を1m/sec前
後の流速で流す運転を行なうことになる。しかしこのよ
うな条件で運転を行なうと、局所的に中空糸膜の入口部
分の堆積物量が大きくなるという現象が現われ、これに
原因して膜全体の差圧上昇も早くなるという結果になっ
てしまう。
The reason will be described below. A hollow fiber membrane filter with a large flow resistance in the pipe, for example, an inner diameter of 0.3 to 2 mmφ
When a hollow fiber membrane filter of a certain degree is operated by an internal pressure system, the flow resistance in the pipe per unit length becomes large because the inner diameter of the hollow fiber membrane is small in this filter. Therefore, for example, 10 mmφ
3m / se which is possible with the above membrane filter with large inner diameter
In a turbulent flow region of c or more, the hollow fiber membrane filter having a large flow resistance in the pipe cannot generally be operated, and the treated water is generally operated to flow at a flow rate of about 1 m / sec. However, when operating under such conditions, a phenomenon in which the amount of deposits locally increases at the inlet of the hollow fiber membrane appears, and as a result of this, the differential pressure rise over the entire membrane also becomes faster. I will end up.

【0009】図3はこのような現象をモデル的に説明す
るための図であり、図中の21を内径0.3〜2mm
φ、長さ50cm以上の中空糸膜とし、これを内圧式ク
ロスフロー流で被処理水の管内流速を1m/sec程度
に確保して運転を行なったとすると、その管内流動抵抗
は0.5kg/cm2 以上となる。このため、中空糸膜
入口側端部と出口側端部の圧力差は0.5kg/cm2
以上となり、膜内側から膜外側に透過する水の膜透過流
速がその分異なる。例えば図3の中空糸膜21が約0.
5kg/cm2 の圧力差で透過液流量が2倍になる膜で
あるとすると、膜透過水量Qxは、膜入口部と膜出口部
では2:1になる。その結果、入口部の膜面に対する堆
積物量がその分多くなる。膜濾過において濾過流速と差
圧上昇の関係は(差圧上昇)=(流速)2 (“精密ろ
過”「分離技術の基礎と新しい展開−機械的分離技術
−」;化学工学協会関東支部(1988))であるから、中
空糸膜の入口部の差圧上昇は早く、堆積物による膜面の
閉塞が進行する。そして閉塞により差圧が上昇すること
はその部分の透過水流量が低下することを意味し、透過
水流量を一定にした濾過器の運転を行なう場合にはその
低下した分を他の膜面で補うことになるから、他の部分
の膜面の透過水流量すなわち流速を全体比例的に少しづ
つ増加させることになる。
FIG. 3 is a diagram for explaining such a phenomenon as a model, and 21 in the figure is an inner diameter of 0.3 to 2 mm.
If a hollow fiber membrane with a diameter of φ and a length of 50 cm or more is used, and the operation is performed by securing the in-pipe flow velocity of the water to be treated at about 1 m / sec with an internal pressure type cross flow flow, the in-pipe flow resistance is 0.5 kg / cm 2 or more. Therefore, the pressure difference between the inlet and outlet of the hollow fiber membrane is 0.5 kg / cm 2.
As described above, the permeation flow velocity of water permeating from the inner side to the outer side of the membrane is different accordingly. For example, the hollow fiber membrane 21 of FIG.
Assuming that the membrane has a double permeate flow rate with a pressure difference of 5 kg / cm 2 , the membrane permeated water amount Qx is 2: 1 at the membrane inlet and the membrane outlet. As a result, the amount of deposits on the film surface at the inlet increases accordingly. In the membrane filtration, the relationship between the filtration flow rate and the increase in differential pressure is (increase in differential pressure) = (flow rate) 2 ("precision filtration""Basic and new development of separation technology-mechanical separation technology-"; Chemical Engineering Association Kanto Branch (1988) )), The differential pressure at the inlet of the hollow fiber membrane rises quickly and the membrane surface is clogged with deposits. The increase in the differential pressure due to the blockage means that the permeated water flow rate at that part decreases. Since it will be compensated for, the permeated water flow rate of the other surface, that is, the flow velocity, is gradually increased in proportion to the whole.

