JP4635666B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP4635666B2
JP4635666B2 JP2005076620A JP2005076620A JP4635666B2 JP 4635666 B2 JP4635666 B2 JP 4635666B2 JP 2005076620 A JP2005076620 A JP 2005076620A JP 2005076620 A JP2005076620 A JP 2005076620A JP 4635666 B2 JP4635666 B2 JP 4635666B2
Authority
JP
Japan
Prior art keywords
water
separation membrane
filtration
immersion tank
membrane module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005076620A
Other languages
Japanese (ja)
Other versions
JP2006255587A (en
Inventor
亮太 高木
有 北出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005076620A priority Critical patent/JP4635666B2/en
Publication of JP2006255587A publication Critical patent/JP2006255587A/en
Application granted granted Critical
Publication of JP4635666B2 publication Critical patent/JP4635666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、浸漬型膜分離手段を用いた水処理方法に関する。さらに詳しくは、少なくとも運転工程が分離膜モジュールを介して被処理液を吸引して膜ろ過水を得るろ過工程、分離膜モジュール下部に設置した散気装置から空気を供給して分離膜モジュールの表面を洗浄する空洗工程、浸漬槽底部に沈降した懸濁物質を汚泥として浸漬槽外へ排出する排泥工程から構成された水処理方法に関する。   The present invention relates to a water treatment method using submerged membrane separation means. More specifically, at least the operation step is a filtration step in which the liquid to be treated is sucked through the separation membrane module to obtain membrane filtered water, and the surface of the separation membrane module is supplied with air from an air diffuser installed below the separation membrane module It is related with the water treatment method comprised from the empty washing process which wash | cleans, and the mud discharge process which discharges the suspended solid settled in the bottom part of the immersion tank as sludge to the exterior of an immersion tank.

分離膜を用いた膜分離技術は、上水道における飲料用水製造分野、工業用水、工業用超純水、食品、医療といった産業用水製造分野、都市下水の浄化および工業廃水処理といった下排水処理分野などの幅広い分野に利用されている。また、膜分離に用いられる分離膜モジュールは、処理分野に係わらず加圧型と浸漬型に分類される。浸漬型の分離膜モジュールは浸漬槽内に浸漬設置され、吸引あるいは水頭差を駆動力として、分離膜を介して浸漬槽内の被処理液から膜ろ過水を得る浸漬型膜分離手段に用いられる。   Membrane separation technology using separation membranes includes drinking water production in the waterworks, industrial water, industrial ultrapure water, industrial water production such as food and medicine, sewage treatment such as municipal sewage purification and industrial wastewater treatment. It is used in a wide range of fields. Moreover, the separation membrane module used for membrane separation is classified into a pressure type and an immersion type regardless of the processing field. The immersion type separation membrane module is immersed in the immersion tank and is used as an immersion type membrane separation means for obtaining membrane filtrate from the liquid to be treated in the immersion tank through the separation membrane using suction or water head difference as a driving force. .

この浸漬型膜分離手段において、浸漬槽内の被処理液中の水分は分離膜を介して膜ろ過水として取り出され、懸濁物質は被処理液中あるいは分離膜表面に残されるために、被処理液の懸濁物質濃度は浸漬槽への流入時点よりも高くなる。被処理液の懸濁物質濃度が高くなったり、分離膜表面に蓄積した懸濁物質量が多くなったりすると、分離膜モジュールへの懸濁物質負荷が増して、分離膜モジュールの目詰まりや分離膜間の流路閉塞が進行して所定の膜ろ過水量を得られなくなり、分離膜モジュールの薬品洗浄が必要となる。   In this submerged membrane separation means, moisture in the liquid to be treated in the immersion tank is taken out as membrane filtrate through the separation membrane, and suspended substances remain in the liquid to be treated or on the surface of the separation membrane. The concentration of suspended solids in the treatment liquid is higher than that at the time of inflow into the immersion tank. If the concentration of suspended substances in the liquid to be treated increases or the amount of suspended substances accumulated on the surface of the separation membrane increases, the load of suspended substances on the separation membrane module increases, causing clogging or separation of the separation membrane module. The blockage of the flow path between the membranes proceeds and a predetermined amount of membrane filtration water cannot be obtained, and chemical cleaning of the separation membrane module is required.

このような分離膜モジュールの目詰まりや流路閉塞の進行を阻止あるいは抑制するために、一般的には浸漬型分離膜モジュール下部に設置された散気装置から連続的、あるいは間欠的に空気を散気させることによって、気泡によるせん断力や分離膜の揺動により分離膜表面や分離膜間の流路に蓄積した懸濁物質を剥離、除去したり(空洗)、定期的に分離膜の膜ろ過水側から被処理液側へ膜ろ過水を逆流させることによって分離膜表面に蓄積した懸濁物質層を剥離、除去したり(逆洗)する物理洗浄を実施している。しかしながら、平膜モジュールは一般的に構造上の問題から逆洗ができないことが多く、平膜モジュールの物理洗浄は連続的、あるいは断続的な空洗に依るところが大きい。   In order to prevent or suppress the progress of such clogging of the separation membrane module and the blockage of the flow path, generally, air is continuously or intermittently supplied from a diffuser installed at the bottom of the submerged separation membrane module. By diffusing, the suspended matter accumulated on the separation membrane surface and the flow path between the separation membranes is peeled off or removed by the shearing force of the bubbles or the separation membrane (air washing), and the separation membrane is periodically removed. Physical washing is performed to peel and remove (backwash) the suspended material layer accumulated on the surface of the separation membrane by flowing back the membrane filtrate from the membrane filtrate side to the liquid to be treated. However, the flat membrane module generally cannot be back-washed due to structural problems, and physical washing of the flat membrane module largely depends on continuous or intermittent empty washing.

また、被処理液の懸濁物質濃度が高くなりすぎると分離膜モジュールの目詰まりや流路閉塞が進行しやすくなり、所定の膜ろ過水量が得られなくなることから、被処理液の懸濁物質濃度を一定値以下に維持するために、被処理液の一部または全部を連続的、あるいは間欠的に浸漬槽外へ排出している。被処理液中の懸濁物質濃度を連続的に求め、懸濁物質濃度が所定の基準値以下に維持できるように膜分離処理条件を変更したり(特許文献1)、被処理液から沈降分離した沈降汚泥の量を調整して、被処理液中の懸濁物質濃度が所定の基準値以下に維持したり(特許文献2)、分離膜モジュール下部に設置された散気装置から連続的に散気して生ずる気液混相流によって分離膜モジュールの空洗を連続的に行うとともに、浸漬槽下部に形成される気液混相流の影響を受けない沈降ゾーンで一部の懸濁物質を沈降させることによって分離膜近傍の被処理液中の懸濁物質濃度の上昇を抑制したり(特許文献3)している。   In addition, if the concentration of suspended solids in the liquid to be treated becomes too high, clogging of the separation membrane module and blockage of the flow path are likely to proceed, and a predetermined amount of membrane filtration water cannot be obtained. In order to maintain the concentration below a certain value, a part or all of the liquid to be treated is discharged out of the immersion bath continuously or intermittently. The concentration of suspended solids in the liquid to be treated is continuously obtained, and the membrane separation treatment conditions are changed so that the suspended solids concentration can be maintained below a predetermined reference value (Patent Document 1), or the sedimentation is separated from the liquid to be treated. The suspended sludge concentration in the liquid to be treated is maintained below a predetermined reference value by adjusting the amount of the settled sludge (Patent Document 2) or continuously from the air diffuser installed at the lower part of the separation membrane module The separation membrane module is continuously rinsed with a gas-liquid mixed phase flow generated by aeration, and some suspended matter is settled in a sedimentation zone that is not affected by the gas-liquid mixed phase flow formed at the bottom of the immersion tank. By doing so, an increase in the suspended substance concentration in the liquid to be treated in the vicinity of the separation membrane is suppressed (Patent Document 3).

上記特許文献1や特許文献2に示されたような水処理方法では、浸漬槽内に被処理液中の懸濁物質濃度を連続的に測定できる浮遊物質(SS)濃度計や沈降汚泥と被処理液との界面を連続的に測定できる汚泥界面計を設置したり、これらの計器から得られたデータを基に、懸濁物質濃度や汚泥界面位置、汚泥引抜き流量や被処理液供給流量を維持、制御管理するための演算処理機能や、弁の開閉・工程変更を行う制御システムを構築したりすることが必須となり、水処理装置の構築、施工、維持管理に多大な労力を要する。また、ろ過工程中に連続的あるいは間欠的に空洗工程を行う運転工程では、空洗工程中には被処理液中の懸濁物質が沈降しないばかりか、沈降途中あるいはいったん沈降した懸濁物質が舞い戻る問題点や、懸濁物質が沈降するための時間が空洗工程と空洗工程の間しかないために、充分な懸濁物質の沈降時間を確保できない問題点や、空洗に用いられるエア量が多く必要であるといった問題点がある。さらに、逆洗工程がないために、物理洗浄の効果が限定される問題点がある。また、ろ過運転を間欠的に停止させる方法では、ろ過運転停止中に浸漬槽内の懸濁物質を沈降させることができても、ろ過運転を再開して新たに被処理液が流入した場合、その被処理液中の懸濁物質を沈降させる手段は有していない問題点がある。   In the water treatment methods as described in Patent Document 1 and Patent Document 2 above, suspended solid (SS) concentration meter or sedimentation sludge and covered substance that can continuously measure the suspended substance concentration in the liquid to be treated in the immersion tank. Install a sludge interface meter that can continuously measure the interface with the treatment liquid, and use the data obtained from these instruments to determine the suspended solid concentration, sludge interface position, sludge extraction flow rate, and treatment liquid supply flow rate. It is indispensable to construct an arithmetic processing function for maintaining and controlling and a control system for opening / closing valves and changing processes, and a great amount of labor is required for construction, construction and maintenance of the water treatment apparatus. In addition, in the operation process in which the air washing process is performed continuously or intermittently during the filtration process, the suspended material in the liquid to be treated does not settle during the air washing process, but the suspended material that has settled or settled once. This is used for problems such as the problem that the suspended substance settles, the problem that the suspended substance settles only between the washing process and the washing process, and the suspension time of the suspended substance cannot be secured. There is a problem that a large amount of air is required. Furthermore, since there is no backwashing process, there is a problem that the effect of physical washing is limited. In addition, in the method of intermittently stopping the filtration operation, even if the suspended solids in the immersion tank can be settled during the filtration operation stop, the filtration operation is restarted and a new liquid to be treated flows. There is a problem that there is no means for precipitating suspended substances in the liquid to be treated.

上記特許文献3に示されたような水処理装置では、気液混相流による分離膜モジュールの空洗を連続的に行える利点があるが、浸漬槽へ流入した被処理液中の懸濁物質の一部は沈降ゾーンへ沈降する一方で、残る懸濁物質は連続的な散気によって生ずる気液混相流によって分離膜近傍を循環し続けるために膜ろ過を継続するのに従って被処理液中の懸濁物質濃度が上昇して、浸漬型分離膜モジュールへの懸濁物質負荷が高まる。また、連続的な散気を行うために、エア量が多く必要であるといった問題点を有する。
特開平10−286563号公報(特許請求の範囲) 特開平10−286567号公報(特許請求の範囲) 特開2002−191946号公報([0008]〜[0011]段落)
In the water treatment apparatus as shown in Patent Document 3 above, there is an advantage that the separation membrane module can be continuously washed by gas-liquid mixed phase flow, but the suspended matter in the liquid to be treated that has flowed into the immersion tank While some settle to the sedimentation zone, the remaining suspended matter is suspended in the liquid to be treated as it continues to circulate in the vicinity of the separation membrane by the gas-liquid multiphase flow generated by continuous aeration. The suspended matter concentration increases, and the suspended matter load on the submerged separation membrane module increases. Moreover, in order to perform continuous aeration, there exists a problem that many air quantities are required.
JP-A-10-286563 (Claims) JP-A-10-286567 (Claims) JP 2002-191946 A (paragraphs [0008] to [0011])

本発明の目的は、浸漬槽内に浸漬設置した分離膜モジュールによって被処理液を膜分離するのと同時に、被処理液中の懸濁物質を効率的に沈降分離し、分離膜モジュールへの懸濁物質負荷を軽減することによって、ろ過稼働率を高め、効率よく長期間にわたって所定の膜ろ過水量を安定して確保できる水処理方法を提供することにある。   The object of the present invention is to perform membrane separation of the liquid to be treated by the separation membrane module installed in the immersion tank, and at the same time, to efficiently settle and separate suspended substances in the liquid to be treated, An object of the present invention is to provide a water treatment method capable of increasing the filtration operation rate by reducing the turbid substance load and efficiently ensuring a predetermined amount of membrane filtration water over a long period of time.

上記課題を解決するための本発明は、次の(1)〜(6)を特徴とするものである。   The present invention for solving the above-mentioned problems is characterized by the following (1) to (6).

(1)被処理液を貯留した浸漬槽内に浸漬設置された分離膜モジュールを用いて膜ろ過水を得る水処理方法であって、少なくとも運転工程が前記分離膜モジュールを介して被処理液を吸引して膜ろ過水を得るろ過工程、前記分離膜モジュール下部に設置した散気装置から空気を供給して前記分離膜モジュールの表面を洗浄する空洗工程、前記浸漬槽底部に沈降した懸濁物質を汚泥として前記浸漬槽外へ排出する排泥工程から構成され、かつ、前記運転工程において少なくとも1回以上
1)前記ろ過工程を所定時間単独で行った後、
2)前記排泥工程を単独で、または前記ろ過工程と前記排泥工程を同時に行い、
3)次いで前記空洗工程
をこの順で行う運転方法を有することを特徴とする水処理方法。
(1) A water treatment method for obtaining membrane filtrate using a separation membrane module immersed in a dipping tank storing a solution to be treated, wherein at least an operation process is performed with the solution to be treated via the separation membrane module. Filtration process to obtain membrane filtrate by suction, an air washing process in which air is supplied from an air diffuser installed at the bottom of the separation membrane module to wash the surface of the separation membrane module, and a suspension that has settled at the bottom of the immersion tank It consists of a mud draining process that discharges the substance as sludge to the outside of the immersion tank, and at least once in the operation process 1) after performing the filtration process alone for a predetermined time,
2) Perform the waste mud process alone, or simultaneously perform the filtration process and the waste mud process,
3) A water treatment method characterized by having an operation method in which the air washing step is performed in this order.

(2)前記分離膜モジュールを間欠的に逆洗をする逆洗工程を、前記排泥工程の完結後に前記空洗工程と組み合わせて行うことを特徴とする(1)に記載の水処理方法。   (2) The water treatment method according to (1), wherein a backwashing step of intermittently backwashing the separation membrane module is performed in combination with the air washing step after completion of the mud draining step.

(3)前記分離膜モジュールが中空糸膜モジュールであることを特徴とする(1)または(2)に記載の水処理方法。   (3) The water treatment method according to (1) or (2), wherein the separation membrane module is a hollow fiber membrane module.

(4)前記浸漬槽に供給される流入水は、浸漬槽内整流化設備を介して前記浸漬槽に供給されることを特徴とする(1)〜(3)のいずれかに記載の水処理方法。   (4) The water treatment according to any one of (1) to (3), wherein the inflow water supplied to the immersion tank is supplied to the immersion tank via a rectification facility in the immersion tank. Method.

(5)前記流入水は、凝集剤を含むことを特徴とする(1)〜(4)のいずれかに記載の水処理方法。   (5) The water treatment method according to any one of (1) to (4), wherein the inflow water includes a flocculant.

(6)前記流入水は、原水を凝集剤を用いて水処理した際に生じる凝集汚泥を含む排水、または原水を分離膜モジュールを用いて水処理した際に生じる膜ろ過洗浄排水を凝集処理した水であることを特徴とする(1)〜(4)のいずれかに記載の水処理方法。   (6) The inflow water is a flocculation treatment of wastewater containing flocculated sludge generated when the raw water is treated with a flocculant, or membrane filtration washing effluent generated when the raw water is treated with a separation membrane module. It is water, The water treatment method in any one of (1)-(4) characterized by the above-mentioned.

本発明によれば、以下に説明するとおり、浸漬槽内に浸漬設置した分離膜モジュールによって被処理液を膜分離するのと同時に、被処理液中の懸濁物質を効率的に沈降分離し、分離膜モジュールへの懸濁物質負荷を軽減することによって、ろ過稼働率を高め、効率よく長期間にわたって所定の膜ろ過水量を安定して確保できる。さらに、浸漬槽底部に沈降した懸濁物質の濃縮が進んだ汚泥を排出することによって、高い回収率を得ることができる。   According to the present invention, as described below, the membrane to be treated is separated by the separation membrane module immersed in the immersion tank, and at the same time, the suspended substances in the liquid to be treated are efficiently settled and separated. By reducing the load of suspended solids on the separation membrane module, the filtration operation rate can be increased, and a predetermined amount of membrane filtration water can be secured stably over a long period of time. Furthermore, a high recovery rate can be obtained by discharging the sludge in which the suspended matter that has settled at the bottom of the immersion tank has been concentrated.

以下、本発明の望ましい実施の形態を図面を用いて説明する。ただし、本発明の範囲がこれらに限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to these.