【0010】そして膜の透過差圧は流速に比例するか
ら、膜の透過水流速が増加することは膜差圧の上昇とな
って、中空糸膜濾過器の差圧上昇が早くなる結果を招
く。
Since the permeation pressure difference across the membrane is proportional to the flow velocity, an increase in the permeation flow velocity through the membrane results in an increase in the membrane pressure difference, resulting in a faster rise in the pressure difference in the hollow fiber membrane filter. .

【0011】本発明者等は以上のような知見に基づいて
更に研究を重ね、内圧式で使用する膜濾過器において従
来一般に有効と考えられていた管内流速を高くする運転
方法に変えて、濾過器の寿命延長、逆洗等の洗浄頻度低
減に有効な新規な運転方法を、本発明によって提供する
ことを目的とする。
The present inventors have conducted further research based on the above findings, and changed the operation method to increase the flow velocity in the tube, which was generally considered to be effective in the membrane filter used in the internal pressure system, to perform filtration. It is an object of the present invention to provide a novel operation method effective for extending the life of a vessel and reducing the frequency of cleaning such as backwashing.

【0012】また本発明の別の目的は、弁,配管,ポン
プ等の諸設備の小型化を可能とし、これによって設備費
の大幅な低減を実現すると共に、容量の小さなポンプの
使用を可能として動力費が安価で、処理コストを安価と
することができる濾過器の運転方法を提供するところに
ある。
Another object of the present invention is to enable miniaturization of various equipment such as valves, pipes, and pumps, thereby significantly reducing equipment cost and enabling the use of a pump having a small capacity. It is an object of the present invention to provide a method of operating a filter, which has low power costs and low processing costs.

【0013】また更に本発明の別の目的は、上記の洗浄
頻度低減等により、使用する薬品量が少ないためにラン
ニングコストが安価であり、また洗浄水の廃液処理のた
めの設備負担や廃水処理量を低減できる濾過器の運転方
法を提供するところにある。
Still another object of the present invention is to reduce the running cost because the amount of chemicals used is small due to the above-mentioned reduction of the cleaning frequency, and the burden of equipment for the waste liquid treatment of the wash water and the waste water treatment. It is an object of the present invention to provide a method of operating a filter that can reduce the amount.

【0014】[0014]

【課題を解決するための手段及び作用】上記目的を実現
するために、本発明者は上記特許請求の範囲の各請求項
に記載した中空糸膜濾過器の運転方法の発明を完成し
た。
In order to achieve the above object, the present inventor has completed the invention of a method for operating a hollow fiber membrane filter described in each of the claims.

【0015】本発明の特徴の一つは、例えば内径0.3
〜6mm、特には内径0.7〜2.0mmで、長さ50
cm以上、一般的には50〜250cmの中空糸膜を用
いて構成した濾過器の中空糸膜の管内に懸濁物を含んだ
被処理液を流入させ、当該被処理液の一部を中空糸膜の
管外側に透過させて処理液となすと共に、被処理液の残
部を中空糸膜を透過させることなく非透過液として中空
糸膜の管端部より取り出すようにした内圧式の中空糸膜
濾過器において、上記非透過液の流量を、中空糸膜管内
のレイノルズ数が400以下、好ましくは15〜25
0、最適には75〜150となるように設定することを
特徴とする中空糸膜濾過器の運転方法にある。
One of the features of the present invention is, for example, an inner diameter of 0.3.
~ 6 mm, especially 0.7-2.0 mm inner diameter, length 50
cm or more, generally 50 to 250 cm, the liquid to be treated containing the suspension is allowed to flow into the hollow fiber membrane tube of the filter constituted by the hollow fiber membrane, and a part of the liquid to be treated is hollow. An internal pressure type hollow fiber that is made to permeate to the outside of the tube of the fiber membrane to form a treatment liquid, and the rest of the liquid to be treated is taken out from the tube end of the hollow fiber membrane as a non-permeation liquid without permeating the hollow fiber membrane. In the membrane filter, the Reynolds number in the hollow fiber membrane tube is 400 or less, preferably 15 to 25
There is a method of operating a hollow fiber membrane filter characterized in that it is set to 0, and optimally 75 to 150.