図1は、本発明の好ましい一実施態様を示す模式図である。流入水は、浸漬槽1に流入水配管3、浸漬槽内整流化設備4を介して連続的あるいは断続的に流入され、浸漬槽1内で液相1aと沈降した懸濁物質からなる沈降汚泥相1bに分離される。浸漬槽1内には分離膜モジュール2が浸漬設置されており、吸引ポンプ6によって分離膜モジュール2、ろ過弁7、膜ろ過水配管5を介して液相1aから膜ろ過水が取り出される(ろ過工程)。ろ過工程において浸漬槽1内は静置状態におかれるために、液相1a中から懸濁物質が沈降して液相1a中の懸濁物質濃度が低減し、分離膜モジュール2への懸濁物質負荷が低減する。ろ過工程を所定時間単独で行った後、吸引ポンプ6を停止し、ろ過弁7を閉じ、ろ過工程を停止する。引き続き、逆洗弁10を開き、逆洗ポンプ9によって逆洗水配管8を介して分離膜モジュール2へ逆洗水を送り込み逆洗を行う(逆洗工程)。同時に、空洗弁13、空洗エア配管12、分離膜モジュール2の下部に設置した散気装置14を介して、ブロワ11から供給される空気を気泡として散気する(空洗工程)。逆洗と空洗によって、分離膜モジュール2を揺動させたり、分離膜表面や分離膜間の流路に蓄積した懸濁物質を剥離、除去したりする。このとき、分離膜表面や分離膜間の流路に蓄積した懸濁物質が液相1a中に舞い戻るうえに、液相1a中を沈降途中あるいはいったん沈降した懸濁物質が舞い戻り、液相1a中の懸濁物質濃度が上昇する。一方、逆洗工程と空洗工程を行う前の時点は、ろ過工程を単独で行う時間、すなわち浸漬槽1内が静置状態となってからの液相1a中の懸濁物質の沈降時間が最も長くなる時点であり、沈降汚泥相1bの懸濁物質量が最大となり、沈降した懸濁物質の濃縮が最も進んで懸濁物質濃度が最高となる。このとき、排泥弁16を開き、沈降汚泥相1b中の沈降した懸濁物質を汚泥として排泥配管15を介して浸漬槽外へと引抜く(排泥工程)。よって、排泥工程は、ろ過工程に次ぐ工程として、逆洗工程と空洗工程の前工程として行うことになる。   FIG. 1 is a schematic view showing a preferred embodiment of the present invention. The inflow water is continuously or intermittently flowed into the immersion tank 1 via the inflow water pipe 3 and the rectification equipment 4 in the immersion tank, and the settled sludge consisting of suspended solids that have settled with the liquid phase 1 a in the immersion tank 1. Separated into phase 1b. A separation membrane module 2 is immersed in the immersion tank 1, and membrane filtration water is taken out from the liquid phase 1a by the suction pump 6 through the separation membrane module 2, the filtration valve 7, and the membrane filtration water pipe 5 (filtering). Process). Since the immersion tank 1 is left in the filtration step in the filtration step, the suspended substance settles out of the liquid phase 1a, and the suspended substance concentration in the liquid phase 1a is reduced and suspended in the separation membrane module 2. Material load is reduced. After performing the filtration process alone for a predetermined time, the suction pump 6 is stopped, the filtration valve 7 is closed, and the filtration process is stopped. Subsequently, the backwash valve 10 is opened, and backwash water is sent to the separation membrane module 2 through the backwash water pipe 8 by the backwash pump 9 to perform backwashing (backwashing process). At the same time, the air supplied from the blower 11 is diffused as bubbles through the air washing valve 13, the air washing air pipe 12, and the air diffuser 14 installed below the separation membrane module 2 (air washing process). The separation membrane module 2 is swung by backwashing and air washing, and suspended substances accumulated on the separation membrane surface and the flow path between the separation membranes are peeled off and removed. At this time, the suspended matter accumulated on the separation membrane surface and the flow path between the separation membranes returns to the liquid phase 1a, and the suspended matter that has settled in the liquid phase 1a or once settled returns to the liquid phase 1a. Increased suspended solids concentration. On the other hand, the time before performing the backwashing step and the air washing step is the time for performing the filtration step alone, that is, the settling time of the suspended substance in the liquid phase 1a after the inside of the immersion tank 1 is in a stationary state. This is the longest point, the amount of suspended matter in the sedimented sludge phase 1b is maximized, the concentration of the suspended matter settled is most advanced, and the suspended matter concentration is maximized. At this time, the mud valve 16 is opened, and the suspended solids settled in the settled sludge phase 1b are extracted as sludge out of the immersion tank through the mud pipe 15 (sludge process). Therefore, the mud draining process is performed as a pre-process of the back washing process and the air washing process as a process subsequent to the filtration process.

ここで、静置状態とは、例えば、浸漬型分離膜モジュール下部に設置された散気装置からの散気によって生ずる気液混相流による浸漬槽内での主に上下方向への循環流がなく、さらに、浸漬槽への流入水の流入によって生ずる主に上下方向への水流の乱れや偏流などが少なく、水流による懸濁物質の沈降阻害が小さい状態をいう。例えば、浸漬槽内の水流の平均流速が0.4m/min以下であり、かつ浸漬槽内の水流の平均上昇流速が80mm/min以下である状態をいう。   Here, the stationary state means that, for example, there is no circulation flow in the vertical direction mainly in the immersion tank due to the gas-liquid mixed phase flow generated by the diffuser from the diffuser installed at the lower part of the submerged separation membrane module. Furthermore, it refers to a state where there is little disturbance of the water flow mainly in the vertical direction or uneven flow caused by the inflow of the inflow water into the immersion tank, and the sedimentation inhibition of suspended substances by the water flow is small. For example, the average flow velocity of the water flow in the immersion bath is 0.4 m / min or less, and the average rising flow velocity of the water flow in the immersion bath is 80 mm / min or less.

本発明者らは、浸漬槽への流入水の流入がない状態で膜ろ過を行った際、膜ろ過に伴う被処理液の移動による浸漬槽内での水流の乱れが小さく、浸漬槽内は懸濁物質が沈降するような静置状態にあることに着目し、かかる静置状態においては浸漬槽内の懸濁物質が沈降することを確認したうえで、浸漬槽へ流入水を流入させる際に、上記静置状態を乱さないようにすると浸漬槽への被処理液の流入がない状態で膜ろ過を行った場合と同様に、浸漬槽内において懸濁物質が沈降するような静置状態にあることを確認したことから着想を得て、本発明に至った。   When performing membrane filtration in a state where there is no inflow of inflow water to the immersion tank, the present inventors have a small disturbance of the water flow in the immersion tank due to the movement of the liquid to be treated accompanying the membrane filtration. Paying attention to the fact that the suspended substance is in a stationary state where the suspended substance settles, and confirming that the suspended substance in the immersion tank settles in the stationary state, In addition, in the case where the stationary state is not disturbed, the stationary state in which the suspended substance settles in the immersion tank, as in the case where the membrane filtration is performed without the inflow of the liquid to be treated into the immersion tank. The idea was obtained from the fact that it was confirmed that, and the present invention was reached.

静置状態を乱さないように浸漬槽へ流入水を連続的、あるいは間欠的に流入させる手段としては、整流壁や多孔板を介して浸漬槽の側面から流入させる手段、トラフや越流堰を介して浸漬槽上端から流入させる手段、浸漬槽の水面から分離膜モジュール上端の間に設置した多孔板や傾斜管を介して浸漬槽上部から流入させる手段、流入部に設置した邪魔板によって流入水のエネルギーを減じさせて流入させる手段等があるが、静置状態を乱さない流入水の流入手段であればどのような手段を用いても構わない。これらの手段を浸漬槽内整流化設備とする。この中でも、流入水を浸漬槽の上部から流入させる場合、懸濁物質の沈降速度と、上部から新たに流入してきた流入水からなる被処理液の水塊による下向きの移動速度とが足し合わされ、懸濁物質が沈降する効率が高まるので好ましい。   As a means to continuously or intermittently flow in the inflow water to the immersion tank so as not to disturb the stationary state, a means for inflowing from the side of the immersion tank through a rectifying wall or a perforated plate, troughs and overflow weirs Inflowing water by means of inflow from the upper end of the immersion tank, means of inflowing from the upper part of the immersion tank via a perforated plate or inclined tube installed between the water surface of the immersion tank and the upper end of the separation membrane module, However, any means may be used as long as it is an inflow means for inflowing water that does not disturb the stationary state. These means are used as rectification equipment in the immersion tank. Among these, when inflowing water is made to flow from the upper part of the immersion tank, the sedimentation speed of the suspended solids and the downward movement speed due to the water mass of the liquid to be treated consisting of the inflowing water newly flowing from the upper part are added, This is preferable because the efficiency of sedimentation of suspended substances is increased.

また、浸漬槽への流入水の流入が間欠的であり、前記浸漬槽内整流化設備を設置しない場合でも、流入水の流入時に浸漬槽内のろ過工程等の操作を所定の時間停止し、流入水の流入が終わって浸漬槽内が静置状態になるのを待ってから(静置工程)、ろ過工程等を開始する手段もある。しかしながら、浸漬槽内整流化設備を設置する方がろ過稼働率を高くできるのでより好ましい。   In addition, the inflow of inflow water to the immersion tank is intermittent, and even when the rectification equipment in the immersion tank is not installed, the operation of the filtration process in the immersion tank is stopped for a predetermined time when the inflow water flows in, There is also a means of waiting for the inflow of the inflowing water and the inside of the immersion tank to be in a stationary state (stationary step), and then starting a filtration step and the like. However, it is more preferable to install the rectification equipment in the immersion tank because the filtration operation rate can be increased.

ここで、ろ過稼働率とは、ろ過工程、逆洗工程、空洗工程、排泥工程、静置工程から構成される運転工程に占めるろ過工程の時間の割合、あるいは1日に占める総ろ過工程時間の割合を示す。   Here, the filtration operation rate is the ratio of the time of the filtration process in the operation process composed of the filtration process, the backwash process, the air washing process, the waste mud process, and the stationary process, or the total filtration process in one day. Indicates the percentage of time.

一方で、ろ過工程においては被処理液中の沈降しない懸濁物質は、被処理液が膜ろ過される際に分離膜表面や分離膜間の流路に蓄積するために、単独で空洗工程を、または空洗工程と逆洗工程を組み合わせた工程を定期的に行うことによって剥離・除去しなければならない。このとき、逆洗工程は必ずしも行わなければならない工程ではないが、分離膜表面や分離膜間の流路に蓄積した懸濁物質を剥離・除去する効果が高いことから、空洗工程と組み合わせて行うことが好ましい。このとき、逆洗工程と空洗工程を組み合わせとしては、逆洗工程が完結してから空洗工程を行っても、空洗工程が完結してから逆洗工程を行っても、逆洗工程と空洗工程を同時工程として行っても、逆洗工程と空洗工程を同時に開始してからどちらか一方を先に完結させる工程としても、どちらか一方を所定時間行った後に逆洗工程と空洗工程の同時工程に移行する工程としてもよく、どのような組み合わせとしても構わない。特に、逆洗工程と空洗工程を同時に行う組み合わせをもつ工程だと、懸濁物質を剥離・除去する効果がさらに高くなることから好ましい。   On the other hand, in the filtration process, suspended substances that do not settle in the liquid to be treated accumulate alone on the surface of the separation membrane and the flow path between the separation membranes when the liquid to be treated is membrane filtered. Or by periodically performing a process combining the air washing process and the back washing process. At this time, the backwash process is not necessarily a process, but it is highly effective in peeling and removing suspended substances accumulated on the separation membrane surface and the flow path between the separation membranes. Preferably it is done. At this time, as a combination of the backwashing step and the air washing step, even if the air washing step is performed after the backwashing step is completed, the backwashing step is performed after the air washing step is completed, Even if the air washing step and the air washing step are performed simultaneously, the back washing step and the air washing step are started at the same time, and either one is completed first, and after either one is performed for a predetermined time, the back washing step and It is good also as a process which transfers to the simultaneous process of an air washing process, and it does not matter as what kind of combination. In particular, a process having a combination in which a backwashing process and an air washing process are performed at the same time is preferable because the effect of peeling and removing suspended substances is further enhanced.

逆洗、空洗によって、分離膜表面や分離膜間の流路から剥離・除去されたり、空洗によって生ずる気液混相流による浸漬槽内での主に上下方向への循環流によって沈降途中あるいはいったん沈降した懸濁物質が舞い戻ったりするために、逆洗、空洗の直後には被処理液の懸濁物質濃度が最も高くなる。そのため、逆洗、空洗の直後に、膜ろ過を行わずに浸漬槽内を静置状態において懸濁物質を沈降させる工程(静置工程)を設けても構わない。この場合、分離膜モジュールへの懸濁物質負荷をより軽減でき、より長期間にわたって所定の膜ろ過水量を安定して確保することができるので好ましい。なお、本発明においては静置工程を設けて、より長期間にわたって所定の膜ろ過水量を安定して確保できる水処理方法を選んでもよいし、静置工程を設けずに、ろ過稼働率を高める水処理方法を選んでもよく、処理の用途によって適宜選べばよい。   It is separated or removed from the separation membrane surface and the flow path between the separation membranes by backwashing and air washing, or during sedimentation mainly by the circulating flow in the vertical direction in the immersion tank due to the gas-liquid mixed phase flow generated by air washing or Since suspended solids once settled back, the concentration of suspended solids in the liquid to be treated becomes the highest immediately after backwashing and air washing. Therefore, immediately after backwashing and air washing, a step of allowing the suspended substance to settle in a standing state (a standing step) without performing membrane filtration may be provided. In this case, it is preferable because the suspended matter load on the separation membrane module can be further reduced, and a predetermined amount of membrane filtrate can be stably secured over a longer period. In the present invention, a static treatment step may be provided to select a water treatment method that can stably secure a predetermined amount of membrane filtration water over a longer period of time, or increase the filtration operation rate without providing a static step. A water treatment method may be selected, and may be appropriately selected depending on the use of the treatment.

また、散気管と汚泥界面の距離を一定以上保つと、いったん沈降した懸濁物質が空洗時に舞い戻り難くなるので好ましい。その距離は、一般的には0.3〜0.5m以上とされる。   Further, it is preferable to keep the distance between the air diffuser and the sludge interface at a certain level or more, since the suspended matter that has once settled is difficult to return during the washing. The distance is generally 0.3 to 0.5 m or more.

沈降した懸濁物質は汚泥としてバルブやポンプを介して浸漬槽外へ排出されるが、排出量は、あらかじめ試験を実施して得られた結果から予想される汚泥発生量をもとにバルブの開閉時間やポンプの起動時間を設定して定めても構わないし、浸漬槽内に設置した汚泥界面計等の汚泥量検知手段から得られた汚泥発生量をもとにバルブの開閉時間やポンプの起動時間を制御しても構わない。ここで、排出量は、浸漬槽外へ汚泥として排出される水量をいう。本発明の主旨からは、排出される懸濁物質量が沈降した懸濁物質量と等しくなるような汚泥排出方法であればどのような方法を用いても構わない。例えば汚泥界面計等の汚泥量検知手段から得られた汚泥発生量をもとにバルブの開閉時間やポンプの起動時間を制御して汚泥を排出すると、排出量(水量)が最小限となって回収率が向上するので好ましい。   The settled suspended solids are discharged as sludge to the outside of the immersion tank via a valve or pump, but the discharge amount is based on the amount of sludge generated based on the predicted sludge generation results. It may be determined by setting the open / close time or pump start time, and based on the amount of sludge generated from the sludge detection means such as the sludge interface meter installed in the immersion tank, the valve open / close time and pump The activation time may be controlled. Here, the discharge amount refers to the amount of water discharged as sludge outside the immersion tank. From the gist of the present invention, any method may be used as long as the amount of suspended matter discharged is equal to the amount of suspended suspended matter. For example, if sludge is discharged by controlling the valve open / close time and pump start time based on the amount of sludge generated from the sludge detection means such as a sludge interface meter, the discharge amount (water amount) will be minimized. This is preferable because the recovery rate is improved.

この排泥工程をろ過工程を単独で所定時間行った後、ろ過工程と同時、あるいはろ過工程の完結後、すなわち空洗工程の前工程として実施すると、ろ過工程における静置状態、すなわち懸濁物質の沈降時間を最長にできるうえに、浸漬槽底部に沈降した懸濁物質量が最大となり、沈降した懸濁物質の濃縮が最も進んで懸濁物質濃度が最高となることから排出量を最小限にできるために好ましい。   When this waste mud process is carried out alone for a predetermined time and then performed simultaneously with the filtration process or after the completion of the filtration process, that is, as a pre-process of the air washing process, the stationary state in the filtration process, that is, suspended matter In addition to maximizing the sedimentation time, the amount of suspended matter settled at the bottom of the immersion tank is maximized, and the concentration of suspended suspended matter is the most advanced, resulting in the highest suspended matter concentration, thus minimizing the discharge amount. It is preferable because it can be made.

また、排泥工程を、毎回の空洗工程の前工程として実施せずに、排泥工程を含まずに少なくともろ過工程、空洗工程により構成されて行われる運転方法(「運転方法2」とする。)を複数回実施する間で、少なくとも1回以上の頻度で、少なくともろ過工程、排泥工程、空洗工程から構成され、1)前記ろ過工程を所定時間単独で行った後、2)前記排泥工程を単独で、または前記ろ過工程と前記排泥工程を同時に行い、3)次いで前記空洗工程をこの順で行われる運転方法(「運転方法1」とする。)を実施すると、浸漬槽底部での懸濁物質の濃縮がさらに進むことから排出量をさらに抑制できるために好ましい。排泥工程をかかる運転方法を組み合わせて実施することにより、結果として回収率がより向上する。なお、前記運転方法2をn回実施する間に前記運転方法1を1回行う場合、運転方法1が行われる頻度、すなわち排泥工程が行われる頻度は、浸漬槽底部に沈降する懸濁物質量によって適宜決めればよく、n=1〜10の範囲で運転方法2を行うと、沈降した懸濁物質による汚泥界面を低く抑制できるので好ましい。   In addition, the drainage process is not carried out as a pre-process of every air washing process, and the operation method ("operation method 2") is performed by including at least the filtration process and the air washing process without including the waste mud process. Is performed at least once, and at least includes a filtration step, a mud removal step, and an air washing step. 1) After performing the filtration step alone for a predetermined time, 2) The waste mud process is performed alone, or the filtration process and the waste mud process are simultaneously performed. 3) Next, when the operation method (hereinafter referred to as “operation method 1”) in which the air washing step is performed in this order is performed. This is preferable because the concentration of suspended solids at the bottom of the dipping bath is further advanced, and the discharge amount can be further suppressed. As a result, the recovery rate is further improved by combining the operation method with the drainage process. When the operation method 1 is performed once during the operation method 2 n times, the frequency at which the operation method 1 is performed, that is, the frequency at which the mud draining step is performed is determined by the suspended matter that settles at the bottom of the immersion tank. What is necessary is just to determine suitably according to quantity, and since the operation method 2 is performed in the range of n = 1-10, since the sludge interface by the suspended suspended substance can be suppressed low, it is preferable.