【0016】本発明において使用する中空糸膜として
は、精密濾過膜、限外濾過膜等を挙げることができる
が、一般的には膜透過水流量が圧力1kg/cm2 の条
件下で100リットル/hr・m2 以上の膜、特には2
50リットル/hr・m2 以上の高透水性膜を用いる場
合に本発明の特徴が効果的に奏される。
Examples of the hollow fiber membrane used in the present invention include microfiltration membranes and ultrafiltration membranes. Generally, 100 liters of the membrane permeated water flow rate under a pressure of 1 kg / cm 2. / Hr · m 2 or more, especially 2
The features of the present invention are effectively exhibited when a highly water-permeable membrane of 50 liter / hr · m 2 or more is used.

【0017】本発明の運転方法においては、上記の中空
糸膜濾過器の管内に懸濁物を含んだ被処理液をクロスフ
ロー流で流し、内圧により中空糸膜の管外側に処理液を
透過させる際に、透過液流量が50リットル/hr・m
2 以上、好ましくは60〜80リットル/hr・m2
なるように運転することがよい。
In the operating method of the present invention, the liquid to be treated containing the suspension is passed through the tube of the hollow fiber membrane filter in a cross-flow flow, and the treatment liquid is permeated to the outside of the hollow fiber membrane tube by the internal pressure. Permeate flow rate is 50 liters / hr · m
It is preferable to operate so as to be 2 or more, preferably 60 to 80 liter / hr · m 2 .

【0018】本発明の方法を適用し得る濾過器は、中空
糸膜濾過器に対して被処理液をクロスフロー流で流すも
のであればよく、非透過液を一過性の流れで系外に排出
することもできるが、通常は非透過液を水中空糸膜濾過
器の入口側原液に循環させる循環型で使用する運転方法
が好ましく採用される。
The filter to which the method of the present invention can be applied may be any filter as long as it allows a liquid to be treated to flow through a hollow fiber membrane filter in a cross-flow flow. It is also possible to discharge the non-permeated liquid to the raw material liquid on the inlet side of the water hollow fiber membrane filter, but an operation method of circulating type is preferably adopted.

【0019】以上のような構成の濾過器において、ある
設定された透過液流量の下で非透過液流量を小さく設定
することで管内流動抵抗を効果的に小さな値とすること
ができる。例えば、循環水(非透過水)流速1m/se
c以下で、管内を流れる循環水のレイノズル数が15〜
250となるようにして、例えば循環水量を透過水流量
と略同程度に維持して循環水を流すことで、0.3〜2
mmφ、50cmの中空糸膜の管内流動抵抗は0.2k
g/cm2 以下とすることができる。
In the filter having the above structure, the flow resistance in the pipe can be effectively reduced by setting the non-permeate flow rate to be small under a certain set permeate flow rate. For example, circulating water (non-permeated water) flow velocity 1 m / se
The number of Reynolds of circulating water flowing in the pipe is 15 to 10
When the flow rate of the circulating water is set to 250, for example, the circulating water is maintained at about the same amount as the permeated water flow rate, and the circulating water is flowed to 0.3 to 2
mmφ, 50 cm hollow fiber membrane flow resistance in the tube is 0.2 k
It can be g / cm 2 or less.

【0020】これにより、中空糸膜における入口部と出
口部の膜の透過流速の差は小さくでき、中空糸膜は入口
部から出口部まで略一定の濾過流速と濾過差圧で運転す
ることが可能となるから、本発明の運転方法においては
(差圧上昇)=(流速)2 の関係で加速された流量低下
を補う必要がないため、膜差圧の上昇ひいては濾過器の
差圧の上昇を防止できる。
As a result, the difference in the permeation flow velocity between the inlet and the outlet of the hollow fiber membrane can be made small, and the hollow fiber membrane can be operated from the inlet to the outlet at a substantially constant filtration flow velocity and filtration differential pressure. Since it becomes possible, in the operating method of the present invention, it is not necessary to compensate for the accelerated decrease in flow rate due to the relationship of (increase in differential pressure) = (velocity) 2. Therefore, increase in transmembrane pressure, and thus increase in differential pressure of the filter. Can be prevented.