ここで、回収率とは、浸漬槽へ流入した流入水量に対して膜ろ過水のうち生産水として流出する生産水量の割合を示し、流入水量に対する膜ろ過水量から逆洗に使用した逆洗水量を引いた生産水量の割合、あるいは流入水量に対する流入水量から排出量を引いた生産水量の割合として求められる。いずれの算出方式から回収率を求めても同じ値を得ることができる。   Here, the recovery rate indicates the ratio of the amount of product water that flows out as production water out of the membrane filtrate to the amount of inflow water that flows into the immersion tank, and the amount of backwash water used for backwashing from the amount of membrane filtrate to the amount of inflow water. Is calculated as the ratio of the production water volume minus the inflow water volume, or the ratio of the production water volume minus the discharge volume from the inflow water volume. The same value can be obtained regardless of which calculation method is used to obtain the recovery rate.

本発明における各工程の時間配分は、流入水の水質や、処理の用途によって様々な組合せにしてもよいが、基本的にはろ過工程10〜120分、空洗工程10〜120秒、逆洗工程10〜120秒の範囲とすると、長期間にわたって安定に運転を継続しやすいので好ましい。なお、空洗工程は10〜120秒の範囲で充分な物理洗浄効果を確保できるうえに、空洗に用いられるエア量を抑制できるので好ましく、逆洗工程10〜120秒の範囲で充分な物理洗浄効果を確保できるうえに、逆洗に用いられる逆洗水量を抑制できて回収率を向上できるので好ましい。   The time distribution of each process in the present invention may be various combinations depending on the quality of the influent water and the use of the treatment, but basically, the filtration process is 10 to 120 minutes, the air washing process is 10 to 120 seconds, and the back washing is performed. The range of 10 to 120 seconds is preferable because the operation is easily continued stably over a long period of time. The air washing step is preferable because a sufficient physical washing effect can be secured in the range of 10 to 120 seconds and the amount of air used for the air washing can be suppressed. In addition to ensuring the cleaning effect, the amount of backwash water used for backwashing can be suppressed, and the recovery rate can be improved.

ここで、浸漬型の分離膜モジュールとは、単独あるいは複数の分離膜エレメントを内挿して構成したものをいい、分離膜エレメントの形状には、中空糸膜、チューブラー膜、平膜等がある。ここで、中空糸膜とは直径2mm未満の円管状の分離膜、チューブラー膜とは直径2mm以上の円管状の分離膜をいう。本発明においては、いずれの形状の分離膜エレメントを用いても構わないが、ろ過工程中に分離膜表面や分離膜間の流路に懸濁物質の蓄積が進行して、分離膜モジュールの目詰まりや分離膜間の流路閉塞が発生するのを阻止、抑制するための充分な物理洗浄効果を得るために、逆洗と空洗を行うことが好ましく、この場合には一般的に逆洗ができない構造であることが多い平膜形状の分離膜エレメントよりも、逆洗ができる構造である中空糸膜やチューブラー膜形状の分離膜エレメントを用いることが好ましい。   Here, the submerged separation membrane module refers to a single or a plurality of separation membrane elements interpolated, and the shape of the separation membrane element includes a hollow fiber membrane, a tubular membrane, a flat membrane, etc. . Here, the hollow fiber membrane means a tubular separation membrane having a diameter of less than 2 mm, and the tubular membrane means a tubular separation membrane having a diameter of 2 mm or more. In the present invention, any shape of separation membrane element may be used, but during the filtration process, the accumulation of suspended substances proceeds on the separation membrane surface and the flow path between the separation membranes, so In order to obtain a sufficient physical cleaning effect for preventing or suppressing clogging or blocking of the flow path between the separation membranes, it is preferable to perform back washing and empty washing. It is preferable to use a hollow fiber membrane or tubular membrane-shaped separation membrane element, which is a structure capable of backwashing, rather than a flat membrane-shaped separation membrane element which often has a structure that cannot be used.

空洗は、分離膜を揺動させたり、気泡によるせん断力によって、分離膜表面や分離膜間の流路に蓄積した懸濁物質を剥離、除去させる洗浄であるために、一般的に支持体上に固定されて分離膜間の距離が変化しにくい平膜形状の分離膜エレメントよりも、分離膜の揺動により分離膜間の距離や分離膜同士の位置関係が変動する中空糸膜やチューブラー膜形状の分離膜エレメントの方が、気泡によるせん断力による物理洗浄効果の他に空洗時に分離膜間の流路が大きく変動したり、分離膜同士が接触したりすることによって懸濁物質を剥離、除去する効果が加わるために、空洗単独による物理洗浄効果の面でも好ましい。また、直径が小さい中空糸膜形状の分離膜エレメントの方が、空洗による分離膜の揺動が大きいことから物理洗浄効果が高くなるために、より好ましい。   Since air washing is a washing in which the suspended matter accumulated on the separation membrane surface and the flow path between the separation membranes is peeled and removed by rocking the separation membrane or by shearing force caused by bubbles, it is generally a support. Hollow fiber membranes and tubes in which the distance between the separation membranes and the positional relationship between the separation membranes vary due to the oscillation of the separation membrane, rather than the flat membrane-shaped separation membrane element that is fixed on the surface and the distance between the separation membranes is less likely to change In addition to the physical cleaning effect due to the shearing force caused by bubbles, the separation membrane element in the shape of a large membrane has a suspended substance due to large fluctuations in the flow path between the separation membranes and contact between the separation membranes during air washing. Since the effect of peeling and removing is added, it is also preferable from the viewpoint of the physical washing effect by air washing alone. Further, a hollow fiber membrane-shaped separation membrane element having a small diameter is more preferable because the physical washing effect is enhanced because the oscillation of the separation membrane by air washing is large.

また、分離膜としては、精密ろ過膜および限外ろ過膜のいずれでもよく、その分離性能あるいは分画性能は、精密ろ過膜では公称孔径が0.01μm〜3μmの範囲が好ましく、分離性能に優れる面や目詰まりの進行しにくさの面から0.02μm〜0.45μmの範囲がより好ましい。限外ろ過膜では公称分画分子量が1000Da〜100万Daの範囲が好ましい。   The separation membrane may be either a microfiltration membrane or an ultrafiltration membrane, and the separation performance or fractionation performance of the microfiltration membrane is preferably in the range of nominal pore diameters of 0.01 μm to 3 μm, and has excellent separation performance. The range of 0.02 μm to 0.45 μm is more preferable in terms of the surface and the surface where clogging is difficult to proceed. In the ultrafiltration membrane, the nominal molecular weight cutoff is preferably in the range of 1000 Da to 1 million Da.

分離膜の素材としては、本発明の主旨から特に限定されるものではないが、有機素材を使用する場合、ポリエチレン、ポリプロピレン、ポリアクリロニトリル、エチレン−テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、ポリテトラフルオロエチレン、ポリビニルフルオライド、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、およびクロロトリフルオロエチレン−エチレン共重合体、ポリフッ化ビニリデン、ポリスルホン、ポリエーテルスルホン、酢酸セルロース等が使用でき、無機素材を使用する場合はセラミック等が使用利用できる。この中でも膜強度や耐薬品性の観点からフッ素を含む有機素材やセラミックを素材とするものが好ましい。また、汚れにくさや洗浄回復性の観点から一般的に親水性素材とされるポリアクリロニトリルや酢酸セルロースを含む有機素材が好ましい。   The material of the separation membrane is not particularly limited from the gist of the present invention, but when an organic material is used, polyethylene, polypropylene, polyacrylonitrile, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, Polytetrafluoroethylene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, and chlorotrifluoroethylene-ethylene copolymer, polyvinylidene fluoride, polysulfone, polyethersulfone, cellulose acetate, etc. can be used, inorganic materials When using, ceramics can be used. Among these, from the viewpoint of film strength and chemical resistance, organic materials containing fluorine and ceramics are preferable. In addition, an organic material containing polyacrylonitrile or cellulose acetate, which is generally a hydrophilic material, is preferred from the viewpoint of resistance to dirt and recoverability of washing.

ここで、分離膜モジュールのろ過流量制御方式としては、定流量ろ過方式であっても定圧ろ過方式であっても構わないが、一般的には定流量ろ過方式が用いられる。また、ろ過方法としては、本発明の主旨から特に限定されるものではないが、例えば吸引ポンプを駆動力とする方法や、水頭差を駆動力とする方法が挙げられる。   Here, the filtration flow rate control method of the separation membrane module may be a constant flow filtration method or a constant pressure filtration method, but a constant flow filtration method is generally used. Further, the filtration method is not particularly limited from the gist of the present invention, and examples thereof include a method using a suction pump as a driving force and a method using a water head difference as a driving force.

本発明における流入水としては、特に限定されるものではなく、河川水、湖沼水、地下水、工業用水、都市下水、工業廃水等のいずれの原水でも構わず、前記原水を、粗沈殿、粗ろ過、凝集、沈殿、砂ろ過、膜ろ過、生物処理等のいずれの水処理プロセスによって処理された水や、該水処理プロセスにおいて発生した排水でも構わないが、本発明の主旨から、沈降性を有する懸濁物質を含む水であることが好ましく、これらの水に凝集剤が含まれる場合、懸濁物質は良好な沈降性を有していることからより好ましい。また、原水を凝集剤を用いて水処理した際に生じる凝集汚泥を含む排水、または原水を分離膜モジュールを用いて水処理した際に生じる膜ろ過洗浄排水を凝集処理した水を流入水とする場合、懸濁物質はより良好な沈降性を示すことからさらに好ましい。   The inflow water in the present invention is not particularly limited, and may be any raw water such as river water, lake water, groundwater, industrial water, urban sewage, industrial wastewater, etc. Water treated by any water treatment process such as flocculation, precipitation, sand filtration, membrane filtration, biological treatment, etc., or waste water generated in the water treatment process may be used, but from the gist of the present invention, it has sedimentation properties. Water containing suspended solids is preferred, and when these waters contain a flocculant, the suspended solids are more preferable because they have good sedimentation properties. In addition, wastewater containing agglomerated sludge generated when the raw water is treated with a flocculant, or membrane filtration washing wastewater produced when the raw water is treated with a separation membrane module is used as the influent water. In this case, the suspended substance is further preferred because it shows better sedimentation.

特に、原水を分離膜モジュールを用いて水処理した際に生じる膜ろ過洗浄排水を凝集処理した水、または原水を凝集処理して分離膜モジュールを用いて水処理した際に生じる膜ろ過洗浄排水を流入水とした場合、懸濁物質は良好な沈降性を示すことから分離膜モジュールへの懸濁物質負荷を軽減できるとともに、いったんは分離膜モジュールによって阻止された懸濁物質を再度、分離膜モジュールを用いて膜ろ過することから分離膜への目詰まりが抑制できるために本発明の効果が最も高く発揮され、好ましい。   In particular, water obtained by agglomeration treatment of membrane filtration washing wastewater generated when the raw water is treated with the separation membrane module, or membrane filtration washing wastewater produced when the raw water is agglomerated and treated with the separation membrane module. When influent water is used, suspended substances exhibit good sedimentation, so that the suspended substance load on the separation membrane module can be reduced, and suspended substances once blocked by the separation membrane module can be removed again. Since clogging of the separation membrane can be suppressed since the membrane is filtered using the above, the effect of the present invention is most highly exhibited and preferable.

本発明で用いられる凝集剤は、本発明の主旨から特に限定されるものではないが、例えばポリ塩化アルミニウム、硫酸バンド、塩化鉄、硫酸鉄、ポリ鉄、ポリシリカ鉄等の無機系凝集剤や、アクリルアミドポリマーを含む有機高分子凝集剤等が使用でき、これに活性ケイ酸、水道用アルギン酸ソーダ等の凝集助剤や、酸、アルカリ剤を使用できる。   The flocculant used in the present invention is not particularly limited from the gist of the present invention. For example, inorganic flocculants such as polyaluminum chloride, sulfate band, iron chloride, iron sulfate, polyiron, polysilica iron, An organic polymer flocculant containing an acrylamide polymer can be used, and a coagulant aid such as activated silicic acid and sodium alginate for water supply, an acid, and an alkali agent can be used.

本発明を、以下の実施例を用いてさらに詳細に説明する。なお、実施例、比較例において、外径1.5mm、公称孔径0.05μmのポリフッ化ビニリデン製中空糸膜が1800本からなる中空糸膜束の両端を接着剤で固定し、その接着固定部の一端の一部を切断して中空糸膜内部を開口させることで、長さ1m、有効膜面積7mの円筒状の中空糸膜モジュールを作成した。この中空糸膜モジュールを1本、浸漬型分離膜モジュールとして用いて、実施例、比較例に示す実験を行った。実験は、実施例6を除いて、図1に示したフローにて行った。なお、断りのない限り、浸漬槽内整流化設備としては、浸漬槽上部から流入水を流入させる際に、壁面をつたわせて浸漬槽内の被処理液部に流入させることで、被処理液の静置状態を乱さないようにする手段を用いた。また、原水にポリ塩化アルミニウムを注入して凝集処理をする際に、ポリ塩化アルミニウムの注入方式は、原水濁度を指標とした比例注入方式とした。 The invention is explained in more detail using the following examples. In Examples and Comparative Examples, both ends of a hollow fiber membrane bundle of 1800 polyvinylidene fluoride hollow fiber membranes having an outer diameter of 1.5 mm and a nominal pore diameter of 0.05 μm are fixed with an adhesive, and an adhesive fixing portion thereof A cylindrical hollow fiber membrane module having a length of 1 m and an effective membrane area of 7 m 2 was created by cutting a part of one end of the hollow fiber membrane to open the inside of the hollow fiber membrane. Using this single hollow fiber membrane module as an immersion type separation membrane module, experiments shown in Examples and Comparative Examples were conducted. The experiment was performed according to the flow shown in FIG. As long as there is no notice, as for the rectification equipment in the immersion tank, when the inflow water flows from the upper part of the immersion tank, the liquid to be processed is caused to flow into the liquid to be processed in the immersion tank by connecting the wall surface. A means for preventing the static state of the stool from being disturbed was used. In addition, when the polyaluminum chloride was injected into the raw water for the coagulation treatment, the polyaluminum chloride injection method was a proportional injection method using the raw water turbidity as an index.

(実施例1)
湖沼水を原水として浸漬槽に流入水として浸漬槽上部から壁面をつたわせて流入させ、1.0m/m/日の定流量ろ過方式でろ過時間30分、逆洗時間60秒、空洗時間60秒、排泥工程では排出量2.5Lとして、ろ過工程、排泥工程、逆洗工程と空洗工程の同時工程とした順番で構成される運転工程にて運転を行った。2ヵ月後の時点で膜間差圧は20kPa程度でほぼ横這いに推移していた。なお、このときの回収率は98.2%であった。
Example 1
The lake water is used as raw water and flows into the immersion tank as inflow water by connecting the wall from the top of the immersion tank, using a constant flow filtration method of 1.0 m 3 / m 2 / day, a filtration time of 30 minutes, a backwash time of 60 seconds, empty The washing process was performed for 60 seconds, and in the mud discharge process, the discharge amount was 2.5 L, and the operation was performed in the order of the filtration process, the mud discharge process, the back washing process, and the air washing process. At two months later, the transmembrane pressure difference was approximately flat at about 20 kPa. The recovery rate at this time was 98.2%.

(実施例2)
湖沼水を原水とし、ポリ塩化アルミニウム5〜10mg/Lを注入してから浸漬槽に流入水として浸漬槽上部から壁面をつたわせて流入させ、1.0m/m/日の定流量ろ過方式でろ過時間30分、逆洗時間60秒、空洗時間60秒、排泥工程では排出量2.5Lとして、ろ過工程、排泥工程、逆洗工程と空洗工程の同時工程とした順番で構成される運転工程にて運転を行った。2ヵ月後の時点で膜間差圧は15kPa程度でほぼ横這いに推移していた。なお、このときの回収率は98.2%であった。
(Example 2)
The lake water is used as raw water, and 5 to 10 mg / L of polyaluminum chloride is injected. Then, it flows into the immersion tank as inflow water from the upper part of the immersion tank and flows into the immersion tank at a constant flow rate of 1.0 m 3 / m 2 / day. Filtration time 30 minutes, backwash time 60 seconds, air washing time 60 seconds, waste mud process with 2.5L discharge, the order of filtration process, mud process, back washing process and air washing process at the same time The operation was performed in the operation process consisting of At two months later, the transmembrane pressure difference was approximately flat at about 15 kPa. The recovery rate at this time was 98.2%.

(実施例3)
湖沼水を原水とし、ポリ塩化アルミニウム5〜10mg/Lを注入してから浸漬槽に流入水として浸漬槽上部から壁面をつたわせて流入させ、1.0m/m/日の定流量ろ過方式でろ過時間30分、逆洗時間60秒、空洗時間60秒、排泥工程では排出量2.5Lとして、ろ過工程を単独で時間29.9分行った後に、ろ過を継続しながらろ過工程と排泥工程を同時に行い、その後に逆洗工程と空洗工程の同時工程とした順番で構成される運転工程にて運転を行った。2ヵ月後の時点で膜間差圧は15kPa程度でほぼ横這いに推移していた。なお、このときの回収率は98.2%であった。なお、排泥工程に要する時間はおよそ5秒であったため、稼働率は、実施例1および実施例2における96.5%よりもやや高い96.8%であった。
(Example 3)
The lake water is used as raw water, and 5 to 10 mg / L of polyaluminum chloride is injected. Then, it flows into the immersion tank as inflow water from the upper part of the immersion tank and flows into the immersion tank at a constant flow rate of 1.0 m 3 / m 2 / day. Filtration time is 30 minutes, backwash time is 60 seconds, air washing time is 60 seconds, and the amount of discharge is 2.5L in the mud discharge process. The process and the waste mud process were performed at the same time, and then the operation was performed in the operation process configured in the order of the simultaneous back washing process and the air washing process. At two months later, the transmembrane pressure difference was approximately flat at about 15 kPa. The recovery rate at this time was 98.2%. In addition, since the time required for the mud draining process was about 5 seconds, the operation rate was 96.8%, which is slightly higher than 96.5% in Example 1 and Example 2.