【0021】[0021]

【実施例】以下本発明を図面に示す実施例に基づいて更
に説明する、図1は本発明の方法を適用する濾過装置の
構成概要一例を系統フロー図として示したものであり、
この図において1は原水タンクであり、入口弁2を介し
て懸濁物を含む原水(実施例ではつくば工業団地の工業
用水)を一時貯留する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be further described below based on the embodiments shown in the drawings. FIG. 1 is a system flow diagram showing an example of the schematic constitution of a filtration apparatus to which the method of the present invention is applied.
In the figure, reference numeral 1 is a raw water tank, which temporarily stores raw water containing suspended matter (industrial water of Tsukuba Industrial Park in the embodiment) via an inlet valve 2.

【0022】この原水タンク1に貯留された原水は、配
管3を通して送水ポンプ4及び入口弁5,5を介して、
本例では2系列の限外濾過膜(UF)中空糸モジュール
6,6にクロスフロー流で流され、膜透過水は出口弁7
を介して処理水タンク8に送られるようになっている。
なお図1ではUF中空糸モジュールを模式的に図示して
いる。
The raw water stored in the raw water tank 1 is passed through a pipe 3 through a water pump 4 and inlet valves 5 and 5,
In this example, two series of ultrafiltration membrane (UF) hollow fiber modules 6 and 6 are flowed in a cross-flow manner, and the permeated water of the membrane is discharged from the outlet valve 7.
It is designed to be sent to the treated water tank 8 via.
Note that FIG. 1 schematically shows the UF hollow fiber module.

【0023】9,9はUF中空糸モジュール6,6の非
透過水流量を制御する出口流量コントロール弁であり、
非透過水はこの出口流量コントロール弁9,9を介して
循環用配管10を介して原水タンクに戻されるようにな
っている。
Reference numerals 9 and 9 are outlet flow rate control valves for controlling the flow rate of non-permeated water of the UF hollow fiber modules 6 and 6.
The non-permeated water is returned to the raw water tank through the outlet flow rate control valves 9, 9 and the circulation pipe 10.

【0024】なお11は循環遮断弁、12はブロー弁で
あり、上記の各弁の開閉切換えの操作と共に開閉が切換
えられて、UF中空糸モジュール6の逆洗洗浄の際に、
逆洗水をブロー弁12を介して系外に排水するように設
けられている。
Reference numeral 11 is a circulation shutoff valve, and 12 is a blow valve, which is opened / closed together with the above-mentioned opening / closing switching operation of each valve, and when the UF hollow fiber module 6 is backwashed and washed,
It is provided so that the backwash water is discharged to the outside of the system via the blow valve 12.

【0025】本発明においては、以上の構成を有する濾
過装置において、出口流量コントロール弁9により非透
過水流量を調整して、中空糸膜管内を流れる非透過水の
レイノルズ数が400以下、好ましくは15〜250と
なるように設定することにその特徴がある。
In the present invention, in the filtration device having the above-mentioned structure, the Reynolds number of the non-permeated water flowing in the hollow fiber membrane tube is 400 or less, preferably the non-permeated water flow rate is adjusted by the outlet flow rate control valve 9. The characteristic is that it is set to 15 to 250.

【0026】試験例1 本発明の効果を確認するために以下の試験を行なった。Test Example 1 The following test was conducted to confirm the effect of the present invention.

【0027】上記構成の濾過装置において、UF中空糸
モジュール6に、内径0.5mmφ、長さ1mのアクリ
ルニトリル(PAN)製中空糸膜(分画分子量5000
0)を2050本束ねて、3B PVCパイプに収納した
中空糸膜モジュールを使用し、以下の条件で非透過水を
原水タンク1に循環させて、膜差圧上昇の比較を行なっ
た。
In the filtration device having the above structure, an acrylonitrile (PAN) hollow fiber membrane having an inner diameter of 0.5 mmφ and a length of 1 m is used in the UF hollow fiber module 6 (fraction molecular weight 5000).
2050 of 0) were bundled and a hollow fiber membrane module housed in a 3 B PVC pipe was used, and non-permeated water was circulated in the raw water tank 1 under the following conditions to compare the transmembrane pressure rise.

【0028】中空糸膜の膜透過液流量:530リットル
/hr・m2 (圧力1kg/cm2) 原水(被処理水):つくば工業団地の工業用水 透過水流量:0.4m3 /hr(一定) 循環水の管内レイノルズ数 (モジュール出口を基準として):86、 238、
389、 800 (循環水の流量:m3 /hr)(0.4)(1.1)
(1.8)(3.7) 通水時間:5分に1回の逆洗を行なって1500時間 以上の試験を行なった結果を、図2の図表に示した。
Permeate flow rate of hollow fiber membrane: 530 liters / hr · m 2 (pressure 1 kg / cm 2 ) Raw water (water to be treated): Industrial water of Tsukuba Industrial Park Permeate flow rate: 0.4 m 3 / hr ( Constant) Reynolds number in circulating water pipe (based on module outlet): 86, 238,
389, 800 (circulation water flow rate: m 3 / hr) (0.4) (1.1)
(1.8) (3.7) Water passage time: Backwashing once every 5 minutes and 1500 hours or more of the test results are shown in the chart of FIG.

【0029】この結果から分かるように、レイノルズ数
が大きい程(循環水量が多い程)、膜差圧の上昇が大き
くなり、従来考えられていたレイノルズ数を800以上
で運転する場合に比べて、400以下、好ましくは25
0以下で、長時間運転した場合の膜差圧の上昇が小さく
できることが確認された。
As can be seen from these results, the larger the Reynolds number (the larger the amount of circulating water) is, the larger the increase in the transmembrane pressure is, which is higher than the conventional Reynolds number of 800 or more. 400 or less, preferably 25
It was confirmed that when the temperature was 0 or less, the increase in transmembrane pressure when operating for a long time could be reduced.

【0030】[0030]

【発明の効果】以上述べたように、本発明は、内圧式で
使用する膜濾過器において従来一般に有効と考えられて
いた管内流速を高くして循環水量を透過水量の10倍程
度として循環運転を行なう方法とは全く異なり、例えば
循環水量を透過水流量と略同程度に維持した新規な運転
方法を本発明によって提供でき、これにより、中空糸膜
濾過器の寿命延長、逆洗等の洗浄頻度低減を実現できる
という効果がある。
As described above, according to the present invention, in the membrane filter used in the internal pressure system, the flow velocity in the pipe, which has been generally considered to be conventionally effective, is increased to make the circulating water amount about 10 times the permeated water amount and perform the circulation operation. The method of the present invention can provide a novel operation method in which the circulating water amount is maintained at about the same level as the permeated water flow rate, which is completely different from the method of performing the above. This has the effect of reducing the frequency.

【0031】また、本発明によれば、循環水量が従来に
比べて1/5〜1/10となるため、弁,配管,ポンプ
等の諸設備の小型化が可能であり、これによって設備費
の大幅な低減を実現できると共に、容量の小さなポンプ
の使用が可能であるため動力費が安価で、処理コストを
安価とすることができるという効果もある。
Further, according to the present invention, since the circulating water amount is 1/5 to 1/10 of that of the conventional one, various equipments such as valves, pipes and pumps can be miniaturized, whereby the equipment cost can be reduced. There is also an effect that the power cost can be reduced because the pump having a small capacity can be used and the processing cost can be reduced.

【0032】更に本発明によれば、洗浄回数を従来に比
べて少なく出来るため、使用薬品量が少なくなり、また
洗浄廃水の処理設備の負担軽減や廃水処理量を低減でき
るという効果もある。
Further, according to the present invention, since the number of times of cleaning can be reduced as compared with the conventional method, the amount of chemicals used can be reduced, and the burden on the treatment facility for cleaning wastewater and the amount of wastewater treatment can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用する濾過装置の構成概要一例を系
統フロー図として示した図、
FIG. 1 is a diagram showing an example of a schematic configuration of a filtration device to which the present invention is applied as a system flow diagram,

【図2】内圧式の中空糸膜濾過器に懸濁物を含む被処理
水をクロスフローで流した時の管内レイノズル数と、単
位時間当たりの差圧上昇程度の関係を示した図表、
FIG. 2 is a chart showing the relationship between the number of Reynolds in the pipe and the degree of increase in differential pressure per unit time when the water to be treated containing the suspension is cross-flowed through the internal pressure type hollow fiber membrane filter.