(実施例4)
湖沼水を原水とし、ポリ塩化アルミニウム5〜10mg/Lを注入してから浸漬槽に流入水として浸漬槽上部から壁面をつたわせて流入させ、1.0m/m/日の定流量ろ過方式でろ過時間30分、逆洗時間60秒、空洗時間60秒、排泥工程では排出量5Lとして、ろ過工程、逆洗工程と空洗工程の同時工程とした順番で構成される運転工程1を2回行った後に、ろ過工程、排泥工程、逆洗工程と空洗工程の同時工程とした順番で構成される運転工程2を1回行う運転を行った。2ヵ月後の時点で膜間差圧は17kPa程度でほぼ横這いに推移していた。なお、このときの回収率は98.8%、稼働率は96.7%であった。
Example 4
The lake water is used as raw water, and 5 to 10 mg / L of polyaluminum chloride is injected. Then, it flows into the immersion tank as inflow water from the upper part of the immersion tank and flows into the immersion tank at a constant flow rate of 1.0 m 3 / m 2 / day. Filtration time 30 minutes, backwashing time 60 seconds, air washing time 60 seconds, drainage process 5D discharge amount 5L, operation process configured in the order of filtration process, backwashing process and air washing process at the same time After performing 1 twice, the driving | running | working which performed the driving | running process 2 comprised in the order made into the simultaneous process of a filtration process, a waste mud process, a backwashing process, and an air washing process was performed once. At two months later, the transmembrane pressure difference was almost flat at about 17 kPa. The recovery rate at this time was 98.8%, and the operation rate was 96.7%.

(実施例5)
河川水を原水とし、ポリ塩化アルミニウム5〜10mg/Lを注入して公称孔径0.05μmのポリフッ化ビニリデン製中空糸膜からなる有効膜面積72mの加圧型分離膜モジュール(東レ(株)社製、トレフィルHFS−2020)で膜ろ過をした際に生じる膜ろ過洗浄排水を流入水とし、浸漬槽上部から邪魔板を介して流入させ0.7m/m/日の定流量ろ過方式でろ過時間30分、逆洗時間60秒、空洗時間60秒、排泥工程では排出量3Lとして、ろ過工程、逆洗工程と空洗工程の同時工程とした順番で構成される運転工程1を4回行った後に、ろ過工程、排泥工程、逆洗工程と空洗工程の同時工程とした順番で構成される運転工程2を1回行う運転を行った。1ヶ月後の時点で膜間差圧は10kPa程度でほぼ横這いに推移していた。なお、このときの浸漬型膜ろ過手段の回収率は、99.4%であった。また、原水量に対する、加圧型膜ろ過手段と浸漬型膜ろ過手段とから得られる生産水を足し合わせた生産水量の割合を浄水回収率とすると、99.96%であった。
(Example 5)
A pressurized separation membrane module (Toray Industries, Inc.) having an effective membrane area of 72 m 2 made of a hollow fiber membrane made of polyvinylidene fluoride having a nominal pore diameter of 0.05 μm by injecting 5 to 10 mg / L of polyaluminum chloride into raw water. Manufactured by Trefil HFS-2020), the membrane filtration washing wastewater generated when membrane filtration is used as the inflow water, and it flows in from the upper part of the immersion tank through the baffle plate and is performed at a constant flow rate filtration method of 0.7 m 3 / m 2 / day. Filtration time 30 minutes, back washing time 60 seconds, air washing time 60 seconds, in the mud discharge process, the discharge amount is 3L, and the operation process 1 configured in the order of the filtration process, the back washing process and the air washing process is the same. After performing 4 times, the driving | running | working process 2 comprised in the order made into the simultaneous process of a filtration process, a waste mud process, a backwashing process, and an air washing process was performed once. At one month later, the transmembrane pressure difference was almost flat at about 10 kPa. At this time, the recovery rate of the submerged membrane filtration means was 99.4%. Moreover, when the ratio of the product water volume which added the product water obtained from a pressurization type membrane filtration means and an immersion type membrane filtration means with respect to the amount of raw water was made into the purified water recovery rate, it was 99.96%.

(実施例6)
浸漬槽への流入水の流入方法を、排泥配管を分岐させて設置した流入水配管を介して浸漬槽底部から流入させた以外は、実施例2と全く同じ条件のもとで運転を行った。このとき、浸漬槽内の被処理液は、浸漬槽底部から上向きに移動しているのが観察され、被処理液中の懸濁物質は上向きの流れで沈降阻害を受ける中、粗大な懸濁物質は沈降することが観察された。2ヵ月後の時点で膜間差圧はゆるやかな上昇傾向のもとで38kPa程度であった。なお、このときの回収率は98.2%であった。
(Example 6)
The operation was performed under exactly the same conditions as in Example 2 except that the method of inflowing water into the immersion tank was introduced from the bottom of the immersion tank via an inflow water pipe installed by branching the mud drainage pipe. It was. At this time, it is observed that the liquid to be treated in the dip tank is moving upward from the bottom of the dip tank, and suspended substances in the liquid to be treated are coarsely suspended while being subjected to sedimentation inhibition by the upward flow. The material was observed to settle. At two months later, the transmembrane pressure difference was about 38 kPa under a gentle upward trend. The recovery rate at this time was 98.2%.

(比較例1)
湖沼水を原水として浸漬槽に流入水として浸漬槽上部から壁面をつたわせて流入させ、浸漬槽内で連続的に散気を行っている中で、1.0m/m/日の定流量ろ過方式でろ過時間30分、逆洗時間60秒、排泥工程では排出量2.5Lとして、ろ過工程、排泥工程、逆洗工程の順番で構成される運転工程にて運転を行った。2ヵ月後の時点で膜間差圧はゆるやかな上昇傾向のもとで45kPa程度であった。なお、このときの回収率は98.2%であった。
(Comparative Example 1)
While the lake water is used as raw water and flows into the immersion tank as inflow water by connecting the wall from the upper part of the immersion tank and continuously diffused in the immersion tank, a constant value of 1.0 m 3 / m 2 / day is set. The flow filtration method was 30 minutes, the backwash time was 60 seconds, and the drainage process was 2.5L, and the operation was performed in the operation process consisting of the filtration process, the wastewater process, and the backwash process. . At two months later, the transmembrane pressure difference was about 45 kPa under a gentle upward trend. The recovery rate at this time was 98.2%.

(比較例2)
湖沼水を原水とし、ポリ塩化アルミニウム5〜10mg/Lを注入してから浸漬槽に流入水として浸漬槽上部から壁面をつたわせて流入させ、浸漬槽内で連続的に散気を行っている中で、1.0m/m/日の定流量ろ過方式でろ過時間30分、逆洗時間60秒、ろ過工程6回に対して排泥工程1回の頻度で排出量50Lとして、ろ過工程、排泥工程、逆洗工程の順番で構成される運転を行った。なお、排出量50Lとは浸漬槽内の被処理液の容積の全量である。2ヵ月後の時点で膜間差圧は21kPa程度でほぼ横這いに推移していた。なお、このときの回収率は94.2%であった。
(Comparative Example 2)
The lake water is used as raw water, 5 to 10 mg / L of polyaluminum chloride is injected, and then the inflowing water is made to flow from the upper part of the immersion tank to the immersion tank and is continuously diffused in the immersion tank. Among them, a constant flow rate filtration system of 1.0 m 3 / m 2 / day, filtration time 30 minutes, backwash time 60 seconds, filtration process with a frequency of one sludge process for six filtration processes, filtration 50L The driving | operation comprised in order of a process, a mud discharge process, and a backwashing process was performed. The discharge amount 50L is the total volume of the liquid to be processed in the immersion tank. At two months later, the transmembrane pressure difference was almost flat at about 21 kPa. The recovery rate at this time was 94.2%.

本発明は、浸漬型分離膜モジュールを用いた水処理方法に関するものである。さらに詳しくは、上水道における飲料用水製造分野、工業用水、工業用超純水、食品、医療といった産業用水製造分野、都市下水の浄化および工業廃水処理といった下排水処理分野などに使用される浸漬型分離膜モジュールを用いた水処理方法に関するものであるが、本発明はこれらに限られるものではない。   The present invention relates to a water treatment method using an immersion type separation membrane module. More specifically, submerged separation used in the field of drinking water production in waterworks, industrial water, industrial ultrapure water, industrial water production such as food and medicine, and sewage treatment such as municipal sewage purification and industrial wastewater treatment. The present invention relates to a water treatment method using a membrane module, but the present invention is not limited to these.

本発明の好ましい一実施態様を示す模式図である。It is a schematic diagram which shows one preferable embodiment of this invention.