【図3】中空糸膜に従来の被処理水を高流速で流す運転
方法で被処理水を流したときの透過水流量の分布状態を
モデル的に示した図、
FIG. 3 is a model view showing a distribution state of permeated water flow rate when the water to be treated is flown by a conventional method of flowing the water to be treated through the hollow fiber membrane at a high flow rate;

【図4】チューブラ型膜濾過器に被処理水を流した時の
循環流速の大きさと、差圧上昇の関係を示した図。
FIG. 4 is a diagram showing the relationship between the magnitude of the circulation flow velocity and the increase in differential pressure when the water to be treated is passed through the tubular membrane filter.

【符号の説明】[Explanation of symbols]

1・・・原水タンク、3・・・送水配管、4・・・送水
ポンプ、5・・・入口弁、6・・・UF中空糸モジュー
ル、7・・・出口弁、8・・・処理水タンク、9・・・
循環流量コントロール弁。
1 ... Raw water tank, 3 ... Water supply pipe, 4 ... Water pump, 5 ... Inlet valve, 6 ... UF hollow fiber module, 7 ... Outlet valve, 8 ... Treated water Tank, 9 ...
Circulation flow control valve.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年7月12日[Submission date] July 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項4[Name of item to be corrected] Claim 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0016[Correction target item name] 0016

【補正方法】変更[Correction method] Change

【補正内容】 本発明において使用する中空糸膜としては、精密濾過
膜、限外濾過膜等を挙げることができるが、一般的には
膜透過流量が圧力1kg/cm2 の条件下で100リ
ットル/hr・m2 以上の膜、特には250リットル/
hr・m2 以上の高透性膜を用いる場合に本発明の特
徴が効果的に奏される。
As the hollow fiber membrane used in [correction contents present invention, microfiltration membrane, there may be mentioned an ultrafiltration membrane or the like, typically membrane permeate flow rate under a pressure of 1 kg / cm 2 100 Membrane of liter / hr · m 2 or more, especially 250 liter /
The features of the present invention are effectively exhibited when a highly liquid- permeable membrane having an hr · m 2 or more is used.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】 本発明の方法を適用し得る濾過器は、中空糸膜濾過器に
対して被処理液をクロスフロー流で流すものであればよ
く、非透過液を一過性の流れで系外に排出することもで
きるが、通常は非透過液を中空糸膜濾過器の入口側原液
に循環させる循環型で使用する運転方法が好ましく採用
される。
[Details of correction] The filter to which the method of the present invention can be applied may be any filter as long as it allows the liquid to be treated to flow through the hollow fiber membrane filter in a cross-flow flow. Although it can be discharged to the outside, an operation method in which a non-permeate is circulated to the stock solution on the inlet side of the hollow fiber membrane filter is usually used preferably.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 濾過機能を有する中空糸膜の管内に懸濁
物を含んだ被処理液を流入させ、当該被処理液の一部を
中空糸膜の管外側に透過させて処理液となすと共に、被
処理液の残部を中空糸膜を透過させることなく非透過液
として中空糸膜の管端部より取り出すようにした内圧式
の中空糸膜濾過器において、上記非透過液の流量を、中
空糸膜管内のレイノルズ数が400以下となるように設
定することを特徴とする中空糸膜濾過器の運転方法。
1. A liquid to be treated containing a suspension is flowed into a hollow fiber membrane tube having a filtration function, and a part of the liquid to be treated is permeated to the outside of the hollow fiber membrane tube to form a treatment liquid. Along with the internal pressure type hollow fiber membrane filter, the remaining portion of the liquid to be treated is taken out from the pipe end of the hollow fiber membrane as a non-permeable liquid without permeating the hollow fiber membrane, and the flow rate of the non-permeable liquid is A method for operating a hollow fiber membrane filter, wherein the Reynolds number in the hollow fiber membrane tube is set to 400 or less.
【請求項2】 請求項1において、濾過器の中空糸膜
が、膜透過液流量が圧力1kg/cm2 の条件下で、1
00リットル/hr・m2 以上の膜であることを特徴と
する中空糸膜濾過器の運転方法。
2. The hollow fiber membrane according to claim 1, wherein the hollow fiber membrane has a membrane permeate flow rate of 1 kg / cm 2
A method for operating a hollow fiber membrane filter, which is a membrane having a volume of at least 00 liter / hr · m 2 .
【請求項3】 請求項1又は2において、透過液流量が
50リットル/hr・m2 以上となるように運転するこ
とを特徴とする中空糸膜濾過器の運転方法。
3. The method for operating a hollow fiber membrane filter according to claim 1 or 2, which is operated so that the permeated liquid flow rate is 50 liters / hr · m 2 or more.
【請求項4】 請求項1乃至3のいずれかにおいて、中
空糸膜濾過器の非透過液を、該中空糸膜濾過器の入口側
原水に循環させることを特徴とする中空糸膜濾過器の運
転方法。
4. The hollow fiber membrane filter according to claim 1, wherein the non-permeate of the hollow fiber membrane filter is circulated to the raw water on the inlet side of the hollow fiber membrane filter. how to drive.
JP18384192A 1992-07-10 1992-07-10 Operating method of hollow fiber membrane filter Expired - Lifetime JP2922059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18384192A JP2922059B2 (en) 1992-07-10 1992-07-10 Operating method of hollow fiber membrane filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18384192A JP2922059B2 (en) 1992-07-10 1992-07-10 Operating method of hollow fiber membrane filter

Publications (2)

Publication Number Publication Date
JPH0623240A true JPH0623240A (en) 1994-02-01
JP2922059B2 JP2922059B2 (en) 1999-07-19

Family

ID=16142779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18384192A Expired - Lifetime JP2922059B2 (en) 1992-07-10 1992-07-10 Operating method of hollow fiber membrane filter

Country Status (1)

Country Link
JP (1) JP2922059B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319516A (en) * 1998-05-21 1999-11-24 Nkk Corp Water filtration apparatus and method for operating the same
JP2004136183A (en) * 2002-10-16 2004-05-13 Fuji Electric Systems Co Ltd Water treatment method and apparatus therefor
JP2011000509A (en) * 2009-06-16 2011-01-06 Asahi Kasei Medical Co Ltd Hollow fiber filtration membrane
DE112012000726T5 (en) 2011-03-04 2013-11-14 Shin-Etsu Handotai Co., Ltd. A susceptor and method of making an epitaxial wafer using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11319516A (en) * 1998-05-21 1999-11-24 Nkk Corp Water filtration apparatus and method for operating the same
JP2004136183A (en) * 2002-10-16 2004-05-13 Fuji Electric Systems Co Ltd Water treatment method and apparatus therefor
JP2011000509A (en) * 2009-06-16 2011-01-06 Asahi Kasei Medical Co Ltd Hollow fiber filtration membrane
DE112012000726T5 (en) 2011-03-04 2013-11-14 Shin-Etsu Handotai Co., Ltd. A susceptor and method of making an epitaxial wafer using the same

Also Published As

Publication number Publication date
JP2922059B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP2860191B2 (en) Method of changing operation mode in automatic water filtration device
EP1704911B1 (en) Method for cleaning a separation membrane in a membrane bioreactor system
JP4635666B2 (en) Water treatment method
JP2000061466A (en) Device for treating membrane-filtration waste water and its operation
JPH06277664A (en) Method and apparatus for clarifying surface flowing water with membrane
JPH11319516A (en) Water filtration apparatus and method for operating the same
CA2742251A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP5588099B2 (en) Membrane filtration treatment method and membrane filtration treatment equipment
JPH0623240A (en) Operation method of hollow fiber membrane filter
JPH07275671A (en) Operation of external pressure type hollow yarn ultrafiltration membrane module
KR101256704B1 (en) System and Method for Filtering
JPH11169851A (en) Water filter and its operation
JPH06238136A (en) Method for washing filter membrane module
JP2007289899A (en) Membrane washing method for membrane separation means, and water treatment apparatus
JP3395846B2 (en) Water membrane purification method and method of operating the same
JP3601015B2 (en) Filtration method using membrane
JPH09220449A (en) Membrane separation device
WO2000027510A1 (en) Method for filtration with membrane
JP2005046762A (en) Water treatment method and water treatment apparatus
JP2585879Y2 (en) Membrane separation device
JP2015123436A (en) Water treatment method
KR101568041B1 (en) System for Filtering
JP7213711B2 (en) Water treatment device and water treatment method
JPH10277549A (en) Water treatment apparatus
JPH06170365A (en) Method for purifying water in tap water system