符号の説明Explanation of symbols

1 :浸漬槽
1a:液相
1b:沈降汚泥相
2 :分離膜モジュール
3 :流入水配管
4 :浸漬槽内整流化設備
5 :膜ろ過水配管
6 :吸引ポンプ
7 :ろ過弁
8 :逆洗水配管
9 :逆洗ポンプ
10 :逆洗弁
11 :ブロワ
12 :空洗エア配管
13 :空洗弁
14 :散気装置
15 :排泥配管
16 :排泥弁
DESCRIPTION OF SYMBOLS 1: Soaking tank 1a: Liquid phase 1b: Settling sludge phase 2: Separation membrane module 3: Inflow water piping 4: Rectification equipment in immersion tank 5: Membrane filtration water piping 6: Suction pump 7: Filtration valve 8: Backwash water Pipe 9: Backwash pump 10: Backwash valve 11: Blower 12: Air washing air pipe 13: Air washing valve 14: Air diffuser 15: Mud pipe 16: Waste mud valve

Claims (6)

被処理液を貯留した浸漬槽内に浸漬設置された分離膜モジュールを用いて膜ろ過水を得る水処理方法であって、少なくとも運転工程が前記分離膜モジュールを介して被処理液を吸引して膜ろ過水を得るろ過工程、前記分離膜モジュール下部に設置した散気装置から空気を供給して前記分離膜モジュールの表面を洗浄する空洗工程、前記浸漬槽底部に沈降した懸濁物質を汚泥として前記浸漬槽外へ排出する排泥工程から構成され、かつ、前記運転工程において少なくとも1回以上
1)前記ろ過工程を所定時間単独で行った後、
2)前記排泥工程を単独で、または前記ろ過工程と前記排泥工程を同時に行い、
3)次いで前記空洗工程
をこの順で行う運転方法を有することを特徴とする水処理方法。
A water treatment method for obtaining membrane filtered water by using a separation membrane module immersed in a dipping tank in which the treatment liquid is stored, wherein at least an operation step sucks the treatment liquid through the separation membrane module A filtration step for obtaining membrane filtrate, an air washing step for cleaning the surface of the separation membrane module by supplying air from a diffuser installed at the lower part of the separation membrane module, and sludge for suspended matter settled at the bottom of the immersion tank As a drainage process for discharging out of the immersion tank and at least once in the operation process 1) After the filtration process alone for a predetermined time,
2) Perform the waste mud process alone, or simultaneously perform the filtration process and the waste mud process,
3) A water treatment method characterized by having an operation method in which the air washing step is performed in this order.
前記分離膜モジュールを間欠的に逆洗をする逆洗工程を、前記排泥工程の完結後に前記空洗工程と組み合わせて行うことを特徴とする請求項1に記載の水処理方法。 The water treatment method according to claim 1, wherein a backwashing step of intermittently backwashing the separation membrane module is performed in combination with the air washing step after the completion of the mud draining step. 前記分離膜モジュールが中空糸膜モジュールであることを特徴とする請求項1または2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein the separation membrane module is a hollow fiber membrane module. 前記浸漬槽に供給される流入水は、浸漬槽内整流化設備を介して前記浸漬槽に供給されることを特徴とする請求項1〜3のいずれかに記載の水処理方法。 The water treatment method according to any one of claims 1 to 3, wherein the inflow water supplied to the immersion tank is supplied to the immersion tank via a rectification facility in the immersion tank. 前記流入水は、凝集剤を含むことを特徴とする請求項1〜4のいずれかに記載の水処理方法。 The water treatment method according to claim 1, wherein the inflow water includes a flocculant. 前記流入水は、原水を凝集剤を用いて水処理した際に生じる凝集汚泥を含む排水、または原水を分離膜モジュールを用いて水処理した際に生じる膜ろ過洗浄排水を凝集処理した水であることを特徴とする請求項1〜4のいずれかに記載の水処理方法。 The inflow water is wastewater containing agglomerated sludge generated when the raw water is treated with a flocculant, or water obtained by agglomerating the membrane filtration washing wastewater produced when the raw water is treated with the separation membrane module. The water treatment method according to any one of claims 1 to 4.
JP2005076620A 2005-03-17 2005-03-17 Water treatment method Expired - Fee Related JP4635666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076620A JP4635666B2 (en) 2005-03-17 2005-03-17 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076620A JP4635666B2 (en) 2005-03-17 2005-03-17 Water treatment method

Publications (2)

Publication Number Publication Date
JP2006255587A JP2006255587A (en) 2006-09-28
JP4635666B2 true JP4635666B2 (en) 2011-02-23

Family

ID=37095375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076620A Expired - Fee Related JP4635666B2 (en) 2005-03-17 2005-03-17 Water treatment method

Country Status (1)

Country Link
JP (1) JP4635666B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786201B1 (en) * 2006-12-29 2007-12-17 주식회사 코오롱 Air diffusing unit for clearing a cassette and method of clearing a cassette thereby
JP2010531218A (en) * 2007-06-28 2010-09-24 シーメンス ウォーター テクノロジース コーポレイション Cleaning methods for simple filtration systems
JPWO2009113521A1 (en) * 2008-03-12 2011-07-21 株式会社クレハ Pretreatment method for porous filtration membrane and drainage treatment method using pretreated porous filtration membrane
CN102923873A (en) * 2011-08-08 2013-02-13 曹健 Online water circulation purifying system for aluminum section surface treatment
JP6662558B2 (en) * 2013-03-01 2020-03-11 水ing株式会社 Water treatment method and water treatment device
JP2014184354A (en) * 2013-03-21 2014-10-02 Sumitomo Precision Prod Co Ltd Processing system of ink discharge water
JP2018202277A (en) * 2017-05-30 2018-12-27 オルガノ株式会社 Membrane filtration method and membrane filtration device
JP6833645B2 (en) * 2017-09-14 2021-02-24 水ing株式会社 Water treatment method and water treatment equipment
JP7144925B2 (en) * 2017-09-21 2022-09-30 オルガノ株式会社 MEMBRANE FILTRATION DEVICE AND MEMBRANE FILTRATION METHOD
JP7090015B2 (en) * 2018-11-08 2022-06-23 オルガノ株式会社 Iron / manganese-containing water treatment equipment and treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177185A (en) * 1991-12-27 1993-07-20 Mitsui Constr Co Ltd Service water treating device
JPH06238273A (en) * 1993-02-17 1994-08-30 Mitsubishi Rayon Eng Co Ltd Membrane separation-type water purification
JPH09220441A (en) * 1996-02-13 1997-08-26 Satoshi Takizawa Waste water treatment equipment
JPH10277599A (en) * 1997-04-10 1998-10-20 Mitsubishi Rayon Co Ltd Sludge concentrating method and apparatus
JP2002191946A (en) * 2000-12-28 2002-07-10 Kubota Corp Waste water treatment apparatus for water purification plant
JP2004174344A (en) * 2002-11-26 2004-06-24 Japan Organo Co Ltd Membrane separator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05177185A (en) * 1991-12-27 1993-07-20 Mitsui Constr Co Ltd Service water treating device
JPH06238273A (en) * 1993-02-17 1994-08-30 Mitsubishi Rayon Eng Co Ltd Membrane separation-type water purification
JPH09220441A (en) * 1996-02-13 1997-08-26 Satoshi Takizawa Waste water treatment equipment
JPH10277599A (en) * 1997-04-10 1998-10-20 Mitsubishi Rayon Co Ltd Sludge concentrating method and apparatus
JP2002191946A (en) * 2000-12-28 2002-07-10 Kubota Corp Waste water treatment apparatus for water purification plant
JP2004174344A (en) * 2002-11-26 2004-06-24 Japan Organo Co Ltd Membrane separator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9333464B1 (en) 2014-10-22 2016-05-10 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US9956530B2 (en) 2014-10-22 2018-05-01 Koch Membrane Systems, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
US10702831B2 (en) 2014-10-22 2020-07-07 Koch Separation Solutions, Inc. Membrane module system with bundle enclosures and pulsed aeration and method of operation
USD779631S1 (en) 2015-08-10 2017-02-21 Koch Membrane Systems, Inc. Gasification device

Also Published As

Publication number Publication date
JP2006255587A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4635666B2 (en) Water treatment method
JP5844196B2 (en) Desalination apparatus and desalination method
JPH07155758A (en) Waste water treating device
WO2001072643A1 (en) Method and apparatus for treating waste water
JP2011088053A (en) Equipment and method for desalination treatment
KR100645952B1 (en) Hollow-fibre membrane filtration device for purifying waste water, filtration module and a method for traeting water or waste water using thereof
JP2007289847A (en) Raw tap water purification method and its apparatus
JP6184541B2 (en) Sewage treatment apparatus and sewage treatment method using the same
JP3491122B2 (en) Water treatment equipment
JP2007136378A (en) Septic tank
WO2011136043A1 (en) Wastewater treatment device and wastewater treatment method
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2014000495A (en) Sewage treatment apparatus, and sewage treatment method using the same
JP4844825B2 (en) Sewage treatment plant at satellite treatment plant
KR20180008175A (en) Pressurized membrane water treatment apparatus
JP5801249B2 (en) Desalination apparatus and desalination method
JP2002346581A (en) Treatment apparatus and treatment method for organic wastewater
JP4335193B2 (en) Method and apparatus for treating organic wastewater
WO2018051630A1 (en) Membrane-separation activated sludge treatment system
JP2009214062A (en) Operation method of immersion type membrane module
JPH10202010A (en) Water treatment device
JP6613323B2 (en) Water treatment apparatus and water treatment method
JP7213711B2 (en) Water treatment device and water treatment method
JP4124957B2 (en) Filter body washing method and apparatus
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4635666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees